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Abstract

In the real world, a significant challenge faced in designing critical systems is

the lack of available data. This results in a large degree of uncertainty and the

need for uncertainty quantification tools so as to make risk-informed decisions.

The NASA-Langley UQ Challenge 2019 seeks to provide such setting, requiring

different discipline-independent approaches to address typical tasks required for

the design of critical systems.

This paper addresses the NASA-Langley UQ Challenge by proposing 4 key

techniques to provide the solution to the challenge: 1) a distribution-free Bayesian

model updating framework for the calibration of the uncertainty model; 2) an

adaptive pinching approach to analyse and rank the relative sensitivity of the

epistemic parameters; 3) the probability bounds analysis to estimate failure

probabilities; and 4) a Non-intrusive Stochastic Simulation approach to identify

an optimal design point.
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1. Introduction

1.1. Research Context

The design of critical safety systems is often associated with the availability

of limited data. Despite such challenge posed, the system needs to be designed

in order to cope with the unavoidable uncertainty. Such uncertainty can be

classified as either aleatory or epistemic uncertainty [1, 2]. Aleatory uncertainty

is often considered as the irreducible uncertainty that is caused by the inher-

ent randomness of the system [3] and generally modelled as random variables

according to some distribution function [4, 5]. On the other hand, epistemic un-

certainty is caused by a lack of or limited knowledge which can be theoretically

reduced or eliminated through, for instance, data collection [6]. An epistemic

parameter is generally represented by a fixed value within a bounded set whose

intervals reflect the level of knowledge on the parameter [3]. The lower the level

of knowledge, the larger the interval of this bounded set. It is important to

note that the aleatory and epistemic uncertainty can refer to the same physical

quantity and, therefore, such classification becomes fuzzy. In fact, the aleatory

uncertainty can be seen as the remaining uncertainty after a campaign, aimed

at reducing the epistemic uncertainty, is performed.

The design of systems under uncertainty requires the availability of robust

and efficient tools for uncertainty characterisation and quantification. In order

to check the availability of discipline independent tools and applicability of

such tools, NASA Langley proposed a new UQ Challenge problem in 2019 [3]

with the purpose of modelling the dynamic behaviour of a system, analysing

its operational reliability, and devising an improved design configuration for the

system under uncertainty. This UQ Challenge problem follows from the success

of the previous edition in 2013 [7].

In this challenge, a “Black-box” computational model of a physical system

is used to evaluate and improve its reliability. Unlike the previous challenge

[7], the Uncertainty Model (UM) to the respective aleatory input parameters

are completely unknown and they are to be derived by the participants. In
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addition, the response of the system is time-dependent providing a realistic

setting under which different tasks will be addressed. This is because in the

real-world, prior distributional knowledge to such models associated with the

parameters of interest are usually unavailable.

This paper is part of a Special Issue providing the solution for the NASA-

Langley UQ Challenge problem. Therefore, for the sake of the content length,

a detailed explanation to the problem is not shown. Instead, a summary of the

challenge and the description of the notations is provided.

1.2. The NASA-Langley UQ Challenge problem (2019)

The system is characterised by a design point θ with 9 real components (i.e.

θ ∈ Rnθ ), and an uncertain model δ comprising of elements a and e [3]. a

denotes the vector of 5 aleatory parameters real components while e denotes

the vector of 4 epistemic parameters.

The aleatory space A is represented as a ∼ fa whereby fa is the joint density

function. The initial aleatory space is A0 = [0, 2]5. The epistemic space E is

represented as e ∼ E. The initial epistemic space is E0 = [0, 2]4. Hence, the

UM for δ is fully characterized by: 〈fa, E〉.

The system of interest consists of a set of interconnected subsystems for

which δ is concentrated in one of these subsystems. This subsystem is modelled

by a Black-box model function ŷ = yfun(a, e, t), where t ∈ [0, 5] s is the

time parameter. The output of this subsystem is represented as a discrete

time history: yl(t) = [yl(0), yl(dt), . . . , yl(5000 · dt)], where l = 1, . . . , 100, and

dt = 0.001 s. This yields a total of 5001 data of yl(t) per given l and the entire

time history data is denoted as D1 = {yl(t)}l=1,...,100.

The goal of this challenge can be summarised as follows [3]:

A. To create an UM for δ;

B. To decide a limited number of refinements (up to 4) on the epistemic

variables;

C. To perform a reliability analysis on a given design point θ;

D. To identify a new θ with improved reliability;
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E. To improve the UM for δ and θ given observations of the integrated system.

It needs to be highlighted that Task F of the challenge is not addressed in this

paper.

2. Task A: Model Calibration and Uncertainty Quantification of the

Subsystem

2.1. Modelling strategy and hypotheses

The Bayesian model updating technique is adopted to calibrate the UM using

the available data D1. This provides a probabilistic approach through which

the joint distribution function fa can be identified. Usually, Bayesian model

updating is not adopted to reduce epistemic uncertainty when represented by

intervals. However, the uncertainty of e can be quantified by modelling the

intervals as uniform distributions and then computing the posterior distribution.

At this point, it is important to note that the posterior distributions are used

to define new intervals as already successful proposed in [8]. Therefore, the

epistemic parameters eie , for ie = 1, . . . , 4, are assumed to be independent

between one another and their respective priors modelled by a non-informative

Uniform distribution with bounds defined by the epistemic space E0 (i.e. see

Section 1.2).

In this section, different strategies are adopted to represent the aleatory

uncertainty and metrics are used to compare between distributions. As a result,

we have obtained a conservative (i.e. low-risk) approach; and a more aggressive

(i.e. high-risk) approach aimed at reducing the uncertainty of the UM.

2.2. Bayesian Model updating

Bayesian model updating is a probabilistic model updating approach whose

mathematical formulation follows the Bayes’ rule introduced by [9, 10]:

P (Θ|D,M) =
P (D|Θ,M) · P (Θ|M)

P (D|M)
(1)
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where Θ is the vector of inferred parameters, D denotes the vector of observed

data used for model updating, and M = {ŷ, fa} is the model class which best

represents the observed data D. The different components in Eq. (1) are the

prior distribution (i.e. P (Θ|M)), the likelihood function (i.e. P (D|Θ,M)), the

posterior distribution (i.e. P (Θ|D,M)) and finally the evidence (i.e. P (D|M)).

The term of interest is P (Θ|D,M) which describes our updated knowledge of

Θ after observing the data D and it is generally presented as an non-normalised

distribution by neglecting the normalisation constant.

Advanced sampling techniques are used to sample from such non-normalised

distributions [11]. In this work, the Transitional Markov Chain Monte Carlo

(TMCMC) sampler is implemented whose algorithm is based on the Adaptive

Metropolis-Hastings technique [12] and utilises “transitional” distributions P j

from which samples are obtained sequentially. Details to the algorithm can be

found in [11, 13]. The motivations behind the use of TMCMC in this problem are

attributed to the following: 1) the algorithm is able to sample from complex-

shaped posteriors via “transitional” distributions P j ; 2) it can sample from

high-dimensional posteriors (i.e. up to 24 dimensions) [14]; and 3) it computes

the evidence P (D|M) which makes the algorithm useful in model selection

problems [13].

Due to the large data-set provided (i.e. D1), it becomes computationally

expensive to use a full likelihood function to perform an actual Bayesian compu-

tation [15]. For this reason, Approximate Bayesian Computation (ABC) [16, 17]

is adopted and defined as [15]:

P (D|Θ,M) ∝ exp
(
−d
ε

)2

(2)

where d is the stochastic distance metric which quantifies the difference between

the distribution of the observed data D and the model output of ŷ, while ε is

the width factor of the approximate Gaussian function.
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2.3. Proposed Approach

To determine the UM for a, 5 possible distribution types for fa are identified

and listed in Table 1. It needs to be highlighted that the choice of the Staircase

Density Function (SDF) presents a distribution-free approach contrary to the

other choice of distributions presented in the table. A key strength of SDFs lies

in its flexibility in describing a wide range of density shapes, including highly-

skewed and/or multi-modal distributions. This makes them highly applicable

in modelling the marginal distributions of the aleatory variables whose density

shapes are unknown a priori. In this analysis it has been assumed that: 1)

the marginal distribution of all the aleatory uncertainties belong to the same

distribution class; 2) no dependency exists between all aia (i.e. no correlation

matrix used).

Aleatory

model

Distribution type Prior distribution parameters

f1
a Beta(αia , βia) αia (Shape parameter 1): U [0, 100]

βia (Shape parameter 2): U [0, 100]

f2
a Truncated Normal(µia ,σia) µia (Mean of aia): U [0, 2]

[TN(aia ;µia , σia)] σia (Standard deviation of aia): U [0.01, 2]

f3
a Truncated Lognormal µia (Mean of log(aia)): U [−10, 10]

[TLN(aia ;µia , σia)] σia (Standard deviation of log(aia)): U [0.01, 5]

f4
a Truncated Gamma αia (Shape parameter): U [0, 10]

[TG(aia ;αia , βia)] βia (Scale parameter): U [0, 10]

f5
a Staircase Density Function µia (Distribution mean of aia): U [0, 2]

[SDF (aia ;µia , (m2)ia , (m3)ia , (m4)ia)] (m2)ia (2nd central moment of aia): U [0, 1]

(m3)ia (3rd central moment of aia): U [− 4
3
√

3
, 4

3
√

3
]

(m4)ia (4th central moment of aia): U [0, 4
3 ]

Table 1: Distribution type with the non-informative Uniform prior bounds of its corresponding

parameters for each aleatory model fa.

For the case of f1
a to f4

a, the distribution parameters add an additional 10

inferred parameters, while f5
a adds an additional 20 inferred parameters. Each

of these parameters are assigned a non-informative Uniform prior with bounds,
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stated in Table 1, chosen to ensure sufficient degrees of freedom in the model

calibration. It is also assumed that these parameters are independent from one

another. This brings the total number of inferred parameters to 24 for the case

of the SDF, and 14 for the rest of the distributions.

2.3.1. Distribution-based Approach

For the case of f1
a to f4

a, there is a need to reduce the size of the data to

reduce the computation cost in evaluating P (D|Θ,M). To achieve this, the

Fast Fourier Transformation (FFT) procedure is performed on D1 for each l

according to [14, 18, 19]:

yl(t) =

5000∑
q=0

Clq · exp [−i · q · ω0 · t] (3)

where ω0 = 2·π
5001 , and Clq is the numerical coefficient with real and imaginary

components denoted as Re(Clq) and Im(Clq) respectively. From which, the am-

plitude Alq and phase angles φlq are obtained as follows:

Alq =
√
Re(Clq)

2 + Im(Clq)
2 (4)

φlq = atan2

[
Im(Clq)

Re(Clq)

]
(5)

To remove the periodicity associated with the values of φlq, we introduced a phase

shift such that a factor of 2π rad is added or subtracted whenever the jump be-

tween consecutive phase angles is greater than π rad. This is achieved using

the unwrap function in MATLAB to ensure the jump between any consecutive

phase angles is always less than π rad. In doing so, it ensures the monotonic be-

haviour of φlq and simplifies its subsequent computation for P (D|Θ,M). When

this is done, we obtain the frequency spectra of Alq and φlq as shown in Figure

1 where it can be observed that beyond frequencies ω > 5.80 Hz, the values of

Alq do not show any additional perturbations for all l, thereby allowing those

data to be discarded. Hence, only 30 values of ω between 0 Hz and 5.80 Hz

are considered for both Alq and φlq. Let this set of values of ω be denoted as ωn,
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for n = 1, . . . , 30. This effectively reduces the total number of data for model

calibration from 500100 to 6000 (i.e. 3000 for Alq and 3000 for φlq).
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Figure 1: Illustration of the frequency spectra obtained from D1 via FFT.

To account for the variability of Alq and φlq at each ωn, the stochastic distance

metric d for P (D|Θ,M) is the Wasserstein distance defined as [20]:

dW =

∫ ∞
−∞
|FD(x)− Fŷ(x)| · dx (6)

whereby FD(x) and Fŷ(x) are the respective Empirical Cumulative Distribution

Functions (ECDFs) of the data (i.e. Alq and φlq) and the stochastic model output

of ŷ at a given fn, while x is the variable denoting either Alq or φlq. In essence,

dW quantifies the enclosed area between both ECDFs. The smaller dW is, the

higher the degree of similarity between the ECDFs of the data and the stochastic

prediction by ŷ [21]. Using Eq. (2), P (D|Θ,M) is defined as:

P (D|Θ,M) =

30∏
n=1

exp

−(dAW,n
εAn

)2

−

(
dφW,n

εφn

)2
 (7)

whereby the values of εAn and εφn are approximated by the standard deviations

of Alq and φlq respectively at ωn. Independence is assumed between data sets

to reduce computational costs in computing P (D|Θ,M). However, it needs to

be highlighted that in reality, there exists dependencies between the identified
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ωn for each lth sequence. To compute P (D|Θ,M), 100 model evaluations by ŷ,

per given set of model inputs {a, e}, are needed to construct Fŷ(x) .

2.3.2. Distribution-free Approach

For the case of f5
a, the distribution is defined by the SDF as [22]:

fa =

hib ∀ a ∈ ((ib − 1) · κ, ib · κ]5 , for 1 ≤ ib ≤ Nb

0 , otherwise

(8)

where Nb = 50 is the number of bins, hib is the height of the SDF in the ib
th bin,

and κ = 2
Nb

is the length of each sub-interval. It needs to be noted that hib ≥ 0

for all Nb bins and that their values are obtained by solving the following convex

optimisation problem:

ĥib = argmin
hib≥0

{
J(h) :

Nb∑
ib=1

∫ ib·κ

(ib−1)·κ
z · hib · dz = µia ,

Nb∑
ib=1

∫ ib·κ

(ib−1)·κ
(z − µia)r · hib · dz = (mr)ia , r = 0, 2, 3, 4

}
(9)

where J(h) is the cost-function. Details to J(h) and Eq. (9) can be found in

[22, 23].

To avoid a potential error in the implementation of the likelihood function

for the Distribution-based approach being brought forward, a different set-up for

P (D|Θ,M) is used in this analysis, where a different stochastic distance is em-

ployed and the data is analyzed in the time domain. Unlike in the Distribution-

based approach, the discrete Bhattacharyya distance [15] is employed as the

stochastic distance metric d:

dB = −log


nb∑

iNt=1

· · ·
nb∑
i1=1

√
pD(bi1,...,iNt ) · pŷ(bi1,...,iNt )

 (10)

where pD(bi1,...,iNt ) and pŷ(bi1,...,iNt ) are the Probability Mass Function (PMF)

values of the data from D1 and the stochastic model output from ŷ respectively

within the bin bi1,...,iNt , and nb = 20 is the number of bins used to compute the

Bhattacharyya distance. It needs to be highlighted that each bin has Nt = 5001
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coordinates as it is generated within a Nt-dimensional joint PMF space. Because

of this, the resulting joint PMF space has an excessive number of dimensions

for a direct evaluation of P (D|Θ,M). This brings the need for a dimension-

reduction procedure which is employed through the following steps [24]:

1. Define the window length Lw = 50 and divide the data set {yl(t)}l=1,...,100

into
⌈
Nt
Lw

⌉
distinct intervals where d•e is the ceil operator;

2. Compute the Root Mean Squared (RMS) values of each interval R =[
R1, . . . , Rd NtLw e

]
and generate the sample set of the RMS values RD ∈

R100×d NtLw e where:

RD =

[
R1
D, . . . ,R

d NtLw e
D

]
, with Rν

D = [R1,ν , . . . , R100,ν ]
T

for ν = 1, . . . ,
⌈
Nt
Lw

⌉
while Rŷ ∈ RNsim×d

Nt
Lw
e where Nsim = 1000 the

number of model evaluations by ŷ per given set of model inputs {a, e}. It

needs to be highlighted that the matrix structure of Rŷ is similar to that

of RD with the exception of the number of row elements;

3. Evaluate dB between sample sets Rν
D and Rν

ŷ for all ν;

4. Obtain the corresponding RMS values RdB and use it as the distance

metric.

Consequently, P (D|Θ,M) is re-expressed as:

P (D|Θ,M) = exp

(
−RdB
εB

)2

(11)

where εB = 0.01.

2.4. Results

For all set-ups, Ns = 500 samples are obtained from the resulting P (Θ|D,M).

Based on the analysis done for all aleatory models fa, 2 models are chosen on

the basis of their quality of the results and for the subsequent purpose of com-

parison: f1
a and f5

a. It needs to be highlighted, that f1
a is chosen given its

relatively higher value of the evidence P (D|M) compared to the other aleatory

models used in the Distribution-based approach as shown in Table 2.
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Aleatory model f1
a f2

a f3
a f4

a

P (D|M) 3.2229× 10−7 2.1952× 10−7 5.0815× 10−10 1.0180× 10−9

Table 2: Results of the evidence computed via TMCMC for each choice of model for fa.

To create the UM based on the information from the Bayesian model up-

dating results, the following procedure is undertaken: For the aleatory space,

the histograms of the distribution parameters of the given fa are obtained from

P (Θ|D,M). These histograms are converted into probability distribution func-

tions using Kernel density estimation with a Gaussian kernel [25] and are nor-

malised such that the distribution peak equals to 1. An illustration is provided

using the distribution parameters for f1
a as an example in Figure 2. From these

results, the posterior distributions are interpreted as Fuzzy sets where differ-

ent levels of confidence Lc ∈ [0, 1] would yield intervals of varying width [26].

Here, intervals at Lc = 0.5 level of confidence are considered for both the f1
a

and f5
a distribution parameters. The resulting intervals obtained would serve

as shape parameter inputs of the respective aleatory model fa. This yields the

Probability-boxes (i.e. P-boxes) [27, 28] of f1
a and f5

a which are illustrated in

Figure 3.

Figure 2: Illustration of the resulting distribution functions to the respective shape parameters

of the joint Beta distribution (i.e. f1
a) obtained via Kernel density estimates.
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Figure 3: P-box for a1 to a5 obtained from the respective UMs.

To define the epistemic space, the same procedure is done on the resulting

histograms of e1 to e4 obtained through P (Θ|D,M) given the respective fa.

These histograms are illustrated in Figure 4 for the respective set-up. However,

Lc = 0.05 level of confidence is considered in the case of f1
a while Lc = 0.025 level

of confidence is considered in the case of f5
a. The resulting intervals constitute

the updated hyper-rectangular set E defined by each of the resulting UM to

which numerical results are presented in Table 6. Let the UM determined from

P (Θ|D,M) given f1
a be denoted as UM1

y0, while that given f5
a be denoted as

UM2
y0.

To verify the calibration results, Ns samples are generated from the hyper-

rectangle defined by the bounds of the respective distribution parameters of fa

and eie according to the respective UMs. For each sample realization from this

hyper-rectangle, 100 model outputs of ŷ is obtained for t ∈ [0, 5] s. This is done

by generating 100 realizations of a from fa, given the distribution parameters

from the hyper-rectangle sample, whilst keeping e fixed. This yields a Nt ×

100 × Ns array of data output of ŷ for each UM whose results are plotted in

Figure 5. From the figure, it can be observed that the model output bands of

UM1
y0 (in blue) and UM2

y0 (in green) generally encompasses D1 (in red) which

indicates that the model calibration procedure, via Bayesian model updating,
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Figure 4: Histograms for e1 to e4 obtained from P (Θ|D,M) given f1
a (in blue) and f5

a (in

green).

was done satisfactorily.

Figure 5: Output band from ŷ according to UM1
y0 (in blue) and UM2

y0 (in green) along with

the data sequence D1 (in red) after calibration.

To further substantiate this, P-boxes of the calibrated model output of each

UM are constructed at t = {0.5, 1.0, 2.0, 3.0, 4.0, 5.0} s. Each P-box describes

the extreme bounds of the distribution of the Ns ECDFs whereby each ECDF

comprises of the 100 model output values at t. Figure 6 presents the resulting

P-boxes from UM1
y0 (in blue) and UM2

y0 (in green) at each chosen t. From the
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plots, it can be seen that the ECDF of D1 (in red) at any given t is generally

enclosed within the P-boxes. Furthermore, it can be observed that the shape

of both P-boxes generally follow the shape profile of the ECDF of D1 which

indicates a good degree of fit by both UMs.
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Figure 6: P-boxes of the model output from ŷ obtained from UM1
y0 (in blue) and UM2

y0

(in green) at various time slices t = {0.5, 1.0, 2.0, 3.0, 4.0, 5.0} s. The red ECDF denotes the

distribution of the data D1.

2.5. Discussion

Figure 3 shows that the P-boxes obtained for a1 to a5 according to UM1
y0

is generally wider than those obtained using the second approach UM2
y0. This

indicates a higher degree of uncertainty on the true distribution of all aia by

UM1
y0 which makes it less informative in identifying the true fa compared to

UM2
y0. In addition, the P-boxes for a2 to a5 obtained by UM2

y0 are generally

enclosed within those of UM1
y0 which suggests that the true CDF defined by fa

could lie within the P-box defined by UM2
y0.

The intervals obtained from the posterior distributions for e1 to e4 through

the model based on Beta distributions is much wider compared to the UQ model

obtained through the SRV based approach as shown in Figure 4. This further

highlights the non-informative nature of UM1
y0, especially for the case of e3

and e4. In addition, the posteriors obtained through the SRV based approach
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show a much greater degree of update from the Uniform prior and that it is

able to identify the epistemic parameters much more effectively as the peaks

are more pronounced. This leads to the uncertainty bounds of e according to

UM2
y0 being significantly narrower such that they are generally enclosed within

that according to UM1
y0 as seen from Table 6.

Figure 5 shows that the output bands of ŷ obtained from both UMs follow

the trend defined by D1. However, from Figure 6, it is observed that the P-boxes

obtained by UM2
y0 have much tighter bounds compared to UM1

y0 whilst still

enclosing the ECDF of D1. This is attributed to the P-box of the a, and the

bounds on e being narrower for UM2
y0 than UM1

y0 which resulted in the former

yielding a significantly better degree of fit over D1 than the latter. From the

results, it can be concluded that UM1
y0 is much more conservative compared to

UM2
y0 in modelling the uncertainty of fa and e.

3. Task B: Uncertainty Reduction

The objective of this task is to identify the epistemic parameters which have

more predictive capability and improve the UM. This is achieved by performing

a sensitivity analysis for the epistemic model parameters and the subsequent

refinement of the epistemic space.

3.1. Sensitivity Analysis

In this analysis, the epistemic uncertainties are ranked according to their

ability to improve the predictive ability of the computational model of the sub-

system. This predictive ability is quantified through the volume metric Ω defined

as:

Ω =

nt∑
it=1

ρit ·∆it (12)

ρit is the area of the P-box at time-slice it, ∆it is the time-step between time-

slice it − 1 and it, and nt is the total of time-slices used for the computation.
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For the computation, we consider the 6 time-slices which were used for the

illustration of the P-boxes in Figure 6.

Figure 7: Illustration to the approach in identifying the maximum reduction of Ω from the

pinching of eie .

To rank the the epistemic parameters according to their respective sensitiv-

ity, an adaptive pinching method [29] is proposed to provide a non-empirical

approach to determine the pinched bounds of a chosen epistemic parameter

which yields the greatest reduction in the value of Ω. The procedure is as fol-

lows: For a given ie, the uncertainty space of eie is reduced by 90 %. This is

done whilst keeping the uncertainty space of the remaining 3 epistemic model

parameters untouched. For a given eie , its bounds would first be divided into

10 equally-spaced units. Next, at iteration j = 1, a segment of bin length of 1

unit will be used to isolate the region of the epistemic space defined by the lower

and upper bounds of the first bin. This isolated region serves as the reduced (or

“pinched”) space. From there, the corresponding realizations of {a, e} from the

UM, whose eie value falls outside the bounds of the reduced epistemic space, is

discarded. When this is done, the reduced volume Ωp is computed again via Eq.

(12). After this is done, the segment shifts by 1 unit to the right as illustrated

in Figure 7 and this initiates iteration j = 2 where the above procedure is re-

peated all the way to iteration j = 10. This approach is done for e1 to e4. As

an illustrative example, the results of the reduced volume Ωp for the respective

iteration j for each eie according to UM1
y0 are presented in Figure 8. From the

figure, the minimum value of Ωp for each eie is determined and the sensitivity

index is computed:

S = 1− Ωp
Ω0

(13)
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where Ω0 is the initial volume before pinching. This sensitivity metric would

then be used to rank e1 to e4 to which the results according to the respective

UMs are shown in Table 3.
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Figure 8: Results of Ωp for different pinched intervals for e1 to e4 according to UM1
y0. The

red line denotes the initial volume Ω = 0.2521, while the green bars represent the resulting

Ωp.

Rank Uncertainty model UM1
y0 Uncertainty model UM2

y0

Parameter Pinched bounds S Parameter Pinched bounds S

1 e2 [1.1729, 1.2748] 0.3300 e2 [0.8677, 0.9117] 0.4542

2 e3 [1.0449, 1.1647] 0.2972 e3 [0.3595, 0.4072] 0.3240

3 e1 [1.1619, 1.2670] 0.2882 e1 [0.5715, 0.5987] 0.2654

4 e4 [0.8425, 1.0148] 0.2272 e4 [0.8242, 0.9320] 0.2556

Table 3: The ranking order of the epistemic model parameters based on their respective

sensitivity index for the respective UMs.

Based on the results provided in Table 3, it is observed that e4 is ranked the

lowest in sensitivity according to both UMs. This implies that it is impossible

to improve the knowledge on e4 with the available model and data, making

impossible to extract or infer information on its true value, thus contributing

the highest degree of non reducible epistemic uncertainty in the calibration of

the UM. For this reason, the first refinement request to the challenge host was
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made for the lower bound of e4, given the heavier left tail as seen from its

histogram obtained via the Distribution-free approach (in green) in Figure 4.

Following this, a second round of sensitivity analysis was performed following

the approach outlined above and accounting for the given refined bounds of e4

and the results are presented in Table 4. From the results, e3 is consistently

ranked within the bottom 2 according to both UMs which suggests that e3 is the

least informative parameter after e4. Hence, the second refinement request was

made for the lower bound of e3 given the lack of such information according

to both UMs as illustrated in Figure 4. The resulting epistemic space, with

the refined e3 and e4 bounds, constitutes the hyper-rectangle epistemic space

denoted as E1.

Rank Uncertainty model UM1
y0 Uncertainty model UM2

y0

Parameter Pinched bounds S Parameter Pinched bounds S

1 e4 [1.0224, 1.0575] 0.5200 e2 [0.6036, 0.6476] 0.5999

2 e2 [0.4652, 0.5625] 0.5114 e4 [1.1276, 1.1632] 0.4128

3 e1 [0.6333, 0.7367] 0.5056 e3 [0.2166, 0.2642] 0.4024

4 e3 [0.9227, 1.0393] 0.4282 e1 [0.5715, 0.5988] 0.3821

Table 4: The ranking order of the epistemic model parameters based on their respective

sensitivity index for the respective UMs accounting for the refined bounds for e4.

3.2. Updated Uncertainty Models

A second round of Bayesian model updating is performed with the bounds

of the Uniform priors for the respective epistemic parameters defined by the

hyper-rectangle E1. The approach follows that outlined in Sections 2.3.1 and

2.3.2 from which UM1
y1 and UM2

y1 are obtained respectively. The corresponding

numerical results of the updated bounds for each eie according to UM1
y1 and

UM2
y1 are presented in Table 6.

A sensitivity analysis was done again following the methodology presented

in Section 3.1 and the results are summarized in Table 5. From the table, it can

be observed that the sensitivity ranking of each eie is the same as that in Table

3 for the respective UMs.
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Rank Uncertainty model UM1
y1 Uncertainty model UM2

y1

Parameter Pinched bounds S Parameter Pinched bounds S

1 e2 [0.4447, 0.5340] 0.4095 e2 [0.9514, 0.9726] 0.3610

2 e1 [0.9500, 1.0413] 0.2960 e3 [0.5675, 0.6173] 0.3245

3 e4 [0.9274, 0.9585] 0.2385 e1 [0.5550, 0.5725] 0.2981

4 e3 [0.3333, 0.3590] 0.2379 e4 [1.0225, 1.0584] 0.2782

Table 5: The ranking order of the epistemic model parameters based on their respective

sensitivity index for the respective UMs accounting for the refined space E1.

3.3. Results and Discussion

The resulting model output of the response plot according to UM1
y1 and

UM2
y1 are illustrated in Figure 9. From the figure, it can be observed that the

response plots according to both UMs are well-fitted against D1. However, such

fitting is significantly tighter for the case of UM2
y1 as seen in Figure 9 and this

is supported by Figure 10 where it can also be seen that the resulting P-boxes

of the response plot across all chosen time-slices t are significantly narrower

compared to UM1
y1 whilst enclosing the ECDF for D1. This observation is

consistent to that discussed in Section 2.5 and concludes that the response plot

according to UM2
y1 is more representative of D1.

Figure 9: Output band from ŷ according to UM1
y1 (in blue) and UM2

y1 (in green) along with

the data sequence D1 (in red) after calibration.
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Figure 10: P-boxes of the model output from ŷ obtained from UM1
y1 (in blue) and UM2

y1

(in green) at various time slices t = {0.5, 1.0, 2.0, 3.0, 4.0, 5.0} s. The red ECDF denotes the

distribution of the data D1.

Figure 11 illustrates the resulting P-boxes quantifying the uncertainty over

the marginal distributions of fa by the respective UMs. From the figure, it

can be seen that the P-boxes according to UM2
y1 is significantly narrower and

enclosed within that according to UM1
y1 which verifies that the true marginal

distributions of fa could lie within the P-boxes defined by UM2
y1. The results

by UM1
y1 once again highlights its conservative nature in its uncertainty over

fa compared to UM2
y1.

Finally, results from Table 6 show that the uncertainty bounds over e accord-

ing to UM2
y1 is significantly narrower and generally enclosed within that accord-

ing to UM1
y1. This result is supported by Figure 12 where it can be seen that

the resulting histograms of the epistemic parameters obtained from P (Θ|D,M)

given f5
a are consistently narrower than that obtained from P (Θ|D,M) given

f1
a. This verifies the results obtained by UM2

y1 which further highlights its in-

formative nature over UM1
y1. For this reason, UM2

y1 is chosen to address the

subsequent tasks presented in this challenge.
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Figure 11: P-box for a1 to a5 obtained from the respective UMs.

Figure 12: Histograms for e1 to e4 obtained from P (Θ|D,M) given f1
a (in blue) and f5

a (in

green).

Uncertainty model e1 e2 e3 e4

UM1
y0 [0.3182, 1.3787] [0.3574, 1.3771] [0.0827, 1.2870] [0.1486, 1.8828]

UM2
y0 [0.4351, 0.7082] [0.5583, 1.0000] [0.0721, 0.5511] [0.6066, 1.6893]

UM1
y1 [0.3097, 1.2306] [0.3522, 1.2487] [0.2819, 0.5400] [0.8337, 1.1461]

UM2
y1 [0.4674, 0.6433] [0.7607, 0.9736] [0.2865, 0.4583] [0.9627, 1.1664]

Table 6: Updated epistemic space E for e1 to e4 according to the respective UMs.
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4. Task C: Reliability Analysis of Baseline Design

The objective of this task is to perform a reliability analysis on θbase accord-

ing to UM2
y1 with respect to the individual requirements gig , for ig = 1, 2, 3.

Requirements g2 and g3 are defined respectively as [3]:

g2(a, e,θ) = max
t∈[2.5,5]s

|z1(a, e,θ, t)| − 0.02 (14)

g3(a, e,θ) = max
t∈[0,5]s

|z2(a, e,θ, t)| − 4 (15)

where z1 and z2 are the time-dependent response output of the integrated system

associated with the given θ. From there, the worst-case performance function

w is defined:

w(a, e,θ) = max
ig=1,2,3

gig (a, e,θ) (16)

The system is defined to be system compliant for requirement ig when gig < 0

whereby: g1 < 0 for the system to be stable; g2 < 0 for the settling time of z1

to be sufficiently fast; and g3 < 0 for the energy consumption to be acceptable

[3]. Conversely, requirement ig is not satisfied when gig ≥ 0. Thus, for a fixed

set of values of θ and e, the set of a points where gig < 0 is regarded as the

“safe” domain, while the complement set is the “failure” domain. From this,

the imprecise failure probability Rig given requirement gig is defined:

Rig (θ) =

[
min
e∈E

P(gig ≥ 0),max
e∈E

P(gig ≥ 0)

]
(17)

through which the imprecise worst-case failure probability R is defined:

R(θ) =

[
min
e∈E

P(w ≥ 0),max
e∈E

P(w ≥ 0)

]
(18)

and finally, the severity of each requirement violation sig is defined:

sig (θ) = max
e∈E

E
[
gig |gig ≥ 0

]
· P(gig ≥ 0) (19)

where P(•) is the probability operator, and E [•|•] is the conditional expectation.
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4.1. Failure Probability and Severity Computation

In this work, the computation and analysis of the reliability metrics Rig ,

R, and sig are done through Probability Bounds Analysis (PBA) with P-boxes

[30].

To set up the P-box for each gig , a Double-Loop Monte Carlo [31, 32] ap-

proach is used to generate Na×Ne realizations of gig from inputs {a, e} defined

by UM2
y1. The outer-loop accounts for each of the Ne realizations of e obtained

from the hyper-rectangle defined by E according to the UM, while the inner-

loop accounts for the Na realizations of a from fa. To ensure that the different

failure domains are well-explored, especially small failure regions, and that the

epistemic uncertainties well-represented, we set Na = 10000 and Ne = 500.

From there, the P-box is constructed from the bounds of the distribution of

Ne ECDFs, each ECDF comprising of Na values of gig . As an illustration, the

resulting P-boxes for g1 to g3 are illustrated in Figure 39.

From the P-box of a given gig , its values computed at gig = 0 has a lower

and upper bound value denoted as P ig and P ig respectively. Following which,

Rig (θbase) can be approximated according to:

Rig (θbase) ≈
[
1− P ig , 1− P ig

]
(20)

To approximate R(θbase), the Na × Ne matrix of w is constructed by taking

the element-wise maximum value between g1, g2, and g3 as suggested in Eq.

(16). A P-box is then constructed for w in similar fashion as gig from which the

resulting lower and upper bound values, denoted as W and W respectively, are

obtained at w = 0. R(θbase) can then be approximated according to:

R(θbase) ≈
[
1−W, 1−W

]
(21)

To approximate sig , the numerical value of E(gig |gig ≥ 0) needs to be approxi-

mated first. This can be done as follows: Considering a realization of the ECDF

for gig for a given e, a numerical integration is performed to obtain the area of
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the region above the ECDF plot between gig = 0 to its maximum value gmaxig

for which the ECDF is defined. This is done according to:

E(gig |gig ≥ 0) ≈
Na∑
k=1

1(gig )k≥0 · (gig )k · P(gig ≥ (gig )k) (22)

where 1(gig)k≥0 is the indicator function which gives the value 1 when (gig )k ≥ 0

and 0 otherwise. This value of E(gig |gig ≥ 0) is then multiplied by P(gig ≥ 0) de-

termined from its ECDF which gives the nominal severity index associated with

the given e. From which, the actual severity index sig is computed according

to Eq. (19).

The numerical results to the aforementioned reliability metrics are presented

in Table 14 where it is observed that the failure probability with the highest

upper-bound value is R2 and, thus, contributes the most of the worst-case failure

probability R. In addition, it is noted that the severity s2 is the highest among

all sig which indicates that the failure g2 ≥ 0 is classified as a high-probability

event with a large impact on the system relative to the failures g1 ≥ 0 and

g3 ≥ 0. Further investigations to this are done in Section 4.3.

4.2. Sensitivity Analysis

In this analysis, the epistemic uncertainties are ranked according to the

contraction of R(θbase) resulting from their reduction. This will be done via

the adaptive pinching [29] approach outlined in Section 3. The results of the

reduced interval R(θbase) for the respective iteration j for each eie are illustrated

in Figure 13. From the figure, the maximum reduction of R(θbase) for each eie

is determined. Such information would then be used to rank e1 to e4 as shown

in Table 7.

4.3. Identifying Different Transitions to Failure

From the Na-by-Ne matrix of all gig , the realizations of {a, e} are classified

into 7 distinct categories of failure: 1) g1 ≥ 0; 2) g2 ≥ 0; 3) g3 ≥ 0; 4) g1, g2 ≥ 0;
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Figure 13: Results of the reduced R(θbase) bounds for different pinched intervals for e1 to e4.

The red lines represent the initial bounds of [0.0294, 0.2721], while the green bars represent

the reduced bounds.

Rank Parameter Pinched bounds R(θbase)

Before pinching After pinching

1 e2 [0.8458, 0.8670] [0.0294, 0.2721] [0.0812, 0.1851]

2 e1 [0.5555, 0.5731] [0.0294, 0.2721] [0.0588, 0.1717]

3 e3 [0.4411, 0.4582] [0.0294, 0.2721] [0.0533, 0.1888]

4 e4 [0.9639, 0.9836] [0.0294, 0.2721] [0.0588, 0.2067]

Table 7: The ranking order of the epistemic model parameters based on the maximum possible

reduction in R(θbase) interval according to UM2
y1.

5) g1, g3 ≥ 0; 6) g2, g3 ≥ 0; and 7) g1, g2, g3 ≥ 0. The resulting statistics sum-

marising the number of {a, e} realizations in each failure category is presented

in Table 12.

From the table, it can be seen that the most common failure type for

θbase according to UM2
y1 is g2 ≥ 0 while the least likely failure type would

be g1, g2, g3 ≥ 0. No failure of type g1, g3 ≥ 0 has occurred. To provide a

quantitative understanding of the characteristic of each failure and its severity,

the response curves z1(t) and z2(t) are plotted for 25 representative sample sets

of {a, e} in each failure category and these are illustrated in Figures 14 and 15.
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From the figures, it can be seen that the failure type of the worst severity is

that of g1, g2, g3 ≥ 0 where it can be seen that the plots for z1(t) and z2(t) show

an unstable behaviour with an increasing amplitude as time t increases. This

results in the largest degree of deviation from the safety limits which causes the

aforementioned failure type to contribute the most towards the severity values

of s1, s2, and s3. In addition, it can also be observed that the z2(t) plot for

failure type g1, g2 ≥ 0 also exhibit an increasing amplitude with time, although

still within the safety limits and not as pronounced as that for g1, g2, g3 ≥ 0.

Such unstable behaviour is due to the common failure of g1 which concerns the

stability of the system’s behaviour. Hence, it is important to identify a new

design point θnew in Section 5 such that the likelihood of occurrence of failure

types g1, g2 ≥ 0 and g1, g2, g3 ≥ 0 is as close to 0 as possible.

Figure 14: Response plot of z1(t) corresponding to 25 representative realizations of {a, e} for

the each failure type. The red lines denote the safety limits.

To identify the representative realizations of δ ∈ A × E having a compar-

atively large likelihood near the failure domain, the methodology is as follows:

For each ig, realizations of {a, e} from UM2
y1 corresponding to the top 500 nu-

merically least negative matrix elements of gig are identified. These realizations

will be classified as those “near” the failure domain. Following this, the likeli-

hood values of the identified {a, e} are computed by calculating the PDF value
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Figure 15: Response plot of z2(t) corresponding to 25 representative realizations of {a, e} for

the each failure type. The red lines denote the safety limits.

of the SDF for the corresponding realization of a. This generates 500 values of

likelihood values from which the sample set {a, e} having the top 5-percentile

likelihood values are identified. Let these sample sets be denoted as {a, e}gignf .

This yields 25 sets of {a, e}gignf remaining which will constitutes the realizations

with comparatively large likelihood near the failure domain of gig . This proce-

dure is implemented for g1 to g3 and the resulting 25 sets of {a, e}gignf identified

for each gig are presented as parallel plots in Figure 16 and whose corresponding

response plots of z1(t) and z2(t) are illustrated in Figure 17.

From Figure 17, the following observations are made: Near the failure do-

main of g1, the response plots z1(t) and z2(t) are all well-within the safe limits

which indicates that the sample sets {a, e}g1nf all lie within the safe domain near

the boundary of g1 ≥ 0 domain. Near the failure domain of g2, the response

plots z1(t) and z2(t) are all within safe limits as well. Based on the fast-decaying

characteristics of the response plot for z2(t) and the stable behaviour of the plot

for z1(t), it can be inferred that the requirement of g1 is satisfied as well. How-

ever, it is noted that at approximately t = {2.7, 2.9} s, the plots are extremely

close to the lower and upper boundaries respectively which verifies that the real-

izations of {a, e}g2nf are in the safe domain near the boundary of g2 ≥ 0. Finally,
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Figure 16: Parallel plots of {a, e}g1nf , {a, e}g2nf , and {a, e}g3nf from UM2
y1.

Figure 17: Response plot of z1(t) and z2(t) of {a, e}g1nf , {a, e}g2nf , and {a, e}g3nf from UM2
y1

near the respective failure domains. The red lines denote the safety limits.

near the failure domain of g3, it can be observed from the plot of z1(t) that the

curves exceeded the safety limits at approximately t = {2.6, 2.9, 3.0} s which

indicates the failure of g2. On the other hand, the plot of z2(t) are all within

the safety limits although it can be observed that the plots at approximately

t = 0.6 s are extremely close to the upper boundary. Due to the stable behavior

of the plots of z1(t) and z2(t), it can be inferred that the requirement of g1 is

satisfied. Hence, it can be concluded that the realizations of {a, e}g3nf lie within
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the domain of g2 ≥ 0 near the boundary of g2, g3 ≥ 0.

5. Task D: Reliability-based Design Identification

The objective of this task is to identify a new design point θnew such that the

likelihood of failure types g1, g2 ≥ 0 and g1, g2, g3 ≥ 0 occurring is reduced to

as close to 0 as possible given that such failures are responsible for the unstable

behaviour of the system. To achieve this, θnew has to be optimised such that it

satisfies the following conditions:

1. Minimise the upper-bound of R;

2. Reduce the worst-case severity metric s̃ defined as [14]:

s̃(θ) = max
e∈E

E[w|w ≥ 0] · P(w ≥ 0) (23)

To perform the optimisation procedure, the generalised Non-intrusive Imprecise

Stochastic Simulation (NISS) method is adopted to approximate a solution to

θnew [33]. For the benefit of the readers, a description to the generalised NISS

is provided in Section 5.1.

5.1. Generalised Non-intrusive Stochastic Simulation

The generalised NISS approach provides a surrogate model to compute R

through the Random Sampling High-dimensional Model Representation (RS-

HDMR) decomposition defined as:

R(e, θ) = R0 +

4∑
ie=1

REie (eie) +
∑

1≤ie<je≤4

REie,je (eie,je) + . . .

9∑
iθ=1

RΘ̃iθ
(θiθ ) +

∑
1≤iθ<jθ≤9

RΘ̃iθ,jθ
(θiθ,jθ ) + . . .

∑
1≤ie≤4,1≤iθ≤9

REie Θ̃iθ
(eie , θiθ ) + · · ·+REΘ̃(e,θ) (24)

where the constant terms and the first 2 order component functions are defined

respectively as:
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R0 = EEΘ̃ [R(e,θ)]

REie (eie) = EE−ie Θ̃ [R(e,θ)]−R0

REie,je (eie,je) = EE−ie,je Θ̃ [R(e,θ)]−REie −REje −R0

RΘ̃iθ
(θiθ ) = EEΘ̃−iθ

[R(e,θ)]−R0

RΘ̃ie,je
(θiθ,jθ ) = EEΘ̃−ie,je

[R(e,θ)]−RΘ̃iθ
−RΘ̃jθ

−R0

RΘ̃ie,je
(eie,je) = EE−ie ,Θ̃−iθ

[R(e,θ)]−REie −RΘ̃iθ
−R0

Here, EEΘ̃[•] denotes the expectation operator as a function of e and θ, EE−ie Θ̃[•]

denotes the expectation operator as a function of θ and the 3-dimensional vector

e−ie which contains all elements of e except those of component eie , EEΘ̃−iθ
[•]

denotes the expectation operator as a function of e and the (nθ−1)-dimensional

vector θ−iθ which contains all elements of θ except those of component θiθ ,

EE−ie,je Θ̃ denotes the expectation operator as a function of θ and all elements

of e except eie,je , EEΘ̃−iθ,jθ
denotes the expectation operator as a function of

e and all elements of θ except θie,je , and EE−ie ,Θ̃−iθ
denotes the expectation

operator as a function of e−ie and θ−iθ .

The above component functions are approximated numerically via Extended

Monte Carlo Simulation (ECMS) [34, 35] of NEMCS = 50000 realizations of the

joint sample sets of {(ai, ei,θi)}i=1,...,NEMCS
. Realizations of ai and ei can be

generated from UM2
y1 while those of θi are generated from its target hyper-

rectangular space Θ̃ which will be discussed later in this section. From these

realizations, a bootstrap scheme is implemented to compute the variance of each

estimator, with the number of bootstrap replications set to be 20 in this work.

This allows for the computation of the Sobol’ sensitivity index [36, 37] for each

of these component function as a by-product of the generalised NISS technique

[33]. Given that the Sobol’ indices measure the relative importance of each

component function, the component functions with relatively small Sobol’ index

values can be neglected [36]. As such, based on initial analysis, it was found

that we can just consider the first-order component functions in the optimisation
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procedure. Readers can refer to [33] for more details to the generalised NISS

technique.

It should be noted that the generalized NISS has been originally introduced

for the efficient propagation of hybrid uncertainties by avoiding double loop

Monte Carlo. A key aspect of generalized NISS is that it allows for an explicit

formulation of the functional dependence of the probability of failure with re-

spect to the epistemic parameters, one parameter at a time. In this work, the

design variables are treated like epistemic parameters in the NISS framework,

simplifying the optimization problem to a set of one-dimensional searches. How-

ever, no bounds are given to the design parameters limiting the optimization,

thus the optimisation procedure is carried out for θnew in an iterative approach

such that the first-order component function RΘ̃iθ
is minimised which is as-

sumed to also minimise the upper bound of R within the target design space.

Based on this assumption, the procedure is undertaken as follows:

1. At iteration j = 1, the initial 9-dimensional hyper-rectangle of the design

space Θ̃j is defined such that component iθ has bounds ±N j
b = 5 % of its

nominal value: [0.95, 1.05]× (θbase)iθ ;

2. Identify the candidate optimal design point θjc such that θjc ∈ Θ̃j ;

3. If a unique local minimum value of RΘ̃iθ
exists for a particular design

parameter (θjc)iθ , the parameter will be assigned that fixed value and will

not be updated in subsequent iterations. Let the total number of such

optimised design parameters up to iteration j be denoted by N j
op, for

N j
op = 0, . . . , 9;

4. Define the new design space Θ̃j+1 whose (9 − N j
op)-dimensional hyper-

rectangle is defined such that component iθ, which is not optimised, has

increased bounds of ±N j+1
b = (j + 1)×N j=1

b % of its nominal value;

5. Set j = j + 1 and repeat steps 2 to 4 until the local minimum of RΘ̃iθ
is

identified for all possible θiθ for which an optimal point exists.

The entire recursive optimisation procedure involved 6 iterations in total and

as a representative graphical illustration, Figure 18 presents the optimisation
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result obtained at iteration j = 3. From the figure, it is observed that the local

optimal points corresponding to the local minimum of RΘ̃iθ
are identified for θ3

and θ7. In addition, it can also be seen that the remaining components of θ tend

to be increasing or decreasing monotonically in general. For these components,

their bounds will be increased according to step 4 of the NISS optimisation

procedure, and subsequently step 5, until the local optimal points are identified

for all 9 components of θ.
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Figure 18: Results of the optimisation of each design parameter for θnew from the generalised

NISS method at iteration j = 3 . The red dotted lines denote the 95 % confidence interval

bounds.

5.2. Reliability Analysis of New Design

The failure probability and severity computation on θnew is done according

to UM2
y1 following the approach outlined in Section 4.1. The numerical results

to the reliability metrics Rig , R, and sig are presented in Table 14. From the

table, it can be seen that the upper-bounds of the failure probabilities R1 to

R3 as well as the severities s1 to s3 have been reduced tremendously which

validates the improvement of the design θnew over θbase. This can be seen from

the 3-fold reduction in the upper-bound of R1, a 2-fold reduction in R2 and R,

and a 10-fold reduction in s̃ between θbase and θnew. Such results highlight the

effectiveness of the optimisation procedure and the identified θnew.
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Next, the sensitivity analysis is performed on the epistemic parameters e1

to e4 where they are ranked according to the maximum possible reduction on

R(θnew) bounds. The methodology follows that outlined in Section 4.2 and the

resulting illustrative plots from the analysis is shown in Figure 19. From which,

the sensitivity ranking of e1 to e4, along with the corresponding reduced bounds

of R(θnew), are presented in Table 8. From the results, it can be observed that

the ranking order is consistent with the results obtained in Section 4.2 (i.e. see

Table 7).
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Figure 19: Results of the reduced R(θnew) bounds for different pinched intervals for e1 to e4.

The red lines represent the initial bounds of [0.0058, 0.1418], while the green bars represent

the reduced bounds.

Rank Parameter Pinched bounds R(θnew)

Before pinching After pinching

1 e2 [0.7613, 0.7825] [0.0058, 0.1418] [0.0183, 0.0798]

2 e1 [0.6257, 0.6433] [0.0058, 0.1418] [0.0153, 0.0850]

3 e3 [0.4404, 0.4575] [0.0058, 0.1418] [0.0189, 0.0960]

4 e4 [0.9826, 1.0025] [0.0058, 0.1418] [0.0216, 0.1049]

Table 8: The ranking order of the epistemic model parameters based on the maximum possible

reduction in R(θnew) interval according to UM2
y1.

Finally, the failure analysis is performed on θnew following the methodology
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outlined in Section 4.3. The resulting statistics summarising the number of

realizations of {a, e} in each failure category in presented in Table 12 where it

can be observed that likelihood of occurrences for all failure types have been

reduced significantly, most notably for failure types g3 ≥ 0, g1, g3 ≥ 0, and

g1, g2, g3 ≥ 0 which have been reduced to 0. Failure type g2 ≥ 0 still has the

highest likelihood as it has the highest number of realizations among the different

failure types as per θbase. Following which, the sample sets {a, e}g1nf , {a, e}g2nf ,

and {a, e}g3nf are identified and the resulting parallel plots are presented in

Figure 20 while the response plots of z1(t) and z2(t) are presented in Figure 21.

From Figure 21, the response plots of z1(t) for {a, e}g1nf exceeds the upper-

bound of the safe boundary at approximately t = 2.6 s which indicates the

presence of failure g2 ≥ 0. The plots for z2(t), on the other hand, are well-

within the safety limits. This indicates that the sample set {a, e}g1nf lie within

the domain of g2 ≥ 0 near the boundary of g1 ≥ 0. For {a, e}g2nf , the response

plots of z1(t) and z2(t) are within the safety limits although it can also be

observed that the z1(t) plots are extremely close to both the upper and lower-

bounds of the safe boundary which verifies that the identified {a, e}g2nf are near

g2 ≥ 0. As seen from the stable behaviour of the plots, it can be inferred that

the requirement of g1 is satisfied. This indicates that the sample set {a, e}g2nf
lie within the safe domain near the boundary of g2 ≥ 0. For {a, e}g3nf , the

response plots of z1(t) exceeds the upper and lower-bounds of the safe boundary

at approximately t = {2.5, 2.7, 2.8, 3.1, 3.4} s which indicates the presence of

failure g2 ≥ 0. The plots for z2(t), on the other hand, are well-within the safety

limits. Given the stable behaviour of the plots, it can be inferred that the

requirement of g1 is satisfied. This indicates that the sample set {a, e}g3nf lie

within the domain of g2 ≥ 0 near the boundary of g2, g3 ≥ 0.

A quantitative study is also done for the different failure types with non-zero

likelihood. As per what was done in Section 4.3, the response plots of z1(t) and

z2(t) for the 25 representative sample sets of {a, e} for each failure type (5 for

failure type g2, g3 ≥ 0) are presented in Figures 22 and 23 respectively. From

Figure 23, it can be seen that the unstable behaviour in z2(t) for failure type
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Figure 20: Parallel plots of {a, e}g1nf , {a, e}g2nf , and {a, e}g3nf from UM2
y1.

Figure 21: Response plot of z1(t) and z2(t) of {a, e}g1nf , {a, e}g2nf , and {a, e}g3nf from UM2
y1

near the respective failure domains. The red lines denote the safety limits.

g1, g2 ≥ 0 is still present along with those illustrating a stable behaviour. In

addition, Figure 22 shows that the z1(t) response plots for failure type g1, g2 ≥ 0

exceeds the safety limits to the largest extent relative to the other failure types

which indicates that the failure type contributes the most to the severity s1,

s2, and s̃. This motivates the need to identify θfinal such that the number of

realizations of {a, e} corresponding to such unstable behaviour is minimised.

The identification of θfinal will be done in Section 6.3.
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Figure 22: Response plot of z1(t) corresponding to 25 representative realizations of {a, e} for

the each failure type (5 for failure type g2, g3 ≥ 0). The red lines denote the safety limits.

Figure 23: Response plot of z2(t) corresponding to 25 representative realizations of {a, e} for

the each failure type (5 for failure type g2, g3 ≥ 0). The red lines denote the safety limits.

6. Task E: Model Update and Design Tuning

The objective of this task is to improve the current UM and identify an

improved design point θfinal based on the observations of z1(t) and z2(t) from

the integrated system corresponding to θnew.
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6.1. Model Calibration

The model calibration is performed with the Black-box model function ẑ =

zfun(a, e,θnew, t) using the new data sequence D2 = {zl(t)}l=1,...,100. This is

done following the approach outlined in Section 2.3.2, but with bounds of the

Uniform priors for the respective epistemic parameters defined by the hyper-

rectangle E1 and P (D|Θ,M) having configurations nb = 5 and Nsim = 500 to

reduce the computational costs. Let the calibrated UM be denoted as UMz0

whose resulting P-box representation of the marginal distributions of fa is il-

lustrated in Figure 32 and whose uncertainty bounds over e are presented in

Table 10. To validate the model calibration results, the resulting model output

bands of ẑ from UMz0 (in blue) are illustrated in Figures 28 and 30.

6.1.1. Results and Discussion

In both figures, it is observed that the model output bands of UMz0 (in

blue) generally encloses the data D2 (in red) which indicates that the model

calibration procedure, via Bayesian model updating, was done satisfactorily.

However, from Figure 30, some unstable behaviour is observed in the response

of z2(t). To investigate this, a scatterplot matrix of the aleatory samples is

presented in Figure 24 where it is observed that the samples responsible for

such unstable behaviour are predominantly located in the corners of the aleatory

space as seen from the following 2-dimensional space: 1) a1 vs a2; 2) a1 vs a3;

and 3) a2 vs a3. There are a total of 165 of such aleatory samples and in

order reduce the number of samples from those regions, correlations need to

be introduced such that a negative correlation exists between a1 and a2 (i.e.

C1,2), while a positive correlation exists between a1 and a3 (i.e. C1,3) as well

as between a2 and a3 (i.e. C2,3). These correlations will be modelled using a

Gaussian copula function [38].

To identify the correlation parameters C1,2, C1,3, and C2,3, a second round

of Bayesian model updating is performed on UMz0 with the inferred parameters

being the aforementioned correlation parameters. The prior distributions and

bounds for C1,2, C1,3, and C2,3 are summarised in Table 9. This procedure
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Figure 24: Scatterplot matrix of the aleatory samples from from UM1
z0 without consider-

ing correlations. The plots in blue contribute to the stable realizations while those in red

contribute to the unstable realizations of z2(t).

is done keeping the P-box of fa and the uncertainty bounds of e obtained in

the previous round of Bayesian model updating as fixed models for a and e.

The set-up of P (D|Θ,M) follows that used to calibrate UMz0 initially. The

resulting histograms for C1,2, C1,3, and C2,3 are illustrated in Figure 25 from

which the Most Probable Value (MPV) for the respective correlation parameters

are obtained and presented in Table 9.

Parameter C1,2 C1,3 C2,3

Prior distribution parameters U [−1, 0] U [0, 1] U [0, 1]

MPV −0.0427 0.2064 0.0316

Table 9: Summary of the prior distributions and the resulting MPVs for the respective corre-

lation parameters.

To illustrate the effectiveness of introducing correlations, UMz0 is updated

to account for C1,2, C1,3, and C2,3 whose values correspond to the MPV as

shown in Table 9. This is done following the set-up which was used to calibrate

UMz0 prior to the introduction of correlations. The resulting scatterplot matrix

is presented in Figure 26 which shows that the number of aleatory samples
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Figure 25: Histograms for C1,2, C1,3, and C2,3 obtained from P (Θ|D,M).

corresponding to the unstable realizations of z2(t) has been reduced from 165

to 39.

Figure 26: Scatterplot matrix of the aleatory samples from from UM1
z0 after considering cor-

relations. The plots in blue contribute to the stable realizations while those in red contribute

to the unstable realizations of z2(t).

6.2. Uncertainty Reduction

From the resulting bounds of the epistemic space according to UMz0 as

shown in Table 10, it is observed that the uncertainty bounds for e4 is the largest
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among the epistemic parameters. This is attributed to the lack of information

provided by e4 to which evidence is provided by the sensitivity analysis done

in Section 3.3 (i.e. see Table 5) which shows that e4 is still the least sensitive

parameter even after refinement. Due to substantial knowledge of its upper-

bound, as indicated by the histograms of e4 in Figures 12 and 33 which are

truncated at the upper-bound, a request is made for the refinement of the lower-

bound of e4.

Based on the sensitivity analysis done in Sections 3.3, 4.2, and 5.2, the

results show that e2 has consistently been ranked the most sensitive epistemic

parameter. In addition to this, Figure 27 shows the parallel plots of the samples

according to UMz0 from which it can be seen that the lower-bound of the

interval for e2 is increased after correlation is introduced with the identified

values of C1,2, C1,3, and C2,3 (in blue) compared to the absence of correlation

(in red). In fact, the change in interval of e2 is the most substantial compared

to the other epistemic parameters after correlation is introduced to the UMz0.

This further substantiates the evidence that e2 is the most sensitive epistemic

parameter whose refinement can further reduce the unstable realizations of z2(t).

For these reasons, the final refinement request is made for the upper-bound of

e2 given that there is substantial knowledge in its lower-bound as observed from

Figure 27. The resulting epistemic space, with the refined e2 and e4 bounds,

constitutes the hyper-rectangle epistemic space denoted as E2.

Following this, a third round of Bayesian model updating is performed with

bounds of the Uniform priors for the respective epistemic parameters defined

by the hyper-rectangle E2 and the correlation parameters taking fixed values

as defined in Table 9. The approach follows that outlined in Section 6.1 from

which UMz0 was obtained, however, this time, accounting for the identified

correlation parameters in the aleatory space. Let the refined UM be denoted as

UMz1 whose uncertainty bounds over e are presented in Table 10. In addition,

due to substantial information on the parameters of the SDF, their respective

MPV values are used to define the final CDF representation of the marginal

distributions of fa which are illustrated in Figure 32. Finally, to validate the
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Figure 27: Parallel plots of the samples from UMz0 corresponding to the unstable realizations

before considering correlations (in red) and after considering correlations (in blue).

model calibration results, the resulting model output bands of ẑ from UMz1 (in

green) are illustrated in Figures 28 and 30.

6.2.1. Results and Discussion

In both figures, it is observed that the model output bands of UMz1 (in

green) generally encloses the data D2 (in red) which indicates that the model

calibration procedure was done satisfactorily. From Figure 30, it can also be

observed that that there is no unstable response behaviour of z2(t) which in-

dicates that the refinement procedure has removed all the remaining unstable

realizations. Figures 29 and 31 illustrate the P-boxes of the model output of

UMz0 (i.e. before and after accounting for correlations) and UMz1 at time-

slices t = {0.5, 1.0, 2.0, 3.0, 4.0, 5.0} s for z1(t) and z2(t) respectively. From the

figures, it can be seen that the P-boxes obtained from the respective UMs gen-

erally enclose and follow the trend of the ECDF defined by D2. This indicates

a good degree of fit of the model outputs obtained by the UMs. Moreover,

the P-box of the model output according to UMz1 (in green) is significantly

narrower than UMz0, with and without accounting for correlations, whilst still

enclosing the ECDF of D2 in general. This further highlights the effectiveness

of the refinement procedure that is undertaken in this task and validates the
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results obtained by UMz1.

Figure 28: Output band from ẑ according to UMz0 without correlations (in blue) and UMz1

(in green) along with the data sequence D2 (in red) after calibration. The black lines denote

the safety limits.
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Figure 29: P-boxes of the model output from ẑ obtained from UMz0 without correlations (in

blue) and UMz1 (in green) at various time slices t = {0.5, 1.0, 2.0, 3.0, 4.0, 5.0} s. The red

ECDF denotes the distribution of the data D2.

Figure 32 illustrates the resulting P-box quantifying the uncertainty over the

marginal distributions of fa by UMz0 as well as the final CDF for fa by UMz1.

From the figure, the P-boxes (in blue) generally encloses and show a good degree
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Figure 30: Output band from ẑ according to UMz0 without correlations (in blue) and UMz1

(in green) along with the data sequence D2 (in red) after calibration. The black lines denote

the safety limits.
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Figure 31: P-boxes of the model output from ẑ obtained from UMz0 without correlations (in

blue) and UMz1 (in green) at various time slices t = {0.5, 1.0, 2.0, 3.0, 4.0, 5.0} s. The red

ECDF denotes the distribution of the data D2.

of agreement with the final CDF (in green) which verifies the results of UMz1.

Such observation also provides good evidence that the final CDF illustrated in

Figure 32 is a good representation of the true CDF of fa.

Finally, results from Table 10 show that the uncertainty bounds over e ac-

cording to UMz1, with the exception of e3, is significantly narrower than those
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Figure 32: P-box for a1 to a5 obtained from the respective UMs.

according to UMz0. For the case of e1 and e2, their bounds according to UMz1

are not enclosed within that defined by UMz0. Such observation is supported

by Figure 33 where it can be seen that there is little to no overlap between the

histograms for e1 and e2 obtained before and after refinement. This is due to

the fact that the initial bounds of e2 defined by UMz0 lie entirely outside the

refined bounds provided by the challenge hosts. As such, when the calibration

was performed once again with such new information, the effect of such refine-

ment is significant on e1 which results in the epistemic parameter also having

reduced bounds which largely outside the initial bounds defined by UMz0. This

observation also suggests a significant correlation between e1 and e2.

Uncertainty model e1 e2 e3 e4

UMz0 [0.5961, 0.7319] [0.7790, 0.9337] [0.4777, 0.5670] [0.8521, 1.1664]

UMz1 [0.4384, 0.5795] [0.5350, 0.5704] [0.3353, 0.5670] [0.9027, 0.9497]

Table 10: Updated epistemic space E for e1 to e4 according to the respective UMs.

6.3. Identification and Reliability Analysis of Final Design

The objectives of this task are: 1) to identify the final design point θfinal;

and 2) perform the reliability analysis on θfinal according to UMz1.
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Figure 33: Histograms for e1 to e4 obtained from before refinement (in blue) and after refine-

ment (in green).

The optimisation procedure to identify θfinal follows the methodology out-

lined in Section 5.1 with N j=1
b = 3 %.

The reliability analysis was performed following the methodology outlined

in Section 4.1. The results for Rig , R, and sig are presented in Table 14. From

the table, it can be seen that the upper-bounds of the failure probabilities R1

and R3 have been reduced compared to θnew according to UM2
y1, and that the

severities s1 to s3 have all been reduced to almost 0. Although the upper-bound

of R2 shows a small increase from θnew according to UMz1, the upper-bound

of R and s̃ are reduced in the case of θfinal according to UMz1. Such results

and observations highlight the effectiveness of the optimisation procedure and

the identified θfinal.

Next, the sensitivity analysis is performed on the epistemic parameters e1

to e4 where they are ranked according to the maximum possible reduction on

R(θfinal) bounds. The methodology follows that outlined in Section 4.2 and

the resulting illustrative plots from the analysis is shown in Figure 34. From

which, the sensitivity ranking of e1 to e4, along with the corresponding reduced

bounds of R(θfinal), are presented in Table 11. From the results, it is observed

that e2 and e1 have 2 of the lowest sensitivities which indicates that the bounds
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obtained for these 2 parameters are sufficiently narrow such that no further

information can be obtained on them by reducing their bounds any further.
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Figure 34: Results of the reduced R(θfinal) bounds for different pinched intervals for e1 to e4.

The red lines represent the initial bounds of [0.0028, 0.0144], while the green bars represent

the reduced bounds.

Rank Parameter Pinched bounds R(θfinal)

Before pinching After pinching

1 e3 [0.5274, 0.5487] [0.0028, 0.0144] [0.0029, 0.0061]

2 e4 [0.9269, 0.9309] [0.0028, 0.0144] [0.0040, 0.0111]

3 e2 [0.5419, 0.5454] [0.0028, 0.0144] [0.0036, 0.0108]

4 e1 [0.5372, 0.5512] [0.0028, 0.0144] [0.0036, 0.0109]

Table 11: The ranking order of the epistemic model parameters based on the resulting con-

tractions of R(θfinal) from pinching according to UMz1.

Finally, the failure analysis is performed on θfinal following the methodology

outlined in Section 4.3. The resulting statistics summarising the number of

realizations of {a, e} in each failure category in presented in Table 12 where it

can be observed that likelihood of occurrences for all failure types have been

reduced significantly from θnew according to UM2
y1, except for failure types g3 ≥

0 and g2, g3 ≥ 0 where there is an increase in the number of sample realizations

in these failure domains. Failure type g2 ≥ 0 still has the highest likelihood as
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it has the highest number of realizations among the different failure types as

per θbase and θnew. Following which, the sample sets {a, e}g1nf , {a, e}g2nf , and

{a, e}g3nf are identified and the resulting parallel plots are presented in Figure

35 while the response plots of z1(t) and z2(t) are presented in Figure 36.

From Figure 36, the response plots of z1(t) and z2(t) corresponding to

{a, e}g1nf are all within the safety limits. This indicates that the sample set

{a, e}g1nf lie within the safe domain near the boundary of g1 ≥ 0. For {a, e}g2nf ,

the response plots of z1(t) and z2(t) are all within the safety limits as well which

indicates that the sample set {a, e}g2nf lie within the safe domain near the bound-

ary of g2 ≥ 0. For {a, e}g3nf , the response plots of z1(t) exceeds the upper and

lower-bounds of the safe boundary at approximately t = {2.5, 2.6, 2.9, 3.0, 3.2, 3.3, 3.4}

s which indicates the presence of failure g2 ≥ 0. The plots for z2(t), on the other

hand, are well-within the safety limits. Given the stable behaviour of the plots,

it can be inferred that the requirement of g1 is satisfied which indicates that

the sample set {a, e}g3nf lie within the domain of g2 ≥ 0 near the boundary of

g2, g3 ≥ 0.

Figures 37 and 38 present the response plots of z1(t) and z2(t) respectively

for the 25 representative sample sets of {a, e} for each failure type with non-zero

likelihood. From Figure 38, it can be seen that the unstable behaviour in z2(t)

that was previously present for failure type g1, g2 ≥ 0 are no longer present as

a result of the refinement procedure that was done in Section 6.2. In addition,

Figure 37 shows that the z1(t) response plots for failure type g1, g2 ≥ 0 still

exceeds the safety limits to the largest extent compared to the other failure

types.

6.4. Comparison of Design Points

The objective of this task is to present a quantitative comparison between

the design points θbase, θnew, and θfinal on the basis of the reliability metrics

Rig , R, sig , and s̃.

In Table 14, it can be seen that the reliability analysis results for the different

θ suggest that θfinal is the most optimal design point. This is due to θfinal
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Figure 35: Parallel plots of {a, e}g1nf , {a, e}g2nf , and {a, e}g3nf from UMz1.

Figure 36: Response plot of z1(t) and z2(t) of {a, e}g1nf , {a, e}g2nf , and {a, e}g3nf from UMz1

near the respective failure domains. The red lines denote the safety limits.

having the lowest upper-bound failure probabilities and severities in general

compared to θbase and θnew based on the reliability results according to UM2
y1

and UMz1. Such results are supported by Figures 39 and 40 which illustrate

the resulting P-boxes for g1 to g3 according to the analysis for the different θ by

UM2
y1 and UMz1 respectively. In both figures, it can be seen that the P-boxes

for θfinal are such that they mainly lie within the safe domain of the respective

requirement and that the tails of the P-boxes do not extend as far into the
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Figure 37: Response plot of z1(t) corresponding to 25 representative realizations of {a, e} for

the each failure type. The red lines denote the safety limits.

Figure 38: Response plot of z2(t) corresponding to 25 representative realizations of {a, e} for

the each failure type. The red lines denote the safety limits.

failure regions compared to θbase and θnew.

A further analysis was also done to compare the number of realizations of

{a, e} for the different failure types according to UM2
y1 and UMz1 and the

resulting statistics are provided in Table 12. For both UM2
y1 and UMz1, the

number of safe (i.e. no failure) realizations is the highest for θfinal which further

substantiates it being the most optimal design point for the system. While this
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Figure 39: P-boxes obtained for g1, g2, and g3 for different θ according to UM2
y1
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Figure 40: P-boxes obtained for g1, g2, and g3 for different θ according to UMz1

is achieved, a drawback of θfinal is the increase in realizations of failure types

g1 ≥ 0 and g2 ≥ 0 from θnew according to UMz1 while for the case of UM2
y1,

such drawback comes in the form of a slight increase in realizations of failure

type g1, g2, g3 ≥ 0 from θnew.

6.5. Numerical Implementation and Computational Time

In addressing the tasks presented in this challenge, the adopted algorithms

are mainly based on random sampling and stochastic algorithms. Thus, the ex-
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Failure Type θbase θnew θfinal

UM2
y1 UMz1 UM2

y1 UMz1 UM2
y1 UMz1

No Failure 4357960 4735066 4696943 4955517 4713788 4963836

g1 ≥ 0 54827 4002 3529 22 2485 36

g2 ≥ 0 490718 75237 290863 30231 275785 34004

g3 ≥ 0 16239 126310 0 7391 0 657

g1, g2 ≥ 0 45802 1888 8660 187 7940 81

g1, g3 ≥ 0 0 0 0 0 0 0

g2, g3 ≥ 0 34256 57471 5 6652 0 1386

g1, g2, g3 ≥ 0 198 26 0 0 2 0

Total Samples 5× 106

Table 12: Statistics of the different failures based on analysis for different design points and

UMs.

ecution time fluctuates significantly due to the inherent randomness depending

on the uncontrolled conditions such as starting samples, the evolution of the

samples, etc. However, it needs to be noted that the random seed has not been

fixed to allow for generality of the implementation and solution. Therefore,

we only provide the approximate timing as the performance indicator: 1) the

TMCMC which takes between 5 to 8 hours of sampling time; 2) the adaptive

pinching approach which involves less than a minute of computation time; 3)

the Double-Loop Monte Carlo simulation which involves between 1.5 to 2 hours

of simulation time; and 4) the NISS which takes only 3 minutes of simulation

time.

It needs to be highlighted that the computational times stated for the re-

spective tools are also dependent on the computational efficiency of the high-

performance CPUs which are used. These estimated timings may differ between

different CPUs of different specifications.

7. Conclusion

Different techniques have been presented for solving the NASA UQ chal-

lenge problem. Bayesian model updating technique has been used to calibrate
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the uncertainty model by performing a stochastic update on both the distri-

bution parameters as well as the epistemic parameters. 2 different uncertainty

models have been analysed, each adopting a different choice of joint distribution

function for the aleatory space: 1) Beta distribution; and 2) Staircase Density

Functions. The use of the Staircase Density function provided more informative

results on the bounds of the distribution parameters and the epistemic param-

eters from their respective posteriors and used in the subsequent problems.

An adaptive pinching analysis based on [26, 27] was proposed to perform

the sensitivity analysis on the epistemic parameters, providing an efficient way

of identifying the largest possible reduction of the proposed metric by the single

pinched component of the epistemic space. In doing so, it allows for a systematic,

non-empirical way to justify the pinched bounds and ensure that all regions

of the individual components of the epistemic space are accounted for in the

investigation of their respective effect on the 2 aforementioned quantities.

To perform the reliability analysis and compute the reliability metrics, Probability-

boxes are constructed through the double-loop Monte Carlo approach. From

which, the probability bounds analysis was performed on the resulting Probability-

boxes to obtain necessary bounds on the respective failure probabilities and the

worst-case failure probabilities. The approach does not assume a fixed dis-

tribution on each performance and considers only the extreme bounds of the

probability values obtained.

Finally, to identify an optimal design point of the system, the Non-intrusive

Stochastic Simulation technique [33] was used. The approach provides a system-

atic way to explore a defined hyper-rectangular space of the design point and

identify the values of each design point parameter corresponding to the local

minimum of the first-order component function. This allows for the optimised

design point to be identified in accordance to the defined criteria.

A summary of key results are provided in Section 8.
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8. Appendix

Uncertainty model e1 e2 e3 e4

UM1
y0 [0.4149, 1.5271] [0.2407, 1.5673] [0.1506, 1.8001] [0.1601, 1.9236]

UM2
y0 [0.4351, 0.7082] [0.5583, 1.0000] [0.0721, 0.5511] [0.6066, 1.6893]

UM1
y1 [0.3730, 1.3457] [0.1869, 1.1529] [0.2997, 0.5570] [0.8295, 1.1664]

UM2
y1 [0.4674, 0.6433] [0.7607, 0.9736] [0.2865, 0.4583] [0.9627, 1.1664]

UMz0 [0.5961, 0.7319] [0.7790, 0.9337] [0.4777, 0.5670] [0.8521, 1.1664]

UMz1 [0.4384, 0.5795] [0.5350, 0.5704] [0.3353, 0.5670] [0.9027, 0.9497]

Table 13: Results to the epistemic spaces defined by the respective UMs.

Design point R1(θ) R2(θ) R3(θ) R(θ) s1(θ) s2(θ) s3(θ) s̃(θ)

θbase (with UM2
y1) [0.0028, 0.0580] [0.0190, 0.2644] [0.0000, 0.0343] [0.0270, 0.2746] 0.0413 0.1981 0.0411 0.3779

θbase (with UMz1) [0.0003, 0.0023] [0.0137, 0.0445] [0.0291, 0.0436] [0.0386, 0.0699] 2× 10−6 0.0007 0.1082 0.1669

θnew (with UM2
y1) [0.0000, 0.0176] [0.0150, 0.1378] [0.0000, 0.0001] [0.0153, 0.1379] 0.0009 0.0253 1× 10−9 0.0277

θnew (with UMz1) [0.0000, 0.0004] [0.0025, 0.0141] [0.0011, 0.0059] [0.0040, 0.0154] 3× 10−9 2× 10−5 0.0001 0.0001

θfinal (with UM2
y1) [0.0000, 0.0171] [0.0137, 0.1305] [0.0000, 0.0001] [0.0142, 0.1306] 0.0010 0.0202 1× 10−9 0.0220

θfinal (with UMz1) [0.0000, 0.0002] [0.0024, 0.0143] [0.0000, 0.0013] [0.0028, 0.0144] 2× 10−9 1× 10−5 4× 10−7 2× 10−5

Table 14: Reliability analysis results for the different design points θ with UM2
y1 and UMz1.

Refinement round 1 2 3 4

Refinement type {e−4 } {e−3 } {e−4 } {e+
2 }

Table 15: Summary of the type of refinements requested for the respective refinement round.

The superscripts “+” and “−” denote the refinement of the upper and lower-bound of the

epistemic parameter respectively.
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