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 7 

Abstract  8 

Using beneficial soil bacteria to promote plant growth and reduce pests is a promising direction for 9 

sustainable agriculture. However, we need to understand the ecological basis of these interactions in 10 

order to identify those with the greatest potential to have an impact in the field. To do this, we need to 11 

embrace the complexity of multifactorial experiments to observe the strength of benefits across 12 

variable environments. I briefly review the recent literature on plant-microbe-insect interactions across 13 

changing environments, focusing on those using multiple factors. I finish by exploring ecological 14 

research approaches and multifactorial experimental designs that can be used to simplify the study of 15 

plant-microbe-insect interactions.  16 

 17 

Introduction 18 

Plant-growth-promoting bacteria (PGPB) associated with plant roots have been well-studied for their 19 

ability to improve plant nutrition, bioavailability of insoluble minerals, and root system architecture [1-20 

3]. These root-associated microbes can also benefit the plants through enhanced resistance to insect 21 

pests in some cases while simultaneously promoting plant growth [4,5], leading to all-round better 22 

plant health (termed biocontrol-PGPB [6]). While the potential of using such microbes in sustainable 23 

agriculture (as augmentative biological control agents [6,7]) is readily acknowledged in recent reviews 24 

[for example, 8,9-11] we lack empirical research on the mechanisms of effect that separate plant 25 

growth effects from those of biological control [6]. Additionally, studies often focus on pairwise 26 
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interactions without considering how they might be altered by higher-order interactions, e.g. with the 27 

changing abiotic environment [reviewed by 12,13,14]. A microbe that provides beneficial services 28 

under all environments with limited change to the strength of effect would be most suited for 29 

commercialisation [15]. Despite many studies still inferring ecosystem effects based on extrapolation 30 

from multiple pairwise effect studies [for a methodological review of this approach see 16], there is a 31 

growing number of studies that consider the effect of multiple factors on plant growth and pest 32 

resistance. One advantage of multifactorial experiments is the ability to examine indirect effects 33 

including those that occur through interaction modifications where the effect of one species on 34 

another depends on another factor (Fig. 1) [17]. In plant-microbe-insect systems, the changing climate 35 

can have direct effects on the individual species but can also alter how these interact with one 36 

another, e.g. by changing how the plant responds to a microbe or to insect attack. A further example 37 

is if earthworms increase the abundance of beneficial rhizobacteria as well as nutrient availability 38 

around the plant roots, these can both increase plant resistance and tolerance to insect attack but via 39 

different interactions (i.e rhizobacteria-plant and plant-insect) (Fig. 1). Whether or not these different 40 

effects work independently (additive) or interactively (multiplicative) can be determined by using a 41 

factorial experimental design.  42 

I briefly review the state of knowledge of this area, with particular focus on studies from the previous 43 

two years that use multiple experimental factors to determine the effect of rhizobacteria on reducing 44 

insect pests. The primary variables of interest in these studies are plant growth/yield, the population 45 

growth (suppression) of pest insects and recruitment of natural enemies, while the main experimental 46 

factors include inoculation by rhizobacteria species/strain, plant species/variety, and climate (Fig. 1). I 47 

will also focus on interactions involving rhizobacteria, however mycorrhizal or endophytic fungi can 48 

also benefit plant resistance to insects [recently reviewed by 18,19]. 49 

 50 

Plant-microbe-insect interactions across a changing climate 51 

The effect of rhizobacteria on leaf-feeding insects occurs indirectly via the plant (Fig. 1) by inducing 52 

plant defences via the jasmonic acid (JA) or salicylate acid (SA) pathways, or altering plant volatiles 53 

that attract natural enemies of the pest insects, e.g. parasitoid wasps. Pulido, et al. [20] used volatile 54 



assays to show that parasitoid wasps were more attracted to plants inoculated by two rhizobacteria 55 

(Bradyrhizobium japonicum and Delftia acidovorans), and that these bacteria could restore 56 

suppression of these volatiles induced by a plant virus. del Rosario Cappellari, et al. [21] showed that 57 

Bacillus amyloliquefaciens GB03 and Pseudomonas putida SJ04 both increased shoot volatile and 58 

phenolic compounds on peppermint plants (Mentha piperita), as well as JA and SA phytohormones, 59 

to similar levels as induced by feeding caterpillars. This can prime the plant against future caterpillar 60 

attack, reducing the time-lag between herbivore arrival and plant defence activation or predator 61 

recruitment. Another study also found that Bacillus amyloliquefaciens GB03 altered plant volatiles that 62 

attracted predatory earwigs (Doru luteipes), with a synergistic effect potentially benefiting pest control 63 

[22]. However, in these studies the link back to insect population growth was only inferred but not 64 

directly tested (although it is an expectation based on ecological knowledge). A negative effect on 65 

caterpillar growth was shown in a study on Arabidopsis, where differential induction of JA/SA genes 66 

by two Pseudomonas spp. rhizobacteria strains reduced caterpillar growth [23]. Pseudomonas strain 67 

CH267 induced greater JA-dependent defences (stronger defence against chewing insects, such as 68 

caterpillars) while WCS417 disrupted the JA/SA antagonism priming plants in both pathways (defence 69 

against chewing and sucking insects, such as aphids, as well as for pathogens). For sap-feeding 70 

insects, combinations of rhizobacteria reduced aphid population growth on wheat (Bacillus sp. and 71 

Pseudomonas sp.; Naeem, et al. [5]) and canola (a commercial product, Roshdafza by Biorun Iran, 72 

containing Pseudomonas fluorescens, Azotobacter chroococcum; and Azospirillum brasilense; 73 

Nasab, et al. [24]) and Pseudomonas spp. were found to reduce whitefly survival on tomato [25].  74 

The most studied climate factors in the recent literature on plant-microbe-insect interactions has been 75 

elevated carbon dioxide (eCO2) or elevated ground-level ozone (eO3) level. Higher CO2 is generally 76 

associated with increased absolute plant growth, but it also reduces plant nutrition, alters plant 77 

physiology, and alters the growth rate of insects and pathogens [26-28]. Ground-level ozone is a 78 

known stressor that reduces plant growth and increases plant susceptibility to pests and disease [29]. 79 

While many recent studies either consider the effect of elevated CO2/O3 on modifying soil microbial 80 

communities [30-32] or on altering plant-insect interactions [33-40], a number of studies considered all 81 

these factors together. For example, Zytynska, et al. [4] found that inoculating barley with Acidovorax 82 

radicis N35 increased plant growth while simultaneously reducing aphid densities, with greatest effect 83 

in a high-stress eO3 environment, but reduced effects under eCO2. This is interesting since the 84 



benefits were stronger when the plant ‘needed help’ under stress of eO3, but not under eCO2 when 85 

the plants were potentially able to make better use of other resources. Aphids and other sap-feeding 86 

insects also appear to be able to compensate for reduced plant nutrition under eCO2, through 87 

increased ingestion of phloem or manipulation of local nutrient provisioning [4,33,35,41,42]. Another 88 

multifactorial experiment by Li, et al. [43] found that both eCO2 and rhizobacteria inoculation (Azospirillum 89 

brasilense and Azotobacter chroococcum) reduced caterpillar (Mythimna separata) fitness on maize, with 90 

fitness effects on adult longevity and fecundity induced by the rhizobacteria only observed under eCO2. These 91 

results suggest that biocontrol effects of rhizobacteria could be increased in the future climate for chewing-92 

insects but decreased for sap-feeding insects. However, we need more multifactorial experiments assessing 93 

these effects over multiple plant, insect and rhizobacteria species before any generalisations or predictions can 94 

be made. 95 

As an alternative to inoculating individual bacterial strains, Pineda, et al. [44] showed that conditioning 96 

soil with certain grass or forb species created soil microbiomes that were able to reduce the growth 97 

rate of thrips, but not spider mites, on chrysanthemum. While host-plant species or genotype is a 98 

known strong factor determining rhizobacterial community, other soil dwelling species such as 99 

earthworms can also have significant effects on microbial community composition [recently reviewed 100 

by 45]. These interactions can also influence the ability of the microbiome to suppress pests, for 101 

example Zytynska, et al. [4] found that while earthworms increased aphid densities, the inoculated 102 

rhizobacteria A. radicis N35 was able to limit this increase in an ambient and eCO2 environment. 103 

When investigating the impact of earthworms on rhizosphere activity in sugarcane, Braga, et al. [46] 104 

identified 70 microbial functions that differed due to earthworm treatment. Under earthworm presence, 105 

plants recruited more rhizobacteria that were able to use the ‘earthworm-induced’ N2O, to the benefit 106 

of the plant. Metatranscriptomic analysis of agricultural soils with a history of pesticides and heavy 107 

metals identified high abundance of stress-related genes in the bacterial community [47], and is a 108 

promising method for further investigation into functional traits underlying plant-microbe-insect 109 

interactions.  110 

Research approaches and multifactorial experimental design 111 



I will now explore some ways in which we can approach the study of multispecies interactions and 112 

how we can maximise the outputs without running unnecessarily extravagant experiments. While the 113 

focus is on plant-microbe-insect interactions across a changing abiotic environment, much of what is 114 

discussed can be transferred into other areas. Working with diverse species requires effective time 115 

management as well as interdisciplinary technical skills, including preparation of sufficient microbial 116 

inoculant, growing healthy plants, and maintaining stock insect populations at correct densities; 117 

keeping them all alive with no cross-contamination for the duration of the experiment can also be a 118 

rather daunting prospect. With additional replication required across climate treatments, these 119 

experiments can often be viewed as formidable, ambitious, and too complex to provide reliable 120 

results. I argue that such complex experiments are needed to produce invaluable information on the 121 

ecological consequences of these interactions, but this value will be enhanced through smaller follow-122 

up experiments that focus on understanding the underlying mechanisms. 123 

The natural world is complex, but there are many approaches we can use to understand it. 124 

Traditionally, ecological studies can be classed into two major types: (1) observational studies that 125 

take place in the field and rely on detecting associations between variables that fit reasonable 126 

expectations, and (2) experimental studies that are designed to control most variables apart from 127 

those of interest in the hypothesis. A combination of these approaches is often followed in ecology, 128 

with observational results leading to hypothesis-driven experiments, or in the other direction 129 

hypothesis-driven experiments being transferred to the field [48]. The more controlled an experiment, 130 

the more we can infer the mechanisms driving the effects, but this simplifies the system and ignores 131 

potential interactions that would occur in a natural system. We can increase the number of factors to 132 

understand effects across variable environments making experimental systems somewhat more 133 

realistic by simulating ecosystems (albeit still simplified) [16,49,50]. However, with every included 134 

factor the size and cost of the experiment increases. An additional 2-level factor doubles the number 135 

of experimental units, while adding abiotic factors such as temperature or carbon dioxide requires 136 

extra infrastructure.  137 

The design of optimal multifactorial experiments is a long-standing discussion [51], particularly in 138 

industrial research where high-throughput testing of many factors is needed. Many ecological 139 

experiments aim to use a fully-factorial design, meaning that every possible combination of treatment 140 



factors is included. This is a very powerful approach for statistical analysis of higher-order 141 

interactions, but this design can quickly lead to very large experiments. Incomplete factorial designs 142 

can be used where some treatment combinations are ignored and can help to reduce experimental 143 

sizes if the consequences are considered beforehand. For example, in plant-microbe-insect systems, 144 

hypotheses focused on identifying effects on insect growth could omit control plants without insects if 145 

plant effects are already established. To ensure the microbial inoculation is doing what is expected, a 146 

limited number of ‘no insect’ replicates could be used (i.e. as technical controls). Such approaches 147 

reduce replicate numbers, and therefore space and cost of the experiment, while still providing 148 

sufficient information to test the focal hypotheses. While all experiments should be designed based on 149 

a hypothesis, following an incomplete design approach requires clearly defined hypotheses from the 150 

very beginning since omitting important treatment combinations will limit the interpretation of the 151 

results. Unequal allocation of replicates to different treatment combinations is also possible without 152 

sacrificing statistical power [52]. Many clinical designs aim to minimise the number of treated human 153 

or animal patients but maximise the number of control patients to boost statistical power [53]. Similar 154 

approaches could be used when deciding on replicate number for ecological experiments; however, 155 

knowledge of expected variation and power is needed to optimise this.  156 

Running a set of smaller experiments to test multiple hypotheses at the same time can also maximise 157 

cost and space efficiency, especially when they share control treatments. This can be especially 158 

helpful for experiments that include different levels of experimental units, e.g. changing the 159 

environment at a chamber level (eCO2, eO3, temperature) and at the pot level (water availability, 160 

nutrients, microbial inoculation, insect/plant genotype). The chamber level replication will be set based 161 

on the infrastructure, with often too few replicated chambers available, while the pot level replication 162 

will be based on the space inside the chambers. While the number of chambers is difficult to change it 163 

is possible to optimise the space and avoid pseudoreplication or chamber effects by ‘chamber 164 

swapping’ where plants are circulated among the available chambers and environment adjusted [for 165 

an analysis of this approach see 50]. Within a climate chamber, use of a complete randomised block 166 

design will reduce confounding factors that might occur due to pot location and inherently provides a 167 

matched pairs design for analysis. Use of matched pairs analyses can help to account for variation 168 

across blocked replicates, by calculating the relative effect between treated vs untreated pots and 169 

analysing this over the other multiple factors. We used such an approach in Zytynska, et al. [4] 170 



reducing a 5-way interaction model (bacteria, plant genotype, earthworms, eCO2, eO3) to a slightly 171 

more interpretable 4-way interaction focused on how the other factors altered the effect of the bacteria 172 

on the aphid. A combination of reducing unnecessary treatment combinations, optimising the 173 

allocation of replicates, and chamber swapping can all be combined to produce data with good 174 

statistical power on which to test the proposed hypotheses. 175 

Another approach for larger designs is to stagger the experimental set-up over temporal blocks [54]. 176 

For example, a set of three (minimum) replications of each individual treatment combination can be 177 

run within each temporal block, producing a triplicate of data for each block run. The inherent 178 

replication within and across temporal blocks benefits analysis of the consistency of the interaction 179 

effects, just like replicating the experiment multiple times. Another advantage is that the data can be 180 

analysed after each temporal block, and a post-hoc power analysis used to determine the ideal 181 

number of replicates needed; although, an a priori power analysis should be performed to inform on 182 

the likely optimal number of replicates. Additional advantages include the ability to include further 183 

replicates if one block fails, moving away from the ‘all-or-nothing’ of a single time-point experiment - 184 

useful when relying on multiple species to be ‘experimentally-ready’ at a given time. Such an 185 

approach is also beneficial when space is limited due to using controlled climate chambers, and 186 

replication across chambers is required [54].  187 

 188 

Conclusion 189 

The study of plant-microbe-insect interactions is promising for fundamental understanding of the 190 

ecology, but also for the applied potential in agriculture. Building on the strength of knowledge from 191 

pairwise interaction experiments, we now need to increase the complexity to understand how these 192 

interactions behave in a more diverse environment. This is important to transfer the knowledge to the 193 

field, where there is an already established soil microbiome, soil macrofauna community, and 194 

environmental conditions are highly changeable. Ideally, we will identify microbes that are beneficial 195 

across multiple crops and environments, and that persist in field soils. Additionally, the more we study 196 

these interactions, the more we uncover the molecular mechanisms involved in pest suppression and 197 

these can be used for breeding new plant varieties. Finally, to achieve the great potential for this area 198 



we must be ambitious and brave by embracing the complexity of ecological systems into our 199 

experimental work. 200 
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 396 

Figure 1. Unravelling plant-microbe-insect interactions across a changing environment. Many 397 

plant-microbe-insect interactions are performed in mesocosms, often covering individually-potted 398 

plants with fine-mesh or air-permeable cellophane to avoid transfer of microbes or insects to other 399 

plants. This allows for high replication of a set of treatment combinations (with pot as the experimental 400 

unit) across different climate environments (where chamber would be the level of replication). When 401 

analysed appropriately these experiments can identify direct (bold arrows) and indirect (including 402 

interaction modifications, dotted line arrows) interactions among the species involved. 403 
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