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Abstract

This dissertation explores the optimisation of computationally expensive models, whilst

taking into account input uncertainty. The methods proposed are designed to be appli-

cable to models used within the engineering industry, where a key aspect is the process

of selecting a design that satisfies several constraints and performance objectives simulta-

neously. Modern engineering products often have to balance performance against factors

such as profitability and environmental impact. There are often many feasible designs that

satisfy these requirements. Locating such designs, and subsequently selecting an optimal

choice, is often a challenging task. Moreover, any final design choice is subject to a variety

of uncertainty that arises in both the manufacture and life cycle of the product. Selecting a

design that is robust to such uncertainty, whilst still exhibiting near-optimal performance,

is critical to the lifetime performance of a new product.

Complex computer models are increasingly employed in the design process to provide in-

formation on the estimated performance of a potential design. Such models are typically

computationally expensive, which often limits the number of evaluations available to per-

form tasks such as robust optimisation. Two novel approaches are presented in this work to

address this problem. The first is a direct optimisation approach extending an algorithm

known as subset simulation to factor in input uncertainty, alongside strategies to boost

its computational efficiency. In general, this is the preferred approach as it introduces no

further uncertainty into the problem, however in the case that computational constraints

prohibits its application, another approach is necessary. This provided the motivation

behind the second approach, which employs a surrogate modelling technique known as

Gaussian process emulation to provide an inexpensive statistical approximation of the ex-

pensive computer model. This emulator is enhanced with a novel sampling scheme and
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multi-fidelity training data, and is optimised in place of the expensive computer model

without the computational constraints. As such, the approaches are not in direct competi-

tion, but provide the means to perform robust optimisation across a range of computational

budgets. The theoretical underpinnings of each of the proposed methods are discussed in

detail, before they are applied to illustrative examples. Finally, each of the methods are

applied to industrial case studies involving expensive computational fluid dynamics mod-

els provided by the industrial partner. The results showed that the two approaches were

successful in performing efficient robust optimisation of computational expensive engineer-

ing models. In particular, the direct approach results showcased the considerable impact

on the computational efficiency of the robust optimisation process, without compromis-

ing on performance. For the surrogate approach, the case studies highlight the ability to

successfully perform robust optimisation even with stringent computational constraints.

ii



Declaration

This work has not previously been accepted in substance for any degree and is not being

concurrently submitted in candidature for any degree.

Signed Matthew Ellison

Date 31/03/2021

STATEMENT: This thesis is the result of my own investigations, except where other-

wise stated. Other sources are acknowledged by footnotes giving explicit references. A

bibliography is appended.

Signed Matthew Ellison

Date 31/03/2021

iii



Acknowledgements

First and foremost, I would like to thank my supervisor Dr Alejandro Diaz De la O. The

impact of having a supportive and enthusiastic supervisor cannot be overstated. I am

extremely fortunate that Alex has had both of these qualities in abundance during our

time together. I will always be grateful for his guidance and patience on my PhD journey.

I wish to gratefully acknowledge the financial support contributed towards the funding of

my studies by the EPSRC and General Electric Power.

I would like to thank everyone at General Electric Power who I had the pleasure to work

with over the course of the PhD. In particular; a massive thank you to Dr Andrew Pike for

his support early on in the PhD, Dr Greg Laskowski for his help with the industrial case

study, Dr Nadir Ince and Mark Willetts for their continued help, patience and engagement

throughout my studies.

I would like to thank Dr Anas Batou and Dr Mauro Innocente for reading this dissertation

and providing several useful comments and suggestions.

I would also like to express my gratitude to my colleagues at the Institute for Risk and

Uncertainty, as well as the University of Liverpool at large. In particular, special thanks to
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Chapter 1

Introduction

1.1 Motivation

Engineers are synonymous with formulating creative solutions to complicated problems.

Some of the greatest feats in the history of humanity can be attributed to their rationale and

innovation. The goal of engineering design in particular is to create technological designs

that satisfy specific performance objectives and constraints over a period of time. Modern

engineering designs often have to balance performance of a potential design against factors

such as profitability and environmental impact. There are often many feasible choices that

satisfy these requirements. Locating such designs, and subsequently selecting an optimal

choice, is a challenging and crucial task. Traditionally, the selection of a design has involved

attempting to locate a design with the highest nominal performance according to some

criterion, such as power output, efficiency, amongst others. However, simply optimising

for nominal performance can oversimplify the problem and actually result in a suboptimal

design. Keane and Nair [1] point out that optimising for nominal performance often fails to

take into account the uncertainties that arise in modelling, manufacturing and operation.

Moreover, once in operation, such designs usually suffer a sharper decline in performance

due to degradation compared to other suboptimal designs. Figure 1.1 illustrates this

concept for various components of a turbine blade.

The objective of robust design is to determine a set of designs that exhibit high levels of
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1.1. Motivation

Figure 1.1: Degradation of Turbine Blades: A comparison of several turbine blades
from the original design concept to the end of their life cycle. Taken from [2].

performance with low variability, whilst taking uncertainties into account. The benefits of

robust design include the assurance of high performance regardless of a variety of unknown

factors and occurrences throughout the life cycle. The concept of robust design is often

attributed to Taguchi, who argued that designs should be as insensitive as possible to vari-

ations outside of the designer’s control, and developed a method based on loss functions

to facilitate this into the design procedure [3, 4]. The Taguchi method has received signif-

icant criticism and is generally considered to be outdated for modern day applications [5].

However, the philosophy behind the method, i.e. factoring in uncertainty and noise into

the design process, has become increasingly popular and crucial in recent years.

A perfect example is General Electric (GE), who have pioneered technologies and provided

world-leading products in areas ranging everywhere from transportation to healthcare for

over 125 years. In particular, GE products such as those displayed in figure 1.2, currently

generate a third of the world’s electricity [6]. However, GE operate in an essentially Dar-

winian environment of survival of the fittest. Consequently, to maintain their position as a

global leader in areas such as power generation, they have to continue to manufacture prod-

ucts that consistently exhibit high performance throughout lengthy life cycles. Given the

intricate components and extreme operating conditions of GE’s products, factoring these

2



Chapter 1. Introduction

uncertainties into the design process is critical. A key characteristic of this design process,

and indeed practically all modern engineering design processes, is the use of computational

models, to replace or aid costly physical experiments.

(a)

(b)

Figure 1.2: Top: A General Electric H-Class gas turbine [7]. Bottom: Several GE Haliade
150-6MW offshore wind turbines [8].

3



1.2. Background

1.2 Background

1.2.1 Computational modelling

Computational models, or simulators, are widespread throughout most areas of science

and engineering. Such models typically employ mathematical descriptions to describe the

key characteristics of the system, before utilising the processing power of computers to

simulate how the system behaves. They offer a myriad of advantages over real-world

experimentation, which can often be expensive, dangerous, unethical, or even impossible.

Computational models essentially take a set of input variables x, which may represent

factors such as design geometry, to produce a set of outputs, or performance variables y.

Consequently, this mapping of input variables to performance variables can be considered

as a mathematical function y = f(x). By adjusting the input variables, and monitoring

the effect of the outputs, computational models can be used for a variety of purposes, such

as optimisation of an engineering design.

In realistic industrial settings, the systems being modelled are often extremely complex.

This complexity carries over to the associated computational models, such that the nature

of f is not usually explicitly known. This means that any output for a specific set of input

values is not known until they are evaluated on the model. Such computational models are

generally referred to as ‘black-box’ models. Computational models can also be categorised

as either stochastic or deterministic. Stochastic models produce different output values

each time the model is run at the same set of inputs, due to some randomness caused

by a stochastic component. Deterministic models on the other hand produce the same

output values each time the same input is evaluated. Additionally, it is not uncommon for

more than one computational model to exist for a given problem. There are often various

mathematical descriptions available in the initial construction of the model, differing levels

of abstraction, steady versus transient approximation, differing resolution, amongst many

others. Each computational model possesses different assumptions, but ultimately they

are all attempting to represent the same system. Consequently, in the scenario where

multiple computational models are available, models are categorised into levels of fidelity:

lower-fidelity (LF) models are usually defined by a lower-computational cost, but lower

accuracy, than higher-fidelity (HF) models.
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Regardless of the exact nature, a recurrent feature across a variety of computational mod-

els in engineering is a high computational expense involved in running the model. Such

models are commonly referred to as computationally expensive models, and arise due to

the fact that industrially-relevant models need to portray the behaviour of complex sys-

tems with extremely high accuracy. For instance, computationally expensive models have

been utilised to aid in the wing design of aircraft [9, 10], improve the efficiency and ro-

bustness of turbine blades [11, 12], test the crash worthiness of vehicles [13] and estimate

the reliability of crane design [14]. Although the definition of what classifies as compu-

tationally expensive can vary across different applications, a uniting feature is that such

models can only be evaluated a limited number of times in industrial settings. This is as

there are often strict time and cost limits involved in these settings before important and

costly decisions must be made, e.g. a set time frame before the selection of a prototype

design. Moreover, a potential fix for the problem is often nullified, as any increase in com-

puting power and speed often leads to more complex models being developed to replace

the previous versions. As such, the models remain computationally expensive even with

the improved computing resources. The research presented in this thesis holds particu-

lar interest in computational fluid dynamics models, which exhibit many of the features

mentioned above, and are discussed in more detail in the next subsection.

1.2.2 Computational Fluid Dynamics

Computational Fluid Dynamics (CFD) is the analysis of systems involving fluid flow, heat

transfer and associated phenomena via computer-based simulation [15]. CFD involves

discretizing the equations governing the behaviour of fluids into a system of algebraic

equations, which are then solved to obtain an approximate solution that describes the

behaviour of the aforementioned phenomena. CFD is widespread throughout engineering,

and has been applied to problems such as analysing the aerodynamics of aircraft [16],

hydrodynamics of ships [17] and combustion in gas turbines [18] to name a few. The

typical steps involved in a CFD model are pre-processing, solving and post-processing.

These steps are discussed in detail in [15], and summarised here.

The pre-processing stage begins by constructing the geometry involved in the problem,

also known as the computational domain. This domain is then subdivided into a non-

overlapping grid (or mesh) of cells, using a spatial discretization method. The shape of
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these cells is user-defined, with typical choices including hexahedral, tetrahedral, prismatic,

pyramidal or polyhedral. Additionally, other key user decisions involve whether cell dis-

tribution within the mesh is uniform or non-uniform, i.e. evenly distributed or higher

concentration in certain areas, and structured or unstructured. These choices directly

affect computational efficiency and solution accuracy, and are often problem specific. Re-

gardless of the exact configuration, a key influence on the accuracy of a CFD solution is

the number of cells in a mesh. Generally, increasing the number of cells results in superior

accuracy, but requires greater computational expense. The last step in this stage is defining

the physical properties of the problem, such as particular fluid properties, and specifying

any relevant initial conditions and boundary conditions.

The solution stage involves integrating the governing equations of fluid flow over each of the

cells defined in the pre-processing stage. This is done by converting these equations into a

set of algebraic equations through discretization, that can then be solved numerically using

an iterative method. There are several choices to perform discretization, including finite

difference [19], finite element [20] and spectral methods [21]. A popular choice amongst

established CFD practices is to employ a particular form of finite difference known as

the finite volume method [22]. This method begins by applying the integral form of the

conservation equations to each cell, or control volume. The idea is that within a finite

control volume a general flow variable, e.g. a velocity component, can be expressed as

a balance between the various processes tending to increase or decrease it. Essentially,

the rate of change of the general flow variable within the control volume is related to

the net rate of increase/decrease due to convection, diffusion and creation/destruction of

the variable. A computational node is located at the centroid of each control volume, at

which the values of a general flow variable are calculated. The variable values are the

surface of a control volume are then calculated using interpolation of the nodal values.

Surface and volume integrals are approximated using suitable quadrature formulas. As a

result, one obtains an algebraic equation for each control volume, in which a number of

neighbour nodal values appear [23]. Finally, a suitable iterative method is used to solve.

The methods employed in this stage must be able to deal with both laminar and turbulent

flows. Laminar flows are characterised by fluid particles moving in smooth paths, with

little to no mixing. Turbulent flows are characterised by chaotic behaviour of the flow such

that large-scale eddies form due to flow instability. These large-scale eddies take energy

from the mean flow and feed it down a cascade of progressively smaller eddies until it
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dissipates. Consequently, turbulent flows are much more complicated to predict and model

than laminar flows. There are a variety of different methods to deal with this problem,

however techniques can usually be summarised into the general categories of Reynolds-

Averaged Navier Stokes equations (RANS), which models the entirety of the turbulent

energy cascade, Large-Eddy Simulation (LES), which resolves some of the larger eddies

but models the smaller eddies, or Direct Numerical Simulation (DNS), which resolves all

of the eddies. The final stage is post-processing, in which the results of the solution stage

are analysed depending on the particular nature of the problem.

1.2.3 Uncertainty in computational models

Computational models are exceptionally useful tools to investigate their given physical

systems and phenomena. However, given the complex nature of such systems, it is often

impossible for a model to capture the behaviour of the system completely. For example,

models often possess parameters which require tuning to best approximate certain physical

properties of the system [24]. This tuning task is often complicated, and there is usually

no guarantee that a suitable value is selected. Consequently, this tuning task introduces a

measure of uncertainty within the inputs of the model, which then propagates through to

the model outputs. This is just one example of many potential sources of uncertainty that

can be associated with computational models. The field of uncertainty quantification (UQ)

has arisen in an attempt to identify and address these various uncertainties. The authors

of [25] provide definitions of some of the common sources of uncertainty in computational

models:

• Parameter uncertainty: already touched upon above, parameter uncertainty refers

to the uncertainty surrounding the selection of suitable input values of the computa-

tional model. Inputs that represent known processes can be fixed, e.g. gravity can

be set to 9.8m s−2 with complete certainty, whereas the nature of some inputs will be

unknown and may take a range of plausible values. Such inputs introduce a measure

of uncertainty and may be represented with an upper and lower bound, a mean and

a variance, or a probability distribution.

• Model discrepancy: The difference between the output of the computational model

and the output of the actual physical system. This can be caused by factors such
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as approximations within the mathematical model, insufficient spatial or temporal

resolution or simply errors in the computer code.

• Residual variability: consists of uncertainties that arise that cause the model output

to vary between multiple evaluations of the same set of inputs. A potential cause is

that the underlying physical process is actually stochastic, and the residual variation

is a natural byproduct. Another cause is an insufficient number of inputs to the model

allowing certain settings to vary between evaluations. Consequently, increasing the

number of input variables may help to reduce the variability between evaluations.

• Parametric variability: The case whereby some input variables are left uncontrolled

and unspecified (often deliberately), causing uncertainty that propagates through to

the model output.

• Observational error: measurements of the actual physical system are used to cali-

brate or validate the computational model. These values often contain uncertainty

bounds to account for any potential measurement error, which adds an extra source

of uncertainty known as observational error.

• Code uncertainty: In essence, the model output for a given set of inputs is known,

as the model is simply a known function of the inputs. However, due to the complex

nature of the model, and the associated computational strain involved in evaluating

it, the model output is not known until the model is actually evaluated. As it is often

infeasible to evaluate all potential input values, uncertainty in the model output for

untried input values must be accounted for and is known as code uncertainty.

A more general categorisation of the sources of uncertainty is provided in [26], whereby

the type of uncertainty is dependent on whether it is inherent to the system under study,

or simply arises due to lack of knowledge. The former is known as aleatoric, or irreducible,

uncertainty, and represents uncertainty that is caused by natural variability within a system

and cannot be reduced by any further information regarding the system, for example the

outcome of flipping a coin. The other category is epistemic, or reducible, uncertainty, which

arises due to some form of lack of knowledge, such as an overly simplistic model neglecting

part of the underlying physical process. Such uncertainties are considered reducible as

they can theoretically be reduced, and in some cases eliminated, given adequate additional
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information. Finally, it is possible for uncertainty to arise that can be a combination

from both aleatoric and epistemic sources. For example, rolling a biased dice will always

possess a random outcome (aleatoric uncertainty) but increasing the sample size would help

reduce the uncertainty surrounding the associated probability of each outcome (epistemic

uncertainty). Regardless of the definition, uncertainty is often abundant in a variety of

engineering problems. As such, it is paramount to possess the tools to quantify any relevant

uncertainty, and factor it into the solution of the problem.

1.2.4 Robust Optimisation

A common and critical problem within engineering is the task of optimisation. Optimi-

sation is the process of locating the input configuration for a design that corresponds to

optimal performance, which itself is usually defined by maximising or minimising some per-

formance variable. Problems with a single performance variable under consideration are

referred to as single-objective optimisation problems (SOPs). Problems with two or more

objectives are described as multi-objective optimisation problems (MOPs). For MOPs, it

is unusual for a single design to optimise each performance objective simultaneously, and

as such most MOPs possess a set of optimal solutions known as the Pareto front [27].

A variety of methods have been developed to tackle MOPs, such as sequential quadratic

programming [28], Quasi-Newton’s methods [29], genetic algorithms (GA) [30], particle

swarm optimisation (PSO) [31] and, used and covered in chapter 2 in this thesis, subset

simulation [32].

The goal of traditional optimisation methods, such as those mentioned above, is to locate

the global optima of the underlying objective function. However, as touched upon previ-

ously, such optima can often be sensitive to changes in their inputs or environment [33]

and actually possess suboptimal performance. As discussed in section 1.2.3, there are a

variety of uncertainties that can arise when employing computational models. Robust op-

timisation is the process of locating input variables that exhibit near-optimal performance

and are insensitive, or robust, to the effect of the various uncertainties of the problem [34].

Traditional optimisation methods fail to address any uncertainties, and as such are unsuit-

able to perform robust optimisation. The research in this dissertation explores methods

to tackle robust optimisation problems. A more thorough mathematical definition of the

various optimisation problems is given in chapter 2 and chapter 3.
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1.2.5 Surrogate Models

Optimisation tasks often involve significant evaluations of the underlying objective func-

tions in order to converge towards regions with optimal performance. Given that these

objective functions are often computationally expensive models, this presents a challenge.

One solution that is explored in this thesis is to increase the efficiency of optimisation al-

gorithms as a means to reduce the number of evaluations needed. Another approach is to

employ a surrogate model, or metamodel, in place of the computationally expensive model.

An incentive to use computational models rather than physical experiments was that the

former is considerably less expensive, but still captures the behaviour of the physical pro-

cess. Surrogate models provide a similar incentive when compared to computationally

expensive models. A surrogate model attempts to approximate the behaviour of the more

expensive model, but at a fraction of the computational cost. The surrogate is trained on a

relatively small number of simulator evaluations, which provides information on the output

space of the true model. This surrogate model can then provide an estimate of the true

output at unknown input values, and thus be used in place of the computationally expen-

sive model in the optimisation process, without the associated computational constraint.

Given their merits, a plethora of different surrogate have been developed over the years.

Amongst the most popular choices are neural networks [35], Taylor series expansion [36],

radial basis functions [37] and support vector machines [38]. Another prevalent approach

is Gaussian process emulation [39], which provides a distribution for the model output,

supplying an approximation to the computational model as well as quantifying the output

uncertainty associated with the use of the surrogate. For this and other reasons that will

be outlined in Chapter 4, Gaussian process emulation and its extensions will be used for

all surrogate modelling purposes in this research.

1.3 Objectives of this research

The preceding sections have highlighted some of the difficulties associated with the design

process for modern engineering settings, as well as the potentially huge ramifications in the

case of selecting a suboptimal design. Two of the main components contributing to these

difficulties are the uncertainties that arise in both the manufacturing phase and life cycle of

a design, and the computational expense related to the computer models employed in the
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design process. The research contained in this thesis aims to address these components,

and develop methods to facilitate the efficient optimisation of computational expensive

models whilst factoring in input uncertainty. To achieve this aim, the following objectives

are identified and addressed in this dissertation:

1. The development of a novel robust optimisation algorithm that can be applied di-

rectly to computational models. Particular emphasis is given to ensure the algorithm

is as computationally efficient as possible.

2. Provide a statistical surrogate modelling framework in the case that the compu-

tational model is too expensive for direct application of the robust optimisation

algorithm. This framework can then be optimised in place of the expensive model.

3. Ensure that both approaches are suitable for industrial application and showcase the

methods with relevant industrial case studies.

In particular, the subset simulation algorithm was identified as a suitable candidate to

address the first objective. However, the method is currently suitable for nominal optimi-

sation problems. This thesis intends to modify the method in order to adapt it for the

purposes of robust optimisation. For the second objective, Gaussian process emulation

was identified as an ideal surrogate modelling method for the computational model. This

thesis intends to combine various enhancements of Gaussian process emulation to extend

the applicability of the work to problems with severe computational constraints.

Upon meeting these objectives, a key criteria of the PhD is to ensure that the methods can

be incorporated directly into the design process of the industrial partner. In particular,

placing emphasis ensuring that the code is user-friendly, and easily understandable even

for those without prior experience in MATLAB or in the concepts themselves.

1.4 Methodology

The key concepts of the subset simulation method were first covered, including the influ-

ence of its various hyperparameters. The distinction between nominal optimisation and

robust optimisation was then presented in order to highlight the necessary modifications
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that would be required. To facilitate the use of subset simulation for robust optimisation,

several modifications were proposed to address the two issues; factoring in input uncer-

tainty and computational efficiency. The former was addressed by utilising neighbourhood

samples to produce averaged objective values, including discussion on the impact of vary-

ing the number of neighbourhood samples. For the latter several strategies were proposed,

including separate stages for nominal optimisation and robust optimisation, reducing un-

necessary model evaluations by using a bank of solutions and employing adaptive Markov

Chain Monte Carlo algorithm to boost efficiency. Further, the adapted subset simulation

was also generalised to incorporate multiple levels of fidelity to further boost computational

efficiency. In the absence of existing benchmark problems, an existing robust optimisation

problem was extended to MF to facilitate testing of the method before industrial applica-

tion.

Similarly for the surrogate approach, the key concepts of Gaussian process emulation were

detailed, with particular attention to estimating hyperparameters, incorporating input

uncertainty and boosting the quality of the training data through adaptive sampling and

use of multi-fidelity data. Combining each of the enhancements, including a novel adaptive

sampling scheme, for the purposes of enabling the use of the direct robust optimisation

approach was then covered. A benchmark problem was then constructed and tackled.

Finally, both the direct approach and the surrogate approach were applied industrial case

studies. Specifically, both were applied to optimising an aerofoil whilst taking into account

input uncertainty, while the surrogate approach was also applied to a second case which

involved optimising the design of a turbulated duct with uncertain input parameters. Un-

fortunately it was not possible to apply the direct approach to the turbulated duct case

study due to technological restraints unrelated to the method itself.

1.5 Contributions

A novel method incorporating input uncertainty into the optimisation process was pro-

posed, developed and tested on an industrially relevant problem. The algorithm, denoted

robust subset simulation, extended the subset simulation algorithm to optimise over aver-

aged objective values for a neighbourhood surrounding a particular set of input values. To

ensure that the method was suitable for computationally expensive models, several mea-
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sures were put in place to boost efficiency. Additionally, a second algorithm was also de-

veloped, denoted multi-fidelity robust subset simulation, which extended the robust subset

simulation algorithm to utilise multiple levels of fidelity. The two related methods address

the main issue facing existing direct approaches, providing a computationally responsible

approach to perform robust optimisation of problems with one or more computationally

expensive models.

In certain problems, computational constraints render all direct approaches infeasible, even

with the aforementioned measures to boost efficiency. To address this, a surrogate mod-

elling framework was constructed using various enhancements of Gaussian process emula-

tion in order to facilitate the use of the robust subset simulation algorithm. This extended

the applicability of the method to more computationally stringent problems. Moreover, in

certain circumstances, the surrogate approach is able to incorporate uncertainty directly

into the emulation process, allowing for use of a novel adaptive sampling scheme and en-

abling a nominal optimisation algorithm to be used, increasing the efficiency of the entire

robust optimisation procedure.

All the methods discussed in this dissertation were incorporated in a MATLAB toolbox

provided to the industrial partner. This included detailed documentation and template

code to reproduce each of the industrial case studies. The toolbox is currently in the

process of being transferred to the industrial partner’s in-house design software for further

application in real-world industrial problems.

1.6 Outline of Dissertation

The structure of the thesis is as follows:

Chapter 2 provides an in-depth description of subset simulation method. This begins with

the original motivation and concept of the method, before discussing the reasoning and

steps involved to adapt the method for the purposes of optimisation.

Chapter 3 presents a novel robust optimisation approach based on extending the subset

simulation methods discussed in chapter 2. Particular attention is paid to the computa-

tional cost of the novel approach. The approach is then applied to an industrially relevant
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problem.

Chapter 4 introduces the concept of surrogate modelling, before highlighting Gaussian

process emulation in particular. The theoretical and practical aspects of Gaussian pro-

cesses are then covered, before detailing the steps involved to construct a Gaussian process

emulator. Finally, several enhancements of Gaussian process emulation are discussed.

Chapter 5 presents a framework which combines the enhancements of Gaussian process

emulation introduced in chapter 4 for the purposes of robust optimisation. The framework

is then applied to two industrially relevant problems.

Finally, Chapter 6 concludes the thesis with a summary of the key findings from the

preceding chapters, as well as giving directions for future development of the work.
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Chapter 2

Subset Simulation

This chapter presents a thorough overview of subset simulation. The chapter begins by

introducing the reliability problem that provided the original motivation behind the sub-

set simulation method. The concept and theoretical background of the subset simulation

algorithm is then discussed in detail. Next an analogy between reliability and optimisation

is made to justify adapting the subset simulation algorithm for the purposes of optimisa-

tion. The steps involved to utilise the algorithm for single-objective optimisation are then

covered, before a test problem is presented to illustrate the concept in action. Lastly, the

steps to adapt the algorithm for multi-objective optimisation are discussed, including an-

other illustrative test problem used to highlight the similarities and differences between the

single-objective case. The optimisation algorithms presented within this chapter provide

the foundation for the novel method discussed in chapter 3.

2.1 Background

Computational models are exceedingly common in engineering applications to model vari-

ous natural processes, and are usually represented mathematically as y = f(x). The model

provides a mapping from a set of input variables to a number of output, or performance,

variables, which can be utilised to learn more about the underlying characteristics of the

system under study. A characteristic of particular importance in a number of fields is the
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reliability of a system. This reliability is typically associated with the probability of failure

of a system, with a lower probability value indicating a more reliable system, and vice

versa. Failure is typically defined as unacceptable performance of the system, according

to some criteria. In a mathematical sense, failure is traditionally defined as the scenario

where the performance of the system exceeds some predefined critical threshold. That is

for a given critical threshold y∗, if y = f(x) < y∗, the system is considered safe, or reliable,

but if y = f(x) > y∗, then the system fails and is considered unreliable. As a result, the

failure domain of the system can be defined as the set of input values that correspond to

a performance value that exceeds this critical threshold:

F = {x : f(x) > y∗}. (2.1)

However, most engineering systems are complex, meaning that information regarding the

system is often incomplete, resulting in uncertainty in the values of the input variables,

which then propagates through to the performance variable. Consequently, input variables

are modelled as random variables, whose marginal distributions are obtained from expert

opinion, experimental data, or from literature. Given that π(x) is the joint probability

density function (PDF) for x, the engineering reliability problem is then to compute the

probability of failure, pF :

pF = P (x ∈ F ) =

∫
F
π(x)dx. (2.2)

As the systems are often complicated, it is usually impossible to solve this integral analyti-

cally or numerically. There have been various methods developed over the years to address

this issue, which can be roughly categorised into three groups. The first group contains

analytical methods, such as the First-Order Reliability Method [40] and the Second-Order

Reliability Method [41]. The second group involves any surrogate-based techniques, such

as support machine vectors [42], neural networks [43] and response surface methods [44].

Finally the third group are approaches employing Monte Carlo (MC) simulation methods,

including line sampling [45], importance sampling [46] and subset simulation [47]. Focusing

on the third group specifically, the MC method [48] is an application of the law of large

numbers, that computes the empirical mean as an approximation of the expected value of

a quantity of interest. In particular, for some function h : Ω → R, the expectation of the
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function Eπ[h(x)] with respect to the PDF π(x) is

Eπ[h(x)] =

∫
Ω
h(x)π(x)dx. (2.3)

Given N independent and identically distributed (i.i.d) samples from π(x), the MC method

gives

Eπ[h(x)] ≈ 1

N

N∑
i=1

h(xi). (2.4)

To relate this to the reliability problem, the indicator function, IF (x), is defined as

IF (x) =

1, x ∈ F,

0, x /∈ F,
(2.5)

and pF can be expressed as the expectation of the indicator function with respect to the

joint probability distribution:

pF =

∫
F
π(x)dx =

∫
Ω
IF (x)π(x)dx = Eπ[IF (x)] ≈ 1

N

N∑
i=1

IF (x(i)) = pMC
F . (2.6)

Here pMC
F denotes the MC estimation of failure, where pMC

F → pF as N → ∞. On

inspection, the MC approximation is simply the ratio of the total number of samples

that result in failure to the total number of samples [49]. However, real-world reliability

problems are synonymous with small failure domains, and consequently the MC approach

is often too inefficient to be directly applied.

2.2 Subset Simulation for Reliability

Conceptually, subset simulation (SuS) addresses the issue of sampling from small-failure

domains by modelling the failure region as a sequence of less-rare nested regions,

F = FM ⊂ FM−1 ⊂ ... ⊂ F1, (2.7)
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where sampling from F1 is a relatively common event as described below. As a result, the

probability of failure can then be defined as a product of conditional probabilities:

pF = P (FM ) = P (F1)P (F2|F1)...P (FM−1|FM−2)P (FM |FM−1). (2.8)

The SuS algorithm, as with many other reliability methods, assumes that any input vari-

ables x are independent. Moreover, x are assumed to be independent and identically

distributed (i.i.d) Gaussian for convenience [49]. Consequently, transformation of x may

be in order prior to the SuS algorithm commencing if they are not in this form. Depend-

ing on the initial nature of x, this process may be done via methods such as the Nataf

transformation [50] and the Rosenbatt transformation [51], or even standardization if x are

already independent Gaussians. After this transformation is complete, the joint probability

distribution follows the standard multivariate Gaussian distribution:

π(x) = π(x1, ..., xd) =
d∏
i=1

φ(xi), (2.9)

where φ(·) represents the standard Gaussian probability distribution function. Once the

input variables are i.i.d Gaussian, the SuS algorithm [47] begins by employing MC methods

to generate n samples x1
0, ...,x

n
0 ∼ π(x) and computing their system performance values

y1
0 = f(x1

0), ..., yn0 = f(xn0 ). Here the subscript 0 represents the fact that this is the zeroth

level of the algorithm. The system performance values are then ordered from largest to

smallest, renumbering the superscripts of the samples if necessary, such that y1
0 ≥ ... ≥ yn0 .

Thus, the sample xn0 can be considered the safest sample and x1
0 the sample closest to

failure. Specifying p ∈ (0, 1) such that np is an integer, the first intermediate failure region

F1 is then defined as

F1 = {x : f(x) > y∗1}, (2.10)

where

y∗1 =
ynp0 + ynp+1

0

2
. (2.11)

By construction, the samples x1
0, ...,x

np
0 now lie within F1, while xnp+1

0 , ...,xn0 do not.

Additionally, although any value of p within the bounds is acceptable, it was found by the

authors of [52] that p = [0.1, 0.3] is the most suitable choice to boost the efficiency of the
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algorithm. Using the direct MC approach, P (F1) can then be defined as

p(F1) ≈ 1

n

n∑
i=1

IF1(x
(i)
0 ) = p. (2.12)

This region F1 can be considered as a conservative approximation to the true failure region

F . Indeed, as F ⊂ F1, pF can be expressed as a product of probabilities:

pF = P (F1)P (F |F1), (2.13)

where P (F |F1) is the conditional probability of F given F1. As P (F1) is known from Eq.

2.12, the task of estimating pF is reduced to estimating this conditional probability. The

next step is to populate the region F1 by generating the remaining (n− np) samples from

the conditional distribution

π(x|F1) =
π(x)IF1(x)

P (F1)
=
IF1(x)

P (F1)

d∏
i=1

φ(xi). (2.14)

To achieve this, SuS employs Markov Chain Monte Carlo (MCMC) [53], which is a class

of algorithms designed to sample from complex probability distributions. In particular,

SuS utilises a particular MCMC algorithm known as the Modified-Metropolis Hastings

(MMH) algorithm [54], which has been specifically developed for sampling from conditional

probabilities such as π(x|F1).

Given that x ∼ π(·|F1) is a known sample from the conditional distribution π(·|F1), the

MMH algorithm utilises x to generate another sample x̃ from π(·|F1). This process is

illustrated in figure 2.1. The algorithm starts by producing a candidate sample, ξ =

(ξ1, ..., ξd), where for each input dimension, a prospective candidate value ηi is generated

from a univariate proposal distribution that is centred at xi, with the symmetric property

qi(ηi | xi) = qi(xi | ηi):
ηi ∼ qi(· | xi). (2.15)

The acceptance ratio of the prospective candidate value is then evaluated

ri =
φ(ηi)

φ(xi)
, (2.16)
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and the actual ith candidate value set accordingly:

ξi =

ηi with probability min{1,ri},

xi with probability 1-min{1,ri}.
(2.17)

Once all the candidate values are set, the candidate sample ξ is accepted or rejected it

follows the conditional distribution π(·|F1):

x̃ =

ξ if ξ ∈ F1,

x if ξ /∈ F1.
(2.18)

qi(· | xi)

ηi

ξi = ηi

ξi = (ξ1, ..., ξd)

F1

ξi = xi

x̃ = ξ x̃ = x

1-min{1,rk}min{1,rk}

ξ ∈ F1 ξ /∈ F1

Figure 2.1: Modified Metropolis-Hastings: The steps involved in generating and ac-
cepting/rejecting a candidate sample using the MMH algorithm.

This way, x̃ is guaranteed to follow the conditional distribution π(·|F1) as required. In the
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case that the candidate sample ξ is rejected in Eq. 2.18, then x̃ = x ∼ π(·|F1), and the

requirement is automatically satisfied. Alternatively, in the case that ξ is accepted, then

x̃ = ξ, and there is a distinct transition from x to x̃ = ξ. To prove that x̃ follows the

conditional distribution despite this transition, let ζ(·) denote the PDF of x̃, then

ζ(x̃) =

∫
F1

π(x | F1)t(x̃ | x)dx, (2.19)

where t(x̃ | x) is the transition PDF from x to x̃ 6= x. As the respective input variables

of x̃ = ξ are independently generated, the transition PDF t(x̃ | x) can be expressed as a

product:

t(x̃ | x) =

d∏
i=1

ti(x̃i | xi), (2.20)

where ti(x̃i | xi) is the transition PDF for the ith input variable x̃i. Combining Eq. 2.14,

Eq. 2.19 and Eq. 2.20 gives

ζ(x̃) =

∫
F1

IF1(x)

P (F1)

d∏
i=1

φ(xi)

d∏
i=1

ti(x̃i | xi)dx =
1

P (F1)

∫
F1

d∏
i=1

φ(xi)ti(x̃i | xi)dx. (2.21)

Central to proving that f(x̃) = π(x | F1) is to show that φ(xi) and ti(x̃i | xi) satisfy the

detailed balance equation:

φ(xi)ti(x̃i | xi) = φ(x̃i)ti(xi | x̃i) (2.22)

The transition from x to x̃ is determined not only by the proposal PDF qi(x̃i | xi), but

also whether this proposal is actually accepted with probability min{1, ri}. Therefore,

ti(x̃i | xi) = qi(x̃i | xi)min

{
1,
φ(x̃i)

φ(xi)

}
, x̃i 6= xi. (2.23)

By utilising the identity amin
{

1, ba
}

= bmin
{

1, ab
}

for any a, b > 0, the symmetric property

of the proposal PDF qi(x̃i | xi) = qi(xi | x̃i) and Eq. 2.23, it can shown that

φ(xi)ti(x̃i | xi) = qi(x̃i | xi)φ(xi)min

{
1,
φ(x̃i)

φ(xi)

}
= qi(xi | x̃i)φ(x̃i)min

{
1,
φ(xi)

φ(x̃i)

}
= φ(x̃i)ti(xi | x̃i), (2.24)
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satisfying Eq. 2.22. As a result, combining Eq. 2.21, Eq. 2.22 and Eq. 2.23 gives

ζ(x̃) =
1

P (F1)

∫
F1

d∏
i=1

φ(x̃i)ti(xi | x̃i)dx

=
1

P (F1)

d∏
i=1

φ(x̃i)

∫
F1

t(x | x̃)dx = π(x̃ | F1), (2.25)

since t(x | x̃) integrates to 1. Consequently, it is clear that the MMH algorithm produces

samples according to the conditional distribution regardless of the acceptance/rejection

of the candidate sample in Eq. 2.18. To generate the remaining (n − np) samples from

π(· | F1), SuS uses the MMH algorithm to produce a succession of (1
p − 1) new samples for

each of the x
(i)
0 ∼ π(· | F1), i = 1, ..., np. For example, x

(i)
0 = x

(i)
0,0 → x

(i)
0,1 → ... → x

(i)

0, 1
p
−1

,

where for each x
(i)
0,j , the previous sample x

(i)
0,j−1 is used as the initial sample. The succession

of samples is known as a Markov chain with the stationary distribution π(· | F1) and the

initial sample in the chain, e.g. x
(i)
0,0, is referred to as the ‘seed’ of the Markov chain.

By generating an additional 1
p − 1 for each x

(1)
0 , ...,x

(np)
0 , a total of n samples are produced

that are located within the region F1, and the region is said to be populated. For simplicity,

these samples will be denoted x
(1)
1 , ...,x

(n)
1 , where the subscript 1 indicates that the sample

lies within the first conditional level. Once these samples are generated, their respective

performance values are computed and the samples rearranged and renumber accordingly:

y
(1)
1 = f(x

(1)
1 ) ≥ ... ≥ y

(n)
1 = f(x

(1)
1 ). As F is often exceptionally small, it is unlikely that

none of x
(1)
1 , ...,x

(n)
1 lie within F , i.e. y

(i)
1 < y∗ for all i = 1, ..., n, and further conditional

levels need to be generated. Analogously to Eq. 2.10, the second intermediate failure

region can be defined as

F2 = {x : f(x) > y∗2}, (2.26)

where

y∗2 =
ynp1 + ynp+1

1

2
. (2.27)

Since y
(i)
1 > y∗1 for all i = 1, ..., n, y∗2 > y∗1 and F ⊂ F2 ⊂ F1. Thus, F2 can be seen as

a conservative approximation to F , but with greater accuracy than F1. This can be seen

clearly in figure 2.2, which illustrates the concept of SuS and showcases how the algorithm

utilises MCMC to converge towards the true failure region.
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As in the construction of F1, by design x
(1)
1 , ...,x

(np)
1 lie within F2, while x

(np+1)
1 , ...,x

(n)
1

do not. Consequently, the estimate of the conditional probability of F2 given F1 is equal

to p,

P (F2 | F1) ≈ 1

n

∑
IF2(x

(i)
1 ) = p. (2.28)

Moreover, as F ⊂ F2 ⊂ F1, the conditional probability P (F | F1) from Eq. 2.13 can be

expressed as a product:

P (F | F1) = P (F2 | F1)P (F | F2). (2.29)

Combining Eq. 2.13 and Eq. 2.29 provides a new expression for the failure probability:

pF = P (F1)P (F2 | F1)P (F2). (2.30)

Taking Eq. 2.12 and Eq. 2.30 into account, the problem of estimating pF is therefore

reduced to estimating the conditional probability P (F | F2). The MMH algorithm can

then used to populate F2 by generating samples from π(· | F2), before repeating the steps

described above to define the third intermediate failure region F3 ⊂ F2. Using the same

logic as before, the probability of failure can be defined pF = P (F1)P (F2 | F1)P (F3 |
F2)P (F | F3), and the task of estimating it reduced to estimating P (F | F3). This process

is repeated until F has been sufficiently sampled and the stopping criterion is met. Indeed,

given that the number of samples that lie within the failure region F at conditional level

L is defined as

nF (L) =
n∑
i=1

IF (xiL). (2.31)

The stopping criterion can then be defined as

nF (L)

n
≥ p, (2.32)

that is, at some level L with samples x
(1)
L , ..., x

(np)
L , at least np of them lie within the failure

region. Once this is satisfied, the SuS algorithm terminates, with L as the last conditional

level. Since F is a rare event, it is likely that nF (L) = 0 for the first few conditional levels.

However, as L increases, nF (L) will increase as FL shrinks towards F . At conditional level

L, the failure probability pF is expressed as a product,

pF = P (F1)P (F2 | F1)...P (FL | FL−1)P (F | FL). (2.33)
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However, as both P (F1) = p and P (Fi | Fi−1)=p for all i = 2, ..., L by design, the proba-

bility of failure is defined as

pF ≈ pSuSF = pL
nF (L)

n
. (2.34)

All distinct steps of the process described in this section are contained in a pseudocode

located in the appendix as algorithm 4.

(a) Initial Monte Carlo Sampling (b) First Intermediate Failure Region

(c) MCMC Step (d) Second Intermediate Failure Region

Figure 2.2: Subset Simulation Procedure Graphical display of subset simulation. The
light blue dots represent the initial MC samples in 2.2a, and samples from lower conditional
levels in the other sub-figures. The red dots represent seed samples, and the blue dots
represent samples produced via MCMC.
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2.3 Single-Objective Optimisation using Subset Simulation

2.3.1 Analogy between Reliability and Optimisation

The previous section introduced the reliability problem, which is concerned with estimating

the probability of failure of a system. This probability is associated with regions of the

input space which correspond to an unacceptable system performance, as described in

Eq. 2.1. The occurrence of unacceptable performance, defined by exceeding the critical

threshold value y∗, is often exceedingly rare, which presents significant challenges when

attempting to sample from the associated failure domain. This challenge provided the

motivation behind the original SuS algorithm. It is fairly clear that altering y∗ has a direct

impact on the size of the failure domain: decreasing y∗ will increase the size of the failure

domain, whilst increasing y∗ will do the opposite. In the latter case, given a certain value

for y∗, only the input values corresponding to the most extreme system performance will

lie within the failure domain. An optimisation problem consists of attempting to find the

input values xopt that maximises (or minimises depending on problem) the performance of

a system, i.e. find xopt such that yopt = f(xopt). The domain for optimal values is often

narrower than the failure domain in reliability problems, and given the correct context,

optimisation can be seen as an extreme form of the reliability problem. Specifically, the

task of optimising a system can be converted to a reliability problem in which the critical

threshold is defined as y∗ = yopt and the associated failure domain is simply F = xopt. This

is illustrated for the one-dimensional case in figure 2.3. The function given by the blue

line represents the performance values across the input domain. The green line represents

a typical critical threshold for reliability problems y∗, with the solid green areas on the x

axis showing the relative size of the associated failure domain. The solid red line is a more

extreme critical threshold y∗ = yopt, that passes through the red dot that represents the

optimal point of the function yopt. The dashed red line shows the location of the failure

domain associated with the solid red line.
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Figure 2.3: Analogy between Reliability and Optimisation: Similarities between
optimisation and reliability allow the former to be framed in the context of the latter.

By definition, the probability of failure in the more extreme case is zero, however this is in-

consequential as the actual aim is to locate the optimal input values. As highlighted in the

previous section, SuS gradually converges towards a failure region, with each intermediate

failure region Fi associated with an increased intermediate critical threshold compared to

the previous critical threshold, i.e. y∗i ≥ y∗i−1. Incidentally, as SuS proceeds, the per-

formance values of accepted samples generally increases. Consequently, as SuS converges

towards the extreme failure domain associated with the optimisation problem, it will gen-

erate samples with increasing performance, culminating in locating the true optimal input

values [32, 55].

2.3.2 Procedure for Single-Objective Optimisation

Once the analogy between reliability and optimisation is made, it is fairly straightforward

to apply SuS for the purposes of the latter. The task of single-objective optimisation can
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be described mathematically as

Maximise
x

f(x),

subject to gj(x) ≥ 0, j = 1, 2, ..., J, (2.35)

hk(x) = 0, k = 1, 2, ...,K.

where gj and hk represent inequality and equality constraint functions for the given prob-

lem. As SuS frames the optimisation problem in the context of a reliability problem, each

previously deterministic input variable is assigned a probability density function (PDF),

denoted φ(x), to assist in guiding the search for promising solutions. It was found in [32]

that a reasonable choice was to set these PDFs as truncated normal distributions, with

mean µ as close as possible to the global optimal input values, as this can speed up the

convergence towards optimal solutions compared to other choices, such as a uniform distri-

bution. In the case that these optimal values are unknown, and there is no expert opinion,

a suitable choice for the mean is at the midpoint of the input bounds. The standard de-

viation of the PDFs, σ, is defined as a function of the domain length L, usually L = σ/6.

As a result, the PDF for the ith input variable is defined as

π(xi, µi, σi, x
L
i , x

U
i ) =

φ(xi−µiσi
)

Φ(
xUi −µi
σi

)− (
xLi −µi
σi

)
. (2.36)

Here xLi , x
U
i are the respective lower and upper bounds for the given input variable, φ(·) is

the PDF and Φ(·) is the cumulative distribution function (CDF) of the standard Gaussian

distribution. Additionally, the number of samples per level, n, and the level probability, p,

are set.

The key stages of the process are shown in figure 2.4. Once again, the first step in the

SuS algorithm is to generate n i.i.d samples {x1
0, ...,x

n
0} via MC sampling. The constraint

values and performance values for each sample are then computed. The total constraint

value for a given sample is defined as the number of individual constraints that it violates,

rather than a measure of how much it violates a particular constraint. That is, for a given
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sample, the individual constraint violations are defined as

νj(x) =

0 if gj(x) ≥ 0,

1 if gj(x) < 0.
γk(x) =

0 if hk(x) = 0,

1 if hk(x) 6= 0,
(2.37)

and the total constraint value is then defined as

fcon(x) =

J∑
j=1

νj(x) +

K∑
k=1

γk(x). (2.38)

Samples are then sorted according to a double-criterion ranking method [56], where samples

are first sorted and renumbered according to their constraint values

fcon(x1
0) ≥ ... ≥ fcon(xn0 ). (2.39)

Samples with the same constraint values are then sorted and renumbered according to

their performance values. The first intermediate conditional level is therefore defined as

F1 = {x : f(x) > y∗1, fcon(x) ≤ C∗1}, (2.40)

where

y∗1 =
ynp0 + ynp+1

0

2
, (2.41)

and

C∗1 =
fcon(xnp0 ) + fcon(xnp+1

0 )

2
. (2.42)

Populating F1 and additional conditional levels follow the same MMH steps as discussed in

section 2.2. A key component in MMH which dictates the overall performance of the SuS

procedure is the proposal distributions qi(· | ·). The authors in [47] observed that efficiency

of the MMH algorithm was insensitive to type of the proposal PDFs (e.g. Gaussian, Uni-

form, etc), but heavily influenced by their spread (variance). A larger spread encourages

exploration of the input space, however increases the likelihood of rejecting candidate sam-

ples. On the other hand, a smaller spread increases the likelihood of accepting candidate

samples, but encourages clustering of samples to local areas in the input space, which may

omit other areas with superior performance. It was found in [52] that the optimal accep-

tance rate for the MMH algorithm is between 0.3 and 0.5. To maintain an acceptance rate

28



Chapter 2. Subset Simulation

within this bound, the spread of the proposal PDFs has to be constantly adapted. For the

implementation in this thesis, the proposal PDFs were chosen to be uniformly distributed

with spread σ̃. This spread was adapted to try and obtain an acceptance rate of 0.4 at

each iteration, where an iteration consisted of a single sample from each Markov chain.

That is, for a given spread at iteration i, the spread at the next iteration is defined as

σ̃i+1 = σ̃i
(
1− (0.4−Ai)

)
, (2.43)

where A is the acceptance rate from iteration i.

One of the major changes adapting SuS for optimisation is with regards to the stopping

criterion. Reliability problems begin with a predefined critical threshold y∗, which is used to

inform a suitable stopping criterion (Eq. 2.32). In optimisation problems, such a threshold

is rarely known beforehand, and as such, an alternative stopping criterion is required. The

most simple solution is to assign a finite number of computational model evaluations, or

computational budget, for the given problem. The algorithm would proceed until this

budget is exhausted and the best performing sample taken as the estimate for the global

optimal. This is particularly useful when working with computationally expensive models

that may limit the number of evaluations. However, in the case that the algorithm locates

the optimal values before exhausting the computational budget, there would be no means

to stop the algorithm from wasting unnecessary resources. A solution to address this issue

is to use the adaptive spread of the proposal distribution as a measure of the convergence

of the overall algorithm. In general, as the algorithm proceeds, this spread will decrease as

it becomes increasingly difficult to generate samples that exceed the required performance

threshold to be accepted. Once the spread has shrunk below a certain threshold, it is

likely that there will be limited to no improvement in the estimated global optimal by

continued sampling, and the SuS algorithm can be said to have essential converged to its

final solution. As a result, a stopping criterion for the optimisation case can be defined as

the point where

σ̃ ≤ ε, (2.44)

for some predefined threshold ε. This stopping criterion however takes no account into the

computational costs involved in sampling until this condition is met, and can be infeasible

in problems with significant computational constraints. A solution is to employ both of

the stopping criterion mentioned above, and stopping the algorithm once a single one of
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them is satisfied. This way, needless computational expense is wasted in the case that the

SuS algorithm converges early, and alternatively the algorithm successfully stops in the

case it reaches its allotted model evaluations.

Generate initial samples

Calculate objectives & constraints

Sort samples

Select seed samples

Stopping criterion met?

Generate conditional

samples

End

No

Yes

Figure 2.4: Single-Objective Optimisation using Subset Simulation: The key steps
involved in the optimisation procedure.

2.3.3 Single-Objective Optimisation Test Problem

In this section, an illustrative test problem is used to showcase the steps described in

section 2.3.2. The code for all SuS-based algorithms utilised in this research were written

and developed within MATLAB, without the use of any existing toolboxes. This not only

encouraged a greater understanding of the various theoretical components of the algorithm,

but on a practical level, it provided a higher level of flexibility to be able to adapt the

algorithm in order to maximise performance for a variety of problems.
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The test problem is known as the Schwefel function and is defined as

Minimise
x

f(x) = 418.9829d−
d∑
i=1

xisin(
√
|xi|),

subject to xi ∈
[
− 500, 500

]
, i = 1, ..., d, (2.45)

where d is the number of input dimensions. The Schwefel function was selected as a test

problem as it contains many local optima, which presents a reasonable challenge for opti-

misation algorithms to successfully converge to the true global optimal point. Additionally,

the problem was set to be two-dimensional, i.e. d = 2, as then the optimisation procedure

can be visualised and the results more clearly understood. The SuS algorithm was applied

to the problem with p = 0.2, 200 samples per condition level and a maximum budget of

1500 evaluations. Figure 2.5a presents the output space of the Schwefel function in the

form of a contour plot, as well as an accompanying colour bar. On inspection, there is

clearly several areas possessing dark blue colouring, primarily in the four corners of the

plot. These areas correspond to local minima, and as such are of interest in this problem.

Figure 2.5b contains the samples produced during the SuS procedure. The blue dots rep-

resent the initial samples produced via MC, evident by the wide distribution of samples

across the entire domain. The orange dots represent samples from the first conditional

level, which are more restricted in their distribution, clearly located in areas corresponding

to a low output value (i.e. areas tending towards the bottom of the colour bar). The yellow

dots represent the second conditional level, which are entirely contained within proximity

of the optimal in the top right of the contour plot. Note how these samples are significantly

less spaced than the samples from previous levels, as the spread of the proposal distribution

(Eq. 2.43) is reduced as the threshold becomes stricter. Finally the red star represents

the optimal solution according to the SuS algorithm, located at x = [420.9687, 420.9687],

which is the domain of the global optimal of the problem.
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(a)
(b)

Figure 2.5: Schwefel Problem: (a) depicts a contour plot of the function for the input
domain. (b) shows samples from several conditional levels within the SuS algorithm.

The motivation behind the test problem was to visibly showcase the main concepts of

the SuS algorithm. The combination of the two figures highlights how samples converge

towards areas of promising performance, in this case areas with low output values.

2.4 Multi-Objective Optimisation using Subset Simulation

In most real-world problems, there are often multiple objectives to consider simultaneously.

Multi-objective optimisation problems (MOPs) involve attempting to optimise these ob-

jectives, which are often in conflict with one another. As a result, rather than a single

global optimal solution, MOPs possess a set of solutions known as the Pareto front [27].

The mathematical definition of an MOP is

Minimise
x

{
f1(x), f2(x), ..., fM (x)

}
,

subject to gj(x) ≥ 0, j = 1, 2, ..., J, (2.46)

hk(x) = 0, k = 1, 2, ...,K,

where x are the input variables, fi represent the objective functions, while gj and hk

represent inequality and equality constraints. Despite the added complexity of the needing

32



Chapter 2. Subset Simulation

to consider multiple objectives, it was shown that the SuS procedure remains broadly the

same as in the single-objective case [57]. The input variables are assigned PDFs and the

initial samples x
(1)
0 , ...,x

(n)
0 generated once more via MC. The corresponding performance

and constraint values are then computed, with the latter done as in Eq. 2.38. As in the

single-objective case, the samples then need to be sorted, however as there is now more

than one objective value, this step requires additional consideration. The Non-Dominated

sorting algorithm [58] is employed to sort the samples; the algorithm takes two parameters,

nondomination rank and crowding distance, to compare and order samples.

2.4.1 Non-Dominated Sorting

The nondomination rank compares the superiority of one samples to another. Given two

samples, X1, X2 ∈ Rd:

1. If X1 is feasible and X2 is infeasible (violates any constraints in Eq. 2.46), then X1

dominates X2, and vice versa.

2. If both X1 and X2 are feasible, and none of the objective values associated with

X1 are worse than those associated with X2, and at least one is better, then X1

dominates X2, and vice versa.

3. If both X1 and X2 are infeasible, and if X1 violates less constraints than X2, then

X1 dominates X2, and vice versa.

4. If none of the above are satisfied, X1 and X2 are non-dominated to one another.

Using the non-domination rank, samples are sorted into numbered groups known as fronts;

all samples in a front are non-dominated to each other. Any sample in a group with a

higher nondomination-rank should be dominated by at least one sample in a front with a

lower nondomination-rank.

Once the samples are sorted into their respective fronts, the samples within a particu-

lar front are reordered with respect to their crowding distance value, which denotes the

proximity of a sample to other samples in the objective space. Given a problem with M

objective functions, for each objective function fk, k = 1, ...,M , the samples within the
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front are reordered from largest to smallest according to their respective values for fk.

These values are then transformed to f̃k(0 ≤ f̃k ≤ 1) by linear normalization. Then the

crowding distance for some sample Xi with respect to the objective function fk is defined

Cik = f̃k(i+ 1)− f̃k(i− 1),

that is the distance between the samples two nearest neighbours. The two end samples,

i.e. samples with largest and smallest values of f̃k, are assigned Cik = 1 to encourage these

samples to have a larger crowding distance value, and ensure sample diversity. After the

process is completed for all objective functions, the total crowding he distance value for a

sample Xi is

Ci =

m∑
j=1

Cij .

The crowding distance is shown visually in figure 2.6. Once the total crowding distance

values are computed for all the samples in a front, the samples are reordered according to

these values. Thus, the samples are now completely ordered and the selection of seeds can

take place.

Figure 2.6: Crowding Distance: The diamonds represent samples from a front with a
lower nondomination rank than the front consisting of the squares. An example of how
crowding distance is found is shown by the rectangle with sides Ci1 and Ci2.
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Once the samples have been sorted, a proportion p of the best performing samples are

selected as seeds to populate the next conditional level via MCMC. To increase diversity

of samples and boost performance, a reordering strategy is also included, depicted in

figure 2.7. Given the nature of the sorting, the original set of seed samples SO may

contain repeated samples. That is, given that SO is made up of ns = np seeds, it contains

nu unique seeds, where nu ≤ ns. Removing duplicated samples leaves a new set, SU ,

consisting of these unique seeds which follow the same order as before. Next a final set,

SR, is constructed by continually adding the ordered samples from SU until SR contains

ns samples. The set SR is then taken as the reordered set of seed samples. If the stopping

criterion, usually defined by computational budget or a convergence measure, is met, then

these seeds are taken to be the solution to the MOP. If the stopping criterion is not met,

the algorithm proceeds to the next conditional level. Populating the next conditional

level broadly follows the same steps as the single-objective case; MMH is used to produce

candidates from seed samples which are accepted based on exceeding a certain threshold

of performance. However, as there are multiple objectives to consider, it is not possible

to easily define a performance threshold in the same manner as the single-objective case.

Instead, a candidate sample is accepted if it lies within the current conditional level, defined

by whether it is non-dominated to a set of q threshold samples, where q ∈ [1, np]. These

threshold samples are randomly selected seed samples, and the value for q can be tuned to

favour exploration or exploitation as desired. Consequently, an accepted candidate sample

must improve or at least supplement the current Pareto front. This process is repeated

until the chain is complete. As the seeds follow the conditional distribution, by design any

accepted samples also follow the desired conditional distribution. Thus, a new conditional

level is populated. The stages of the algorithm are contained in figure 2.8.

2.4.2 Multi-Objective Optimisation Test Problem

Similar to the single-objective case, an illustrative test problem is presented in this section

to showcase the SuS algorithm being applied to a multi-objective optimisation problem.

The majority of the code is identical to the code employed to perform single-objective

optimisation, with the only changes present to incorporate non-dominated sorting and the

reordering strategy.
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Figure 2.7: Reordering Strategy: Graphical display of the reordering strategy in prac-
tice.
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Generate initial samples

Calculate objectives & constraints

Non-dominated sorting

Reordering strategy

Select seed samples

Stopping criterion met?

Generate conditional samples

End

No

Yes

Figure 2.8: Multi-Objective Optimisation using Subset Simulation: The key steps
involved in the optimisation procedure.

The Osyczka1 problem [59] is utilised as the test problem and is defined as

Minimise
x

f1(x1, x2) = x1 + x2
2,

f2(x1, x2) = x2
1 + x2,

,

subject to 2 ≤ x1 ≤ 7, 5 ≤ x2 ≤ 10, (2.47)

x1 + x2 − 12 ≥ 0,

x2
1 − x2

2 + 10x1 + 16x2 − 80 ≥ 0.

The Osyczka1 problem is a popular test problem for multi-objective optimisation algo-

rithms, and was selected as it is a two-dimensional problem which possesses suitable dif-

ficulty but also the ability to visually observe how the SuS algorithm tackles optimising

multiple objectives whilst balancing added constraints. The SuS algorithm was applied to
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the problem with p = 0.2, 500 samples per condition level and a maximum budget of 5000

evaluations. Figure 2.9a presents the input values of samples generated during the SuS

procedure. The blue dots represent the initial samples produced via MC that are feasible,

i.e. that satisfy the constraint functions. Any samples that violated the constraints are

shown by grey dots. On inspection, there is a rough border from the top left of the plot

to the bottom right which separates the feasible input domain from the infeasible input

domain. Samples from the first and second conditional levels are given by the orange and

yellow dots respectively. As in the single-objective test problem, the density of samples

increases as the conditional level increases and the algorithm converges towards optimal

regions. Finally, the last conditional level is given by the red dots, which act as the final

solutions to the problem. Unlike in the single-objective case, there is no one global solution,

but a series of solutions, known as Pareto optimals, which showcase the trade-off between

the two objective functions. Figure 2.9b presents the corresponding objective values to the

inputs provided in Figure 2.9a, with the same colour scheme used for clarity. Figure 2.9c

provides a clearer view of the final Pareto front for the problem, and is as expected for

this given problem. The goal of the test problem was to highlight that, with only minor

adaptation, the SuS algorithm has the ability to efficiently tackle problems with multiple

objectives.

(a) (b) (c)

Figure 2.9: Osyczka1 Problem: (a) depicts input values of samples from several condi-
tional levels within the SS procedure, (b) provides the corresponding objective values, and
(c) exhibits the final Pareto front.
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2.5 Concluding Remarks of Chapter

This chapter presented a thorough overview of subset simulation. The result is an optimi-

sation algorithm that is sufficiently flexible to tackle a wide class of optimisation problems,

including high-dimensional problems with extremely small inputs domains corresponding

to areas of high performance. Foundational texts on subset simulation can be found in

[47, 49] for reliability and [32, 55, 57] for optimisation respectively.

The optimisation algorithms presented within this chapter are designed for purposes of

nominal optimisation. As such, they are not necessarily directly suitable for robust opti-

misation, which is of importance within this dissertation. However, they do provide the

foundation for the novel method discussed in chapter 3, which addresses these concerns.

39



Chapter 3

Multi-Fidelity Robust Subset Simulation1

This chapter presents a novel approach to perform efficient robust optimisation of compu-

tationally expensive models. The method, termed robust subset simulation (RSS) extends

the subset simulation algorithm described in chapter 2 to factor input uncertainty into

the optimisation process. The chapter begins by providing a mathematical description of

robust optimisation problems. Next, a brief overview of subset simulation for optimisation

is presented for the benefit of the reader. The various steps involved to extend subset

simulation to robust subset simulation are then covered in detail. Further, the method

is generalised to factor in multiple levels of fidelity, denoted MF-RSS, to further reduce

computational cost. Finally, two illustrative examples are presented to showcase the merits

of the method, before it is applied to an industrial case study.

3.1 Introduction

A key aspect in engineering is the process of selecting a design that satisfies several con-

straints and performance objectives simultaneously. Modern engineering products often

have to balance performance against factors such as profitability and environmental im-

pact. There are often many feasible designs that satisfy these requirements. Identifying

1The results and ideas discussed in this chapter have been submitted for publication as a manuscript,
see [60].

40



Chapter 3. Multi-Fidelity Robust Subset Simulation

such designs, and subsequently selecting an optimal choice, is often a challenging task.

Traditionally, this task has been interpreted as a multi-objective optimisation problem

(MOP), defined mathematically as

Minimise
x

{
f1(x), f2(x), ..., fM (x)

}
,

subject to gj(x) ≥ 0, j = 1, 2, ..., J, (3.1)

hk(x) = 0, k = 1, 2, ...,K.

Here, x are the input variables, fi represent the objective functions, gj and hk represent

inequality and equality constraints. It is unusual for a single design to optimise each ob-

jective, and as such most MOPs possess a set of optimal solutions known as the Pareto

front [27]. A variety of methods have been developed to tackle MOPs, such as Genetic

Algorithms (GA) [30], Particle Swarm Optimisation (PSO) [31], Simulated Annealing [61]

and Ant Colony Optimisation (ACO) [62]. Typically in industrial applications, the explicit

form of the objective functions are unknown, for example computational fluid dynamics

(CFD) models [15] and finite element models [63]. Such models are often computation-

ally expensive, and limit the applicability of the aforementioned optimisation methods. A

common solution to tackle this problem is to utilise a surrogate model to approximate the

objective values. The optimisation methods can then be applied to this surrogate in place

of the computationally expensive model, whilst satisfying the computational constraints.

However, surrogate models introduce uncertainty, as they are only an approximation of the

computational models. Thus, user input is also often required, with might be undesirable.

Another option is to extend the direct optimisation methods to utilise multi-fidelity (MF)

data, as done with GA [64]. Such approaches are applicable when more than one potential

computational model exists for the system under study. Lower-fidelity (LF) models are

defined by a lower-computational cost, but lower accuracy, than higher-fidelity (HF) mod-

els. For example, a LF model may employ a more simplistic mathematical model than a

HF model, or in the case of employing the same model, do so with a mesh with a lower

resolution. The core assumption in this chapter is that the optimisation methods can be

applied to the LF model, and infer areas of interest for the HF model with a much lower

overall computational expense than working solely with the HF model.

The goal of traditional optimisation methods is to locate the global optima of the under-
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lying objective function. However, such optima can often be sensitive to changes in their

inputs or environment [129]. Given the complex nature of modern engineering systems,

uncertainties often arise during the manufacturing and life cycle of a design. Consequently,

it is often more appropriate to seek solutions with high performance that are insensitive, or

robust, to such uncertainties [65]. This is known as a robust multi-objective optimisation

problem (RMOP). The effects of uncertainty can be generally categorised into three scenar-

ios. The first introduces perturbations on the input variables [66], for example degradation

during the life cycle altering the geometry. The second concerns noise affecting the objec-

tive evaluations [67], such as imprecise sensor measurements. The final form of uncertainty

is the situation where the definition of the MOP itself changes over time, due to varying

operational/environmental conditions [68]. These three sources of uncertainty and overall

RMOP can be summarised mathematically as

Minimise
x

{
f1(xε, e1) + ν1, f2(xε, e2) + ν2, ..., fM (xε, eM ) + νM

}
,

subject to gj(xε) ≥ 0, j = 1, 2, ..., J, (3.2)

hk(xε) = 0, k = 1, 2, ...,K.

Here, xε represents a neighbourhood of input variables, defined by some value ε > 0 to

factor in perturbation within the input variables, i.e. x ∈
[
x − ε,x + ε

]
. The noise in

the ith objective function is represented by νi whilst the environmental conditions are

contained in the vector ei. Finally, gj(xε) and hk(xε) are the respective inequality and

equality constraints of the neighbourhood. This chapter deals with RMOPs where the only

uncertainty lies within the perturbations of the input variables. As such, the goal is to

locate designs whose performance is insensitive to alterations in its inputs. In the literature,

several traditional optimisation methods have been extended to address this problem. The

authors of [69] combine a GA to optimise the performance of the neighbourhood of x,

which is estimated using local approximation models. Another approach presented in [70]

constructs an effective performance value, based on averaging the performance of a number

of samples within the neighbourhood. A GA can then be used to optimise this effective

value, or optimise the original performance subject to the effective value remaining above

a certain threshold. Rather than the averaged performance, some approaches attempt to

optimise the worst-case scenario; [71] employ a co-evolutionary GA while [72] opt for an

enhanced PSO algorithm. A common problem with many methods proposed in the current

42



Chapter 3. Multi-Fidelity Robust Subset Simulation

literature is the absence of realistic computational budgets, and as such, the applicability of

the methods to problems of industrial scale. One approach that does consider this problem

is discussed in [73], which combines importance sampling and an archive of all solutions to

attempt to reduce the computational expense of the optimisation process.

Factoring input uncertainty into the optimisation process can have a profound impact on

the domain of optimal solutions. Rather than solely considering the performance associ-

ated with a single point, the process also has to factor in the performance of the region

surrounding the point. Consequently, the goal of the robust optimisation procedure is

primarily locating small regions of the input space that possess high performance across

the entire region. This is not dissimilar to the reliability problem, which involves locating

regions of the input space that correspond to performance values that exceed some defined

critical threshold. As discussed in the previous chapter, an approach that has had great

success in tackling the reliability problem is subset simulation [47]. The similarity between

the task of reliability and robust optimisation, alongside the ability of SuS to sample from

extremely small regions of high-dimensional input domains, makes the algorithm a suitable

candidate to be applied for the purposes of robust optimisation.

The work in this chapter extends the subset simulation algorithm to factor in input un-

certainty to perform efficient robust design within a realistic computational budget. Addi-

tionally, the method is generalised to be able to take advantage of multiple levels of fidelity.

The chapter is organised as follows. Section 3.2 provides a brief overview of SuS for op-

timisation. The proposed method is introduced in Section 3.3 and its main components

discussed. Two illustrative examples and an industrial CFD case study are presented in

Section 3.4. The final section provides relevant conclusions and highlights future work.

3.2 Optimisation using Subset Simulation

The key steps in the procedure for employing SuS to tackle optimisation problems are

described in detail in chapter 2. For the readers benefit, the SuS procedure for multi-

objective optimisation is summarised in the pseudocode presented below in Algorithm 1.
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Algorithm 1 Subset Simulation for Multi-objective Optimisation

1: Set p, n.
2: Ns=np
3: Nstates=

1−p
p

4: Generate X = x1,x2, ...,xn via MC
5: Evaluate objective and constraint values Y = f1(X), ..., fM (X), gj(X), hk(X)
6: While Stopping criterion not met
7: Sort X,Y using non-dominated sorting algorithm
8: Set Ns best samples as seeds.
9: Randomly select one seed sample to act as threshold

10: MCMC to produce candidate samples
11: Compare candidates to threshold sample using non-dominated sorting
12: Accept samples that are non-dominated to or dominate threshold, reject others.
13: Repopulate X using accepted MCMC samples
14: Evaluate Y, hj(X), wk(X)
15: Adapt spread of proposal distribution
16: End
17: Sort X,Y using non-dominated sorting algorithm
18: Select best samples as Pareto solutions.

3.3 Proposed Approach

The goal of the proposed approach is to perform efficient robust optimisation of compu-

tationally expensive models. The method extends the multi-objective SuS algorithm to

factor in input uncertainty, denoted Robust Subset Simulation (RSS). Moreover, the RSS

is generalised to multiple levels of fidelity and termed Multi-Fidelity Robust Subset Simu-

lation (MF-RSS). The method attempts to address the short-comings of both traditional

optimisation methods and robust optimisation methods in their application to computa-

tionally constrained problems. Further details of approach are discussed in the following

subsections.

3.3.1 Robust Optimisation using Subset Simulation

To factor input uncertainty into the SuS algorithm described in section 3.2, the proposed

approach utilises the effective objective value and type I robustness definitions from [70].
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The effective objective value is defined as

fe(x) =
1

|xε|

∫
x∗∈xε

f(x∗) dx∗, (3.3)

where xε is the neighbourhood of samples around x and |xε| its hypervolume. The RMOP

using type I robustness is defined as the MOP defined in Eq. 3.1 but with the effective

objective values as opposed to the original values, and constraint functions applied over

the neighbourhood, that is:

Minimise
x

{
fe1 (x), fe2 (x), ..., feM (x)

}
,

subject to gj(xε) ≥ 0, j = 1, 2, ..., J, (3.4)

hk(xε) = 0, k = 1, 2, ...,K.

The integral in (3.3) is usually approximated using Nε neighbourhood samples via Monte

carlo:

fe(x) ≈ 1

Nε

Nε∑
j=1

f(x∗j ). (3.5)

Most approaches in the literature that employ a form of averaged performance begin with

a set value for Nε and evaluate Nε neighbourhood samples for every single sample in the

optimisation procedure. This is computationally inefficient, and infeasible for most real-

world problems. Indeed, computational inefficiency and the balance between performance

and robustness are the main issues in current robust optimisation methods. The proposed

method, RSS, considers several strategies to address these issues.

Initial Optimisation Stage

The first strategy is to recognise that one of the goals of robust optimisation is to lo-

cate designs with near optimal performance. Given a total computational budget of E

evaluations, RSS begins by splitting E into a budget for a nominal optimisation stage,

EN , and a budget for a robust optimisation stage, ER. The former is used to first probe

the input space for regions with above-average performance, without considering input

perturbation. By performing a brief optimisation stage at the beginning of the robust

optimisation procedure, areas of low performance can be discarded, avoiding unnecessary

computational waste. This optimisation is performed using the SuS algorithm following
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the steps described in Algorithm 1.

To maximise the efficiency of this initial optimisation, special care is given to the generation

of candidate samples during the MCMC portion of the algorithm, described in section 2.2.

In particular, the authors of [47] noted that the spread of the proposal distribution, rather

than the type of distribution, was more influential in the overall efficiency of the MCMC

process. According to [52], the optimal acceptance rate of samples is 0.4, as this ensures

sufficient convergence whilst discouraging clustering of samples. To achieve this, the spread

of the proposal distribution, σ̃, is continuously adapted over each state of the total number

of Markov chains (ns):

σ̃i+1 = σ̃i
(
1− (0.4−Ai)

)
.

Here Ai is the acceptance rate of samples at iteration i. Essentially, if this value is greater

than the optimal acceptance rate, the spread for the next set of chains will be larger as

to encourage exploration of samples, and vice versa. Additionally, as the samples should

converge at each increasing level, the initial value of σ̃ is set to half of the final value of

the previous conditional level. Specifically, the work in this chapter employs a uniform

proposal distribution as it satisfies the requirement of being symmetric, and the impact of

the adaptation of σ̃ is easily interpretable. Once this initial optimisation stage is complete,

a proportion of the best performing samples, denoted XNom, are then used as the initial

seed samples for the robust optimisation stage. Here the subscript Nom refers to the fact

these samples are the ‘best’ according to nominal optimisation. Additionally, all evaluated

samples and their respective objective values are stored in a bank of solutions, B, similar

to the archive discussed in [73], to be used in the next stage.

Robust Optimisation Stage

The robust optimisation stage of RSS begins by setting an initial threshold of neighbour-

hood samples required for a sample to proceed to the first conditional SuS level, denoted

NT = 1. The seed samples provided from the initial optimisation stage are then compared

with B to check how many neighbourhood samples they each possess, denoted Nε. A

further NT −Nε neighbourhood samples are generated for any seed samples which fail to

reach this threshold, with all newly generated samples added to B. This allows effective

values to be computed for all seed samples according to Eq. (3.5). A seed sample is then

chosen at random to be the threshold sample, XT , for the conditional level. The effective
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objective values of the threshold sample are used to measure the suitability of candidate

samples. A candidate sample, XCand is generated in the same manner as SuS, however, un-

like other robust optimisation procedures, no additional candidate neighbourhood samples

are computed. Next, XCand is compared with B to check if it already possesses neighbour-

hood samples. If it does, the objective values of XCand are altered to effective objective

values, which are then compared with the effective values of XT . If it does not, the original

objective values are used instead. This is to avoid the computational expense of computing

NT − Nε neighbourhood samples per candidate, whilst still maintaining only candidates

with reasonable promise are accepted. At any time a new sample is computed, it is added

to the bank of solutions. Once the conditional level is populated, all samples are checked

to see whether they possess at least NT neighbourhood samples. Those that satisfy this

requirement are placed into a set ST while those with insufficient neighbourhood samples

are placed into a set SI . The latter set then undergoes non-dominated sorting, and NT−Nε

neighbourhood samples generated for the ns best performing samples. This ensures these

samples each have at least NT neighbourhood samples, and they are subsequently added to

ST . The newly supplemented ST is then sorted and the best ns samples selected as seeds

for the next conditional level. At this point, the number of samples per conditional level,

N , is reduced, to encourage exploitation over exploration as the algorithm proceeds. Ad-

ditionally, the neighbourhood samples threshold is increased to NT = min(Ld,M), where

L is the current conditional level and M is the maximum threshold value, to gradually

increase the influence robustness has on the optimisation procedure. The value of M can

be tuned depending on the goals of the user. In this chapter, M = 5d was chosen to

balance the validity of the robustness of solutions, against the associated computational

strain. The algorithm proceeds until the required budget for the next conditional level

exceeds the evaluations remaining in ER. At which point, the best performing samples

that exceed the current NT are selected as the robust solutions to the problem, denoted

XRS .

3.3.2 Multi-Fidelity Robust Subset Simulation

The reasoning behind the original SuS algorithm is essentially given a sample performs

well according to some criterion, there is a high chance that sample within the vicinity

will exhibit similar, and hopefully improved, performance. This section adapts this idea

by considering perturbation in the objective function rather than the input variables; a
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sample with high performance according to a lower fidelity (LF) simulator is likely to have

a similar level of performance according to a higher fidelity (HF) simulator. As a result,

utilising lower fidelity simulators can infer suitable areas to sample higher fidelity points,

but at a lower computational cost. Generalising SuS to consider multiple levels of fidelity

has already been done for the purposes of reliability [78]. However, it has not been done

for SuS for optimisation, or at all for any robust optimisation method to the author’s

knowledge.

The pseudocode for the MF-RSS algorithm is provided in algorithm 2. The algorithm

begins by first running the RSS algorithm on the LF simulator. The fact that RSS is applied

to a LF simulator will be stated with the superscript LF on relevant variables. Once this

is complete, the most promising samples are chosen as ‘fidelity seeds’. These fidelity seeds

and an additional neighbourhood sample for each are then reevaluated on the HF model

and re-sorted according to their new objective values. A proportion of the best performing

fidelity seeds are taken to a second optimisation stage. Here NHF
T −NHF

ε neighbourhood

samples are generated for each of the new seed samples. The neighbourhood of the seed

samples are searched to try and locate the local robust Pareto optimal, i.e. there may be

a value within xε that has higher effective performance than x. Once the computational

budget is exhausted, solutions with the required number of neighbourhood solutions are

sorted according to their HF effective values, with the best taken to be solutions of Eq.

(3.4).
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Algorithm 2 MF-RSS Algorithm

1: Set LF and HF Computational Budgets.

2: While Budget Required< ELFN
3: Nominal SuS procedure.

4: Update BLF .

5: End

6: Take XLF
Nom as initial solutions for Robust stage.

7: Set NT = 1.

8: While Budget Required< ELFR
9: Check NLF

ε for XLF
Seeds

10: If NLF
ε < NLF

T

11: Generate XT −Xε Neighbourhood Samples

12: End

13: Generate XLF
Cand and populate conditional level

14: Update BLF

15: Sort samples into ST and SI

16: For nLFs best samples in SI

17: Generate NLF
T −NLF

ε Neighbourhood samples

18: End

19: Update ST and select best samples as XLF
Seeds

20: Reduce N

21: Set NLF
T = min(Ld,M)

22: End

23: Select final XLF
Seeds as fidelity seeds.

24: Evaluate fidelity seeds and neighbourhood samples on HF model and sort.

25: Generate NHF
T −NHF

ε neighbours for proportion of best fidelity seeds.

26: Search neighbourhood samples for local robust optimal solutions.

3.4 Numerical Experiments

This section showcases the performance of both RSS and MF-RSS via two well-known test

problems. The latter is then applied to an industrial CFD case study.
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3.4.1 RSS Illustrative Example

The ZDT1 problem [79] was chosen to measure the performance of RSS. The problem

involved attempting to minimise two competing objective functions whilst accounting for

input uncertainty:

f1 = x1,

f2 =

(
1 + 9

d∑
i=2

xi
d− 1

)(
1−

√
x1

(1 + 9
∑d

i=2
xi
d−1)

)
, (3.6)

x ∈ [0, 1],

where d = 5. To account for input uncertainty, the neighbourhood of x was defined as

xε =x + ε,

εi ∼ U(−0.025, 0.025), (3.7)

i =1, ..., d,

and the effective values (Eq. 3.3) used for the optimisation procedure. This allowed input

values to vary by up to 5% with respect to each input dimension. The RSS algorithm was

utilised with a total computational budget of 5000 evaluations, of which 2000 were used

in the initial optimisation stage, and the remaining 3000 in the robust optimisation stage.

The Pareto front according to the RSS algorithm is presented in Figure 3.1, alongside the

true robust Pareto front and the true nominal Pareto front for comparison.
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Figure 3.1: ZDT1 Pareto Fronts: The dashed black line makes up the nominal Pareto
front, the solid green line the true robust Pareto front and the red stars the RSS Pareto
front.

The true robust Pareto front (green line) was obtained by utilising the approach described

in [70], with 5d neighbours evaluated for each sample, and unlimited computational bud-

get. In general, the RSS algorithm produced a Pareto front (red stars) exhibiting similar

performance to that true robust Pareto front, but with far less computational expense. As

expected, the nominal Pareto front (dashed black line) dominates both of the other Pareto

fronts. However, perturbing the input variables of the nominal Pareto front actually re-

sults in infeasible solutions; input values that lie outside of bounds of the problem. As

such, the robust solutions would both dominate the nominal solutions in the face of input

uncertainty. A selection of other benchmark problems described in [71] where also used to

test the RSS algorithm, but not presented here to avoid repetition of similar results.
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3.4.2 MF-RSS Illustrative Example

The ZDT2 problem was adapted to become a multi-fidelity problem [80] in order to test

the MF-RSS algorithm. The original ZDT2 functions were designated as the high-fidelity

(HF) functions of the problem:

f1 = x1,

f2 =

(
1 + 9

d∑
i=2

xi
d− 1

)(
1−

(
x1

1 + 9
∑d

i=2
xi
d−1

)2)
, (3.8)

x ∈ [0, 1],

where d = 5. The low-fidelity (LF) functions were designated to be the Taylor expansion

of the HF functions. To account for input uncertainty, the neighbourhood of x was defined

as in Eq. (3.7) and the effective values used for the optimisation procedure. The overall

computational budget for the problem was chosen to be 500 HF evaluations. The com-

parative costs between the respective fidelities was chosen to be 1 HF evaluation ≈ 20 LF

evaluations, to match that of the industrial test case. As a result, the budget for the MF-

RSS algorithm was 5000 LF evaluations, with 2000 and 3000 in the first and second stages

respectively, and 250 HF evaluations. The output from the RSS stage of the algorithm

is showcased in figure 3.2. The blue dots show the objective values for every LF evalua-

tion, and are contained in the bank of solutions. The effects of the nominal optimisation

stage can be seen in the increased density of samples in more promising areas. There is

a noticeable sparsity in the top right of the figure, i.e. an area with poor performance,

and increased density toward the Pareto front. The fidelity seeds (red stars) are located in

close proximity to the samples with the best performance. The samples exhibiting ‘supe-

rior’ performance either possess lower effective objective performance, or lack the required

number of neighbourhood solutions to be considered as a fidelity seed.
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Figure 3.2: ZDT2 LF Output Space: The blue dots represent the bank of LF solutions,
while the red stars the fidelity seeds.

The fidelity seeds were then evaluated on the HF simulator, along with approximately 2d

neighbourhood samples for each. Figure 3.3 depicts the output of these evaluations, along-

side the true robust Pareto front (green line) and the nominal Pareto front (dashed black

line). The fidelity seeds (red stars) lie within close proximity to the robust Pareto front,

and crucially, their neighbourhood samples (blue dots) also exhibit similar performance.

Moreover, these solutions were obtained with a far more stringent computational budget.

Once again the nominal Pareto front dominates all other solutions, but would again be

infeasible in the face of input uncertainty. Unfortunately there are no recognised suites

of test problems for multi-fidelity robust optimisation problems within the literature. To

address this issue, a selection of other SF benchmark problems described in [71] where

also extended in a similar format as the illustrative example presented in this chapter.

These problems were used to test the MF-RSS algorithm, but not presented here to avoid

repetition of similar results.
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Figure 3.3: ZDT2 HF Pareto Fronts: The dashed black line makes up the nominal
Pareto front and the solid green line the true robust Pareto front. The HF output of the
fidelity seeds is shown by the red stars, and their respective neighbourhood solutions by
the blue dots.

3.4.3 Aerofoil Case Study

The use of Computational Fluid Dynamics (CFD) [15] models are widespread in engineer-

ing design. Such models are often computationally expensive, and adaptable to multiple

levels of fidelity for a given problem. The goal of the aerofoil test case was to obtain aero-

foils of a turbine blade that offered maximal lift-to-drag (L/D) ratio and minimal maximum

blade thickness subject to perturbations in the input variables caused by uncertainty. Each

aerofoil was produced according using the Class-Shape Transformation (CST) method [81]

and twenty weighting coefficients (Table 3.1) that define the aerofoil thickness at various

locations along the surface. The problem consisted of two levels of fidelity. The LF model

involved solving the aerofoil over a range of angles of attack (0-10 degrees) using XFOIL
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software, which performed a potential flow calculation without taking into account viscos-

ity or a boundary layer. The HF model involved solving the aerofoil via k-ω RANS using

ANSYS software. The overall computational budget for the problem was chosen to be 750

HF evaluations. The comparative costs between the respective fidelities was 1 HF evalu-

ation ≈ 20 LF evaluations. As a result, the budget for the MF-RSS algorithm was 10000

LF evaluations, with 5000 and 5000 in the first and second stages respectively, and 250 HF

evaluations. The MF-RSS algorithm was run with maximum neighbourhood thresholds of

5d and 1d for the LF and HF stages respectively, and input uncertainty defined as in Eq.

(3.7).

Aerofoil Input Variables

Input Variable Lower Bound Upper Bound

Au1 0.1 0.3

Au2 0.1 0.5

Au3 0.0 0.6

Au4 0.0 0.7

Au5 -0.1 0.7

Au6 -0.1 0.7

Au7 -0.1 0.7

Au8 0.0 0.6

Au9 0.0 0.5

Au10 0.1 0.4

Al1 0.1 0.3

Al2 0.1 0.4

Al3 0.1 0.5

Al4 0.0 0.6

Al5 0.0 0.5

Al6 0.0 0.4

Al7 -0.1 0.4

Al8 -0.2 0.4

Al9 -0.2 0.3

Al10 -0.2 0.3

Table 3.1: Input parameter ranges for aerofoil case study.
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The output from the RSS stage of the algorithm is showcased in figure 3.4. The blue

dots again depict the bank of LF solutions. As in the previous example, the nominal

optimisation stage can be seen in the increased density of samples in more promising

areas, ensuring a more efficient use of the computational budget. The fidelity seeds (red

stars) form a robust Pareto front according to the LF model. This is highlighted by a

high level of performance whilst omitting solutions with either ‘superior’, but less robust

performance, or those that lack 5d neighbourhood samples.

Figure 3.4: LF Output Space: The blue dots represent the output of the LF samples
evaluated in XFOIL. The red stars represent the fidelity seeds.

Figure 3.5 illustrates the MF stage of the MF-RSS algorithm. The fidelity seeds (red

stars) and a single neighbourhood sample for each were evaluated on the HF model. Ten

of the best performing fidelity seeds were then supplemented with further neighbourhood
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samples (blue dots) to ensure they reached the required threshold. These were then taken as

solutions to the overall aerofoil test case. On examination, there is a reasonable discrepancy

between the LF L/D output and HF L/D output of all fidelity seeds. This is somewhat

expected, as the LF model makes more assumptions than the HF model, which can often

result in overestimating this particular objective. There is more discrepancy between some

solutions than others however, highlighting that high performance according to the LF

model does not guarantee high performance according to the HF model. Moreover, the

robustness of the two solutions with the lowest maximum thickness was also reduced, with

a noticeable drop off in the performance of their neighbourhood samples. Again, this could

be due to the overly-simplistic assumptions of the LF model in these areas. Nevertheless,

the best performing fidelity seeds that were chosen to proceed with all exhibited strong

performance and maintained their robustness from the previous stage, with all neighbours

also possessing similar performance.

Figure 3.5: LF Output Space: The blue dots represent the output of the LF samples
evaluated in XFOIL. The red stars represent the fidelity seeds.
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3.5 Concluding Remarks of Chapter

This chapter presented a novel method that extends the subset simulation algorithm for the

purposes of robust optimisation of computationally expensive models, denoted MF-RSS.

This directly addresses the main goal of the research in this thesis, and was motivated

by the need to address some of the problems experienced by existing methods. To this

end, the method employs several strategies to maximise efficiency and reduce the com-

putational costs involved. Utilising an initial nominal optimisation stage ensures more

computational resource is saved for regions of higher performance. The bank of solutions

provides significant computational savings by reducing the number of unnecessary evalua-

tions of neighbourhood samples. Further, adapting the number of samples in a conditional

level and the neighbourhood threshold ensure that the greatest computational expense is

reserved for samples with the most promising robust performance. Finally, generalising the

method to incorporate multiple levels of fidelity further reduces computational cost and

increases the applicability of the method to industrial-scale problems. Results showcased

the ability of MF-RSS to locate designs with high performance and low variability at a

reasonable computational cost. Future work includes applying the method to problems

with more than two levels of fidelity. However, in particularly computationally constrained

problems, the MF-RSS method may be inapplicable, even with the measures to boost com-

putational efficiency. This potential limitation provided the motivation for the next two

chapters, which present a surrogate modelling solution to this issue which facilitates the

application of the RSS method to a wider array of problems.
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Gaussian Process Emulation

This chapter presents a thorough overview of Gaussian process emulation. The chapter

begins by introducing the notion of surrogate modelling, describing the benefits of utilising

such methods when dealing with computationally expensive models. In particular, Gaus-

sian process emulation is highlighted as a suitable surrogate method, due to its statistical

nature providing a measure of uncertainty associated with its own predictions. Next, the

mathematical background of Gaussian processes are discussed, which provide the founda-

tion for the Gaussian process emulation. A step-by-step walk-through of the construction

of a Gaussian process emulator (GPE) is then presented, including guidance on necessary

implementation details and validation methods. A suitable test problem is then presented

to demonstrate the method, and provide a visual display of the preceding theoretical foun-

dations. Finally, the chapter ends by discussing several enhancements of Gaussian process

emulation, namely utilising adaptive sampling schemes, factoring in uncertainty within the

input variables and exploiting multi-fidelity training data. These enhancements, and the

rest of the chapter, provide the foundation for the robust optimisation framework discussed

in chapter 5.
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4.1 Surrogate Modelling

Computational models play a pivotal role in practically all fields of science and engineering

to simulate the behaviour of real-world systems [39]. Such models are designed to take a

set of input variables, which contain particular information regarding the physical system

under study, such as material properties, in order to produce a number of output variables

that would occur in the event of actually performing the physical experiment. As a result,

computational models can be framed in a mathematical context of providing a direct

mapping from a d-dimensional input space to a p-dimensional output space, f(·) : Rd →
Rp. However, for most computational models, the complexity involved in modelling the

underlying physical system results in a lack of closed form expression. As a result, the

exact nature of this mapping f is not explicitly known and is generally referred to as

’black-box’; any output for a specific set of input values is unknown until the model is

evaluated. Moreover, it is common for such models to be deterministic by design, meaning

that evaluating the model multiple times at the same set of input variables always produces

the same output.

Another common implication of the complexity of the physical system is a high computa-

tional cost involved in evaluating the computational model. The exact computational cost

is dependent on a variety of factors, from hardware capability to the actual specification

of the model itself. However, for the purpose of this thesis, a computational model is con-

sidered expensive in the case that its associated computational cost prevents any type of

analysis which requires a relatively high number of model evaluations. The type of analysis

which holds particular interest in this thesis is robust optimisation. One of the motiva-

tions behind the MF-RSS algorithm discussed in chapter 3 was performing this analysis on

expensive models, whilst complying with the computational costs involved. However, in

certain cases, even this approach may require too many evaluations of the computational

model. A popular approach to combat extreme computational constraints is to utilise a

surrogate model to act in place of the expensive computational model. Any analysis can

then be performed using the surrogate model.

Evaluating a computational model for a given set of input settings is commonly referred to

as a computer experiment [82]. Given the expense associated with evaluating the compu-

tational model, it may only be feasible to evaluate the model n times, where n is typically
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relatively small. A surrogate model, also known as a metamodel or emulator and denoted

η(·), utilises a set of model evaluations D = ({x1,y1}, ..., {xn,yn}) in an attempt to infer

the behaviour of the model at any given input configuration:

y = f(x) ≈ η(x). (4.1)

In this sense, a surrogate model can therefore be thought of as an inexpensive approxima-

tion to a more computationally expensive model. The set of model evaluations D is referred

to as the training set, and the output of the surrogate model is heavily dependent on the in-

formation provided by these values. Consequently, selecting the input configurations that

provide the most information regarding the behaviour of the underlying computational

model is paramount to the success of a surrogate model. This procedure is commonly

referred to as the design of experiments (DoE) [83]. Wherever possible, the DoE should

be guided by expert opinion regarding which areas are of high interest to sample from

for the training set. However, when this is not possible, a more generalised approach is

needed. In particular, in order to fully approximate the computational model throughout

its input domain, it is usually important to ensure that any training data is distributed

evenly across this space. This task has provided the motivation behind a number of space-

filling methods, with the most popular discussed in detail in [1, 84]. A common choice,

and the one employed throughout this research for DoE purposes, is to employ maximin,

stratified Latin Hypercube sampling (LHS) [85] as it provides a more evenly distributed

sample space than uniform sampling, and is much computationally cheaper than Monte

Carlo sampling methods. In particular, a candidate point is chosen such that is minimises

the maximum distance between other points, hence the maxmin term, whilst ensuring that

points are evenly distributed across each dimension.

However, before being able to initiate the DoE, it is necessary to know what value is

assigned to n, that is how large is the training set. By the motivation of the problem,

this value will likely possess a relatively low upper limit, however in order to possess some

confidence in the ability of the surrogate model, thought needs to be given to its lower

limit. This value is often dependent on a variety of factors, such as complexity of the

computational model and the various assumptions of the surrogate model itself, however

a generally accepted rule of thumb is to begin with the basis of at least n = 10d training

samples, where d is the number of input variables of the computational model [86].
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Generally, an effective surrogate model should satisfy the following properties [87]:

• Accuracy - The output of the surrogate model should provide a good approxima-

tion to the output of the underlying computational model for all potential input

configurations.

• Speed - The surrogate model should provide a fast approximation to the original

computational model, at a fraction of the computational cost.

• Uncertainty - A surrogate model should possess the means to provide a realistic

expression of uncertainty at any input configuration within the input domain. In

particular, when evaluated at known input values contained in D, the surrogate

model should reproduce the corresponding known outputs with little-to-no error.

There is extensive literature regarding the use of surrogate models in a vast number of

areas, for example climate modelling [89], environmental science [90], medicine [91], quality

control [92], to name a few. With such a wide range in areas of application, an extensive

number of different surrogate modelling methods have emerged over the years. Some of

the main methods include response surface methods (RSM) [93], Taylor expansions [36],

support vector machines (SVM) [38], neural networks (NN) [35], radial basis functions [37]

and polynomial chaos expansions [94]. These methods each possess various advantages

and disadvantages as summarised in [1]. However, a common issue is that none of these

methodologies are statistical in nature, meaning that they each require supplementary tools

in order to provide an expression of the uncertainty introduced when employing a surrogate

model. An alternative method which does not have this issue is the Gaussian process

emulator (GPE). The GPE is defined by a mean function which provides an inexpensive

approximation to the computational model, and a covariance function which provides a

measure of output uncertainty at each set of inputs [39]. The GPE and its enhancements

are the subject of the rest of this chapter.

4.2 Gaussian Process Emulation

Gaussian process emulation is a surrogate modelling method that originated in the area of

geostatistics [95, 96], and has been a popular choice for emulating computational models
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since it was first done in 1989 by Sacks et al [97]. The basis of the method involves treating

the unknown output of a computational model as a realisation of type of stochastic process

known as a Gaussian process, which provides a statistical approximation of the output.

The reasoning behind utilising a Gaussian process in particular, is due to the fact that it

possesses a number of desirable properties, such as analytical tractability and flexibility, as

well as the fact that is often realistic. A major benefit of the statistical nature of a GPE

is the fact that the method not only provides an approximation of the underlying model,

but is also able to quantify the uncertainty that arises from the fact that the output of the

computational model has not been observed at all input values.

A significant decision when employing a GPE is whether to construct from either a classical

or a Bayesian perspective. The classical, or frequentist, approach is commonly referred to

as Kriging [98], and involves constructing the surrogate to interpolate the training data and

estimate unknown points using a linear combinations of known observations. Moreover,

model parameters are considered unknown, but fixed quantities that can be estimated

from the data. On the other hand, the goal of the Bayesian approach is to account for all

sources of uncertainty, such that model parameters are assigned probability distributions

as oppose to point estimates. These probability distributions are constructed according to

any beliefs the decision-maker may possess regarding the nature of the model parameter

in question, and adjusted accordingly in the light of any additional relevant information.

Indeed, updating prior beliefs and associated probability distributions is done using a

simple mathematical formulation known as Bayes’ theorem:

p(θ|D) =
p(D|θ)p(θ)
p(D)

.

Here, θ represents some quantity of interest, such as a model parameter, and p(θ) its proba-

bility distribution prior to observing several realisations of the model, contained in D. This

probability distribution is unsurprisingly referred to as the prior within Bayesian literature.

The denominator p(D) represents the evidence of the data, whilst p(D|θ) represents the

likelihood of observing the values contained in D, depending on the nature of θ. The prod-

uct of the prior and likelihood produces the posterior distribution, p(θ|D), which contains

the updated beliefs regarding the nature of θ in light of the new information provided in D.

There is no consensus over which of these perspectives is superior, but this thesis adopts

the Bayesian approach described in [99] due to the attraction of being able to attempt to
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quantify all forms of uncertainty that can arise during the problem formulation.

4.2.1 Gaussian processes

The normal, or Gaussian, distribution is an exceptionally important probability distri-

bution as it accurately portrays many natural phenomena. Moreover, the central limit

theorem states that the distribution of sample means approximates a normal distribution

as the sample size approaches infinity, regardless of the shape of the population distribu-

tion. As a result, the normal distribution is extremely popular in a vast array of fields.

Given that X is a normally distributed random variable, that is N (µ, σ2), its probability

density function (PDF), denoted p(x), is defined

p(x) =
1√
2π2

exp

[
− (x− µ)2

2σ2

]
, (4.2)

where µ and σ represent the mean and variance of the distribution. Equation 4.2 describes

the PDF for the univariate case which is defined over scalars, i.e. X ∈ R. This can

be generalised for the multivariate case where given a random vector X ∈ Rd follows a

multivariate Gaussian distribution, its PDF is defined

p(x) =
1

(2π)d/2|Σ|1/2
exp

[
− 1

2
(x− µ)TΣ−1(x− µ)

]
, (4.3)

where Σ = σ2C denotes the covariance matrix, which is the product of the variance and

correlation matrix. The mean, µ, is defined in the same vein as the univariate case, but

in this case as a vector, µ ∈ Rd. The operators |·| and (·)T represent the determinant the

transpose of a matrix respectively.

The Gaussian distribution enjoys several beneficial properties which are stated below with-

out proof. Formal proofs are considered beyond the scope of this thesis and provided in

[100]. Given X ∼ N (µ,Σ) with PDF given by Eq. 4.3, and partitioning x, µ and Σ as

follows

x =

[
x1

x2

]
µ =

[
µ1

µ2

]
Σ =

[
Σ11 Σ12

Σ21 Σ22

]
the following properties hold true:
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1. The marginal distributions are Gaussian

x1 ∼ N (µ1,Σ11)

x2 ∼ N (µ2,Σ22)

2. The conditional distributions are Gaussian:

x1|x2 ∼ N (µ1 + Σ12Σ−1
22 (x2 − µ2),Σ11 − Σ12Σ−1

22 Σ21)

x2|x1 ∼ N (µ2 + Σ21Σ−1
11 (x1 − µ1),Σ22 − Σ21Σ−1

11 Σ12)

3. If x1 and x2 are independent, then any linear combination of the two is Gaussian:

[
a b

] [ x1

x2

]
∼ N

([
a b

] [ µ1

µ2

]
,
[
a b

] [Σ11 Σ12

Σ21 Σ22

][
a

b

])

Figure 4.1a displays a bivariate Gaussian distribution, given by the blue lines. Additionally,

the red line represents the situation where the value for x2 is known exactly. Figure

4.1b presents two univariate Gaussian distributions based off the information provided in

figure 4.1a. The distribution given by the blue line represents the distribution found by

marginalising the bivariate distribution. The distribution given by the red line represents

the conditional distribution p(x1|x2), using the exact value for x2. The variation in the

shape of the two distributions, such as the increased height and reduced width of the red

line, highlights the effect of the conditional information.
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(a) (b)

Figure 4.1: Gaussian Distributions: (a) depicts a bivariate Gaussian distribution (b)
provides the marginalised (blue) and conditional (red) univariate Gaussian distributions.

A Gaussian process is a generalisation of the Gaussian distribution which provides a distri-

bution over functions, i.e. the random variable is a function rather than a scalar or vector

[88]. In particular, given some input x, the Gaussian process outputs a specification for a

Gaussian probability distribution rather than just a point-estimate. Thus, for any given

set of inputs, their output values are distributed joint-normally. Crucially, this applies

regardless of whether the combination of inputs correspond to observed points, i.e. points

in the training set, or unobserved points. As a result, the latter can be conditioned on

observed values from the training set, which is what ultimately drives the GPE method.

4.2.2 Constructing the Gaussian Process Emulator

To begin, consider a computationally expensive model f(·), such that evaluating the model

at a set of inputs x provides an exact output f(x). Prior to actually evaluating the model,

the output value at x is unknown, and therefore under the Bayesian paradigm, can be

treated as a random variable and assigned a probability distribution based off prior beliefs

about its behaviour. In particular, the GPE is based under the assumption that the output

of the computational model is modelled by a Gaussian process. To construct the GPE, the
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model output is first assigned a Gaussian process prior:

η(x)|β, σ2, ψ ∼ GP
(
M(x;β), V (x,x′;ψ)

)
. (4.4)

Here the mean function, M(x), is designed to capture the global trend of the model output,

and is defined as

M(x;β) = h(x)Tβ, (4.5)

where h(·) ∈ Rq is a vector of a user-defined real-valued function that maps Rd → Rq

and β is a vector of q unknown coefficients. In comparison to the mean function, the

covariance term controls the local behaviour and reflects any prior assumptions regarding

the smoothness of the model output. It is defined by

V (x,x′;ψ) = σ2c(x,x′;ψ), (4.6)

where σ2 represents the variance of the model, and ψ is the smoothness parameter which

controls the behaviour of the correlation function, c(x,x′;ψ). Several realisations of a zero

mean Gaussian process are presented in figure 4.2 to illustrate how a GP prior may behave.

The motivation behind placing a Gaussian process prior on the model output is to exploit

the properties described in section 4.2.1. Specifically, given that any finite set of points

taken from a Gaussian process possess a multivariate Gaussian distribution, according

to the second property from 4.2.1. Consequently, the model output at any unobserved

input value x∗ can be conditioned on already observed values, D, and follows a normal

distribution:

η(x∗)|D,∼ N (M(x∗), V (x∗,x∗)) (4.7)

with some mean and covariance functions M(x∗) and V (x∗,x∗) respectively. The set of

observed model realisations D = ({x1,y1 = f(x1)}, ..., {xn,yn = f(xn)}) is commonly

referred to as the training set for the GPE. By definition, as η follows a Gaussian distri-

bution, the observed model outputs y also follow a Gaussian distribution which can be

defined as

y|β, σ2, ψ ∼ N (Hβ, σ2C) (4.8)

where H = (h(x1)T , ...,h(xn)T )T contains the evaluations of the GP regression functions
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Figure 4.2: Random draws from a zero mean Gaussian process; the dashed lines represent
±3σ bounds that contain approximately 99.7% of the realisations.

at the training data input values, and C is an n× n matrix with elements given by:

Ci,j = c(xi,xj ;ψ). (4.9)

That is, a matrix containing the correlation between all combinations of the training data

inputs. The collection of parameters β, σ2, ψ that control the behaviour of the GPE are

collectively referred to as its hyperparameters, and are generally unknown a priori. As a

result, in order to be able to utilise the GPE effectively, the values for these hyperparam-

eters need to be estimated from the training data. Fortunately, the regression coefficients

β and the GPE variance, σ2, can be estimated analytically. The smoothness parameter,

ψ, is estimated through maximising an associated likelihood function, which is discussed

in further detail in section 4.3.1. Combining Eq. 4.3 and 4.8, the likelihood of β and σ2

can be expressed as

p(y|β, σ2) =
1

(2πσ2)
n
2 |C|

1
2

exp

[
− (y −Hβ)TC−1(y −Hβ)

2σ2

]
. (4.10)

Next, a prior is set for the two hyperparameters, with the most popular choice in literature

to assign a weak prior for the joint distribution:

p(β, σ2) ∝ 1

σ2
, (4.11)

as this enables the training data to play a larger role in the predictions from the emulator.
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Once the prior distribution is assigned, the posterior distribution can be obtained using

Bayes’ rule:

p(β, σ2|y) ∝ p(y|β, σ2)p(β, σ2). (4.12)

Next, reparameterising Eq. 4.10 yields a normal posterior distribution for β, complete with

mean estimate β̂

β̂ = (HTC−1HT )−1HTC−1y (4.13)

Combining Eq. 4.10 and Eq. 4.11 whilst separating the result from the distribution of β

and performing some slight manipulation gives a inverse-gamma posterior distribution for

σ2 with an unbiased estimator:

σ̂2 =
C−1 −C−1H(HTC−1H)−1HTC−1)y

n− q − 2
(4.14)

Combining Eq. 4.8, Eq. 4.13 and Eq. 4.14 produces the posterior distribution for model

output, conditional on the training data and hyperparameter estimators as

η(x∗)|D, β̂, σ̂2 ∼ N (M∗(x∗), V ∗(x∗,x∗)) (4.15)

with the posterior mean function given by

M∗(x∗) = h(x∗)T β̂ + t(x∗)TC−1(y −Hβ̂), (4.16)

and the posterior covariance function given by

V ∗(x∗,x∗′) =σ̂2
[
c(x∗,x∗′)− t(x∗)TC−1t(x∗′) (4.17)

+ (h(x∗)T − t(x∗)TC−1H)(HTC−1H)−1

× (h(x∗)T − t(x∗)TC−1H)T
]
,

where t(x∗) = (c(x∗,x1; ψ̂), ..., c(x∗,xn; ψ̂))T contains the correlation between x∗ and the

training data. Once the GPE is constructed, its mean function can provide an inexpensive

approximation to the computational model at all potential input configurations, whilst

its covariance function provides a realistic measure of uncertainty regarding the mean

approximation. Moreover, when evaluated at a known input, i.e. xi ∈ D, the GPE will

produce the associated output value yi with zero uncertainty, to reflect the fact that this

value is known. Figure 4.3 highlights the effect that conditioning on the training data has
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(a) output of Computational Model (b) Training Data

(c) GP Posterior Distribution Realisations (d) Final GPE

Figure 4.3: Illustrative example showcasing the concept of Gaussian process emulation.

on the GP priors from figure 4.2. In particular, the dashed black line in figure 4.3a is some

function that is to be emulated. The black dots in figure 4.3b represent realisations of the

function, which act as training data for the GPE. Figure 4.3c showcases the realisations

of the GP posterior; note how they all interpolate at the training points before diverging

in between. 4.3d summarises the preceding steps; the dashed line is the true function, the

solid blue line is the mean output of the GPE and the shaded light blue regions represent

the bounds for 99% of the GP posterior realisations, i.e. the uncertainty bounds for the

GPE.

4.3 Implementation Details

The preceding section provided the theoretical background behind employing Gaussian

Process Emulation to approximate some computationally expensive function. However, in

order to actually implement the GPE, a number of key choices need to be made by the

user. The first decision was touched upon at the start of the chapter and is a key stage

70



Chapter 4. Gaussian Process Emulation

in all surrogate methods; deciding the number of training points n and which method to

employ to sample them. For computationally expensive problems, the first part of this

decision is often made for the user, as the computational expense means that there is a

stringent upper limit to the number of potential training points available. As a result, it is

common to completely exhaust the given computational budget when sampling for training

points, as this limit is usually lower than the theoretical optimal number of training points

for the actual problem. For the second part of the decision, unless expert opinion dictates

differently, the most important criteria for sampling is to ensure that training points are

distributed fairly evenly throughout the input space, in order to capture the behaviour of

the computational model throughout the entire domain. As mentioned earlier, LHS is a

popular choice for this task, and is used throughout this research.

The next decision is deciding on the form of mean function described in Eq. 4.5, and

more specifically the regression term h(x)T . As stated, the goal of the mean function is to

capture the global trend of the model output. The regression term is made up of a vector

of q user-defined real-valued regression functions, and are defined to represent any prior

beliefs on the behaviour of the underlying model. The β term represents a vector of q

coefficients that are estimated from the training data (Eq. 4.13), which act as weights for

each of the q regression functions. Selecting a mean function that accurately captures the

behaviour of the underlying computational model greatly simplifies the task for emulation.

However, without expert guidance, and given that such models are often black-box and

their output space unknown, selecting such a mean function is often infeasible. Instead,

common choices for the regression term include linear regression, h(x)T = (1,x) or a

constant value, such as h(x)T = (1) or h(x)T = (0). These provide weak assumptions

regarding the nature of the model output. and allow the process of emulation to be largely

dictated by the covariance term (Eq. 4.6), which itself is heavily influenced by the training

data. This leads to the next major choice, determining the make-up of the covariance

function.

Similarly to the mean function, the covariance function is the product of a user-defined

term, namely the correlation function, or kernel as it is known in some communities,

c(x,x′;ψ), and a scalar hyperparameter estimated from the data, σ2. However, unlike

the regression term in the mean function, there are certain requirements that a kernel has

to pass in order to be eligible for use. Specifically, any covariance matrix, C ∈ Rn×n,
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produced by a kernel must be symmetric, i.e. C = CT , and positive semi-definite, that is

αTCα ≥ 0, ∀α ∈ Rn. Nevertheless, even with the stricter restrictions, there are still a wide

variety of different kernels available. In particular, kernels are often broken down into two

categories, stationary and non-stationary. Stationary kernels are functions with output

solely determined by the proximity of points within the input space, that is c(xi,xj ;ψ) =

c(|xi − xj |;ψ). On the other hand, non-stationary kernels also rely on the respective

position of a point, as well as its proximity to other points. Various kernels from both

categories are covered extensively in [101], while several of the most popular are described

here. Table 4.1 contains the mathematical formulation for two stationary kernels, the

exponentiated quadratic and Matérn family, and one non-stationary kernel, the Brownian.

Further, figure 4.4 contains several draws from a zero-mean Gaussian process with each of

the three kernels, providing an illustration between the influence the kernel choice has on

behaviour of the output.

Kernel Name Formulation

Exponentiated Quadratic exp

(
− r2

ψ2

)
, r = |x− x′|

Matérn 5/2

(
1 +

√
5r
ψ + 5r2

3ψ2

)
exp

(
−
√

5r
ψ

)
Brownian min(xi,xj)

Table 4.1: Common kernel choices

(a) (b) (c)

Figure 4.4: Kernels Several Gaussian Process draws for different kernels: (a) exponenti-
ated quadratic, (b) Matérn 5/2 and (c) Brownian.

The choice of kernel should reflect the prior beliefs regarding the system under study.

The exponentiated quadratic is a popular choice in the literature as it possess attractive

mathematical properties, and will now be the sole correlation function utilised throughout
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the rest of this thesis. However, regardless of the exact choice, a commonality across all

kernel functions is the requirement to specify certain hyperparameters. Although some

kernels will possess additional hyperparameters, the most common is the hyperparameter

that controls the relative smoothness of the kernel, ψ. Given that most computational

models possess multiple input dimensions, each with a varying effect on the model out-

put, this smoothness hyperparameter is usually defined as a d-dimensional vector, referred

to as automatic relevance determination (ARD) [102], rather than a single value for all

input dimensions. That is, for ψi : i ∈ {1, ..., d}, ψi indicates the respective smoothness

value corresponding to the ith input dimension. Figure 4.5 demonstrates the effect varying

this smoothness parameter can have on the behaviour of the Gaussian Process. Figure

4.5a contains the correlation between the input space for ψ = 0.05, with no correlation

give by white, gradually scaling up to a correlation of 1 given by dark blue. On inspec-

tion, points are only correlated to points within their immediate vicinity. Consequently,

the corresponding GP draws displayed in 4.5b show little correlation and highly irregular

behaviour. Figure 4.5c contains the correlation for ψ = 0.5. This value implies a much

stronger correlation even between points relatively far apart, resulting in a much wider blue

region. This feeds into the GP draws in 4.5d, which exhibit much smoother behaviour.

This is not to say that the former is inferior to the latter; the smoothness values is prob-

lem specific, will vary between input dimensions. For problems which naturally possess

irregular behaviour and low correlation between points, the former will obviously be more

appropriate, and vice versa with problems with more regular behaviour. Indeed, the task

of selecting the optimal values for the smoothness hyperparameters is critical due to their

influence on the predictive capability of the GPE. The next section details the procedure

involved in dealing with this task.
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(a) Initial MC Sampling (b) First Intermediate Failure Region

(c) MCMC Step (d) Second Intermediate Failure Domain

Figure 4.5: Effect of Smoothness Hyperparameter (a) and (c) depict the correlation
matrices for ψ = 0.05 and ψ = 0.5 respectively. Several random draws associated with (a)
and (c) are depicted in (b) and (d) respectively.

4.3.1 Estimating the Smoothness Hyperparameters

Outside of evaluating the computational model, the task of estimating suitable smoothness

hyperparameter values is often the most computationally expensive portion of constructing

the GPE. One option in tackling the problem is to utilise leave-one-out cross-validation
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(LOO-CV) to select the values corresponding to the lowest predictive error. Specifically, for

a prospective set of hyperparameter values, LOO-CV involves removing a single training

point, evaluating the GPE mean output at the missing location based on the remaining

training data, and then computing the error between the GPE mean output and the actual

value. This is repeated for each of the training points to obtain an overall value for the error

for the set of hyperparameter values, known as the LOO-CV value. The method provides a

fairly straightforward way to measure the superiority of one set of candidate values against

another, with the values corresponding to the lower LOO-CV value deemed the more

suitable choice. However, the procedure can be time-consuming, especially as the number

of training points increases. Moreover, ψi ∈ (0,∞), meaning to adequately explore the

input space of the hyperparameter values requires a significant number of candidate values

to undergo the LOO-CV procedure in order to ensure suitable values are indeed selected.

To avoid these issues, a popular strategy is to employ a probability-based approach, such

as maximising the posterior mode of the parameter distribution given data can be used,

as in [103]. Alternatively, the approach taken in this thesis is to estimate ψ via maximum

likelihood estimation (MLE). MLE is a popular method in classical statistics, and involves

estimating the hyperparameter values which are most likely to have generated the training

data. More specifically, the optimal choice for ψ is set to be the one that maximises Eq.

4.10. Further, to simplify the algebra and improve the stability, it is a common procedure

to take the natural logarithm of the likelihood:

ln[f(y|β, σ2)] = −n
2

ln(2π)− n

2
ln(σ2)− 1

2
ln|C| − (y−Hβ)TC−1(y−Hβ)

2σ2
. (4.18)

After substituting in the analytical definitions for β and σ (Eq. 4.13 and Eq. 4.14) and

simplifying the remaining terms, the concentrated log-likelihood is obtained:

ln[f(y|β, σ2)] ≈ −n
2

ln(σ̂2)− 1

2
ln|C| (4.19)

The concentrated log-likelihood is a close approximation of the full log-likelihood [1] that

is often used to increase the efficiency of the task. To maximise Eq. 4.19, the function

can either be differentiated with respect to ψ, or treated directly as an optimisation prob-

lem. For the latter, a number of methods can be employed, such as the Nelder-Mead

algorithm [104], MCMC-based methods [105], simulated annealing [61], genetic algorithms

[30], amongst others. However, additional consideration often needs to be taken depend-
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ing on the nature of the covariance matrix C. By definition, C is required to be positive

semi-definite, however certain scenarios can occur where this is no longer the case and the

matrix becomes ill-conditioned. This causes major issues in the estimation of β and σ,

where C has to be inverted, as well as in the evaluation of Eq. 4.19, which contains the

determinant of C. The issue of instability can arise due to poorly constructed training

data, an overabundance of training data at low input dimensions, and for extreme values

of ψ. The presence of any of these issues has a severe impact on the ability to accurately

estimate suitable smoothness hyperparameter values. Several methods of addressing this

issue have arisen, such as a penalised likelihood function [106] and using a nugget term

[107]. The latter is extremely popular, and involves adding a small value to the diagonal

of C, known as a nugget, in order to boost its stability, i.e. Cδ = C+ δI. This can address

the issue of an otherwise ill-conditioned C, however it also alters the log-likelihood profile

and removes the ability of the GPE to interpolate training data exactly. Nevertheless, the

change to the log-likelihood is often extremely minor, and for sufficiently small nuggets the

effect on interpolation is minimal.

The motivation behind using a nugget is to provide numerical stability when it is needed.

However, selecting a suitable value for the nugget is less obvious. In situations where a

nugget is not necessary, the presence of the nugget is often detrimental to the performance

of the GPE. In the situation where the nugget is necessary but the value is too small, it will

not provide enough of an effect to address the ill-conditioned nature of C. Additionally,

given that the presence and size of a nugget directly impacts the log-likelihood function, it is

often desirable to include the nugget as an extra hyperparameter to optimise simultaneously

alongside the smoothness values. One strategy presented in [108] is obtain the theoretical

lower bound for the nugget, based on ensuring the condition number of the correlation

matrix doesn’t not exceed a critical threshold. In particular, it was found that a suitable

lower bound could be defined as

δ '
λn(κ(C)− ea)
κ(C()ea − 1)

= δlb, (4.20)

where κ(C) = λn
λ1

is the condition number of C, λn and λ1 are the largest and smallest

eignevalues of C, and a ≈ 25. The lower bound for the nugget is used and the modified

correlation function fed through to the concentrated log-likelihood in Eq. 4.19. This log-

likelihood can then be optimised using one of the standard optimisation methods mentioned
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above.

Another approach discussed in [109] noted that the presence of a nugget had an overall

smoothing effect on the log-likelihood function, but limited impact on the location of

optimal values. Consequently, it was shown that optimising the log-likelihood for an overly

large nugget value could infer suitable optimal values for more realistic nugget values, or

even the case with no nugget present at all. Moreover, smoothing the log-likelihood removes

the many local optima often present in the case with small nugget values, allowing a more

efficient optimisation process and reducing the likelihood of converging to a local optima

rather than the global optima. Specifically, the procedure begins by optimising over a

nugget value of δ = 10−2 to obtain a set of optimal smoothness hyperparameter values.

The nugget is then decreased by a factor of 10 and the optimisation process restarted using

the optimal values from the previous nugget value as a starting point. This is repeated

until δ = 10−12 is reached, at which point it is repeated once more for δ = 0. Each of

the nugget and smoothness combinations are then evaluated using LOO-CV to obtain the

most suitable choice.

Figure 4.6 demonstrates this concept in action. Figure 4.6a displays the log-likelihood

for the training data from the function in figure 4.3 for a selection of nugget values. In

particular, the green line corresponds to δ = 10−2, and the light blue lines represent the

cases from δ = 10−4 to δ = 10−10, and the dark blue line to δ = 10−12. Additionally, the

smoothness parameters have been parameterized as ψ = 10ω to better facilitate plotting.

Finally, the green and red dots represent the locations of the optimal values for ω for δ =

10−2 and δ = 10−12 respectively. On inspection, as the nugget value is decreased, so is the

overall smoothing effect, but the general behaviour of the log-likelihood remains extremely

similar. Indeed the respective optimal locations for a given log-likelihood are in close

proximity to preceding optimal locations as the nugget decreases, gradually converging

from the location of the green dot to that of the red dot. Figure 4.6b extends the concept

to a two-dimensional case, and displays a contour plot of the log-likelihood for the test

problem discussed in section 4.4 with δ = 10−12. The green and red dots again represent

the optimal ω locations for δ = 10−2 and δ = 10−12 respectively. Once again, it is clear

that the two optimal solutions are in close proximity, despite the significant difference in

their nugget values.
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(a) (b)

Figure 4.6: Impact of Nugget on Likelihood (a) Log-likelihood output for a selection of
nugget values, as well as optimal ω locations for largest and smallest nuggets. (b) contour
plot of log-likelihood output and optimal ω locations.

4.3.2 Diagnostics

The preceding section highlighted how important it is to select suitable hyperparam-

eter values, in order to maximise the performance of the GPE. However, this state-

ment is somewhat subjective without detailing procedures to actually measure the per-

formance of the emulator. Specifically, measuring how well the emulator performs its

original goal; approximating the computational model. A series of validation methods

and diagnostics are detailed in [110] for this purpose, with several for the most pop-

ular summarised in this section. For each, it is common to have a number of model

realisations kept separate from the original training set, known as the validation set:

V = ({xV1 ,yV1 = f(xV1 )}, ..., {xVm,yVm = f(xVm)}). This validation set is usually obtained

via some form of random sampling to ensure there is no bias.

Amongst the most popular of diagnostics is the root mean squared error (RMSE)

DRMSE =

√√√√ 1

m

m∑
i=1

(yVi − E
[
η(xVi )|yV

]
)2 (4.21)

where m is the number of test points and E[η(x∗i )|y] is the posterior mean function of
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the GPE defined in Eq. 4.16. The RMSE provides an overall summary of the quality of

the approximation of the emulator, with a smaller value indicating superior performance.

However, it is susceptible to outliers, such as a small number of large errors, and fails to

factor in any of the information regarding the uncertainty at validation points provided by

the posterior covariance function. In contrast, the individual prediction errors diagnostic,

DI
i (y

V
i ), makes use of both the posterior mean and covariance:

DI
i (y

V
i ) =

yVi − E
[
η(xVi )|y

]√
V
[
η(xVi )|y

] (4.22)

where V[η(xVi )|y] represents the posterior covariance defined in Eq. 4.25. For a reason-

able GPE, the individual prediction errors should have standard student-t distributions

conditional on the observations and on the smoothness hyperparameters. As a result, it

is required that DI
i (·) ≤ 3 as approximately 99% of values lie within 3σ bounds. Any val-

ues near or exceeding this bound may indicate inadequate emulator performance in that

region of the input space. Although the individual prediction errors is a useful diagnostic,

a potential drawback is that it fails to factor in any correlation between of samples in

the validation set. A diagnostic that addresses this concern is the Mahalanobis distance

between the true output and the GPE mean:

DMD(yV ) =
(
yV − E

[
η(xVi )|yV

])T (V[η(xVi )|y
])−1(

yV − E
[
η(xVi )|yV

])
, (4.23)

where the posterior covariance matrix of the GPE is used to weight the Mahalanobis

distance in order to account for correlation amongst predictions. Extreme values (both

small and large) of DMD indicate conflict between the emulator and simulator.

However given the computational constraints associated with certain problems, it will not

always be possible to save a portion of model evaluations for the sole purpose of validation.

In such cases, a common diagnostic is to utilise LOO-CV, which was touched upon earlier

in the chapter. LOO-CV is defined as

DCV =
1

M

M∑
i=1

(
yVi − E

[
η(xVi )|yV−i

])
(4.24)

and although it is not as thorough as other diagnostic methods, it can still provide good
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insight into emulator behaviour.

4.4 Illustrative Test Problem

In this section, an illustrative test problem is used to showcase the steps described in section

4. As with SuS-related work, the entirety of the code relating to Gaussian process based

methods in this research were written and developed within MATLAB, without the use

of any existing toolboxes. Once again, this helped to establish a greater understanding of

the underlying fundamentals of the method. This knowledge was essential when factoring

in various extensions of Gaussian process emulation that are covered in the last section of

the this chapter. To illustrate the GPE method, Franke’s function was chosen, with the

function defined as

f(x) =
3

4
exp

(
− (9x1 − 2)2

4
− (9x2 − 2)2

4

)
+

3

4
exp

(
− (9x1 + 1)2

49
− (9x2 + 1)2

10

)
(4.25)

+
1

2
exp

(
− (9x1 − 7)2

4
− (9x2 − 3)2

4

)
− 1

5
exp

(
(9x1 − 4)2 − (9x2 − 7)2

)
.

Franke’s function is a commonly used test function for interpolation problems as it ex-

hibits non-linear behaviour similar to what could expected in various engineering prob-

lems. Moreover, as in the SuS examples, it possesses two input variables meaning that

the process can be easily visualised and more readily understood. Figure 4.7a displays the

output space of Franke’s function in the form of a contour plot. The function possesses

two Gaussian-shaped peaks given by the yellow and lighter blue region, as well as a local

minimium given by the dark blue region. Although the function itself is computationally

inexpensive to run, in order to best mimic the procedure when utilising a GPE in real-

world engineering problems, the training data is limited to n = 20 function realisations,

in line with the general rule n = 10d mentioned in section 4.1. Figure 4.7b contains the

mean output of the GPE in a form of a contour plot, as well as the locations of the training

points which are represented by red dots. On inspection, the GPE was able to effectively

capture the behaviour of the actual function, including the locations of the local maxima

and minima, without any major visible discrepancies. As mentioned several times during

this chapter, one of the major benefits of a GPE is the closed-form expression of uncer-

tainty that accompanies each mean prediction. Figure 4.7c demonstrates this feature for
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the test problem, where the posterior predictive variance is shown via a contour plot. As

expected, the uncertainty is lowest in the immediate vicinity of the training points (red

dots), and actually reduces to zero at each. Alternatively, the uncertainty is increased in

regions that are not in close proximity to any training points, with the highest levels of

uncertainty near the boundaries of the input domain.

Visual comparisons are not without their uses when judging the performance of a surrogate

model, however they are not always possible, and it is inadvisable to rely on them as

the sole form of validation in any case. Instead, several of the diagnostics discussed in

section 4.3.2 are employed to more accurately measure the performance of the emulator in

approximating Franke’s function. In particular, m = 50 validation points were obtained

via LHS to act as the validation set that underpins each of the diagnostics. The root mean

squared error, DRMSE , of the emulator was found to be 0.0506. Figure 4.8a contains the

individual prediction errors, DI
i for each of the validation points, given by red dots. Each

of the DI
i lie within the bounds given by the dashed lines at -3 and 3 as expected with an

accurate emulator. Finally, figure 4.8b showcases the correlation between the output of the

true function and the output from the GPE. The diagonal dashed line represents the case

where there is complete agreement between the two outputs. The red dots are the locations

of the mean output, and the error bars represent the 2σ uncertainty bounds according to

the posterior variance. On inspection, most of the points lie along the diagonal, and the

respective uncertainty bounds contain the line for any points that fail to lie directly on it.

The latter may indicate a lack of training data near to the validation point, resulting in a

slight prediction error and larger uncertainty bounds within the nearby region of the input

space.
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(a)
(b)

(c)

Figure 4.7: Emulation of Franke’s function (a) True function; (b) GPE mean output
and training data; (c) GPE variance and training data. In each, the respective values scale
from purple (low) to yellow (high).

(a) (b)

Figure 4.8: GPE Diagnostics for Franke Function: (a) individual prediction errors,
(b) correlation between predictions and true values.

Overall, the GPE emulator managed to produce an accurate approximation to Franke’s

function, along with a realistic measure of uncertainty throughout the input domain. The

main concepts of Gaussian process emulation were showcased to provide visual reinforce-

ment of the earlier theory.
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4.5 Enhancements of Gaussian Process Emulation

The preceding sections in this chapter provided the theoretical background and steps in-

volved in utilising Gaussian process emulation for the purposes of approximating a compu-

tational expensive model. This approach has enjoyed widespread application and success

throughout a multitude of fields of study. One of the by-products of this popularity is the

emergence of a number of supplementary methods that can be considered enhancements of

the GPE method. This section provides an overview of a number of these enhancements.

4.5.1 Adaptive Sampling

One of the main influences on the ability of a GPE to accurately portray the behaviour

of the model it is attempting to emulate is the quality of the training set it is constructed

on. Until this point, the construction of a GPE was only considered using training data

obtained via some form of random sampling. However, the most popular enhancement of

the GPE method is to employ adaptive sampling methods to produce a number of the

training points. This is due to the fact that certain training points infer more information

on the overall behaviour of a system than others. Such points are said to be located in areas

of interest, for example a point corresponding to a local optimum. The goal of adaptive

sampling is to attempt to obtain a higher proportion of the training points located within

these areas of interest than would be the case when employing solely random sampling. To

facilitate this, a GPE is typically constructed using an initial batch of randomly sampled

data, and then points added iteratively through some adaptive sampling scheme until the

computational budget is exhausted. A variety of distinct adaptive sampling methods have

arisen over the years, each with their own characteristics, but a commonality is the task

of maximising a utility function which measures some form of model improvement. The

nature of this utility function is usually heavily dependent on the motivation behind the

particular adaptive sampling scheme. Several of the most popular approaches are discussed

below.

When the main motivation is to improve the approximation of the GPE throughout the

entire input space, a common adaptive sampling scheme is to select points possessing high
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values of uncertainty [111]. More specifically,

xAS = Maximise
x

V ∗(x,x), (4.26)

where xAS is the adaptively sampled point and V ∗(x,x) is the posterior predictive covari-

ance of the GPE from Eq. 4.25. Adding the point with the highest measure of uncertainty

into the training set not only reduces the uncertainty to zero at the point itself, but can

have a significant impact on both the uncertainty and mean approximation at other points

within the vicinity, and thus aligning the emulator closer to the true model.

In certain problems, it is more desirable to increase the accuracy of the emulator at certain

locations, rather than the accuracy of the emulator over the entire input space. For exam-

ple, in optimisation problems, it makes more sense to sample from regions that may corre-

spond to a global optimal point, than to sample from an area with suspected non-optimal

performance, albeit with a higher degree of uncertainty. For the case where minimising

the output of the model is the goal, a simple approach that utilises both the mean and

covariance of the GPE is to minimise a lower confidence bound [112]

xAS = Minimise
x

LCB(x) = M∗(x)− aS(x), (4.27)

where M∗(x) is the posterior predictive mean function from Eq. 4.16, S(x) =
√
V ∗(x,x)

is the standard deviation of the GP output, and a is a scalar constant that controls the

balance between exploration and exploitation. Increasing a increases the influence of the

uncertainty on the selection process, encouraging exploration, while decreasing a encour-

ages more exploitation.

A popular utility is to measure the improvement of a prospective adaptive sample. The

improvement that a prospective sample offers is generally defined as I(x) = max(ymin −
M∗(x), 0). This has led to two popular methods: probability of improvement (PI) and

expected improvement (EI) in order to locate promising samples. The PI criterion attempts

to find the location, where the probability of improving the objective function based on

the current surrogate model is the highest [139]. The PI criterion is defined as

xAS = Maximise
x

PI(x) = P (M∗(x) < ymin) = Φ

(
ymin −M∗(x)

S(x)

)
, (4.28)
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where ymin represents the current best performing objective value amongst the training

data, M∗(x) and S(x) are defined as in the LCB, and Φ(·) represents the cumulative

density function of a standard Gaussian random variable. The expected improvement (EI)

[114] is the expected value of the improvement, and is defined as

xAS =Maximise
x

E[I(x)]

=|ymin −M∗(x)|Φ
(
ymin −M∗(x)

S(x)

)
+ S(x)φ

(
ymin −M∗(x)

S(x)

)
. (4.29)

where φ(·) represents the probability density function of a standard Gaussian random

variable, and the other terms are defined as in the other methods. EI in particular is

extremely popular, and provides a good balance between exploration and exploitation of

the input domain.

4.5.2 Gaussian Process Emulation with uncertain inputs

Section 4.2.2 described the steps involved in constructing a GPE which provides terms

for the predictive posterior mean and predictive posterior covariance at any point x∗.

This point x∗ can be known or unknown, depending on whether it is in the training set,

but is considered certain, or noise-free. However, in order to perform robust optimisation,

consideration needs to be made of the predictive output within a defined region surrounding

x∗ to reflect uncertain, or noisy, inputs. The most straightforward approach is to employ

the RSS algorithm described in chapter 3 in conjunction with the GPE. However, in the

case that the uncertainty within the input is normally distributed, that is x∗ ∼ N (u,Σx),

it is possible to incorporate this input uncertainty directly into the GPE framework. This

would allow for a standard optimisation algorithm to be used, and be theoretically much

more efficient. To make a prediction at x ∼ N (u,Σx), the predictive distribution p(y|D,x)

needs to be integrated over the input distribution

p(y|D,u,Σx) =

∫
p(y|D,x)p(x|u,Σx)dx. (4.30)

However, as p(y|D,x) is a nonlinear function of x, the updated predictive distribution

p(y|D,u,Σx) is not Gaussian, meaning that the integral can only be solved using approx-

imation methods. The work in [115, 116, 117] describes the process involved to do this
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using both numerical and analytical methods. In particular, it was shown that the mean

and variance of p(y|D,u,Σx) could be extracted through either approximate moments or

exact moments, depending on the nature of the kernel function utilised. The remainder of

this subsection details the main steps involved in obtaining the exact moments based off

employing a zero mean GPE with the squared exponential kernel. Further detail on this

and the other methods can be found in [115].

Ultimately, the updated predictive distribution can be approximated as

p(y|D,u, σx) ≈ N (M(u,Σx), V (u,Σx)), (4.31)

with updated mean and updated variance given by

M(u,Σx) =

∫
M∗(x)p(x|u,Σx)dx (4.32)

V (u,Σx) =

∫
V ∗(x)p(x|u,Σx)dx +

∫
M∗(x)2p(x|u,Σx)dx−M(u,Σx)2, (4.33)

where M∗(x) and V ∗(x) are the mean and covariance from the noise-free case defined in

Eq. 4.16 and Eq. 4.25 respectively. Alternatively, they can be defined as

M(u,Σx) = E[M∗(x)] (4.34)

V (u,Σx) = E[V ∗(x)] + E[M(x)2]−M(u,Σx)2 (4.35)

Factoring in the fact that the GPE is zero-mean, and employing the notation of expectation

gives

M(u,Σx) = γE[t(x)] (4.36)

V (u,Σx) = E[c(x,x)]− (C−1 − γγT )E[t(x)t(x)T ]−M(u,Σx)2, (4.37)

where γ = C−1y is defined for simplicity, t(x) = (c(x,x1), ..., c(x,xn))T represents the

correlation between x and the training data, and the expectation terms are defined as

E[c(x,x)] =

∫
c(x,x)p(x|u,Σx)dx (4.38)

E[t(x)] =

∫
t(x)p(x|u,Σx)dx (4.39)
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E[t(x)t(x)T ] =

∫
t(x)t(x)T p(x|u,Σx)dx (4.40)

As discussed earlier, the correlation function utilised throughout this thesis is the squared

exponential, defined as

c(x,x′) = σ2exp

[
− 1

2
(x− x′)Tψ−1(x− x′)

]
. (4.41)

Alternatively, this can be represented as c(x,x′) = aNx(x′, ψ), where a = 2π
d
2σ2|ψ|

1
2 . As

a result,

E[c(x,x)] = σ2 (4.42)

E[t(x)] = a

∫
Nx(xi, ψ)Nx(u,Σx)dx = aNu(xi, ψ + Σx) (4.43)

E[t(x)t(x)T ] = a2

∫
Nx(xi, ψ)Nx(xj , ψ)Nx(u,Σx)dx

= a2Nx(xj , 2ψ)Nu

(
xi + xj

2
,Σx +

ψ

2

)
(4.44)

Substituting these values into Eq. 4.36 and Eq. 4.37 respectively and performing some

rearranging gives

M(u,Σx) = γc(u,xi)ccorr(u,xi) (4.45)

V (u,Σx) = σ2 − (C−1 − γγT )t(u)t(u)T ccorr2(u, x̃)−M(u,Σx)2. (4.46)

Here x̃ =
xi+xj

2 and

ccorr(u,x) = |I + ψ−1Σx|−
1
2 exp

[
− 1

2
(u− xi)

T∆−1(u− xi)

]
(4.47)

ccorr2(u, x̃) = |I + (
ψ

2
)−1Σx|−

1
2 exp

[
− 1

2
(u− x̃)TΩ−1(u− x̃)

]
. (4.48)

where ∆−1 = ψ−1 − (ψ + Σx)−1 and Ω−1 = 2ψ−1 − (ψ2 + Σx)−1. As a result, prediction at

an uncertain input is represented as the prediction at a certain point ‘corrected’ to factor

in the input uncertainty. This ‘correction’ increases the correlation and generally decreases

vertical amplitude.
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A GPE extended to incorporate input uncertainty is referred to as a Robust GPE (RGPE)

from this point onward. The function f(x) = sin(x2) was utilised as a test case to

demonstrate the concept of the method. Both a noise-free GPE and a RGPE defined

by x ∼ N (u, 0.05) were trained with 15 training points obtained via LHS sampling. Figure

4.9 presents the results. The dashed black line denotes f(x), the red dots the training data,

and the blue line the mean output from the noise-free GPE. The green line represents the

mean output from the RGPE. It is clear that the RGPE does not interpolate the training

data as in the noise-free case. As a result, it cannot be used to approximate the true

behaviour of the function, but instead to infer areas possessing a measure of robustness.

Indeed, even though the vertical amplitude of the three local maxima of f(x) are identical,

as x increases, so does the impact of perturbation with the input values. Consequently,

estimating the robust optimal of f(x) is reduced to performing a standard optimisation

procedure on the RGPE.

Figure 4.9: Mean output from a GPE (blue line) and a RGPE (green line) for the same
function (black dashed line) and training data (red dots).
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4.5.3 Multi-Fidelity Gaussian Process Emulation

The goal of a computational model is to provide an accurate approximation of the behaviour

of a physical process within a spatial or temporal domain of interest. As highlighted in

chapter 3, it is often the case that for a given physical process, a number of different

computational models are available to describe its behaviour. These models can differ

through a number of factors such as mathematical complexity, level of abstraction or model

resolution. As a result, it is often possible to categorise the various models according to

their respective computational cost and accuracy. This is commonly referred to as the level

of fidelity of the computational model, with a lower fidelity (LF) model associated with

a lower computational cost, but also less accuracy, while a higher fidelity (HF) model is

associated with higher accuracy but at greater computational expense.

Within industrial applications, it is often critical that any computational model used rep-

resents the physical process with extremely high accuracy. This usually limits the use of

any computational models to HF models only. However, such models are often limited to

a low number of evaluations, due to a high computational cost. This problem provided

the motivation for the earlier sections of this chapter, which describe the steps involved

to construct a Gaussian process emulator in order to approximate some computational

expensive model. However, as discussed in section 4.5.1, the performance of the GPE is

highly influenced by the quality of the training set it is based on. Given that the LF model

is describing the same physical process as the HF model, it can hypothetically provide

information on the general behaviour of the process, but at a lower computational cost.

For this reason, it is often desirable to utilise training data from both the HF model and

the LF model, in order to maximise the information regarding the physical process for the

given computational budget.

Gratiet and Garnier formulated a recursive approach to incorporate multi-fidelity (MF)

data into the training of a GPE [119, 120] which this is adopted for use in this thesis. For

a problem with s levels of ordered fidelity, the output for for the highest and most accurate

level of fidelity is approximated by

ηs(x) = ρs−1(x)ηs−1(x) + δs(x). (4.49)

Here ηi(x) and δi(x) are GPEs, the subscripts denote the level of fidelity they are trained
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on and ρi(x) is an adjustment function that attempts to ‘correct’ the lower-fidelity output

to better represent the higher-fidelity output. The recursive approach is similar to the

autoregressive approach developed by Kennedy and O’Hagan [118], and ultimately pro-

duces identical output. However, the autoregressive approach combines all information

into a single formulation, which relies on inverting a
∑s

i=1 ni ×
∑s

i=1 ni matrix, where ni

is the number of observations at the ith level of fidelity. As the number of fidelities and

training samples increase, inverting this matrix becomes extremely cumbersome and limits

the effectiveness of the autoregressive approach. The recursive method on the other hand

constructs s independent GPEs, with each trained using a different level of fidelity. By

keeping the respective fidelities separate, the approach requires the inversion of s subma-

trices, which is less expensive and ill-conditioned than inverting the combined matrix used

in the autoregressive approach. Moreover, constructing a distinct GPE for each fidelity

simplifies the hyperparameter estimation task, and allows the user to analyse individual

fidelities. For the case with two levels of fidelity, LF and HF, the recursive formulation is

simply

ηHF (x) = ρLF (x)ηLF (x) + δHF (x), (4.50)

with mean and covariance functions given by

M∗MF (x) = ρ(x)M∗LF (x) + hHF (x)βHF

+ tTHF (x)C−1
HF

(
yHF − ρ(DHF )� yLF −HHF (x)βHF

)
(4.51)

V ∗MF (x,x′) = ρ2(x)V ∗LF (x,x′) + σ2
HF

(
1− cTHF (x,x′)C−1

HF cHF (x,x′)
)

(4.52)

respectively. Here the subscript denotes the fidelity that a variable is associated with, for

example hHF (x) represents the regression function associated with the GPE trained using

HF data.

The Forrester functions [121] are commonly used to illustrate the impact of utilising multi-

fidelity training data. The functions are defined as

fHF (x) = (6x− 2)2sin(12x− 4)

fLF (x) =
1

2
fHF (x) + 10x (4.53)

where the HF and LF subscripts represent high-fidelity and low-fidelity respectively. To
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mimic a realistic engineering scenario, fHF is limited to only four evaluations to provide for

the HF training points. Figure 4.10 presents a comparison between approximating fHF

using a GPE trained solely on HF points, compared to also using MF training data. In

each of the subfigures, the dashed black line represents the function the GPE is attempting

to emulate, fHF , while the HF training points are denoted by the red dots. Figure 4.10a

illustrates the mean approximation (blue line) using a GPE trained solely on the four HF

training points, denoted the HF GPE. Figure 4.10b shows the mean approximation of two

separate GPEs. The green line represents the mean approximation from a GPE trained

on LF training data, denoted by the blue dots. The goal of this GPE, referred to here

out as the LF GPE, is to approximate fLF , which is by dotted black line). The blue

line represents the mean output from a GPE trained using MF data, i.e. the MF GPE.

Comparing the two functions themselves, it is clear that they exhibit a similar shape albeit

with some discrepancy between output values. On inspection, the LF GPE emulates fLF

almost perfectly, such that the only area that fLF is visible at all is around x = [0.95, 1].

As a result, this provided information regarding the shape of the output space throughout

the entire input domain, most notably illustrated by the fact that the MF GPE was able

to recognise the dip located around x = 0.75, which the HF GPE missed. Indeed, the

MF GPE provides a much better fit of fHF than the HF GPE. Figure 4.10c provides

the 2σ uncertainty bounds (light blue shaded regions) for the MF GPE, to highlight that

the improvement of the mean approximation does not come at the cost of the ability to

quantify the output uncertainty.

In general, most approaches to utilise MF training data work on the basis that each of the

computational models available are modelling the same physical process, and that they

can be categorised into nested levels of fidelity. However, it is possible to combine multiple

computational models, even when the models are based on different physical processes,

provided they possess some correlation between one another. This has been done through

covariance-based methods that model between-output dependencies via a joint covariance

function. Issues arise here with the notion of separability of the covariance function. Several

papers adopt a separable covariance structure in which the correlation amongst inputs is

the same for every output [122, 123, 124]. Although computationally efficient, there is a

view that this is too restrictive and can inhibit emulator performance [125]. Several papers

[125, 126, 127] construct a non-separable covariance structure using either convolution

methods or the linear model of coregionalization to allow for mixing of different output
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(a) (b)

(c)

Figure 4.10: Impact of MF training data: The true HF function is given by the black
dashed line and the HF trianing data by red dots in each of the subfigures. (a) shows the
mean output of the HF GPE (blue line). (b) shows the LF function (black dotted line), LF
training data (blue dots), LF GPE output (green line) and MF GPE output (blue line).
(c) again depicts the MF GPE mean output, as well as its associated uncertainty bounds
in shaded blue.
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correlation lengths, addressing this concern. However, this adds a measure of complexity

to the GPE method, and often possessing similar, or sometimes even worse, performance

than two separate GPEs. As such, the work in this thesis limits any MF emulation to the

situation where the computational models are approximating the same physical process,

and there is a clear distinction between the levels of fidelity of the respective models.

4.6 Concluding Remarks of Chapter

The motivation of this chapter was to present an approach able to address the computa-

tional burden associated with working with computationally expensive models. Utilising

several of the concepts discussed within this chapter to construct an accurate emulator,

the RSS method described in chapter 3 can be applied directly without any computational

issues, facilitating the robust optimisation of computationally expensive models. However,

in the case that the uncertainty within the input variables follows a normal distribution,

it is possible to combine several of the enhancements discussed within this chapter to for-

mulate a more efficient robust optimisation procedure. This is discussed in greater detail

in chapter 5.
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Chapter 5

Multi-Fidelity Robust Gaussian Process

Emulation1

This chapter presents a surrogate-based method, denoted MF-RGPE, to perform efficient

robust optimisation of computationally expensive models. The method combines each of

the enhancements discussed in chapter 4.5 to factor input uncertainty directly into the

emulation process and allow for single-loop robust optimisation. The chapter begins by

providing a mathematical description of the robust optimisation problem considering only

input uncertainty, as well as factoring in the uncertainty associated with the emulator

output. Next, a brief overview of some of the concepts and nomenclature for Gaussian

process emulation and its enhancements are provided for the benefit of the reader. The

proposed method is then discussed in detail. Finally a synthetic test problem is presented

to showcase the method, before it is applied to two industrial case studies.

5.1 Introduction

The goal of engineering design is to create technological systems that satisfy specific perfor-

mance objectives and constraints over a period of time. Usually, there exist many feasible

designs that satisfy the required objectives. For this reason, it is desirable to choose an

1The results and ideas discussed in this chapter have been published in [128].
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optimal design according to some criterion. Modern engineering systems are inherently

complex. This complexity means that endogenous (geometry, material properties) and

exogenous (loads) information is never complete, and often varies throughout the life cycle

of the system (e.g. degradation altering geometry, etc). The objective of robust design

is to determine a set of designs that exhibit high levels of performance with low variabil-

ity, whilst taking uncertainties into account. The benefits of robust design include the

assurance of high performance regardless of a variety of unknown factors and occurrences

throughout the system’s life cycle. Robust design is essentially a traditional optimisation

task, but with an added constraint relating to the performance variability, or robustness,

within some predefined neighbourhood of the input variables. There are various definitions

of robustness. A detailed review of which is presented in [129], leading to various method-

ologies for tackling the robust optimisation problem. The authors of [130] employed a

reliability-based optimisation algorithm which utilised Monte Carlo (MC) integration to

obtain an averaged performance value within the neighbourhood. Similarly, [131] employed

a probability distribution estimation method to obtain an approximate distribution of the

performance within the neighbourhood. Another approach utilised the Taylor expansion

of the expectation and variance of the performance and attempted to minimise both crite-

ria simultaneously. Alternatively, several papers chose to optimise the worst-case scenario

rather than any sort of averaged performance [132, 133].

Typically, the behaviour of modern engineering systems is modelled by computationally

expensive simulators, which can be seen as mappings from the d-dimensional input space

to the output space, denoted f : x ∈ Rd → y ∈ R. However, working directly with f(x) is

often infeasible due to computational expense. A popular approach to tackle this problem

is to replace f(x) with a surrogate model, which has been trained using data obtained

from a low amount of simulator evaluations. One option is to train a Gaussian process

emulator (GPE) [134, 135], which is defined by a mean function and a covariance function

respectively. The mean function provides an inexpensive approximation to the simulator,

η(x) ≈ f(x), whilst the covariance function provides a measure of output uncertainty at

each set of inputs, Vx[η(x)] [39]. The result is that the robust design problem can be

interpreted mathematically as
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Minimise
x

{
η(xε), Vx[η(xε)]

}
,

subject to gj(xε) ≥ 0, j = 1, 2, ...,m, (5.1)

hν(xε) = 0, ν = 1, 2, ..., p.

Here xε represents the set of input variables located within the hypercube, or neighbour-

hood, centered at x and bounded by x ± ε. Consequently, η(xε) represents the emulator

output for this neighbourhood, and Vx[η(xε)] a measure of uncertainty associated with the

emulator output, whilst taking into account the added input uncertainty. Similarly, gj(xε)

and hν(xε) are the respective inequality and equality constraints of this neighbourhood.

In this context, robust design is interpreted as a double-loop optimisation task, with the

outer-loop optimising the overall performance, subject to the constraint functions, and the

inner-loop optimising for robustness in neighbourhood of the input variables (see algorithm

3).

Algorithm 3 Double-loop Optimisation

1: Outer Loop
2: Minimise η(xε), Vx[η(xε)]
3: Inner Loop
4: Generate xi ∈ xε, i = 1, ..., N
5: η(xε) = 1

N

∑N
i=1 η(xi)

6: Vx[η(xε)] = 1
N

∑N
i=1 Vx[η(xi)]

7: gj(xε) = Total Individual Violations of gj(xi)
8: hν(xε) = Total Individual Violations of hν(xi)
9: End

10: End

The ability of the GPE to accurately approximate f(x) is directly related to the qual-

ity of the training set. This issue can be addressed through measures such as employing

adaptive sampling schemes and supplementing the training set with data from multiple

levels of fidelity. Adaptive sampling approaches tend to involve a utility function which

measures some form of model improvement to select additional sample points. The most

popular choice is expected improvement [114], which has been widely used in reliability

[88], optimisation [136] and robust optimisation problems [137], amongst others. Further,
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the concept can be extended to multiple performance functions by considering the ex-

pected improvement of the current Pareto front via hypervolume expected improvement

[138]. Other schemes include maximising the probability of improvement [139] or selecting

samples with high uncertainty [140]. Multi-fidelity (MF) approaches are applicable when

more than one potential simulator exists for the system under study. Lower-fidelity (LF)

samples are defined by a lower-computational cost, but lower accuracy, than higher-fidelity

(HF) samples. Multi-fidelity surrogate approaches exploit LF samples to gain information

of the behaviour of the underlying system, and HF samples to maintain the desired accu-

racy. Most multi-fidelity approaches utilise LF data and adaptive sampling to attempt to

sample the HF points in regions of interest and maximise the effectiveness of the surrogate

[141, 142, 143]. Employing a surrogate model reduces the computational cost involved in

robust design problems considerably. However, when there are a large number of perfor-

mance functions and/or input variables, the double-loop approach becomes increasingly

inefficient. A solution is to collapse the problem into a single-loop approach as done for

a single-fidelity surrogate in [144]. In that paper, a GPE was enhanced to provide exact

values of output uncertainty in the presence of uncertain inputs.

The work presented in this chapter provides a framework to perform efficient robust design

on computationally expensive models. The framework adapts the single-loop approach

discussed above to factor in multiple levels of fidelity, and supplements it with a hybrid

adaptive sampling scheme. The chapter is organised as follows. Section 5.2 provides

an overview of various forms of Gaussian process emulation. The proposed approach is

introduced in Section 5.3 and discusses the main components. An illustrative example and

two industrial CFD case studies are presented in Section 5.4. The final section provides

relevant conclusions and highlights future work.

5.2 Methodology Overview

The main steps involved in each of the various forms of Gaussian process emulation are

provided in detail in the last chapter, with some key remarks very briefly presented here

for the benefit of the reader.
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5.2.1 Single-Fidelity Gaussian Process Emulation

Given f is a computationally expensive mapping, under the Bayesian paradigm, f(x) can

be regarded as a random variable as the output is unknown until it is computed (and

thus observed) by the modeller. Gaussian process emulation follows a Bayesian framework

to provide a statistical approximation of η(x) ≈ f(x). After initially assigning Gaussian

Process prior and then updating using a series of training runs, ultimately the posterior

distribution at some unobserved input x∗, conditional on the observed data, is given by

[99]

η(x∗)|D ∼ GP(M∗(x∗),C∗(x∗,x∗′)), (5.2)

with posterior predictive mean function

M∗(x∗) = h(x∗)Tβ + t(x∗)TΣ−1(y −Hβ), (5.3)

and posterior predictive covariance function

C∗(x∗,x∗′) =σ̂2
[
c(x∗,x∗′) + t(x∗)TΣ−1t(x∗′) (5.4)

+ (h(x∗)T − t(x∗)TΣ−1H)(HTΣ−1H)−1

× (h(x∗)T − t(x∗)TΣ−1H)T
]
.

For the work in this chapter, the Gaussian process prior is assumed to have mean zero, i.e.

h(x)T = 0, which will be adopted from here onward.

5.2.2 Multi-Fidelity Gaussian Process Emulation

Computationally expensive models are designed to capture the behaviour of an underlying

physical system or product. As highlighted throughout this dissertation, it is often the

case that more than one computational model is available, with models usually organised

in levels of fidelity; a model with lower computational costs but less accuracy is considered

to be of a lower fidelity than a more expensive and accurate model. As discussed in section

4.10, it is possible to approximate the output from the HF model as:

ηHF (x) = ρLF (x)ηLF (x) + δHF (x). (5.5)
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Here ηLF represents a GPE trained using data from the LF model, ρLF (x) represents

a regression function, and δHF represents a Gaussian Process Emulator which models

the discrepancy between the HF estimation of ρLF (x)ηLF (x) and the true HF simulator

realisations. Both emulators are trained via the steps described in section (5.2.1). This

can be generalised for t levels of fidelity in a recursive fashion:

ηt(x) = ρt−1(x)ηt−1(x) + δt(x). (5.6)

5.2.3 Single-Fidelity Robust Gaussian Process Emulation

The two-looped approach to solving the robust optimisation problem (5.1) works by first

attempting to minimise the objective functions η(x) and Vx[η(x)] in the outer-loop. Once

a potential solution is found, the inner-loop measures the robustness over the input distri-

bution. As a result, the predictive distribution of the emulator given input uncertainty is

found by marginalising over the input distribution:

p
(
η(x∗)|u,Σx, D

)
=

∫
p
(
η(x∗)|D

)
p
(
x∗|u,Σx

)
dx∗. (5.7)

This marginalisation is basically the aforementioned inner-loop and often achieved via MC

sampling. In the case where the uncertainty within the inputs is normally distributed, i.e.

for an unknown point x∗ ∼ N (u,Σx), it is possible to extract the first and second moments

of (5.7) via methods described in section 5.2.3. These moments provide analytical expres-

sions for the mean, m(u,Σx), and variance, v(u,Σx), of p
(
η(x∗)|u,Σx, D

)
. Ultimately,

having direct access to the mean and variance of the emulator conditional on the input

uncertainty collapses the robust optimisation problem down to a single-loop:

Minimise
u

{
m(u,Σx), v(u,Σx)

}
,

subject to gj(u,Σx) ≥ 0, j = 1, 2, ...,m, (5.8)

hν(u,Σx) = 0, ν = 1, 2, ..., p.

The resulting mean and variance functions are fundamentally equations (5.3) and (5.4)

‘corrected’ to factor in the input uncertainty. The added input uncertainty essentially
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flattens the output, with a decreased vertical amplitude and increased correlation.

5.3 Proposed Approach

The goal of the proposed approach is to perform efficient robust optimisation of computa-

tionally expensive models. The method is a combination of the various forms of Gaussian

process emulation discussed in the previous section, and is termed Multi-Fidelity Robust

Gaussian Process Emulator (MF-RGPE). When employing a GPE for the purposes of ro-

bust optimisation, the two main considerations are the ability of the GPE to accurately

portray the behaviour of the underlying expensive model, and the efficiency of the robust

optimisation process. To address the former, the proposed approach utilises training data

from multiple levels of fidelity obtained via an extension of the Expected Improvement (EI)

criterion [114] to maximise the quality of the training set. To increase the efficiency, the

proposed approach extends the robust GPE detailed in section 5.2.3 to the multi-fidelity

case. Further details of the steps are discussed in the following subsections.

5.3.1 Generating Training Samples

The framework begins with the design of experiment (DoE) of the LF model. Latin hy-

percube sampling (LHS) [85] is used as the space-filling algorithm to generate the initial

samples. These samples are then evaluated on both the LF model and any relevant con-

straints functions, and are referred to as LF samples. To generate the initial HF samples,

the LF samples are first sorted according to their objective and constraint values. A pro-

portion of the top performing samples are selected to be part of the initial HF samples.

The remaining initial HF samples are selected by filling the remaining space using a space-

filling algorithm. This is done to encourage sampling of high-interest areas, whilst not

neglecting the general performance of the GPE elsewhere. The proportion used in this

work was 20% of initial samples from the top performing LF samples and 80% resulting

from the space-filling algorithm. The HF samples were then evaluated on both the HF

model and any relevant constraint functions.
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5.3.2 Constructing the MF RGPE

The MF RGPE provides an approximation of the HF output whilst considering input

uncertainty, and is constructed in a similar fashion to the standard MF GPE described in

(5.5):

ηRHF (x) = ρRLF (x)ηRLF (x) + δHF (x). (5.9)

Here, ηRLF (x) represents a robust GPE trained using data from the LF model via the

steps described in section 5.2.3 and ρRLF (x) represents a regression function. The last term,

δHF (x), represents a GPE which models the discrepancy between the estimation of the out-

put of the HF training data, without accounting for input uncertainty, i.e. ρLF (x)ηLF (x),

and the actual HF simulator output. In an industrial context, there will usually be a pre-

determined computational budget and the stopping criterion will be met once this budget

is exhausted. Other stopping criterion may include reaching a certain threshold of per-

formance, such as obtaining a suitable design or reducing overall GPE uncertainty below

some required value.

5.3.3 Adaptive Sampling

For a SF GPE, the expected improvement (EI) [114] at some point x is defined as

E[I(x)] = |ymin − η(x)|Φ
(
ymin − η(x)

s

)
+ sφ

(
ymin − η(x)

s

)
. (5.10)

Here ymin represents the current best performing objective value amongst the training data,

s denotes the standard deviation of the GPE and Φ(·) and φ(·) represent the cumulative

and probability density functions of a standard Gaussian random variable, respectively. EI

attempts to locate samples that offer improved nominal performance against the current

best sample. The method balances higher probability of a relatively small improvement

(exploitation) versus a lower probability of high improvement (exploration). The concept

of EI can also be applied to cases with more than one objective function by considering a

hypervolume of improvement. Following the steps described in [145], given some reference
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point r, the HVEI at some point x against a set of solutions U is defined as

HV E[I(x)] =

NU∑
i=1

[NObj∏
j=1

E
[
I(x, Ui,j)

]]
, (5.11)

where NU is the number of points in the set U and NObj is the number of objective

functions. Both EI and HVEI are designed for optimising nominal performance. The

proposed approach extends them for the purposes of robust design by employing the mean

and standard deviation GPE output from the SF RGPE and MF RGPE within the EI

process. Consequently, the robust EI and robust HVEI can therefore be defined as

E[IR(x)] = |yRmin − ηRMF (x)|Φ
(
yRmin − ηRMF (x)

sRMF

)
+ sφ

(
yRmin − ηRMF (x)

sRMF

)
, (5.12)

HV E[IR(x)] =

NU∑
i=1

[NObj∏
j=1

E
[
IR(x, Ui,j)

]]
,

where yRmin is the current best performing objective value amongst the training data

whilst also taking input uncertainty into account, and the RMF subscripts denote entities

associated with the MF RGPE. Figure 5.1 illustrates the concept of robust HVEI in the case

of two objective functions. The set of solutions, P, represents the robust Pareto solutions

taken from the current training data. Utilising these solutions and some reference point

r, a set of local upper bounds U can be constructed such that Ui lies at the intercept

of Pi and Pi+1. The robust HVEI is thus the summation of the robust EI against each

local upper bound, to give an overall value of improvement. To obtain promising adaptive

samples, the single objective subset simulation algorithm described in section 2.3.2 is used

to explore the input space and locate samples with high values of robust HVEI.
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Figure 5.1: Robust Hypervolume Expected Improvement: The blue areas represent
the hypervolume of improvement of a point yi against the set U. The point y1, offers the
most improvement, y2 offers some improvement, while y3 offers no improvement at all.

To increase efficiency, several samples are adaptively sampled in one optimisation iteration.

An influence function [146], denoted τ(x), is employed to discourage the adaptive samples

clustering in one area, by scaling the robust EI values after each new adaptive sample is

taken, i.e.

E[IR(x)] = E[IR(x)]τ(x), (5.13)

τ(x) = 1− c(x,xAS),

where xAS represents the latest adaptive sample and c(·, ·) is the correlation function from

Eq. 4.41.

5.3.4 Robust Design

Once the computational budget is exhausted and the final batch of adaptive sampling

completed, the final MF RGPEs can be utilised for robust design. Subset simulation is

employed to locate the input regions corresponding to samples with high performance

according to the MF RGPEs. These samples should be insensitive to perturbation in
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the values of the input variables, and given the computational resources, be validated on

the HF model. The steps involved the the proposed method are outlined in a flowchart

provided in figure 2. Steps 1-4 involve generating the LF and initial HF training data,

and are described in section 5.3.1. This provides the foundation for the construction of

the initial MF RGPE in step 5, which is detailed in section 5.3.2. Provided the stopping

criterion (step 6) has not been met, this MF RGPE is then used as a tool to attempt to

locate samples with improved performance in step 7, using the adaptive sampling process

from section 5.3.3. This procedure is repeated on a loop, with an improved MF RGPE

constructed at each generation until the stopping criterion is met. Optimisation of the MF

RGPE(s) takes place in step 8.

Start

Step 1: Design of Experiment of the LF model

Step 2: Calculate LF objective values

& constraints

Step 3: Generate initial HF samples

Step 4: Calculate objectives

& constraints

Step 5: Build MF RGPE(s)

Step 6: Stopping criterion met?

Step 7: Adaptive sampling

via Robust-EI

Step 8: Use MF RGPE for Robust Design

No

Yes

Figure 5.2: Framework for Robust Design via multi-fidelity robust Gaussian process emu-
lation.
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5.4 Numerical Examples

This section provides three examples showcasing the MF RGPE approach discussed in the

previous section. A synthetic example is first presented to showcase the concept of the

approach before it is applied to two industrially-relevant test cases. In all examples, the

regression function ρRLF from equation 5.9) is set to one, as in each example there is no

assumed prior knowledge regarding the relationship between the LF simulator output and

HF simulator output.

5.4.1 Synthetic Example

The motivation behind this synthetic example was to illustrate the main concepts of the

proposed approach. The HF and LF functions are defined as

fHF (x1, x2) = sin(x2
1)sin(x2

2) +
2(x1 + x2)

25
, (5.14)

fLF (x1, x2) =

(
1 +

x1

5

)
sin

(
9x2

1

10

)(
1 +

x2

5

)
sin

(
9x2

2

10

)
.

The functions were constructed such that the LF function exhibited similar behaviour to

the HF function, and as such could be used to infer regions of high interest. Additionally,

both were designed to possess two maxima; a global maximum that was more sensitive

to input uncertainty, and a local more robust maximum. The goal is to maximise fHF

in the face of some input uncertainty, with the intention to favour the more robust local

maximum. An initial batch of 50 LF samples were selected via LHS. The 4 samples with

the highest objective values were then selected, alongside 16 further samples from LHS,

to populate the HF training set. A MF RGPE was then constructed with training data

normalised between 0 and 1, and input uncertainty for an unknown point x∗ is defined by

the probability distribution x∗ ∼ N (u, diag[0.01, 0.01]). Here u is the mean approximation

of x∗ while diag[0.01, 0.01] is a diagonal matrix containing the variance with respect to each

input variable. A further 3 samples were obtained via the robust EI adaptive sampling

algorithm, and the retrained MF RGPE employed for robust optimisation. Finally, the

inputs were transformed back to their original domains.

Figure 5.3 displays the contours of fLF and fHF , ax well as all samples for the MF RGPE.
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Figure 5.3: Left: Contour plot of LF function, LF samples denoted by the red dots. Right:
Contour plot of HF function. The red dots are the initial 20 HF samples, whilst the blue
stars represent those obtained via adaptive sampling.

On inspection, the function possesses a global optimum (maximum) located in the top

right at approximately x ≈
(√

(3π
2 ),
√

(3π
2 )
)

and a local, more robust, optimum around

x ≈
(√

(π2 ),
√

(π2 )
)

in the bottom left. The adaptive samples all lie within these regions

of interest, with a preference to the local, more robust optimum. The local optimum

in the bottom left is considered more robust as it has a wider base, meaning there is a

lower drop in performance given any perturbation in the inputs. Note that several of the

initial batch of HF samples were already in proximity to the two optima, highlighting the

importance of utilising the best performing LF samples. Further, the LF data provided

valuable information in the regions where HF samples were sparse (e.g. top left), saving

an adaptive sample being wasted in an area of low interest. The illustrative example was

repeated 10,000 times, and the normalised error from the true robust optimum presented in

Figure 5.4. The error was normalised to illustrate the discrepancy between the true robust

optimum and the actual values more clearly. The goal of the study was to showcase the

individual steps described in Figure 2 and illustrate the merits of the approach. Overall,

the majority of cases were within 1% of the true robust optimal input values.

5.4.2 Industrial Examples

Design engineers often utilise computationally expensive models in their design process. It

is often desirable to factor input uncertainty into this process. The proposed approach has

been designed to assist design engineers in this task, within a reasonable computational
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Figure 5.4: Histogram of normalised error: A comparison between the estimated robust
optimal input values and the true robust optimal input values.

budget. Computational Fluid Dynamics (CFD) [15] models are a common tool in engi-

neering design. They are usually computationally expensive, which limits their ability to

be used directly in practical applications, but makes them a prime candidate for the MF

RGPE approach.

Turbulated Duct Case Study

A frequent feature in turbine blades is the presence of turbulated internal cooling ducts.

The presence of rib turbulators repeatedly perturb the boundary layer, which can result

in significant heat transfer by promoting convective mixing with the core cooling flow.

A downside is that this heat transfer comes at the cost of higher-pressure drop [147].

However, due to manufacturing constraints and degradation during the life cycle, the duct

will likely diverge from the initial design at some point. The challenge is therefore to select

a design that maximises heat flow, in this case Nusselt number, whilst minimising pressure

drop in the face of input uncertainty. To address this challenge, a model of the turbulated

duct was constructed using ANSYS software according to four geometric parameters that

controlled the cross-sectional profile and angle of the turbulators, as shown in figure 5.5.

The range of parameter values are shown in Table 5.1. Within the ANSYS software, each

combination of these four parameters would result in a unique turbulated duct geometry.

This geometry was then meshed using an unstructured tetrahedral grid and solved using

Reynolds-averaged Navier–Stokes (RANS) [15] to output the Nusselt number and pressure
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coefficient for that particular design.

Turbulated Duct Input Variables

Input Variable Lower Bound Upper Bound

α 35 55

Lu/D 0 0.5

Ld/D 0 0.5

h/D 0.05 0.15

Table 5.1: Input parameter ranges for turbulated duct case study.

(a)

(b)

Figure 5.5: Turbulated Duct Geometry: (a) Illustrates the influence the four geometric
parameters have on the design. Additionally, the blue arrows to the left represent a mass
flux profile mapped to the inlet to represent the operating conditions. (b) provides an
example geometry taken from ANSYS.

For the MF RGPE approach, the overall computational budget assigned was equivalent to
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44 HF samples. The LF model consisted of a mesh of approximately one million elements

and solved using k−ω SST RANS on ANSYS, whilst the HF model consisted of a mesh of

approximately five million elements and solved using k − ω SST RANS. The approximate

computational cost was 20 LF samples ≈ 1 HF sample. Consequently, two separate MF

RGPEs were trained for the Nusselt number and pressure coefficient respectively, with the

initial MF RGPEs trained using 80 LF samples and 20 HF samples. A further 20 HF

samples were adaptively selected in two batches of 10 samples to supplement the training

set. The training data was normalised between 0 and 1, with input uncertainty represented

via a diagonal matrix Σx = diag[0.025, 0.025, 0.025, 0.025]). The final MF RGPEs were

then optimised using a multi-objective subset simulation algorithm. For comparison, the

case study was repeated with the same computational budget, but using only HF samples

to construct two SF RGPEs. The initial SF RGPEs were trained using 40 HF samples.

A further 4 HF samples were adaptively selected in four batches of a single sample to

supplement the training set.

Figure 5.6 demonstrates the adaptive sampling process and the final Pareto front for the

MF RGPE approach. On inspection, several of the initial HF samples (green dots, top left

plot) were located in close proximity to the eventual Pareto front, again highlighting the

advantages of incorporating the LF training data to locate regions of interest. Indeed, the

general performance of the adaptive points (blue stars) is significantly better than that of

the randomly sampled points, showcasing the benefits of adaptive sampling. Furthermore,

by comparing the two batches of adaptive sampling, it is clear how the adaptive sampling

process attempts to converge towards the true Pareto front. It should be noted that the

adaptive sampling procedure was assisted by the LF data to discard areas of low interest.

The optimisation process placed constraints on the output variance of the respective GPEs

to ensure a certain level of performance. This is highlighted in the close proximity between

the Pareto front and the best performing training samples, placing further emphasis on the

importance of quality training data. A single training point lies above the Pareto front,

however this point was deemed to lack the necessary robustness according to the final MF

RGPEs.
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Figure 5.6: HF Training Points and Pareto Front: The top two figures showcase the
adaptive sampling process, with the first batch top left and the second batch top right. In
each, the green dots are the HF points that have previously been obtained, and the blue
stars represent the newly evaluated adaptive samples. The plot on the bottom contains the
full set of HF samples (green dots) and the Pareto front (red stars) obtained via optimising
the MF RGPEs for each objective.

Figure 5.7 contains the Pareto fronts from the MF RGPE approach (red stars) and the SF

RGPE approach (blue dots). In general, the two Pareto fronts possess similar behaviour,

although the MF RGPE Pareto solutions exhibit superior performance than the SF RGPE

Pareto solutions. A potential contributor to this discrepancy is the fact that the SF

approach was made up of a higher proportion of randomly sampled training data. However,
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it is standard practice to use a budget of at least ten training samples per input dimension

[86] in order to have sufficient confidence in the output of the underlying surrogate. The

MF RGPE approach circumvents this issue by utilising LF data to make up for any loss of

information. As such, it is reasonable that increasing the proportion of adaptively sampled

data in the SF RGPE case would not necessarily improve the performance, due to surrogate

inaccuracy and added uncertainty disrupting the sampling process. A second contributor

is the fact that the MF RGPE approach was able to infer regions of high interest from

the LF training data to aid in the adaptive sampling procedure. Overall, the MF RGPE

offered superior performance than the SF alternative for the same computational budget.

Figure 5.7: Pareto Front Comparison: The red stars represent the Pareto solutions
obtained using the MF RGPE approach. The blue dots are the Pareto solutions obtained
using the SF RGPE approach.

Figure 5.8 displays 20 validation samples for 4 designs taken from the MF RGPE Pareto

front. A validation sample was generated from the distribution N (xP ,Σx), where xP de-

notes the original Pareto solution. The validation sample was then evaluated on the HF

model to measure its performance. Given the computational cost involved, 4 Pareto solu-

tions were chosen to ensure a reasonable amount of validation samples per Pareto solution

could be evaluated, whilst making certain of validation across various areas of the Pareto

front. It should be noted that the second and third Pareto solutions were located further

from HF training samples than the other two solutions, hence their larger uncertainty

111



5.4. Numerical Examples

bounds. Nevertheless, each validation sample was still within the 2σ uncertainty bounds

of the original Pareto solution.

Figure 5.8: Validation Points: The red dots represent the original Pareto solutions
and the black lines their respective uncertainty bounds. The blue dots are the simulator
realisations at some perturbed design of the original Pareto solution.

Aerofoil Case Study

The aerofoil test case involved obtaining a set of aerofoil solutions that maximise lift-

to-drag (L/D) ratio whilst minimising maximum blade thickness of a turbine blade in

the face of potential perturbation of input values caused by uncertainty. A prospective

aerofoil geometry was defined using the Class-Shape Transformation (CST) method [81].

In particular the Au and Al parameters are the weighting coefficients that help prescribe the

thickness/shape at various locations along the upper and lower surfaces respectively. The

parameters and their respective ranges are shown in Table 3.1. The LF model consisted

of the aerofoil being solved over a range of angles of attack in XFOIL software, which

performed a potential flow calculation without taking into account viscosity or a boundary

layer. The HF model consisted of the aerofoil being solved via k-ω RANS in ANSYS.

Unlike the turbulated duct case study, where the level of fidelity was solely due to mesh

resolution, the fidelity in this case is dictated by two separate methods of varying accuracy

and cost. It should be noted that the the definition of varying levels of fidelity is problem
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specific, with the only requirement that they exhibit similar behaviour in attempting to

model the same underlying phenomena. The computational budget for the test case was

approximately 240 HF samples. The comparative computational costs were approximately

20 LF samples per HF sample. Two separate MF RGPEs were trained for the lift-to-drag

ratio and maximum thickness respectively, with the initial MF RGPEs trained using 600

LF samples and 120 HF samples. A further 80 HF samples were adaptively sampled in four

batches of 20 to supplement the training set. The training data was normalised between

0 and 1, with input uncertainty represented via a 20 × 20 diagonal matrix Σx with each

of the entries equal to 0.025. The final MF RGPEs were then optimised using a multi-

objective subset simulation algorithm. As in the previous example, the case study was

repeated using the same computational budget comprising of only HF samples. The initial

SF RGPEs were trained using 200 HF samples, with a further four batches of a 10 samples

added via adaptive sampling.

Figure 5.9 presents the adaptive sampling process and the final MF RGPE Pareto front.

As in the turbulated duct study, several of the initial HF samples (green dots, top left

plot) exhibited high performance and there was a clear convergence towards the suspected

true Pareto front as the number of adaptive samples increased. The Pareto front closely

followed the path of the best performing training samples. The training sample with the

lowest maximum thickness was omitted from the Pareto front, as the performance of this

point was particularly sensitive to input perturbations.
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Figure 5.9: HF Training Points and Pareto Front: The top four figures contain the
respective adaptive sampling batches. In order, top left, top right, bottom left, bottom
right. The green dots are the HF points that have previously been obtained, and the blue
stars represent the newly evaluated adaptive samples. The plot on the bottom contains the
full set of HF samples (green dots) and the Pareto front (red stars) obtained via optimising
the MF RGPEs for each objective. 114
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Figure 5.10 contains the Pareto fronts from the MF RGPE approach (red stars) and the

SF RGPE approach (blue dots). Both Pareto fronts initially rise relatively sharply before

reaching a plateau with respect to the lift-to-drag coefficient. However, there is a significant

discrepancy between the respective performance of the two Pareto fronts, with that of

the MF RGPE completely dominating the SF RGPE counterpart. Whilst the SF RGPE

approach wasted a number of samples searching in uncertain but ultimately low interest

areas, the MF RGPE approach was able to discard these areas and target more promising

locations due to the information provided by the LF data.

Figure 5.10: Pareto Front Comparison: The red stars represent the Pareto solutions
obtained using the MF RGPE approach. The blue dots are the Pareto solutions obtained
using the SF RGPE approach.

Figure 5.11 displays 20 validation samples for 4 designs taken from the MF RGPE Pareto

front. As in the turbulated duct case study, the number of validation samples were limited

due to the computational costs involved. The validation samples were selected to verify

the performance of the MF RGPE approach across the Pareto front. It should be noted

that there was zero discrepancy between the LF simulator and HF simulator output for the

maximum thickness. As a result, there was significantly less GPE uncertainty for this ob-

jective, and the majority of the uncertainty bounds with respect to the maximum thickness

is due to input uncertainty. Each validation sample was within the 2σ uncertainty bounds

of the original Pareto solution. Moreover, the aerofoils corresponding to the validation
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points for the third (in ascending order of L/D ratio) Pareto solution were plotted against

the original for a visual depiction of input uncertainty.

Figure 5.11: Validation Points Top: The red dots represent the original Pareto solutions
and the black lines their respective uncertainty bounds. The blue dots are the simulator
realisations at some perturbed design of the original Pareto solution. Bottom: Aerofoils
for the validation samples (blue) and Pareto solution (red).

5.5 Concluding Remarks of Chapter

This chapter presented a emulation-based method, denoted MF RGPE, to perform efficient

single-loop robust optimisation of expensive models. The motivation behind this method

was to provide a flexible and reliable tool to facilitate robust optimisation of extremely

expensive models, in the case where the computational constraint renders the MF-RSS

method from chapter 3 infeasible. To maximise the effectiveness of the method, MF RGPE

addresses the two main issues found when employing emulation-based approaches for ro-
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bust optimisation, namely the quality of the emulator training set, and the efficiency of

the robust optimisation process itself. Consequently, particular care was given to ensuring

the highest quality of training data, through a combination of a novel adaptive sampling

scheme and exploitation of multiple levels of fidelity. Further, factoring the input uncer-

tainty directly into the emulation process negates the need for any neighbourhood sampling

common in most robust optimisation algorithms. This collapses the optimisation portion

down to a single-loop problem, significantly increasing the efficiency of the overall process.
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Conclusion

The research presented in this dissertation was focused on the development of tools and

methods to tackle the challenge of performing robust optimisation of computationally ex-

pensive models. In particular, two approaches have been developed and tested against

industrially relevant problems within the realm of computational fluid dynamics. The first

approach is an extension of an MCMC algorithm known as subset simulation, that was

developed to be applied directly to the computational model. The second approach is a

combination of various enhancements of a surrogate modelling technique known as Gaus-

sian process emulation. This approach factored input uncertainty into the construction

of the surrogate model, which was then optimised in place of the actual computational

model. Individual chapters offer a summary of individual results and contributions. The

goal of this chapter is to act as a review of the work presented throughout this thesis, and

to provide a direction for future research.

6.1 Summary of Completed Work

The ultimate goal of this thesis was to develop methods capable of performing optimisa-

tion of industrially relevant design problems, even in the case of uncertainty within the

input parameters and computational constraints limiting the number of model evaluations

available. Further, any methods needed to be conceptually simple to interpret, applicable
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to a wide array of problems and developed to require relatively minimal tuning or adapta-

tion. Indeed to this end, the methods needed to be able to be deployed in a user-friendly

MATLAB toolbox, to facilitate their use by the industrial partner’s design engineers.

With this goal in mind, the first approach was an attempt to tackle the problem ‘directly’,

and develop an optimisation algorithm that worked with the computational model directly.

Chapter 2 presented a thorough overview of subset simulation, which was selected as an

ideal candidate for the purposes of robust optimisation due to its straightforward concept

and variety of useful properties. The chapter discussed the original motivation and concept

behind the method, detailed the steps to adapt it for nominal optimisation and presented

some test problems to highlight the algorithm in action. This work provided the foundation

for the novel method presented in Chapter 3, which extended the applicability of the subset

simulation algorithm to robust optimisation problems, by optimising over the averaged

objective values for a neighbourhood surrounding a particular input value. Factoring

input uncertainty into the optimisation problem addressed one of the challenges of the

thesis, however more work was needed to address the second challenge of computational

efficiency. To this end, and to ensure that the method was suitable for computationally

expensive models, several measures were put in place. This included utilising an initial

nominal optimisation stage in the algorithm to narrow the search to promising candidates,

and avoid wasting resources on sampling from areas of low interest. This was followed

by a robust optimisation stage, which reduced unnecessary model evaluations by storing

all evaluated solutions in a bank of solutions, which could then be accessed to provide

neighbourhood solutions without the need for new model evaluations. Further, for all uses

of the subset simulation algorithm, an adaptive Markov Chain Monte Carlo algorithm was

used to ensure optimum sample acceptance in order to boost efficiency. Finally, the method

was also generalised to incorporate multiple levels of fidelity to further boost computational

efficiency. Due to a lack of existing MF robust optimisation problems, this method, denoted

MF-RSS was tested on a SF robust optimisation problems that was adapted to become a

MF robust optimisation problem using a method found in a similar nominal optimisation

problem within the literature. Lastly the method was successfully applied to an industrial

case study provided by the academic partner.

As touched upon at several points during this dissertation, the complexity and computa-

tional cost of industrially relevant computational models can often render even the most
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efficient direct approaches infeasible. Consequently, this motivated the need for a second

approach. Chapter 4 presented a thorough overview of Gaussian process emulation. The

chapter began by introducing the notion of surrogate modelling, describing the benefits of

utilising such methods when dealing with computationally expensive models. In particu-

lar, Gaussian process emulation was highlighted as a suitable surrogate method, due to its

statistical nature providing a measure of uncertainty associated with its own predictions.

The remainder of the chapter detailed the mathematical steps involved in the construction

of a Gaussian process emulator, as well as several enhancements to improve its perfor-

mance, namely utilising adaptive sampling schemes, factoring in uncertainty within the

input variables and exploiting multi-fidelity training data. Employing this work in chapter

4 to produce the most accurate emulator possible, the RSS algorithm could then be applied

to problems with computational constraints that would otherwise render it unusable. The

use of an emulator would indeed add a new source of uncertainty to the problem, and as

such it would be advisable to utilise the direct approach when computationally feasible.

However, in the scenario that input uncertainty is normally distributed, chapter 5 discusses

a Gaussian process emulation approach to perform efficient single-loop robust optimisation

of expensive models, denoted MF RGPE. This method combines several enhancements of

Gaussian process emulation to incorporate input uncertainty directly into the emulator

output, allowing for the development of a novel robust adaptive sampling scheme, and

increasing the efficiency of the overall robust optimisation process by facilitating the use

of a nominal optimisation algorithm to perform robust optimisation. Due to the lack of

existing suitable test problems, a test problem was developed to showcase the concept of

the method before it was successfully applied to two industrial case studies.

6.2 Research Outlook

There are a number of potential areas of further research that can be considered based on

the work discussed in this dissertation.

Chapter 3 described how uncertainty within a robust multi-objective problem could be

generally categorised into one of three forms. The work in this thesis is solely concerned

with robust problems of the first type, namely perturbations in the input variables. A

natural development is to factor in the other forms of uncertainty that can arise in robust
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optimisation problems, namely the presence of noisy objective values and optimisation

problems that change over time.

Another logical area of investigation is to apply the methods described in this dissertation

to problems with more than two levels of fidelity. This will require some minor alterations

to the methods in chapters 3 and 5, however the main concepts will remain unchanged.

Additionally, with regards to the latter, another consideration is to extend the adaptive

sampling portion of the approach to consider the level of fidelity as well as the location

of prospective samples. Extending each of the methods to factor in a higher number

of fidelities provides another potential area of further research. Within this thesis, the

respective fidelities have been chosen using expert opinion. An area worth investigating is

to develop a process that can guide the selection of the optimal number of fidelities, and

their respective configurations.

Finally, for the Gaussian process based approaches, future work could include augmenting

the present methods with measures to boost efficiency in higher-dimensional problems,

such as employing principal component analysis or dimension reduction methods.

All of these developments are seen as potential basis for future collaboration with General

Electric as they incorporate the current work into their in-house software.

6.3 Published Work

At the time of submission of this dissertation, the following work has been accepted for

publication.

Ellison, M., Diaz De la O, F.A., Ince, N.Z., Willetts, M. (2021) ‘Multi-Fidelity Robust

Optimisation using Subset Simulation’, Applied Mathematical Modelling, Vol. 100, pp.

92-106.

6.4 Work under Review

At the time of submission of this dissertation, the following work has been submitted and

is currently under review.
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Journal papers

M. Ellison, F.A. Diaz De la O, N.Z. Ince, M. Willetts, Multi-Fidelity Robust Optimisation

using Subset Simulation, Under Review.
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Appendix: Supplementary Subset Simulation Work

Algorithm 4 SuS Algorithm for Reliability

1: Set p, n.

2: nchains=np

3: nstates=
1−p
p

4: Generate X = x1,x2, ...,xn via MC

5: Evaluate objective values Y = f(X)

6: Set L = 0, nF = 0

7: While nF
n < p

8: Sort X,Y by descending Y

9: Set nchains top samples as seeds.

10: Set y∗L =
ynpL +ynp+1

L
2

11: MCMC to produce candidate samples

12: Accept candidate if f(xCand) > y∗L, reject otherwise

13: Repopulate X using accepted MCMC samples

14: Evaluate Y

15: Check nF

16: End

17: Set pF = pL nFn
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