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Abstract 

 

Recent attempts to utilise machine learning (ML) to predict pain-related outcomes from 

Electroencephalogram (EEG) data demonstrate promising results. The primary aim of this 

review was to evaluate the effectiveness of ML algorithms for predicting pain intensity, 

phenotypes or treatment response from EEG. Electronic databases MEDLINE, EMBASE, Web 

of Science, PsycINFO and The Cochrane Library were searched. A total of 44 eligible studies 

were identified, with 22 presenting attempts to predict pain intensity, 15 investigating the 

prediction of pain phenotypes and seven assessing the prediction of treatment response. A 

meta-analysis was not considered appropriate for this review due to heterogeneous methods 

and reporting. Consequently, data were narratively synthesised. The results demonstrate that 

the best performing model of the individual studies allows for the prediction of pain intensity, 

phenotypes and treatment response with accuracies ranging between 62% to 100%, 57% to 

99% and 65% to 95.24%, respectively. The results suggest that ML has the potential to 

effectively predict pain outcomes, which may eventually be used to assist clinical care. 

However, inadequate reporting and potential bias reduce confidence in the results. Future 

research should improve reporting standards and externally validate models to decrease bias, 

which would increase the feasibility of clinical translation.  

 

Perspective: This systematic review explores the state-of-the-art machine learning methods 

for predicting pain intensity, phenotype or treatment-response from EEG data. Results 

suggest that machine learning may demonstrate clinical utility, pending further research and 

development. Areas for improvement, including standardised processing, reporting and the 

need for better methodological assessment tools, are discussed. 

 

 

Keywords: Machine Learning, Pain Intensity, Pain Phenotypes, Systematic Review, Treatment 

Response 
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Introduction 

 

Accurate assessment of pain is challenging due to the complex interplay between biological 

and psychological processes, but it is vital for understanding the effectiveness of clinical pain 

management 19,80,106. Traditionally, pain is evaluated using interviews, observations, 

psychological screening and rating scales 11,19,38,101. Whilst behavioural tools are valuable, 

developments are needed to individualise clinical care further, as many conventional 

methods fail in individuals who cannot accurately communicate their pain, such as infants 

and those with dementia 11,39. Moreover, imperfect tools, coupled with the complexity of 

pain, also inhibit accurate diagnoses and treatment, further limiting the management of 

clinical pain 11,27,92. Consequently, improved pain assessment is required to individualise 

clinical pain care. 

 

Recent attempts at improving the detection of pain outcomes using neuroimaging and 

Machine Learning (ML) have seen promising results 59. ML refers to an algorithm that learns 

complex data patterns and makes predictions without being explicitly programmed 75. 

Supervised learning is the most applicable method to pain prediction, whereby labelled input 

data are propagated through an algorithm, which then learns patterns associated with each 

label 48,56,89,96. This is achieved by altering internal weights; minimising the error between the 

input and the predicted label using optimisation algorithms, such as gradient descent 49,56,100. 

Therefore, the algorithm learns from experience and can then be used to predict the labels 

of novel, unseen data 55. We focus on the application of ML on Electroencephalogram (EEG), 

as it is inexpensive and accessible, making it an excellent candidate for clinical applications 

31,84. However, neuroimaging methods of pain classification are not the only promising 
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approach within this line of research. Alternative approaches such as pain prediction from 

facial expressions also demonstrate promising results and can be identified elsewhere8,52,71. 

Additionally, due to the technicality of ML and the corresponding algorithms, we also provide 

reference to comprehensive overviews of ML, which can be retrieved to make ML more 

accessible and provide an intuition regarding the underlying mechanisms of ML algorithms 

6,24,45,55,76,89. 

 

By applying supervised ML, researchers have successfully decoded patterns of neuronal 

activation arising from pain-related outcomes 59. The development of computational 

methods of pain assessment may allow for the prediction of pain intensity, phenotype or 

response to treatment should research demonstrate its effectiveness. Pain intensity reflects 

self-reported pain ratings arising from experimental pain stimulation or naturally occurring 

pain. Pain phenotypes broadly reflect characteristics of pain conditions, suggesting the 

presence of a condition, whilst treatment response involves predicting the effect of pain 

treatments. The validation of ML and EEG for clinical use may improve clinical provision and 

mitigate current limitations by introducing objective markers, which could guide 

individualised treatment and diagnosis 20,22. For example, predicting treatment effectiveness 

could reduce ineffective trial-and-error treatment and improve patient outcomes 30–32. 

Despite their potential, pain biomarkers have not significantly impacted public health or 

clinical practice to-date 104. Therefore, throughout this systematic review, we discuss the 

effectiveness of ML for predicting pain outcomes from EEG whilst concurrently discussing the 

benefits and challenges, alluding to the potential for clinical translation. We address the 

research question: how effective are machine learning algorithms for predicting pain 

intensity, phenotype or response to treatment from EEG data? We included research on 
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healthy participants or chronic pain populations. To achieve this, we complete the following 

objectives: 

 

(i) To evaluate the effectiveness of ML by comparing performance metrics. 

(ii) To explore the benefits and challenges of ML, alluding to the feasibility of 

clinical translation. 

(iii) To evaluate the quality of these studies. 

 

Methods 

 

This systematic review is reported in accordance with the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) 61. The review protocol was registered on 

PROSPERO on June 5th, 2020 as CRD42020172091.  

 

Search Strategy 

 

Electronic databases MEDLINE, EMBASE, Web of Science, PsycINFO and The Cochrane Library 

were searched from inception to May 4th, 2020 and updated on May 10th, 2021, using a 

combination of free text and thesaurus terms and restricted to English language. The searches 

were comprised of terms relating to pain, ML and EEG. Pain terms included pain conditions 

(e.g., neuralgia) and pain synonyms (e.g., nociception), whilst ML terms included methods 

(e.g., decision tree) and ML synonyms (e.g., classification) and EEG mostly included 

unabbreviated terminology (e.g., electroencephalogram). Reference lists of eligible studies 
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and similar publications were hand-searched to identify further potentially relevant studies. 

The complete search strategy is presented in supplementary material 1. 

 

Study Selection 

 

Firstly, two reviewers (TM and JH) independently screened the title and abstracts of all the 

unique search results to identify all potentially relevant studies to be retrieved for full-text 

review. Secondly, full-text articles retrieved in stage one were reviewed for inclusion 

independently by two reviewers (TM and JH). The screening stages were guided by the 

eligibility criteria outlined in Table 1. Reviewer discrepancies at either stage were resolved 

through discussion or consultation with a third reviewer (NF), who acted as an arbiter, if 

necessary. 

 

Table 1. Eligibility Criteria    
Inclusion criteria (included if all of the 
following are satisfied) 

  
Exclusion criteria (excluded if any of the 
following are met) 

1. Published peer-reviewed studies 
presenting original data predicting pain 
intensity, phenotype or response to 
treatment. 

  

1. Non-peer reviewed citations 
(abstracts or conference proceedings, 
letters and commentaries). Non-original 
data or case reports. 

2. Human participants ≥ 18 years old.   
2. Non-human sample, or human 
participants < 18 years old. 

3. EEG study.   3. Non-EEG study. 

4. Applied supervised ML.   4. Did not apply supervised ML. 

5. English full text.   5. Non-English texts. 
EEG, electroencephalogram; ML, machine 
learning.   
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Data Extraction 

 

A data extraction form was developed to retrieve data regarding the study authors, 

participant demographics, type of painful stimuli, treatment type (where applicable), pain 

condition (where applicable), EEG array, model features, prediction type (binary, multiclass 

or continuous), the algorithm used, model validation and the performance metrics for the 

best performing model. The data extraction was performed independently by one reviewer 

(TM) and checked for accuracy by a second reviewer (JH). Disagreements were resolved 

through discussion or consultation with a third reviewer (NF), who acted as an arbiter, if 

necessary. 

 

The model we report is intended to reflect the best performing algorithm, which is deemed 

as the one with the greatest performance metrics (e.g., highest accuracy), as several models 

are typically developed in each study. If the authors attempt different classifications (binary, 

multiclass or continuous prediction), we report the best performing model of each 

classification type. The model reported is defined as the best performing either in the original 

studies or based on our judgement when the original studies did not define the best 

performing model. The majority of the studies implement cross-validation methods. The 

cases where cross-validation was not performed or was unclear are highlighted in the 

respective tables.  Through reporting the best performing model, we hope to present the 

current state-of-the-art methods, which may eventually be candidates for clinical translation. 

A definition of the typical performance metrics reported in this review can be seen in Table 

2. A comprehensive discussion of the performance metrics has been reported elsewhere 

15,42,67,82,85,102. 
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Metric Notation Explanation

Accuracy

AUC (BCA)

F1

FPR

MAE

Misclassification

NPV

PPV (Precision)

Specificity

Sensitivity 

(Recall; TPR)

The ability of the algorithm to correctly identify true 

positive cases. 

The ability of the algorithm to correctly identify true 

negative cases.

Represents the ratio of incorrectly labelled predictions 

over all data points.

Represents the ratio of correctly labelled negative 

cases over the total negative predictions made.

Represents the ratio of correctly labelled positive 

cases over the total positive predictions made.

AUC, area under the ROC curve; BCA, balanced classification accuracy; fn, false negatives; fp, 

false positives; FPR, false positive ratio; MAE, mean absolute error; NPV, negative predictive 

value; PPV, positive predictive value, tn, true negatives; tp, true positives; TPR, true positive ratio; 

ROC, receiver operating characteristics.

Table 2. General definitions of ML metrics

The algorithm's overall effectiveness. Reflects the 

ratio of correctly classified data points over all data 

points.

The AUC represents the ability of the classifier to avoid 

incorrect classification.

Represents the harmonic mean of PPV (Precision) and 

Sensitivity (Recall, TPR). 

Represents the ratio of negative classes incorrectly 

labelled as positive cases over the total number of 

negative labels.

Represents average absolute error between the actual 

output value         and the predicted output value       .
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Risk of Bias 

 

Assessment of risk of bias (ROB) was performed by using the prediction model risk of bias 

assessment tool (PROBAST) 103, which contains 20 signalling questions to assess ROB across 

four domains: participants, predictors, outcomes and analysis 62,103. Each domain is assessed 

as low, high or unclear ROB. An overall ROB is calculated for each study, taking all domains 

into consideration. Studies are deemed low ROB providing all individual domains were scored 

as low ROB. If one or more of the domains were scored as unclear ROB, but all other domains 

were low ROB, the study should be labelled as unclear ROB. Finally, if one or more of the 

domains is scored as high ROB, then the overall ROB would be deemed as high, regardless of 

the scores on the other domains 103. Additionally, PROBAST allows assessment of the 

applicability of each study to the review, which is assessed and scored in a similar way as the 

ROB analysis, with studies being scored as low, high or unclear regarding applicability issues. 

PROBAST does not evaluate the applicability of the analysis, so the applicability assessment 

only consists of the participants, predictors and outcome domains. The applicability 

assessment evaluates whether there are any concerns regarding the relevance of an 

individual study to the review question 103. For example, if a model was developed on 

participants in a different setting to the one specified in the review the question, then the 

model may not be applicable to the originally defined setting, and therefore, the study would 

be deemed as having high concerns regarding applicability. No studies were excluded based 

on the ROB or applicability assessments. PROBAST assessment was performed by one 

reviewer (TM), and a random sample of articles (≈ 20%) was checked for agreement by a 

second reviewer (NF).  
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Reporting Standards 

 

The reporting standards of ML studies were assessed using the transparent reporting of a 

multivariable prediction model for individual prognosis or diagnosis (TRIPOD) guidelines 17. 

TRIPOD consists of 22 items assessing the reporting standards of research studies developing 

or validating a multivariable prediction model. Items that are not relevant for all review 

outcomes (e.g., treatment details) were denoted as not applicable (NA). Additionally, TRIPOD 

items 4b and 5a were omitted due to lack of relevance. Many studies in this review were lab-

based, and therefore reporting key dates and study setting is uncommon. Items 11, 14b and 

17 were removed as they are optional and were not relevant to this review. Item 15a was 

omitted as it was relevant to traditional prediction studies but did not apply to ML. Item 15b 

was removed as it was not fully applicable to ML without altering the item. Additionally, all 

non-development items were excluded as they were not applicable to the studies in this 

review. As the reporting standards of medical ML studies have shown low adherence to 

recommended guidelines 109, we aimed to assess the quality of reporting throughout the 

literature. Assessment of reporting standards was performed by one reviewer (TM), and 

approximately 20% of articles were randomly sampled and checked for consistency by a 

second reviewer (NF).  

 

Data Synthesis  

 

The heterogeneity of the literature was assessed by the similarity of study populations and 

methods (ML and Neuroimaging). A meta-analysis was not considered appropriate for this 

review due to the absence of consistent reporting standards (see Reporting Standards 
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Assessment), differences in study designs, methods, classification definitions and, in some 

cases, inadequate numerical data presented within the publications. Consequently, we 

performed a narrative synthesis, adhering to the synthesis without meta-analysis (SWiM) 

guidelines 12. The included studies are aligned with one of the three review outcomes, pain 

intensity, pain phenotype or response to treatment. The data has been narratively 

synthesised by presenting the range of the performance metrics reported in each section 

(e.g., accuracy, sensitivity or specificity) for each review outcome. However, inconsistent 

reporting means that the performance metrics reflect a subset of the sample.  

 

Results  

 

The searches resulted in the identification of a total of 1384 results, comprised of 1380 

citations from the searches and four studies from manual identification. Following the 

removal of 165 duplicate results, the title and abstracts of 1219 records were screened for 

relevance, resulting in 92 potentially relevant articles retrieved for full-text review. A total of 

48 studies were excluded at the full-text review stage. Reasons for exclusion can be identified 

in the PRISMA flow chart in Figure 1. Subsequently, a total of 44 results were included in this 

review, with 22 evaluating the prediction of pain intensity 

4,5,60,64,65,68,73,78,87,88,93,94,7,107,108,13,25,29,37,46,47,51, 15 of pain phenotypes 

2,3,84,86,91,97,105,14,28,33,50,66,74,77,83 and seven of response to treatment 31,32,34–36,43,99. 
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Figure 1. PRISMA flow chart. 
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PROBAST Assessment 

 

The ROB assessment demonstrated that 42 of the 44 studies in this review were categorised 

as high ROB, as summarised in Figure 2. The full assessment is presented in supplementary 

material 2. Concerning the participant domain, the most significant concern for bias resulted 

from sample issues, such as small sample sizes (typically £ 20 participants) or insufficient 

sample diversity (e.g., only male participants), with 12 of the 44 studies being scored high 

ROB. Additionally, five studies were deemed unclear for the participant domain as the 

inclusion and exclusion criteria were not clearly defined. The studies deemed at either high 

or unclear ROB for the outcomes domain were labelled as such due to missing or unclear 

outcome definitions (e.g., grouping justifications). Here, three studies were scored as high 

ROB, whilst one was deemed unclear ROB. The majority of the studies in this review were 

deemed as having high ROB in the analysis domain. The most common reason for high ROB 

arises from insufficient external validation, in-line with the PROBAST expectations (e.g., 

temporal or geographical validation) 62, with 42 of the 44 studies being scored as high ROB on 

the analysis domain. Overall, the results presented in the synthesis should be interpreted with 

caution. Many of the studies synthesised are at a high ROB, and therefore, it is unclear to 

what extent the results generalise. 
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Figure 2. PROBAST assessments for pain intensity, pain phenotyping and response to 

treatment studies. 
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The applicability assessment demonstrated that only one of the 44 included studies was 

deemed as having applicability concerns 65. The study was deemed as having high applicability 

concerns on the outcome domain 65. Here, the study predicted stimuli intensity rather than 

directly predicting pain intensity. All other domains had low concerns regarding applicability. 

No other studies were deemed high or unclear regarding applicability to the review question. 

The full applicability assessment is presented in supplementary material 3.   

 

Reporting Standards Assessment 

 

The assessment of reporting standards demonstrated relatively low adherence to reporting 

guidelines. The areas with the lowest adherence across studies included the title and abstract, 

where none of the articles met TRIPOD expectations. Regarding the title, none of the studies 

were entitled as developing a prediction model. The abstract adherence was more varied, but 

generally studies did not report model discrimination or calibration in line with TRIPOD 

expectations. Additionally, the majority did not report the number of outcome events in the 

abstract. Many of the studies included also had low adherence throughout the methods. For 

example, only two of the studies reported their justification for the sample size and only 

around half of the intensity and phenotyping studies reported the presence and handling of 

missing data. Concerning model performance, many of the studies did not sufficiently define 

or report all metrics following the guidance of TRIPOD. Moreover, the majority of the studies 

in the intensity and phenotype clusters did not sufficiently discuss the clinical or research 

implications of the prediction model. Other domains also had relatively low adherence and 

can be seen in the TRIPOD summary in Table 3. However, the low adherence to reporting 
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guidelines could be partially explained by the compatibility of the tools used (see review 

limitations). 

Table 3. TRIPOD summary for all of the review outcomes 
    Number Reported, n (%) 

Tripod Item Pain Intensity 
(N = 22) 

Pain 
Phenotype 
(N = 15) 

Treatment 
Response 

(N = 7) 

Title         

Identify the study as developing and/or 
validating a multivariable prediction model, 
the target population, and the outcome to be 
predicted. 

0 (0%) 0 (0%) 0 (0%) 

 
Abstract          

Provide a summary of objectives, study 
design, setting, participants, sample size, 
predictors, outcome, statistical analysis, 
results, and conclusions. 

0 (0%) 0 (0%) 0 (0%)  

 
Background and Objectives        

Explain the medical context (including 
whether diagnostic or prognostic) and 
rationale for developing or validating the 
multivariable prediction model, including 
references to existing models. 

19 (86%) 8 (53%) 6 (86%)  

 
Specify the objectives, including whether the 
study describes the development or 
validation of the model or both. 

4 (18%) 1 (7%) 0 (0%)  

Method          

Describe the study design or source of data 
(e.g., randomized trial, cohort, or registry 
data), separately for the development and 
validation data sets, if applicable. 

21 (95%) 15 (100%) 7 (100%) 
 

 
Participants          

Describe eligibility criteria for participants. 17 (77%) 15 (100%) 7 (100%)  

Give details of treatments received, if 
relevant. NA NA 7 (100%)  

Outcome          

Clearly define the outcome that is predicted 
by the prediction model, including how and 
when assessed. 

21 (95%) 14 (93%) 7 (100%) 
 

 
Report any actions to blind assessment of 
the outcome to be predicted. 21 (95%) 15 (100%) 7 (100%)  

Predictors          

Clearly define all predictors used in 
developing or validating the multivariable 22 (100%) 14 (93%) 7 (100%)  
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prediction model, including how and when 
they were measured.  
Report any actions to blind assessment of 
predictors for the outcome and other 
predictors. 

22 (100%) 15 (100%) 7 (100%)  

Sample Size          

Explain how the study size was arrived at. 0 (0%) 1 (7%) 1 (14%)  

Missing Data          

Describe how missing data were handled 
(e.g., complete-case analysis, single 
imputation, multiple imputation) with details 
of any imputation method.  

11 (50%) 7 (47%) 7 (100%) 
 

 
Statistical Analysis        

Describe how predictors were handled in the 
analyses.  22 (100%) 15 (100%) 7 (100%)  

Specify type of model, all model-building 
procedures (including any predictor 
selection), and method for internal 
validation.  

19 (86%) 14 (93%) 5 (71%) 
 

 
Specify all measures used to assess model 
performance and, if relevant, to compare 
multiple models.   

0 (0%) 0 (0%) 1 (14%) 
 

 
Results: Participants     

Describe the flow of participants through the 
study, including the number of participants 
with and without the outcome and, if 
applicable, a summary of the follow-up time. 
A diagram may be helpful. 

8 (36%) 12 (80%) 5 (71%) 
 

 

Describe the characteristics of the 
participants (basic demographics, clinical 
features, available predictors), including the 
number of participants with missing data for 
predictors and outcome.  

5 (23%) 7 (47%) 6 (86%) 
 

 
Model Development        

Specify the number of participants and 
outcome events in each analysis.  12 (55%) 12 (80%) 6 (86%)  

Model Performance        

Report performance measures (with 
confidence intervals) for the prediction 
model. These should be described in results 
section of the paper. 

0 (0%) 0 (0%) 0 (0%) 
 

 
Discussion: Limitations        

Discuss any limitations of the study. 14 (64%) 8 (53%) 7 (100%)  

Interpretation          

Give an overall interpretation of the results 
considering objectives, limitations, results 
from similar studies and other relevant 
evidence.  

22 (100%) 15 (100%) 7 (100%) 
 

 
Implication          
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Discuss the potential clinical use of the 
model and implications for future research.  4 (18%) 6 (40%) 5 (71%)  

Other Information: Supplementary 
Information        

Provide information about the availability of 
supplementary resources, such as study 
protocol, web calculator, and data sets. 

5 (23%) 3 (20%) 1 (14%) 
 

 
Funding          

Give the source of funding and the role of 
the funders for the present study.  3 (14%) 0 (0%) 2 (29%)  

 

 

Pain Intensity 

   

The characteristics of the 22 included studies which investigated pain intensity are reported 

in Table 4. The articles attempt binary classification, multiclass classification, continuous score 

prediction or a combination of any of these methods. All of the studies in the intensity section 

predict differing levels of pain intensity. For example, binary classification may discriminate 

classes such as no pain versus pain or low pain versus high pain. In contrast, multiclass 

classification occurs when n (n>2) different levels of pain are used as classes for prediction. 

These classes typically reflect broad pain classes (e.g., low, medium or high pain). In some 

instances, the continuous pain rating scale is converted to classes for classification, such that 

the number of classes reflects the responses on the rating scale. Here the number is treated 

as a label rather than a numerical value. Finally, continuous prediction attempts to identify 

the numerical value of reported pain intensity on a numerical rating scale. Continuous 

prediction differs from the previous example as the prediction is a numerical value rather 

than a discrete label.  
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Of the 22 included studies, a total of 13 perform binary classification 4,5,88,93,94,7,13,37,46,60,65,73,78, 

eight implement multiclass classification 5,25,47,64,87,94,107,108 and five conduct continuous 

prediction 7,29,51,68,88. The algorithms used within these studies are Support Vector Machines 

(SVM) 4,5,47,60,64,65,73,78,88,93, with one study using a Support Vector Regression (SVR) 88, 

regression models, including linear and logistic 7,29,51,68, Artificial Neural Networks (ANN), 

which includes Convolutional Neural Networks (CNN), Multilayer Perceptrons, and other 

feed-forward neural networks (e.g. Sparse Bayesian Extreme Learning Machine; SBELM) 

13,25,46,87,107,108, Linear Discriminant Analysis (LDA) 7, Random Forest models (RF) 94 and one 

study used a Mahalanobis classifier 37. 
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Table 4. Summary of pain intensity studies.     
  

Authors Classification 
Type 

Sample 
Demographics EEG 

Montage 
Feature 

Category 
Best 

Algorithm Outcome Performance Metrics (Mean age ± 
Standard 
Deviation)  

Alazrai et al. 
(2019)  

Binary 
24 Healthy Subjects 
(12 F, 22.5 ± 3.2) 

14 EEG 
Electrodes 

Time 
Frequency 

SVM (RBF 
Kernel) 

No Pain vs Pain 

Accuracy 89.2% ± 3.2% 

F1 (No Pain)  87.4% ± 4.1% 

F1 (Pain) 89.5% ± 3.3% 

Alazrai et al. 
(2019) 

Binary 

24 Healthy Subjects 
(13 M, 23.5 ± 2.3) 

14 EEG 
Electrodes 

Time 
Frequency 

SVM (RBF 
Kernel) 

No pain vs Pain 

Accuracy 93.86% 

Precision 94.02% 

Specificity  93.92% 

Sensitivity 88.88% 

F1 90.58% 

   
  

Multiclass 
SVM (RBF 
Kernel) 

No Pain vs No Pain-to-pain 
vs Pain 

Accuracy 90.18% 

Precision 91.34% 

Specificity 95.10% 

Sensitivity 86.99% 

F1 88.75% 

Bai et al. 
(2016)  

Binary 

34 Healthy Subjects 
(17 F, 21.6 ± 1.7) 

64 EEG 
Electrodes 

Event 
Related 
Potentials 

LDA Low Pain vs High Pain Accuracy 70.36% ± 14.18% 

 

  
    

Continuous 
Linear 
Regression 

Pain Rating (4-10; High 
Pain Trials) 

MAE  1.173 ± 0.278 
 

 

Cao et al. 
(2020) 

Binary 
18 Healthy Subjects 
(10 M, 25 ± 3.5) 

16 EEG 
Electrodes 

Time 
Frequency 

SBELM No Pain vs Pain 
Train Accuracy  89.3% ± 3.4%  

Accuracy  90.1% ± 2.8%  
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AUC 0.95  

Elsayed et al. 
(2020) 

Multiclass 
30 Healthy Subjects 
(17 M, 24 ± 3) 

8 EEG 
Electrodes 

Time 
Frequency 

ANN (Three 
hidden 
layers) 

No Pain vs Low Pain vs 
Moderate Pain vs High 
Pain 

Accuracy 94.83%  

Precision 93.92%  

Recall 95.14%  

F1 94.17%  

Furman et al. 
(2018)  

Continuous 
44 Healthy Subjects* 
(22 M, 28.4) 

64 EEG 
Electrodes 

Time 
Frequency 

Leave one 
out 
Regression 

Pain Intensity (0-100)  r 0.55 
 

 

Hadjileontiadis 
(2015) 

Binary 
17 Healthy Subjects 
(9 M, 23.22 ± 1.72) 

14 EEG 
Electrodes 

Time 
Frequency 

Mahalanobis 
classifier 

No Pain vs Pain Accuracy 90.25% ± 2.08% 
 

 

Kaur et al. 
(2019) 

Binary 
39 Healthy Subjects 
(34 M, 24.59 ± 3.03) 

4 EEG 
Electrodes 

Time 
Frequency 

MLPNN (One 
hidden layer 
with 9 
Neurons) 

No Pain vs Pain 

Train Accuracy 97.29%  

Test Accuracy 90%  

CV Accuracy 82.73%  

Kimura et al. 
(2021) 

Multiclass 

23 Subjects with hip 
Osteoarthritis or 
Osteonecrosis who 
underwent total hip 
arthroplasty (18 F, 
64.6 ± 11.9)  

1 EEG 
Electrode 

Time 
Frequency 

SVM (RBF 
Kernel) 

No Pain vs Mild Pain vs 
Moderate Pain vs Severe 
Pain 

Accuracy 79.6%✢✢  

Precision✢ 78.28% ± 6.03%✢✢  

Recall✢ 77.03% ± 9.05%✢✢  

F1✢ 77.67% ± 7.41%✢✢  

Li et al. (2018)  Continuous 
34 Healthy Subjects* 
(17 F, 21.6 ± 1.7) 

64 EEG 
Electrodes 

Event 
Related 
Potentials 

Linear 
Regression 

Continuous Pain Ratings MAE 1.19 ± 0.35 
 

 

Misra et al. 
(2017)  

Binary 
30 Healthy Subjects 
(16 F, 20 ± 2)  

128 EEG 
Electrodes 

Time 
Frequency 

SVM (RBF 
Kernel) 

Low Pain vs High Pain 
Accuracy 89.58%  

Misclassification 10.42%  

Nezam et al. 
(2021) 

Multiclass 
24 Healthy Subjects 
(15 M, 25) 

30 EEG 
Electrodes 

Time 
Frequency 

SVM (RBF 
Kernel) 

No Pain vs Low Pain vs 
High Pain 

Accuracy 83% ± 5%  

Specificity 91% ± 4%  

Sensitivity 93% ± 5%  

No Pain vs Low Pain vs 
Moderate Pain vs High 
Pain vs Intolerable Pain 

Accuracy 62% ± 6%  

Specificity 78% ± 3%  



 22 

Sensitivity 87% ± 4%  

Okolo & 
Omurtag 
(2018)  

Binary 
9 Healthy Subjects (7 
M, Age Range 20 - ≥ 
40) 

19 EEG 
Electrodes 

Time 
Frequency 

SVM (Linear 
Kernel) 

No Pain vs Low Stimulus Accuracy✢ 89.78% ± 5.97%  

No Pain vs Max Stimulus Accuracy✢ 89.51% ± 8.36%  

Low vs Max Stimulus Accuracy✢ 69.2% ± 12.02%  

Prichep et al. 
(2018)  

Continuous 
77 Chronic Pain 
Subjects* (53% F, 
49.3 ± 15.8) 

19 EEG 
Electrodes 

Time 
Frequency 

Stepwise 
Logistic 
Regression 

Continuous Pain Rating (0 
- 10) 

r 0.907✢✢  

     

Sai et al. 
(2019) 

Binary 
10 Parturient Women 
(29.6 ± 4.9) 

16 EEG 
Electrodes 

Time 
Frequency 

SVM (RBF 
Kernel) 

No Pain vs Pain 

Accuracy 84%  

Sensitivity 87.20%  

Specificity 81.10%  

Schulz et al. 
(2012) 

Binary 
23 Healthy Subjects 
(14 F, 26) 

64 EEG 
Electrodes 

Time 
Frequency 

SVM (Linear 
Kernel) 

Low Pain vs High Pain Accuracy 62%  

Pain Sensitive vs Pain 
Insensitive 

Accuracy 83%  

Sensitivity 50%  

Specificity 100%  

Tripanpitak et 
al. (2020) 

Multiclass 
13 Healthy Subjects 
(8 M, 33.2 ± 7.9) 

16 EEG 
Electrodes 

Event 
Related 
Potentials 

ANN (One 
hidden Layer 
with 10 
neurons) 

No Pain vs Pain vs Max 
Pain 

Train Accuracy 100%  

Accuracy 100%  

No Pain vs Sensation vs 
Pain vs Max Pain 

Train Accuracy 87.50%  

Accuracy 94.40%  

Tu et al. 
(2016)  

Binary 

96 Healthy Subjects* 
(51 F, 21.6 ± 1.7) 

64 EEG 
Electrodes 

Time 
Frequency 

SVM (Linear 
Kernel) 

Low Pain vs High Pain 

Accuracy 83.5% ± 6.8%  

Sensitivity 79.2% ± 14.6%  

Specificity 72.2% ± 14.2%  
   

  
 

Continuous SVR 
Continuous Pain Rating (0 
- 10) 

MAE 1.15 ± 0.32 
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Vatankhah et 
al. (2013)  

Binary 
15 Healthy Subjects* 
(8 F, 28) 

12 EEG 
Electrodes 

Time 
Frequency 

SVM (ANFIS 
adapted 
RBF) 

No Pain vs Pain Accuracy 95%  

Pain vs Intolerable Pain  Accuracy 75%  

Vijayakumar 
et al. (2017) 

Binary 

25 Healthy Subjects 
(11 F, Median Age 
24) 

64 EEG 
Electrodes 

Time 
Frequency 

RF Model No Pain vs Pain BCA 95.33% ± 0.6% 
 

 

  
 

  
 

Multiclass RF Model 
Categorised Pain Rating 
(1-10) 

BCA 89.45% ± 1.05% 
 

 

Yu et al. 
(2020)  

Multiclass 
32 Healthy Subjects 
(20 F, Age Range 
19-35) 

32 EEG 
Electrodes 

Time 
Frequency 

CNN (Adam 
Optimiser) 

No Pain vs Moderate Pain 
vs Severe Pain 

Accuracy 97.37% ± 0.26%  

Precision 96.05%  

Specificity 98.03%  

Sensitivity 96.06%  

F1 96.05%  

Yu et al. 
(2020)  

Multiclass 
20 Healthy Subjects* 
(11 M, Age Range 
23-42) 

32 EEG 
Electrodes 

Time 
Frequency 

SFNN (ELM) 
No Pain vs Minor Pain vs 
Moderate Pain vs Severe 
Pain 

Accuracy 68.9% ± 3.12% 

 

 

 
Key: * Number of participants used in the final model is different from the overall reported sample size. ✢ Manually averaged performance metrics. The values here represents the average across 
participants or conditions, which is not reported in the original paper. ✢✢ Cross-validation method unclear or not reported. 

 

 

ANFIS, adaptive network fuzzy inference system; ANN, artificial neural network; AUC, area under the ROC curve; BCA, balanced classification accuracy; CNN, convolutional neural network; CV, cross-
validation; EEG, electroencephalogram; ELM, extreme learning machine; F, females; LDA, linear discriminant analysis; M, males; MAE, mean absolute error; MLPNN, multilayer perceptron neural 
network; RBF, radial basis function; RF, random forest; ROC, receiver operating characteristics; SBELM, sparse bayesian extreme learning machine; SFFN, single-hidden-layer feed-forward neural 
network; SVM, support vector machine; SVR, support vector regression. 
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Regarding the prediction of no pain conditions relative to pain conditions, the studies in this 

review have yielded accuracies between 82.73% and 95.33% 4,5,13,37,46,65,73,93,94, with eight of 

nine studies obtaining an accuracy greater than 85% 4,5,13,37,46,65,93,94. Additionally, five of the 

studies included in this review attempt to discern low pain and high pain classes 7,60,65,78,88. 

The performance of these studies is more varied than the no pain and pain classification, with 

a range of accuracies between 62% and 89.58%. Here, only two of five studies achieved an 

accuracy of over 80% 60,88. Taken together, the ability to discern binary pain intensity classes 

appears to be greater than chance levels. Here, detecting the presence of pain is achievable, 

with accuracies surpassing 80%, whilst discriminating low pain from high pain can be achieved 

with accuracies greater than 60%, with one study demonstrating an accuracy close to 90% 60. 

  

Despite the promise of binary classification, the clinical utility of merely identifying the 

presence of pain or broad pain categories (low pain vs high pain) may be limited. As such, 

other studies included in this review attempt multiclass or continuous prediction, which 

increases the resolution of pain intensity that can be determined and thus improves the 

potential clinical relevance. For example, differentiating between just three classes of pain 

intensity (no pain, low pain and high pain) allows the inference of the presence of pain but 

also provides some indication regarding the intensity in the same classification, which would 

not be possible in a single binary classification. Summarising the multiclass performance is 

challenging, as the number of classes differs across studies (range 3 - 10 classes). Therefore, 

individual results should be referred to Table 4. Nevertheless, the accuracy range for the 

classification of three or more pain classes is between 62% and 100% 5,25,47,64,87,94,107,108. These 

results suggest that pain classification at a finer resolution is achievable, with half of the eight 

studies achieving accuracies between 90% and 100% 5,25,87,107.  
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Finally, the ultimate goal of pain intensity prediction is to predict the actual pain intensity 

reported on a rating scale. The majority of the studies that perform a continuous prediction 

attempt to identify the pain rating reported on a 10- or 11-point scale 7,51,68,88, whilst one 

study attempted pain prediction using a 0 to 100 scale 29. The performance of these 

algorithms is either evaluated using a correlation coefficient or their mean absolute error 

(MAE). The studies that evaluate their model’s performance using MAE achieved an error 

between 1.15 and 1.19 7,51,88. Regarding the studies that evaluate their model using a 

correlation coefficient, the two studies achieved a positive correlation between predicted 

pain intensity and actual pain intensity between 0.55 and 0.907 29,68.  

 

Pain Phenotypes 

 

The characteristics of the 15 phenotyping studies are reported in Table 5. To achieve 

consistency within the reporting of this narrative review, the phenotyping studies can be 

further divided into subgroups. Since all of the phenotyping studies utilised binary 

classification, the studies were divided based on the types of groups or conditions predicted. 

One study attempted multiclass classification in addition to binary classification 50. We do not 

synthesise the multiclass results, as they are only comprised of a single study. However, the 

performance metrics for the multiclass classification are reported in Table 5. 

 

Six of the 15 phenotyping studies attempt to predict migraine phenotypes 2,3,14,28,83,86. Within 

these six studies, four classified migraine versus healthy controls 2,3,83,86, one classified 

migraine with aura versus migraine without aura 28 and one classified the interictal phase 
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versus the preictal phase of migraine 14. Furthermore, five of the 15 studies predicted 

neuropathic or neurogenic pain 74,77,91,97,105. Four of the five studies above predicted the 

presence of neuropathic pain or neurogenic pain versus healthy controls 74,77,91,97, and one 

study classified neuropathic patients into two groups: pain below the lesion versus without 

pain below the lesion 105. Furthermore, one study classified a broad group of chronic pain 

patients versus healthy controls 84. Here, the chronic pain group consisted of various 

conditions, including chronic back pain, chronic widespread pain, joint pain, unspecific 

neuropathic pain, postherpetic neuralgia and polyneuropathic pain. Additionally, one study 

classified fibromyalgia patients versus healthy controls 66. Moreover, one study classified 

radiculopathy versus healthy controls 50. Here, the authors also perform multiclass 

classification of radiculopathy subjects, individuals with chronic lumbar pain scheduled to 

receive an implanted spinal cord stimulator and healthy subjects. Finally, one study predicted 

experimentally induced visceral hypersensitivity versus a placebo condition 33. SVM was the 

most common algorithm 3,14,28,50,66,74,84,91 including SVR 33, whilst ANN 2,86, discriminant 

analysis 77,97,105 and RF models 83 were also used. 
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Table 5. Summary of pain phenotyping studies.      

Authors Classification 
Type 

Sample Demographics 
EEG 

Montage 
Feature 

Category 
Best 

Algorithm Outcome Performance Metrics (Mean age ± Standard 
Deviation) 

Akben et al. 
(2012) Binary 

30 participants; 15 Migraine 
(13 F), 15 Healthy Controls 
(10 F). Age Range 20 - 35 

18 EEG 
Electrodes 

Time 
Frequency 

MLPNN (One 
hidden layer 
with 50 
neurons) 

Healthy Control vs 
Migraine 

Accuracy 93.33% 

Sensitivity 93.33% 

Specificity 93.33% 

Akben et al. 
(2016) Binary 

60 Participants; 30 Migraine 
(21 F), 30 Healthy Controls 
(19 F). Age Range 20 - 40 

18 EEG 
Electrodes 

Time 
Frequency 

SVM (Linear 
Kernel) 

Healthy Control vs 
Migraine 

Accuracy 88.40% 

Sensitivity 90% 

Specificity 86.70% 

Cao et al. 
(2018) Binary 

80 Participants; 40 Migraine 
(30 F, 38.1 ± 8.2). 40 Healthy 
Controls (32 F, 36.1 ± 9.8) 

4 EEG 
Electrodes EEG Entropy SVM (RBF 

Kernel) 
Interictal Phase vs 
Preictal phase 

Accuracy 76% ± 4% 

Sensitivity (Recall) 75% ± 5% 

Precision (PPV) 75% ± 5% 

F1 74% ± 6% 

De Tommaso 
et al. (1999) Binary 

120 Migraine (80 F, 36.7 ± 
4.5), 51 Healthy Controls (36 
F). Age Range 25-46 

12 EEG 
Electrodes 

Time 
Frequency 

ANN (Two 
hidden 
neurons) 

Healthy Control vs 
Migraine 

Sensitivity 95.83% 

FPR 4.16% 
 

Frid et al. 
(2020) Binary 

53 Participants* (All with 
episodic migraine). Age 
Range 18 - 75 

32/64** EEG 
Electrodes 

Time 
Frequency 

SVM (RBF 
Kernel) MWA vs MWoA 

Accuracy 84.62%  

AUC 0.8813  

Graversen et 
al. (2011) Binary 15* Healthy Participants (11 

M, 32.9) 
3 EEG 
Electrodes 

Time 
Frequency 

SVR (Linear 
Kernel) 

Visceral Hypersensitivity 
Sensitisation vs placebo 
Condition 

Accuracy 91.70% 
 

 

Levitt et al. 
(2020) 

Binary 
57 Participants; 20 
Radiculopathy (11 F, 54.25), 
20 Healthy Controls (11 F, 
54.15), 17 Chronic Lumbar 
scheduled to receive 
implanted SCS (10 F, 56.88) 

16 EEG 
Electrodes 

Time 
Frequency 

SVM (RBF 
Kernel) 

Healthy Control vs 
Radiculopathy 

Accuracy 82.50%  

AUC 0.8225  
     

 Accuracy 71.90%  
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Multiclass 
Healthy Control vs 
Radiculopathy vs Pre-
SCS 

AUC 
(Radiculopathy) 0.828  

AUC (Healthy) 0.842  

AUC (Pre-SCS) 0.962  

Paul et al. 
(2019) Binary 

32 Participants; 16 
Fibromyalgia (12 F, 46.81 ± 
4.28), 16 Healthy Controls 
(12 F, 45.19 ± 4.48) 

8 EEG 
Electrodes 

Time 
Frequency 

SVM 
(Polynomial 
Kernel) 

Healthy Control vs 
Fibromyalgia 

Accuracy 96.15%  

Sensitivity 96.88%  

Specificity 95.65%  

Precision (PPV) 93.94%  

Saif et al. 
(2021) Binary 

30 Participants; 10 Healthy 
Controls (7 M, 39.6 ± 10.2), 
10 PNP (8 M, 43.8 ± 9.1), 10 
PWP (7 M, 46.2 ± 9.4) 

61 EEG 
Electrodes 

Time 
Frequency 

SVM (Linear 
Kernel) 

Healthy Control vs PWP Accuracy 99% ± 0.49%  

Healthy Control vs PNP Accuracy 97% ± 0.6%  

PWP vs PNP Accuracy 91% ± 1%  

Sarnthein et 
al. (2006) Binary 

30 Participants; 15 
Neurogenic Pain (9 M, 
Median Age 64), 15 Healthy 
Controls (8 F, Median Age 
60) 

60 EEG 
Electrodes 

Time 
Frequency LDA Healthy Control vs 

Neurogenic Pain 

Accuracy 87%✢✢  

CI 69% - 96%  

Subasi et al. 
(2019) Binary 

30 Participants; 15 Migraine 
(13 F, 27 ± 4.4), 15 Healthy 
Controls (10 F, 26 ± 5.3) 

18 EEG 
Electrodes 

Time 
Frequency RF Model Healthy Control vs 

Migraine 

Accuracy 85.95%  

Sensitivity 85.20%  

Specificity 86.70%  

Ta Dinh et al. 
(2019) Binary 

185 Participants; 101 
Chronic Pain*✢ (69 F, 58.2 ± 
13.5), 84 Healthy Controls 
(55 F, 57.8 ± 14.6) 

64 EEG 
Electrodes 

Time 
Frequency 

SVM (Linear 
Kernel) 

Healthy Control vs 
Chronic Pain 

Accuracy 57% ± 4%  

Sensitivity 60% ± 5%  

Specificity 57% ± 5%  

Vanneste et 
al. (2018)  Binary 

342 Participants; 78 
Neuropathic Pain (43 M, 
47.39 ± 10.26), 264 Healthy 
Controls (152 M, 49.51 ± 
12.54) 

19 EEG 
Electrodes 

Time 
Frequency SVM Healthy Control vs 

Neuropathic Pain 

Accuracy 92.53% ± 1.59%  

Sensitivity (TPR) 93% ± 2%  

FPR 21% ± 2%  

AUC 0.95 ± 0.01  
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Vuckovic et 
al. (2018)  Binary 

21 Participants*; 11 
Neuropathic Pain (7 M, 44.9 
± 16.9), 10 Healthy Controls 
(7 M, 35.2 ± 7.2) 

48 EEG 
Electrodes 

Time 
Frequency LDA Healthy Control vs 

Neuropathic Pain 

Accuracy [95 CI] 88% ± 10% 
[86%-89%] 

 

Sensitivity [95 CI] 89% ± 7% [88%-
90%] 

 

Specificity [95 CI] 86% ± 12% 
[84%- 88%] 

 

Wydenkeller 
et al. (2009) Binary 26 Participants* with Spinal 

cord injury (20 M,47 ± 15) 
32 EEG 
Electrodes 

Time 
Frequency DA 

Participant with pain 
below the lesion vs 
Participant without pain 
below the lesion 

Accuracy 84.2%✢✢ 

 

 
 

Key: * Number of participants used in the final model is different from the overall reported sample size, ** 3 different EEG caps were used during this study, ✢ Various chronic pain conditions including: 47 

with chronic back pain, 30 chronic widespread pain, 6 joint pain, 5 unspecific neuropathic pain, 7 postherpetic neuralgia, 6 polyneuropathic pain. ✢✢Cross-validation method unclear or not reported.  
 

ANN, artificial neural network; AUC, area under the ROC curve; CI, confidence interval; DA, discriminant analysis; EEG, electroencephalogram; F, females; FPR, false positive ratio; LDA, linear discriminant 

analysis; M, males; MLPNN, multilayer perceptron neural network; MWA, migraine with aura; MWoA, migraine without aura; PNP, paraplegic without neuropathic pain; PWP, paraplegic with neuropathic pain; 

PPV, positive predictive value; RBF, radial basis function;  RF, random forest; ROC, receiver operating characteristics; SCS, spinal cord stimulator; SVM, support vector machine; SVR, support vector 

regression; TPR, true positive ratio. 
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The majority of the studies included in the pain phenotyping section of this review attempt 

to phenotype different aspects of migraine. To summarise the performance of phenotyping 

migraine, we report the ranges of values obtained for accuracy, sensitivity and specificity 

across these studies 2,3,14,28,83,86. However, not all of the studies reported include all three 

metrics and, therefore, each range reflects a proportion of the whole data set. Out of the six 

studies, five report accuracy 2,3,14,28,83, five report sensitivity 2,3,14,83,86 and three report 

specificity 2,3,83. The ability to discriminate different characteristics of migraine ranges 

between 76% and 93.33%, 75% and 95.83%, 86.7% and 93.33% for accuracy, sensitivity and 

specificity, respectively. 

 

The remaining studies in the phenotyping sections are more heterogeneous and are therefore 

inherently more challenging to group. However, the remaining studies are grouped based on 

the notion that they attempt to predict one or more chronic pain conditions (inclusive of 

experimentally induced hypersensitivity) compared with a group of healthy controls or 

predict the presence of pain relating to a lesion 33,50,66,74,77,84,91,97,105. Again, not all of the 

studies report all of the required metrics. Consequently, synthesised results are reported 

from a subset of the final sample size of nine. All nine studies reported accuracy, whilst 

sensitivity and specificity were reported from four 66,84,91,97 and three studies 66,84,97, 

respectively. The accuracy range across these studies is 57% and 99%. Here, the sensitivity is 

between 60% and 96.88%, and the specificity is between 57% and 95.65%. Therefore, the 

results demonstrate that various chronic pain conditions can be identified with at least above 

chance level, with six studies surpassing 85% accuracy 33,66,74,77,91,97. 
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Response to Treatment 

 

The characteristics of the seven treatment response studies are reported in Table 6. Two of 

the six studies classified active treatment or placebo conditions 34,35, whilst a further four 

predicted whether treatment was successful 31,32,36,99. The final study for the response to 

treatment conducted a continuous prediction to assess the change in the brief pain inventory 

score after medication 43. The models used within the response to treatment studies include 

SVMs 31,32,34,35, regression models, including linear and logistic 36,43 and a k-nearest neighbours 

algorithm 99. 
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Table 6. Summary of response to treatment studies       

Authors Classification 
Type 

Sample Demographics 
EEG 

Montage 
Feature 

Category 
Best 

Algorithm Outcome Performance Metrics (Mean age ± Standard 
Deviation) 

Gram et al. 
(2015) Binary 32 Healthy Participants (17 

M, 27.2 ± 7.1) 
62 EEG 
Electrodes 

Time 
Frequency 

SVM (Linear 
Kernel) 

Responders vs Non-
Responders (Response 
to Opioid; Morphine 
day) 

Accuracy 71.90% 

PPV 70% 

NPV 75% 

Responders vs Non-
Responders (Response 
to Opioid; Placebo day) 

Accuracy 71.90% 
PPV 75% 

NPV 68.80% 

Gram et al. 
(2017) Binary 

81 Participants (45 F); 51 
Responders (26 F, 64.2 ± 
10.4), 30 Non-Responders 
(19 F, 64.9 ± 15.7) 

34 EEG 
Electrodes 

Time 
Frequency 

SVM (Linear 
Kernel) 

Responders vs Non-
Responders (Response 
to Opioid) 

Accuracy 65% 

PPV 76% 

NPV 53% 

Graversen et 
al. (2012) Binary 

28 Participants with chronic 
pancreatitis; 14 Pregabalin 
group (8 F, 50), 14 Placebo 
group (11 M, 53) 

62 EEG 
Electrodes 

Time 
Frequency 

SVM (Linear 
Kernel) 

Pregabalin Group vs 
Placebo Group Accuracy 85.70% 

 

 

Graversen et 
al. (2015) Binary 21 Healthy Male Participants 

(20.35) 
62 EEG 
Electrodes 

Time 
Frequency 

SVM (Linear 
Kernel) 

Remifentanil Group vs 
Placebo Group Accuracy 95.24% 

 

 

 

Grosen et al. 
(2017) Binary 59 Patients with Chronic 

Pain (41 F, 55 ± 16) 
9 EEG 
Electrodes 

Time 
Frequency 

Logistic 
Regression 

Successful vs 
Unsuccessful Clinical 
Treatment 

OR 1.18✢✢  

SE 0.09  

CI 1.01 - 1.37  
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Hunter et al. 
(2009) Continuous 

12 Participants* with 
Fibromyalgia (9 F, 50.1 ± 
8.2), 6 in treatment group, 6 
in placebo group. 

35 EEG 
Electrodes 

Time 
Frequency 

Linear 
Regression 

Brief Pain Inventory 
Change at Week 12 
(Duloxetine Treatment) 

Coefficient 2.9✢✢  

R2 0.93 
 

 

Wei et al. 
(2020) Binary 

70 Participants with Herpes 
Zoster; 45 Responders (25 
M, 61 ± 11.8), 25 Non-
Responders (14 F, 65.5 ± 
8.7) 

32 EEG 
Electrodes 

Time 
Frequency KNN (K=5) Responders vs Non-

Responders 

Accuracy 80% ± 11.7%  

Sensitivity 82.5 ± 14.7%  

Specificity 77.7 ± 27.3%  

AUC 0.85  

Key: * Number of participants used in the final model is different from the overall reported sample size. ✢✢Cross-validation method unclear or not reported.  

AUC, Area under the ROC curve; CI, confidence interval; EEG, electroencephalogram; F, females; KNN, k-nearest neighbours; M, males; NPV, negative predictive value; OR, odds ratio; PPV, positive 
predictive value; ROC, receiver operating characteristics; SE, standard error; SVM, support vector machine. 
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The three studies that classified whether participants were responders or non-responders to 

treatment achieved accuracies between 65% and 80% 31,32,99. Here, two studies achieved a 

positive predictive value (PPV) and negative predictive value (NPV) between 70% and 76% 

and 53% and 75% 31,32, respectively. Moreover, the final study that classified responders and 

non-responders to medication achieved a sensitivity of 82.5% and a specificity of 77.7% 99. 

Regarding the classification of active treatment versus placebo groups, the two studies 

achieved accuracies between 85.7% and 95.24% 34,35. The remaining two studies used 

regression models to predict treatment response 36,43. 

 

Discussion  

 

This review investigated the effectiveness of ML for predicting pain-related outcomes, pain 

intensity, pain phenotypes and treatment response. Here, we focus on the potential 

usefulness of ML and EEG for pain outcome identification, rather than exploring the individual 

patterns of neural activation that constitute a biomarker. Other studies present overviews of 

the excellent utility of biomarkers in pain science 21,57,59. Nevertheless, pain intensity reflects 

self-reported pain ratings resulting from naturalistic or experimentally induced pain. This 

review demonstrates that the presence of pain can be predicted, with all applicable studies 

demonstrating accuracies greater than 80% 4,5,13,37,46,65,73,93,94. Regarding multiclass 

prediction, five out of eight studies demonstrated an accuracy of over 85% 5,25,87,94,107, with 

two surpassing 97% 87,107. Furthermore, continuous pain ratings can be predicted with an 

error of approximately 10% on a 10- or 11-point rating scale 7,51,88. The ability to detect pain 

intensity with an error of approximately one point on a rating scale demonstrates the 

potential of ML for pain prediction.  
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Concerning pain phenotyping, which reflects characteristics of pain conditions and may assist 

with diagnosis, our results show that pain conditions, such as migraine or neuropathic pain, 

can be discriminated above chance level (50%), with the majority of studies achieving an 

accuracy greater than 85% 2,3,33,66,74,77,83,91,97. Regarding migraine, all relevant studies achieved 

over 75% accuracy, sensitivity and specificity, with four and three studies surpassing 85% 

sensitivity 2,3,83,86 and specificity 2,3,83, respectively. Moreover, regarding the prediction of pain 

conditions relative to controls, six of nine studies achieved accuracies of over 85% 

33,66,74,77,91,97. Additionally, three studies demonstrated a sensitivity of over 85% 66,91,97, with 

one demonstrating a sensitivity of almost 97% for detecting individuals with fibromyalgia 

relative to healthy controls 66. However, the heterogeneity of the literature makes identifying 

specific use cases challenging currently. The scope of this review was to assess various 

phenotypes (as defined by the original authors), with no limit on inclusions, allowing for a 

diverse synthesis. As the field develops, we anticipate that narrower reviews will be 

conducted, which include alternative information such as the instruments used, providing a 

specific reference to researchers and clinicians in the field. However, this was beyond the 

scope of our review, as we believe that a broad synthesis is currently the most appropriate 

approach. Nevertheless, the results demonstrate the potential of EEG and ML to identify pain 

phenotypes that may eventually assist diagnostic assessments. 

 

The results show that responders and non-responders to pain treatments can be classified 

with accuracies above 65% 31,32,99, whilst treatment and placebo groups can be predicted with 

accuracies greater than 85% 34,35. However, the evidence suggests treatment response 

requires additional investigation, as it is currently under-researched. Additionally, the clinical 
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utility of predicting treatment response by classifying participants into responders and non-

responders is unclear, whilst the demarcation can be heterogeneous and arbitrary 79,81. The 

field might benefit more from parametric outcomes, such as predicting the reduction in 

subjective pain reported on a rating scale. Moreover, two studies that classified participants 

into responder status did so during tonic pain stimulation 31,32. The clinical relevance is 

therefore currently questionable.  

 

Should future research improve the current limitations and performance , ML may eventually 

be clinically advantageous by reducing trial-and-error treatment 30–32. Indeed, the results 

across all three domains remain promising, but considering that 42 of the 44 studies in this 

review were deemed high ROB, there is a possibility that the synthesised results are inflated 

or are not fully generalisable. Therefore, we suggest that the results and, more importantly, 

the current clinical relevance of ML and EEG are tentatively interpreted. 

 

Despite the concerns, predicting pain outcomes from EEG using ML may demonstrate clinical 

utility, should further research validate the technique. Detecting pain-related outcomes 

remains challenging 3,19,69, with many tools failing in those who cannot accurately 

communicate their pain, such as individuals with dementia 11,39. Many of the studies in this 

review used ML to classify pain intensity in healthy individuals. However, a recent study 

demonstrated promising performance for identifying pain intensity in those with chronic pain 

47, which demonstrates the potential for both pain identification in those with and without 

chronic pain conditions. Moreover, there are limited objective methods to ascertain clinical 

interventions effectiveness for a given patient. Should ML be eventually clinically validated, it 

could automate pain intensity or phenotype detection, benefiting patients and clinicians. 
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These tools could enable screening before a clinical assessment or facilitate improved 

diagnosis or prognosis 20,22. For example, ML may allow clinicians to identify information in 

brief appointments, which currently cannot be achieved 21; reducing patient visits. However, 

recording EEG from all patients is unnecessary and challenging. The most appropriate use 

case being for individuals who cannot communicate their pain accurately or at all. Indeed, 

improvements may be significant in conditions that are challenging to diagnose, such as 

migraine 3,69, where ML could assist both pain specialist and non-pain specialist clinicians. 

Eventually, ML could guide treatment. An algorithm that predicts treatment response would 

decrease ineffective treatments and patient suffering 31. Should these algorithms be clinically 

validated, they could be applied throughout the clinical process, providing this is 

implemented ethically 22,23. ML should not replace clinicians but instead, be used as an 

additional tool; automating routine tasks and increasing time with patients 1. 

 

The promise of ML is exciting but not without challenges. Evidence demonstrating that ML 

significantly improves patient care is sparse 58. Consequently, substantial clinical 

implementation is unlikely until the end of the decade 20. Perhaps this is optimistic, as 

different algorithms and features are used, with little indication whether models can be 

effectively trained using similar features and methods 59. It is unknown whether models 

trained on lab-based samples are ecologically valid and generalise to other samples or clinical 

settings 22,59. The current lack of sufficient external validation is the primary ROB across the 

studies in this review and severely limits the clinical applicability of ML. Most of the studies in 

this review performed internal validation; mostly through cross-validation (e.g., k-fold). 

However, issues arise when using certain internal validation methods on small samples. For 

example, research has shown that k-fold validation likely overestimates performance in small 
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sample sizes, resulting in overfitting and ungeneralisable models 90. Therefore, as many of the 

studies in this review had small samples and several performed k-fold validation, the 

generalisability of the prediction model is unclear. The authors also note that splitting the 

dataset into training and test sets provide robust estimates in small samples 90. However, the 

PROBAST guidelines suggest that splitting the data into training and test sets is an insufficient 

form of internal validation, which is often erroneously referred to as external validation 103. 

Developing and validating a model on the same participants is not appropriate evidence for 

potential clinical applications 70. Therefore, to demonstrate sufficient evidence for clinical 

translation, extensive external validation is imperative 10. In line with PROBAST 

recommendations, future prediction models should include either external temporal 

validation, whereby the testing data is collected at a later time period than the training data, 

or geographical validation, whereby data is collected by other investigators in a different 

location 103. The latter, however, may require increased international collaboration and data 

sharing, which we strongly encourage. Alternatively, researchers can evaluate the model 

performance using data from a different study 17. Nevertheless, external validation is essential 

for future research to thoroughly assess the clinical utility and generalisability of ML and EEG, 

whilst also reducing bias.   

 

Many ML algorithms require specialist knowledge to implement, whilst EEG signals require 

pre-processing. Currently, ML is too user-dependent, and it is unlikely that clinicians will have 

the time to complete ML training. Convolutional neural networks (CNN), that can learn 

features directly from medical imaging; removing handcrafted feature selection 56,107, could 

be a potential solution. Only one study reviewed implemented CNNs, achieving 97% accuracy 

in a three-class paradigm 107. In other medical fields such as skin cancer detection, CNNs 
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demonstrate comparable accuracy to experts 26. However, CNNs are complex to interpret; 

hindering clinical applications 72. Nevertheless, CNNs are worth exploring due to their 

potential for superior performance and the current lack of lab-based research.  

 

The lack of standardisation in reporting across studies makes interpretation and replication 

difficult, whilst also increasing bias. This problem appears to be pervasive, and several studies 

have demonstrated that adherence to reporting standards are deficient across medical ML 

research 40,63,98,109. A recent systematic review exploring the reporting quality of ML for 

medical diagnosis demonstrated that many studies lack sufficient details; hindering 

interpretation and replication 109. They found that all 28 studies in their review did not follow 

reporting guidelines. Poor reporting makes it difficult for the end-user to assess the utility of 

ML 58; providing a barrier for clinical uptake. Future research should adhere to reporting 

standards, to improve research clarity and allow for replication, which is imperative for clinical 

ML applications. Recently developed tools such as transparency, reproducibility, ethics and 

effectiveness (TREE) may improve reporting standards 95. Additionally, the recent extensions 

to CONSORT and SPIRIT guidelines to include AI studies 18,53,54 are welcome and could lead to 

improved research quality with reduced bias.  

 

The goal of this review was to explore the effectiveness of ML for predicting pain-related 

outcomes. Consequently, we reported the best performing algorithms in the respective 

studies identified by the systematic review. Whilst this highlights the potential of ML, it also 

poses the risk of inflating the current capability of ML for predicting pain-related outcomes 

from EEG data. This issue arises as many of the studies perform multiple classifications, using 

various algorithms. Consequently, several studies report models that have worse 
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performance metrics than those presented here. Therefore, our results do not represent the 

full state-of-play regarding ML and EEG for pain prediction, but instead presents the current 

state-of-the-art methods that may hold the potential for clinical translation.  

 

Whilst the use of PROBAST and TRIPOD tools are appropriate for this review, and of an 

excellent standard in traditional prediction model studies, we found that they did not fully 

apply to ML studies. Therefore, the ROB and reporting standards assessments should be 

interpreted with caution. Altering the tools to fit certain studies increases the risk of arbitrary, 

non-replicable decisions, which does not present itself as a systematic process. Additionally, 

many of the TRIPOD items are highly stringent and even slight deviations result in the criteria 

not being met. For example, none of the studies met the title expectations as they were not 

titled as developing (or synonyms) a prediction model. As the tools are not fully applicable to 

ML, these slight differences may explain why many of the studies have low adherence to 

reporting standards. Therefore, more appropriate tools for assessment of ML and 

neuroimaging studies may be needed. Ongoing development of the TRIPOD ML 16, which is 

intended for ML will be a welcome addition to the tools available and will also be useful for 

researchers to use as a checklist to ensure that reporting standards have been sufficiently 

adhered to. Researchers may wish to use the current version of TRIPOD as an approximate 

guideline, until TRIPOD ML is available. Nevertheless, we strongly recommend that new tools 

are developed for ML and neuroimaging with clinical outcomes, that are not diagnostic or 

prognostic. Alternatively, standardised alterations to PROBAST allowing it to be applied to 

non-clinical and ML research, would also be welcomed. For example, altering the participant 

domain, such that the appropriateness of the sample size is assessed, rather than the sources 

of data would improve the applicability of this tool to lab-based research. Additionally, the 
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alteration or development of items to fit ML would also benefit the field. For example, an 

item assessing whether the classes of ML are approximately equal, or whether imbalanced 

classes have been handled appropriately, would be advantageous. Many ML algorithms 

struggle with imbalanced classes, as they typically focus on the dominant class, as the minor 

class does not hold much discriminatory significance, which can affect performance  9,41,44. 

The development or alteration of such tools would improve scientific rigour; subsequently 

increasing clinical translation feasibility. 

 

A formal assessment of certainty of the evidence could not be performed due to limitations 

in applicability of the ROB tools available but also assessment of GRADE domains such as 

inconsistency, and imprecision was hindered by a lack of reporting in the included studies of 

precision estimates such as 95% confidence intervals. 

 

Conclusion 

 

The results demonstrate that ML of EEG is an emerging area of research for pain prediction. 

Through further research and external validation, it may become feasible to adopt ML for 

clinical applications, with potential to individualise and improve the management of clinical 

pain. However, our systematic review demonstrates several limitations within the field which 

should be addressed in future research.  Firstly, improved reporting standards are imperative 

to allow for thorough model evaluation. This would increase the transparency across studies 

and enable clearer interpretation of the clinical potential of ML. Secondly, future studies 

should be carefully designed, with a particular emphasis on the analysis protocol (e.g., 

external validation), to reduce the ROB. Additionally, we suggest that current ROB and 
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reporting standards tools are adapted, or new tools are developed, to enable a 

comprehensive assessment of quality for ML and neuroimaging studies. The lack of 

appropriate tools limits the current interpretation of the assessments and impacts the 

evaluation of results. Through the development of more appropriate tools and standardised 

processes, the research quality will improve, providing stronger evidence to develop the 

clinical potential of ML. 
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