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Abstract. Crystal Structure Prediction (CSP) aims to discover solid
crystalline materials by optimizing periodic arrangements of atoms, ions
or molecules. CSP takes weeks of supercomputer time because of slow
energy minimizations for millions of simulated crystals. The lattice en-
ergy is a key physical property, which hints at thermodynamic stability
of a crystal but has no simple analytic expression. Past machine learn-
ing approaches to predict the lattice energy used slow crystal descriptors
depending on manually chosen parameters. The new area of Periodic Ge-
ometry offers much faster isometry invariants that are also continuous
under perturbations of atoms. Our experiments on simulated crystals
confirm that a small distance between the new invariants guarantees
a small difference of energies. We compare several kernel methods for
invariant-based predictions of energy and achieve the mean absolute er-
ror of less than 5kJ/mole or 0.05eV/atom on a dataset of 5679 crystals.
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1 Motivations, problem statement and overview of results

Solid crystalline materials (crystals) underpin key technological advances from
solid-state batteries to therapeutic drugs. Crystals are still discovered by trial
and error in a lab, because their properties are not yet expressed in terms of
crystal geometries. This paper makes an important step towards understanding
the structure-property relations, for example how an energy of a crystal de-
pends on its geometric structure. The proposed methods belong to the recently
established area of Periodic Geometry, which studies geometric descriptors (con-
tinuous isometry invariants) and metrics on a space of all periodic crystals.

The most important property of a crystal is the energy of its crystal struc-
ture, which is usually called the lattice energy or potential energy surface or
energy landscape [24]. This lattice energy hints at thermodynamic stability of
a crystal, whether such a crystal can be accessible for synthesis in a lab and
can remain stable under application conditions. Since the lattice energy has no
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closed analytic expression, calculations are always approximate, from the force
field (FF) level [14] to the more exact density functional theory (DFT) [10].

Our experiments use the lattice energy obtained by force fields for the CSP
data of 5679 nanoporous T2 crystals in Fig. 1 predicted by our colleagues [18].

Fig. 1. Left: T2 molecule. Right: energy-vs-density plot of 5679 predicted crystals,
five polymorphs were synthesized, most recent T2-ε crystal is added to [18, Fig. 2d].

Traditionally a periodic crystal is stored in a Crystallographic Information
File (CIF). This file specifies a linear basis v1, v2, v3 of R3, which spans the unit

cell U = {
3∑
i=1

civi | 0 ≤ ci < 1}, generates the lattice Λ = {
3∑
i=1

civi | ci ∈ Z}.

Then a crystal can be obtained as the infinite union of lattice translates M+Λ =
{p+ v : p ∈M, v ∈ Λ} from a finite set (motif ) of points M ⊂ U in the cell U .
The representation M + Λ is simple but is highly ambiguous in the sense that
infinitely many pairs (cell, motif) generate equivalent crystals, see [2, Fig. 2].

The main novelty of our approach to energy predictions is using the fast
computable and easily interpretable invariants of crystals. The concept of an
invariant has a rigorous definition after we fix an equivalence relation on objects
in question. Since crystal structures are determined in a rigid form, the most
natural equivalence is rigid motion or isometry, which is any map that preserves
interpoint distances, for example a composition of translations and rotations in
Euclidean space R3. Any orientation-preserving isometry can be realized as a
rigid motion, which is a continuous family ft, t ∈ [0, 1], of isometries starting
from the identity map f0 = id. Since any general isometry is a composition of a
single reflection and a rigid motion, we consider isometry as our main equivalence
relation on crystals. Later we can also take into account a sign of orientation.

An isometry invariant I is a crystal property or a function, say from crystals
to numbers, preserved by isometry. So if crystals S,Q are isometric then I(S) =
I(Q). The classical example invariants of a crystal S are the symmetry group
(the group of isometries that map S to itself) and the volume of a minimal
(primitive) unit cell. Example non-invariants are unit cell parameters (edge-
lengths and angles) and fractional coordinates of atoms in a cell basis.
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Many widely used isometry invariants including symmetry groups break down
(are discontinuous) under perturbations of atoms, which always exist in real
crystals at finite temperature. Perturbations are also important for distinguish-
ing simulated crystals obtained via Crystal Structure Prediction (CSP). Indeed,
CSP iteratively minimizes the lattice energy and inevitably stops at some ap-
proximation to a local minimum [15]. Hence, after many random initializations,
we likely get many near duplicate structures around the same local minumum.

Fig. 2. Most past invariants are discontinuous under perturbations above, for example
symmetry groups and sizes of primitive or reduced cells. Recent isometry invariants
[12, 27, 26] continuously quantify similarities between perturbed periodic structures.

Since any perturbation of points keeping their periodicity (but not necessarily
an original unit cell) produces a new close structure, all periodic structures form
a continuous space. Then any CSP dataset can be viewed as a discrete sample
from the underlying continuous space of periodic structures. The lattice energy
is a function on this crystal space whose geometry needs to be understood. The
problem below is a key step towards describing structure-property relations.

Properties-from-invariants problem. Find suitable isometry invariants that
justifiably predict desired properties of crystals such as the lattice energy. �

The proposed invariants to tackle the above problem are average minimum
distances (AMD) [27]. AMD is an infinite sequence of isometry invariants whose
values change by at most 2ε if given points are perturbed in their ε-neighborhoods.
A thousand of AMD invariants can be computed in milliseconds on a modest
desktop for crystals with hundreds of atoms in a unit cell [27, appendix D].

The above continuity of AMD guarantees that perturbed crystals have close
AMD values. Then such a theoretically continuous invariant can be tested for
checking continuity of energy under crystal perturbations. The first contribution
is an experimental detection of constants λ and δ such that, for any smaller
distance d < δ between AMD vectors, the corresponding crystals have a lattice
energy difference within λd, usually within 2kJ/mole. Past invariants have no
such a constant to quantify continuity of energy in this way. For example, close
values of density, RMSD [6], PXRD [20] don’t guarantee close values of energy.
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The second contribution is the demonstration that several kernel methods
can achieve a mean absolute error of less than 5kJ/mole by using only isome-
try invariants without any chemical data. The key achievement is the time of
less than 10 min for training by using a modest desktop on a dataset of 5679
structures, while energy predictions take milliseconds per crystal on average.

Section 2 reviews closely related past work using crystal descriptors for ma-
chine learning of the lattice energy. Section 3 reminds the recently introduced
isometry invariants of periodic point sets and their properties. Section 4 quanti-
fies continuity of energy in terms of AMD invariants. Section 5 describes how the
energy of a crystal can be predicted from its AMD invariants by using several
kernel methods. Section 6 discusses limitations and potential developments.

2 Review of related machine learning approaches

This section reviews the closest related work about energy predictions for infinite
periodic crystals. The same problem is simpler for a single molecule [22].

Energy predictions use various representations of crystals. We review only
geometric descriptors that are closest to isometry invariants in section 3.

The partial radial distribution function (PRDF) is based on the density of
atoms of type β in a shell of radius r and width dr centered around an atom
of type α [21]. Since atom types are essentially used, the PRDF can be best for
comparing crystals that are composed of the same atom types. Due to averaging
across all atoms of a type α within a unit cell, the PRDF is independent of a
cell choice. A similar distance-based fingerprint was introduced earlier by Valle
and Oganov [23]. Since only pairwise distances are used, these descriptors are
isometry invariants and likely continuous under perturbations shown in Fig. 2.

Completeness or uniqueness of a crystal with a given PRDF is unclear yet, but
can be theoretically possible for a large enough radius r. Practical computations
require choices or the distance thresholds r and dr, which can affect the PRDF.
Schutt et al. confirm in [21, Table I] that the PRDF outperforms non-invariant
features such as the Bravais matrix of cell parameters. The mean absolute error
(MAE) of energy predictions based on PRDF is 0.68eV/atom or 65.6kJ/mole.

Another way to build geometric attributes of a crystal structure is to use
Wigner-Seitz cells (also called Dirichlet or Voronoi domains) of atoms. Ward
et al. [25] used 271 cell-based geometric and chemical attributes to achieve the
MAE of 0.09eV/atom or 8.7kJ/mole for predicting the formation enthalpy.

An extensible neural network potential [22, Fig. 4] has further improved the
mean absolute error (MAE) to 1.8kcal/mole=7.56kJ/mole. The most advanced
approach by Egorova et al. [8] predicts the difference between the accurate DFT
energy and its force field approximation a with MAE less than 2kJ/mole by
using GGA DFT (PBE) calculations and symmetry function descriptors [3].
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3 Key definitions and recent results of Periodic Geometry

This section reviews more recent work in the new area of Periodic Geometry [1],
which studies the metric geometry on the space of all periodic structures. Nuclei
of atoms are better defined physical objects than chemical bonds, which depend
on many thresholds for distances and angles. Hence the most fundamental model
of a crystal is a periodic set of zero-sized points representing all atomic centers.

Though chemical elements and other physical properties can be easily added
to invariants as labels of points, the experiments in [7, 27] and sections 4, 5 show
that the new invariants can be enough to infer all chemistry from geometry.

The symbol Rn denotes Euclidean space with Euclidean distance |p − q|
between points p, q ∈ Rn. Motivated by a traditional representation of a crystal
by a Crystallographic Information File, a periodic point set S is given by a pair
(cell U , motif M). Here U is a unit cell (parallelepiped) spanned by a linear basis

v1, . . . , vn of Rn, which generates the lattice Λ = {
n∑
i=1

civi : ci ∈ Z}. A periodic

point set S = M + Λ is obtained by shifting a finite motif M ⊂ U of points
along all vectors v ∈ Λ. Fig. 3 illustrates the problem of transforming ambiguous
input into invariants that can distinguish periodic sets up to isometry.

Fig. 3. Any periodic sets, for example the hexagonal and square lattices, can be repre-
sented by infinitely many pairs (cell, motif). This ambiguity can be resolved only by a
complete isometry invariant that should continuously parameterize the crystal space.

Arguably the simplest isometry invariant of a crystal is its density ρ. Without
distinguishing atoms in a periodic point set S, the density ρ(S) is the number
m of points in a unit cell U , divided by the cell volume Vol[U ]. The density ρ
distinguishes hexagonal and square lattices in Fig. 3 but is insensitive to per-
turbations shown in Fig. 2. Though many real crystals are dense and can not
be well-separated by density, energy landscapes are still visualized as energy-vs-
density plots in Fig. 1. The single-value density ρ has been recently extended to
the sequence of density functions ψk(t) [7]. For any integer k ≥ 1, the density
function ψk(t) measures the volume of the regions within a unit cell U covered
by k balls with radius t ≥ 0 and centers at all points p ∈M , divided by Vol[U ].

Though these isometry invariants have helped to identify a missing crystal
in the Cambridge Structural Database, their running time cubically depends on
k, which is a bit slow for big datasets. The following invariants are much faster.
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Let a periodic point set S ⊂ Rn have points p1, . . . , pm in a unit cell. For
any k ≥ 1 and i = 1, . . . ,m, the i-th row of the m × k matrix D(S; k) consists
of the ordered distances di1 ≤ · · · ≤ dik measured from the point pi to its first
k nearest neighbors within the infinite set S, see Fig. 4. The Average Minimum

Distance AMDk(S) =
1

m

m∑
i=1

dik is the average of the k-th column in D(S; k).

Fig. 4. [27, Fig. 4] Left: in the square lattice, the k-th neighbors of the origin and
corresponding AMDk are shown in the same color, e.g. the shortest axis-aligned
distances AMD1 = · · · = AMD4 = 1 are in red, the longer diagonal distances
AMD5 = · · · = AMD8 =

√
2 are in blue. Middle: in the hexagonal lattice, the shortest

distances are in red: AMD1 = · · · = AMD6 = 1. Right: AMD for a non-lattice set.

[27, Theorem 4] proves that AMD is an isometry invariant independent of a
unit cell. The AMD invariants are similar to radial distribution functions [21]
and related density-based invariants [23]. The AMD definition has no manually
chosen thresholds such as cut-off radii or tolerances. The length k of the vector
AMD(k) = (AMD1, . . . ,AMDk) is not a parameter in the sense that increasing k
only adds new values without changing previous ones. Hence k can be considered
as an order of approximation, similarly to an initial length of a DNA code.

We have no examples of non-isometric sets that have identical infinite AMD
sequences. Hence AMD can be complete at least for periodic sets in general po-
sition so that if two sets S,Q have AMD(S) = AMD(T ), then S,Q are isometric.
More recently, the isometry classification of all periodic point sets was reduced
to an isoset [2], which is a collection of atomic environments considered modulo
rotations and up to a stable radius α. This stable radius is defined for a given
crystal and any two crystals can be compared by isosets of their maximum radius
so that two sets S,Q are isometric if and only if their isosets are equivalent.

This paper uses AMD invariants due to their easy interpretability and fast
running time. AMDk(S) asymptotically approaches c(S) n

√
k, where c(S) is re-

lated to the density of a periodic point set S ⊂ Rn, see [27, Theorem 13]. A near
linear computational time [27, Theorem 14] of AMDk in both m, k translates into
milliseconds on a modest laptop, which allowed us to visualize all 229K organic
molecular crystals from the Cambridge Structural Database in a few hours.
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4 Continuity of the energy in terms of AMD invariants

To express continuity of AMD and other invariants under perturbations, we use
the maximum displacement of atoms formalized by the bottleneck distance dB as
follows. For any bijection g : S → Q between periodic point sets, the maximum
displacement is dg(S,Q) = sup

p∈S
|g(p) − p|. After minimizing over all bijections

g : S → Q, we get the bottleneck distance dB(S,Q) = inf
g:S→Q

dg(S,Q).

The structure-property hypothesis says that all properties of a crystal
should be determined by its geometric structure. Understanding how any prop-
erty can be explicitly computed from a crystal structure would replace trial-and-
error methods by a guided discovery to find crystals with desired properties.

Most current attempts are based on black-box machine learning of prop-
erties from crystal descriptors, not all of which are invariants up to isometry.
All machine learning tools rely on the usually implicit assumption that small
perturbations in input data lead to relatively small perturbations in outputs.

Continuity of a structure-property relation can be mathematically ex-
pressed as Lipschitz continuity [16, section 9.4]: |E(S)−E(Q)| ≤ λd(S,Q), where
λ is a constant, E is a crystal property such as the lattice energy, d(S,Q) is a dis-
tance satisfying all metric axioms on crystals S,Q or their invariants. The above
inequality should hold for all crystals S,Q with small distances d(S,Q) < δ,
where a threshold δ may depend on a property E or a metric d, not on S,Q.

The continuity above sounds plausible and seems necessary for the structure-
property hypothesis. Indeed, if even small perturbations of a geometric structure
drastically change crystal properties, then any inevitably noisy structure deter-
mination would not suffice to guarantee desired properties of a crystal.

Fig. 5,6,7 show that the past methods of characterizing crystal similarity are
insufficient to guarantee the above continuity of the lattice energy. These results
were obtained on the T2 dataset of 5679 simulated crystals reported in [18].
Each square dot represents a pair of crystals with differences in past descriptors
on the horizontal axis and differences in energies on the vertical axis.

Fig. 5 shows dozens of crystal pairs with very close densities and rather differ-
ent lattice energies, which means that the energy discontinuously varies relative
to the density. This failure of a single-value descriptors might not be surprising
not only for crystals, which are often very dense materials, but also for other
real-life scenarios. For example, many people have the same height and very dif-
ferent weights. However, the density is still used to represent a crystal structure
in CSP landscapes such as Fig. 1. Indeed, the density is an isometry invariant,
which is continuous (actually, constant) under perturbations, see Fig. 2.

Fig. 6 illustrates a similar conclusion for the traditional packing similarity
measured by the COMPACK algorithm [6] as the Root Mean Square Deviation
(RMSD) of atomic positions matched between up to 15 (by default) molecules in
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Fig. 5. 5679 crystals in Fig. 1 have the density range [0.3, 1.4]. Many crystals have
differences in densities within 0.003g/cm3 and differences in energies up to 3kJ/mole.

Fig. 6. Crystal pairs with RMSD < 0.1Å have differences in energies up to 3kJ/mole.

two crystals. This similarity relies on two extra thresholds for atomic distances
and angles whose values affect the RMSD. For example, when only one of 15
molecules is matched, the RMSD is exactly 0, because all 5679 crystals are
based on the same T2 molecule in Fig. 1. Nonetheless, this packing similarity
can visually confirm that nearly identical crystals nicely overlap each other.

The powder X-ray diffraction (PXRD) similarity has the range [0,1] with
values close to 1 indicating closeness of diffraction patterns. Fig. 7 has 1−PXRD
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Fig. 7. Crystal pairs with PXRD similarity > 0.9995 have big differences in energies.

Fig. 8. The green line |∆E| = 75L2 over L2 ∈ [0, 0.04] shows that if crystals have a
distance L2 < 0.04Å between AMD(100) vectors, their energies differ by at most 75L2.

on the horizontal axis and similarly to the above two plots shows many pairs of
nearly identical crystals (with PXRD above 0.9995) with rather different ener-
gies. Despite Fig. 5,6,7 illustrating the discontinuity of the lattice energy with
respect to traditional similarity measures of crystals, we should not despair.
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The new AMD invariants detect tiny differences in crystal structures and
are continuous under perturbations in the bottleneck distance [27, Theorem 9]:
|AMDk(S) − AMDk(Q)| ≤ 2dB(S,Q) if the bottleneck distance dB is less than
half of the minimum distance between points in any of periodic sets S,Q ⊂ Rn.

Even more importantly, Fig. 8, 9,10 show that the lattice energy continuously
changes with respect to AMD invariants on the same T2 dataset. Each rhom-
bic dot in Fig. 8,9,10 represents one pairwise comparison between AMD(100)

vectors of length k = 100 for two T2 crystals. The distances between vec-
tors p = (p1, . . . , pk) and q = (q1, . . . , qk) on the horizontal axis are com-

puted by the Euclidean metric L2(p, q) =

√
k∑
i=1

|pi − qi|2, the Chebyshev metric

L∞(p, q) = max
i=1,...,k

|pi − qi| and the Manhattan metric L1(p, q) =
k∑
i=1

|pi − qi|.

Despite the T2 dataset being thoroughly filtered out to remove near dupli-
cates, Fig. 8, 9 include several pairs whose AMD invariants are very close, though
not identical. In all these cases the corresponding crystals also have very close
energies, which can be quantified via Lipschitz continuity as follows.

In Fig. 8 the Lipschitz continuity for the energy |∆E| = |E(S) − E(Q)| ≤
λ2L2(AMD(100)(S),AMD(100)(Q)) holds for λ2 = 200 and all pairs of crystals

S,Q whose AMD(100) vectors have a Euclidean distance L2 < δ2 = 0.04Å.

Visually, all these pairs are below the green line ∆E = 200L2 up to the
distance threshold δ2 = 0.04Å. If distances between crystals become too large, a
single-value metric cannot guarantee close values of energy. Using the geographic
analogy, the further we travel from any fixed location on planet Earth, the more
variation in physical properties such as the altitude we should expect.

Fig. 9 illustrates continuity of the lattice energy with respect to the metric
L∞(p, q) = max

i=1,...,k
|pi − qi| between AMD(100) vectors. All pairs of crystals with

distances L∞ < δ∞ = 0.009Å have differences in energies less than λ∞L∞ with
λ∞ = 200, so all corresponding dots are below the green line |∆E| = 200L∞.

Fig. 10 shows that the lattice energy continuously behaves for the metric

L1(p, q) =
k∑
i=1

|pi − qi| between AMD(100) vectors. All pairs of crystals with

distances L1 < δ1 = 0.32Å have energy differences less than λ1L1 with λ1 = 10,
so all corresponding dots are below the green line |∆E| = 10L1.

The thresholds δ1 = 0.32 and δ2 = 0.04 are larger than δ∞ = 0.009Å, because
the metrics L1, L2 sum up all deviations between corresponding coordinates of
AMD(100) vectors, while the metric L∞ measures only the maximum deviation.

If we tried to fit Lipschitz continuity for the past descriptors (density, RMSD,
PXRD) in Fig. 5,6,7 similarly to AMD invariants above, corresponding green
lines would be almost vertical with huge slopes or gradients (Lipschitz constants).
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Fig. 9. The green line |∆E| = 200L∞ over [0, 0.009] shows that if crystals have a
distance L∞ < 0.009Å between AMD(100), their energies differ by at most 200L∞.

Fig. 10. The green line |∆E| = 10L1 over L1 ∈ [0, 0.32] shows that if crystals have a
distance L1 < 0.32Å between AMD(100) vectors, their energies differ by at most 10L1.
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5 Fast predictions of the energy by AMD invariants

This section describes the second important contribution by showing that con-
tinuity of AMD from section 4 leads to state-of-the-art energy predictions.

The energy prediction problem is to infer the lattice energy from a crystal
structure, for example by using a dataset of ground truth energies for training.

The descriptors in Fig. 5,6,7 cannot be justifiably used to resolve the above
problem because of their discontinuity. Indeed, if we input a slightly different
(say, experimental) crystal, we expect a close value of energy in the output.

Fig. 11. Gaussian Process tries to predict values of f(x) = x cosx by training on
observed data points. Left: an initial prediction is 0 for any x. Right: predictions
substantially improve after training on six data points under the natural assumption
that the underlying function is continuous, so continuity is important for learning.

First we describe the Gaussian Process Regression [11] as implemented in
SciKit Learn [17], see Fig. 11, which achieved the best results on the T2 dataset
of 5679 crystals. Initially each T2 crystal is converted into a periodic point set S
by placing a zero-sized point at every atomic center. Then each S is represented
by its AMD(k)(S) vector of a fixed length in the range k = 50, 100, . . . , 500. The

base distance d between AMD(k) vectors was chosen as L∞ due to the smallest
Lipschitz constant λ = 2 in the continuity property |AMDk(S) − AMDk(Q)| ≤
λdB(S,Q). For the metrics L1, L2, the Lipschitz constants would be 2k, 2

√
k.

For any pair of crystals S,Q, we consider the Rational Quadratic Kernel

K(S,Q) =

(
1 +

d2(S,Q)

2αl2

)−α
, where α, l are scale parameters optimized by

training. For a single prediction run, the whole T2 dataset was randomly split
into 80% training subset and remaining 20% test subset of m = 1136 crystals.

Table 1 shows three types of errors, each averaged over 10 runs above:

RMSE =

√
1

m

m∑
i=1

|Etrue(Si)− Epred(Si)|2 is the root mean square error in the
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lattice energy averaged over m crystals S1, . . . , Sm from the test subset, then

MAE =
1

m
max

i=1,...,m
|Etrue(Si) − Epred(Si)| is the mean absolute error and the

mean absolute percentage error MAPE =
1

m
max

i=1,...,m

|Etrue(Si)− Epred(Si)|
Etrue(Si)

.

Each value has the empirical standard deviation ±std computed over 10 runs.

Table 1. The Gaussian Process with the Rational Quadratic Kernel predicts the energy
reported in [18] with the mean absolute error (MAE) of less than 5kJ/mole onm = 1136
crystals by training on the isometry invariants AMD(k) of 4543 crystals for various k.

k RMSE± std MAE± std MAPE± std training time, sec full test time, ms

50 6.503± 0.123 4.900± 0.86 3.509± 0.059 627± 85 15961± 183

100 6.344± 0.152 4.801± 0.103 3.439± 0.070 349± 47 7979± 564

150 6.607± 0.119 4.977± 0.077 3.559± 0.053 400± 23 12789± 203

200 6.617± 0.147 4.966± 0.114 3.554± 0.079 506± 40 15943± 46

250 6.517± 0.109 4.914± 0.082 3.514± 0.055 574± 91 16464± 193

300 6.632± 0.139 5.003± 0.092 3.577± 0.062 545± 15 16431± 52

350 6.615± 0.077 4.990± 0.077 3.581± 0.053 500± 22 12395± 44

400 6.611± 0.149 4.984± 0.080 3.569± 0.053 585± 25 17906± 201

450 6.559± 0.179 4.954± 0.127 3.545± 0.085 512± 21 12927± 67

500 6.622± 0.116 5.004± 0.092 3.581± 0.068 598± 24 18429± 219

Table 1 shows that the errors RMSE,MAE,MAPE are consistent across dif-
ferent values of k. The key advantage over past methods is the speed: less than
10 min for training for 4543 vectors AMD(k) on Intel Xeon CPU at 2.3 GHz. The
last column shows the full test time on m = 1136 crystals, so the average time
per crystal is more than 1000 times faster. The smallest mean absolute error
MAE ≈ 4.8kJ/mole corresponds to about 7.4 milliseconds (ms) per crystal.

The computation of AMD(k) asymptotically has a near linear time in k and
the number of atoms in a unit cell by [27, Theorem 14], which needs only 27ms
on average per T2 crystal for k = 1000 on a similar desktop. This ultra-fast speed
allowed us to visualize for the first time all 229K molecular organic crystals from
the Cambridge Structural Database in less than 9 hours, see [27, appendix D].

We have tried other types of kernels: the matern and linear kernels gave
slightly larger errors, the squared exponential was worse for some k. We also
considered another version of the T2 dataset without hydrogens (32 atoms per
molecule instead of 46), which gave a bit bigger error for all kernels above.
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Instead of AMD invariants, we trained the Gaussian Process Regression on
the density functions ψk(t) [7], which are continuous isometry invariants extend-
ing the single-value density for a variable radius t ≥ 0. The average errors of
AMD-based predictions were smaller than for the density functions ψk, which
are also slower to compute than AMD, asymptotically in a cubic time in k.

Finally, the Random Forest [13] and Dense Neural Network [9] trained on
AMD and density functions performed slight worse than the Gaussian Process,
though the training and text times were much faster (seconds instead of minutes).
The experiments above are reported in the dissertation of the first author [19].

6 Conclusions and a discussion of future developments

This paper has demonstrated that the recently developed continuous isometry
invariants can provide insights undetected by traditional similarity measures.

In section 4 Fig. 5,6,7 show that many crystals can have almost identical
density, RMSD, PXRD patterns but rather different lattice energies. On the same
T2 dataset [18] Fig. 8,9,10 show that the lattice energy satisfies the Lipschitz
continuity |E(S)−E(Q)| ≤ λd(S,Q) for a fixed constant λ and all crystals S,Q
whose AMD invariants are close with respect to the metrics L1, L2, L∞.

In section 5 the standard kernel methods trained only on 100 isometry in-
variants AMD(100) achieved the state-of-the-art mean absolute error of less than
5kJ/mole in energy. The key achievement is the speed of training (about 10 min
for 4543 crystals on a modest desktop) and testing, which run in milliseconds
per crystal. The code of experiments in section 5 is available on GitHub [19].

It should not be surprising that the lattice energy can be efficiently predicted
from distance-based invariants without any chemical information. Indeed, if one
atom is replaced by a different chemical element, then inter-atomic distances to
neighbors inevitably change, even if slightly. These differences in distances can
be detected, also after averaging over all motif points. So AMD invariants should
pick up differences in crystals after swapping chemically different atoms.

We don’t know any non-isometric periodic point sets that have identical in-
finite sequences {AMDk}+∞k=1. Claiming such a counter-example to completeness
requires a theoretical proof, because any computation outputs AMD values only
up to a finite k. The recent papers [26, 5, 4] introduced stronger invariants.
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