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Abstract 

Insect identification and monitoring are essential to a number of diverse fields and settings, seeking to 

identify and study insect populations to learn more about their place in ecosystems as well as their 

impact on the environment and other species. The long-established approach to identifying insects is 

by morphological taxonomy, which utilises taxonomic keys and requires or at least greatly benefits from 

experience. However, identification based on morphological characteristics can be difficult when facing 

morphologically indistinguishable species, immature life stages or damaged specimens. Additionally, 

there is the challenge of processing large sample numbers that are being collected for analysis. New, 

easy-to-use high-throughput tools, capable of handling a variety of samples in vast amounts and with 

minimal sample preparation, are still needed and could provide much needed support in the wide array 

of fields requiring rapid insect identification.  

This PhD project explored the capabilities of Rapid Evaporative Ionisation Mass Spectrometry (REIMS) 

and its potential as a new tool for insect identification and characterisation. REIMS utilises an ambient 

ionisation source, specifically designed to analyse aerosols resulting from thermal disintegration caused 

by the passage of electricity through the sample of interest. The electric current is applied through 

diathermy tools and the resulting aerosol evacuated through a tube to the source and subsequently 

the mass spectrometer. Instead of focusing on the identification of single molecules, pattern 

recognition is applied to identify unique mass patterns that facilitate classification and consequently 

sample identification. 

After the first test using a mixture of wild-trapped arthropod species, successfully generating 

informative mass spectra, a larger proof-of principle study was conducted, based on 800 adult 

specimens of different Drosophila species. By analysing the REIMS data using random forest analysis, 

in addition to principal component and linear discriminant analysis (PCA-LDA), high classification rates 

were achieved when using test data sets. The results demonstrated the ability of REIMS to distinguish 

species, even closely related ones, as well as discriminate males and females. Further, the same 

approach correctly discriminated Drosophila species at the larval stage, where specimens are 

morphologically highly similar or identical. 

The next stages of the project focussed on mosquitoes and the use of REIMS to help with population 

characterisation – using both laboratory reared and semi-wild/trapped specimens.  

Laboratory reared Anopheles mosquitoes from three sibling species, usually requiring DNA analysis to 

be distinguished, extended the species separation challenge. Furthermore, the ability of REIMS to 

separate sample groups according to their age was investigated. Establishing the age profile of a 

mosquito population is challenging, but potentially useful as it allows prediction of disease transmission 

intensities and evaluation of disease vector control actions. The resulting models allowed for clear 

distinction between age groups separated by only 24 h and high classification rates when leaving more 

distinct gaps between age groups. 
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Further, REIMS analyses of local mosquito specimens were completed, testing the system using wild-

caught mosquitoes as well as semi-wild specimens, which had been collected as larvae in the field and 

raised under changing conditions. While the focus remained on species and age, these data sets 

possessed far more variability and confounding factors than those based on specimens reared under 

controlled laboratory conditions. The increased variance provided a powerful way to gauge REIMS 

suitability as identification device and helped underpin results and findings obtained with laboratory 

reared insects. The species of over 180 unknown specimens, part of a blinded sample set, were 

correctly identified at a rate of 94 % using a pre-built model and recognition software. 

The exploration of the potential of REIMS concluded with preliminary proof-of-principle experiments 

that focussed not on the insects themselves, but the frass (droppings) they produce. Successful 

separation of different cricket species using only their faecal matter proved that REIMS could have the 

potential for insect identification and population monitoring on various levels, whether its adult 

specimens, immature forms or ‘calling cards’ left behind. 

Without the need for sample preparation, entomological expertise or perfectly preserved specimens, 

REIMS offers a novel approach to insect typing and analysis and has considerable potential as a new 

tool for the field biologist. 
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Chapter 1: Introduction 

 

1.1 Identification and characterisation of insects 

It is estimated that there are 5.5 million insect species. However, this number is only an average of 

available estimates which vary from 2.6 to 8 million species [1,2]. The question of how many species 

are actually discovered cannot be easily answered either as species are compiled in a variety of lists or 

catalogues [3], can have different synonyms [4] and be described using a variation of different 

taxonomic keys. Additionally, new species are emerging every year whilst others undoubtedly become 

extinct. 

Of course, identification of a new species requires advanced skills in identification, as well as a broad 

knowledge of species characteristics. Highly similar or even identical morphological traits of some insect 

species hamper differentiation efforts and require DNA analysis to dissect species complexes, cryptic 

species groups and bio-forms [5,6]. Phylogenetic relationships are under constant review, species 

descriptions change and naming conventions are altered on a regular basis [7]. Insect identification and 

characterisation not only focusses on species determination but also extends to phenotypic 

characteristics, such as sex, age, insecticide resistance or vector status. Obtaining information about 

these properties can be challenging and requires a broadly equipped toolbox of techniques and 

methods. Nevertheless, these characterisation efforts form the basis for many research questions, 

disciplines and applications, fuelling aspirations to develop new tools for insect analysis and leading to 

simpler and faster identification approaches. 

 

1.1.1 Importance and impact of insect research 

Insect identification and monitoring is essential to a number of diverse fields and settings, that identify 

and study insect populations to learn more about their place in ecosystems as well as their impact on 

the environment and other species [8]. Long-term biodiversity and environmental impact studies [9,10] 

observe and log the composition of insect populations and monitor changes over time. Insect diversity, 

their populations and habitats are informative to study and detect changes in ecosystems, their 

presence or absence can impact other species as they are an integral part of the flora and fauna around 

them [10]. It is not necessary for there to be major disruptions at the general insect population level to 

have a distinct impact; some systems require very specific relationships with only one species of insect, 

such as several plant guilds in South Africa, which rely on a long-tongued fly species for pollination [11–

13]. Insect populations strongly react to climate changes [14–17] and deviations in climate profiles can 

decimate populations, lead to their increase and most importantly cause seasonal as well as geographic 

range expansion [18], which has caused concern around the world. The presence of insect species and 
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their population sizes are usually monitored locally [19], but if information is collected in many places 

it can inform observations about large-scale movements and habitat changes [20,21].     

Insect populations are less studied as a whole, not only because the immense diversity makes it a 

challenging task, but because the human focus is on whether a species will benefit or harm us. While 

insects are often thought of as a nuisance, we heavily depend on them for food production, for 

example, as pollinators or as pest control agents [22,23]. An alarming dwindling of beneficial insects 

has changed the public perception of conservation and protection [24]. At the forefront of this is the 

honey bee, an important crop-pollinator, but which suffers through monoculture, pesticide usage and 

imported diseases [25–28]. Maintaining the population of certain species can also be desirable in more 

specific circumstances, such as biological control in pest management, which aims at sustaining the 

balance within an ecosystem, i.e. prey-predator relationships [29]. 

Conversely, from a human-centric perspective, other arthropod species can cause considerable harm, 

economically as well as environmentally, and pose a risk to human health, requiring population control 

or reduction. Every year insect pests cause massive economic damage in agriculture and forestry 

[30,31], either by directly attacking important crops or through transmission of viral and bacterial 

diseases [32–35]. The financial losses and the impact on ecosystem stability are increasing, not only 

due to extant pests, but because new pests are being introduced through global trade and tourism [36–

39]. Climate change enables alien species to thrive and expand, creating new pest concerns, influencing 

existing ecosystems and threatening native fauna and flora [9,15–17,40,41]. Biosecurity, which aims at 

curtailing risk through ‘biological harm’ [42], relies largely on rapid and accurate species identification 

as it affects risk assessments, the handling of imported goods and plans for future surveillance or 

eradication [43,44].  

Correct identification also influences biological pest control strategies, such as the use of insect 

pheromones or prey/predator interactions, as their success is based on species-specific mechanisms 

[45–48]. In countries and regions where insects are a public health concern (for example, mosquitoes), 

specimens are routinely trapped for identification and other analytical purposes. Known vectors for 

diseases like malaria, dengue fever or zika are monitored to inform authorities and the general public 

about threat levels and predict disease transmission intensities [49–51]. 

The circumstances requiring insect identification are manifold and the range of motivations and end 

goals is extreme, leading from conservation to eradication. While there is worry about the effect of 

insecticides on one species (e.g. bees) [25], there is also worry about insecticides not having enough 

effect on other species, such as mosquitoes [52]. The impact of the environment on insects and vice 

versa is continuously changing, creating new incentives to study insects and their populations.  
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1.1.2 The diversity of insect characteristics 

As the scientific community delves deeper into phylogenetic and taxonomic relationships that go far 

beyond morphological similarity, species assignments become more unstable and are subject to change 

due to more in-depth examination of their similarities and differences [5,53,54]. The process of species 

identification can consume considerable resources and require high levels of expertise. But while the 

focus is often on determination of species there are also other characteristics that are part of insect 

identification and help to characterise populations and identify their impact. 

 

Sex: Sex determination is in most cases part of the standard identification protocol and can be 

conducted through morphological examination [55–59]. Schematic examples of distinct sexual 

dimorphism are depicted for two of the insect species analysed within this thesis, Drosophila 

melanogaster and Anopheles gambiae (Figure 1.1). 

 

 

Figure 1.1: Schematic of morphological differences between males and females 

Schematic representation of the morphological differences between males and females of the 

species Anopheles gambiae (top) and Drosophila melanogaster (bottom). Male and female 

Anopheles mosquitoes can be easily distinguished by their antenna; the male’s antenna has a 

feathery structure caused by hair-like structures called fibrillae. The males and females of 

Drosophila melanogaster exhibit different levels of pigmentation on their abdomen. (top panel 

pictures were designed using resources from Flaticon.com; bottom panel pictures were created 

with BioRender) 

 

Differentiation into males and females can be a requirement for many studies and experiments. When 

studying insect behaviour, the differences between male and female behavioural patterns might be 
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examined and compared requiring correct sexing beforehand. If a behaviour is more prevalent or 

distinct in one sex than the other, only specimens of one sex might be included in experiments [60,61]. 

Sometimes only specimens of one sex are of interest for research purposes because the behaviour is 

sex specific, e.g. only female mosquitoes are hematophagous and pathogen-competent, therefore 

research into vector biology will mostly focus on the physiology and behaviour of females [62,63]. It is 

also possible that focus on only one sex is the only way to conduct a study without DNA based typing 

or other in-depth examination. The morphological differences between species are not equal for males 

and females. The male specimens of two species could easily be assigned to their respective species 

while the females are nearly indistinguishable; two exemplary species are Drosophila simulans and 

Drosophila melanogaster [64] (Figure 1.2). 

 

Figure 1.2: Photos of female specimens of D. melanogaster and D. simulans 

Photos of the closely related species Drosophila melanogaster and Drosophila simulans. The 

females (shown here) are morphologically highly similar. Photos were taken by Dr. Nicola White 

(University of Liverpool). 

 

 

Age: Age is an important factor when studying insect vectors. During their life cycle they have the 

potential to ingest a pathogen, have it replicate and disseminate during what is called the extrinsic 

incubation period (EIP), before transmitting the disease to the next host (Figure 1.3). For malaria 

causing Plasmodium parasites the EIP is at least 10 days [65], for viruses, such as Dengue viruses, the 

average EIP ranges from 6 – 15 days (temperature dependent) [66]. This means that the vectorial 

capacity of specimens increases with age, making it an important determinant for disease transmission 

[67]. There are two different ways to define age. The first is biological age, which is determined by the 
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female’s number of gonotrophic cycles and ovipositions, which cause changes in the female 

reproductive system [68]. This estimation of age does not necessarily correlate with the numbers of 

days since emergence as it depends on other factors such as mating and blood feeding. The other way 

to define age is through calendar days (chronological age), which allows a more accurate description of 

a population’s age distribution. Vector control interventions seeking to reduce the spread of malaria 

and other diseases would greatly benefit from accurate determination of age structures as indicator for 

program success [67]. Many intervention strategies aim to reduce vector survivorship and the 

percentage of older specimens capable of transmission [69]. If interventions are successful a shift in the 

age distribution should be observable. Unfortunately, the techniques and methods available for age 

grading to do so are time consuming and still lacking accuracy and performance in the field [67]. 

 

 

Figure 1.3: Possible life cycle of a female anautogenous mosquito 

Schematic representation of mosquito development from egg to adult and the different stages 

of the adult life. A female mosquito will try to mate, followed by seeking a host for blood 

feeding. The female requires the blood for egg development and can ingest a pathogen if the 

blood source is infected. After egg development the mosquito will find an oviposition site to lay 

eggs. This feeding and oviposition cycle can be repeated a number of times and typically does 

not require repeated mating. If the mosquito stays alive long enough for the extrinsic 

incubation period (EIP) of the pathogen to end, it can infect the next host during its blood meal. 

(Figure was partially created with BioRender) 
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Vector status: Examination of wild-caught mosquitoes can involve determining whether specimens are 

currently infected by a pathogen and if yes, what type of pathogen. Taking malaria as example, it is 

possible to determine infection with Plasmodium parasites morphologically through dissection, 

however, detection is time-consuming and focusses on the later stages of the plasmodium infection 

when sporozoite concentrations in the salivary glands are high [70–72]. Due to the difficulty of 

morphological analysis, molecular tools, such as DNA analysis or immunological assays, are often the 

method of choice [73,74]. This type of investigation usually also requires higher sample numbers, as 

only a small portion of specimens will be infected and an even smaller percentage will be old enough 

to be in the later stages of infection [75,76].  

Regular sampling of wild populations is important to track changes in vector capabilities and adjust or 

instigate control actions if necessary. Invasive insect species and increased amount of traveling can 

cause vectors as well as pathogens to spread in new regions and countries [77]. Pathogens might even 

jump to a new vectors, which could potentially be more dangerous for human health. An example is 

the Culex pipiens species in northern Europe and the potential transmission of the West Nile virus; while 

most species will feed on birds and could spread the virus among avian populations, Culex pipiens 

biotype molestus prefers to feed from mammals [78,79]. A hybrid between the biotypes could turn the 

species into a bridge vector, enabling infection of humans, which has already taken place in North 

America [80]. Surveillance actions have to take into account the vector species entering a country but 

also the presence of pathogens and the potential creation of new vectors. 

 

Insecticide resistance/susceptibility: With the sustained use of insecticides to treat problematic insect 

populations comes the rise of resistances spreading throughout a population, ultimately rendering 

control actions ineffective [81–84]. Insects are therefore routinely analysed to determine their 

resistance status. Resistance needs to be detected early to improve control strategies and avoid 

development of population wide resistance against a specific insecticide. Control actions aim to avoid 

the use of higher insecticide dosage levels in the event of resistance, not only due to the insecticides’ 

negative impact on the environment [25,85] but because high exposure can accelerate resistance 

development within a population. Loss of effectiveness is becoming a key issue for control programs, 

especially when human health depends strongly on these intervention strategies. Insecticide resistance 

is commonly monitored using resistance test kits including insecticide treated papers and coated 

bottles from the WHO and CDC [49,86,87]. The insects are exposed to the insecticides either through 

contact with the treated paper or bottle surface for a specific amount of time, before being transferred 

into holding tubes where mortalities are recorded after certain time intervals. The results are 

sometimes combined with PCR-based tests to detect whether resistance in specimens correlates with 

specific gene mutations to better understand the process of resistance development [88–90]. 

Depending on identification outcomes, strategies in the field have to be adapted and insecticide types 

changed [52]. 
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Food sources: Arthropod food consumption is analysed in a variety of different contexts as insects fall 

into many different feeding categories ranging from herbivory, nectivory and hematophagy to feeding 

from other arthropods, such as fruit flies or aphids [91,92]. Direct observation of feeding activity is often 

difficult and the food sources rarely provide evidence that would allow species identification. The most 

common source of evidence is therefore gut content, which is analysed with specially developed gut 

and prey-assays [93]. The basis of these assays are ELISA and PCR; the most popular method is PCR, 

however, for mass screenings ELISA can be the preferred choice [94,95]. Food sources can be of value 

when investigating prey-predator relationships to identify suitable insect predators for biological pest 

control [91,94,96] or when attempting to define pests’ food sources and predict future behaviour  

[97,98]. Female mosquitoes have been collected from the wild and their stomach contents analysed to 

identify their preferred blood sources [99–101]. The location of mosquito collection does not allow any 

assumption as to their preferential food sources; whether a mosquito will prefer to feed from livestock 

or a human will greatly affect risk assessments. 

 

1.2 Difficulties and challenges of insect analysis and identification 

This short exploration into the fields conducting and requiring insect analysis as well as the multitude 

of factors that might be established in the process, has already hinted at some of the many difficulties 

and challenges taxonomists and researchers from various backgrounds have to face to identify insects. 

Some identification techniques are better suited to overcome certain hurdles than others, however, 

there are factors which affect all analytical approaches. Difficulties which can be encountered in insect 

analysis can be assigned to two different categories: analytical aspects and sample aspects. 

 

1.2.1 Sample aspects 

Challenges with regard to insect sample types and their properties are more method specific; they 

primarily affect traditional morphological approaches. The following challenges underpin the 

importance of new molecular tools. 

 

Identical morphology and cryptic species: Many insects cannot be readily distinguished using 

morphological differences. Taxonomic keys display deficiencies and limitations when it comes to 

morphologically highly similar or identical specimens. Any technique requiring visible differences might 

struggle when confronted with closely related or cryptic species. Highly similar or identical morphology 

is often observed among closely related species, in particular those which have just undergone 

speciation process and can perhaps still produce hybrids in the wild, e.g. Drosophila 
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melanogaster/simulans and Anopheles gambiae/coluzzii/arabiensis [102–104]. It is, however, not a 

requirement; a species might not be part of a species complex, but can nevertheless be 

indistinguishable, e.g. species of the genus Culex [105,106]. 

While identification using morphological keys might not be possible in these cases, other techniques, 

such as DNA barcoding, are not affected by these similarities and will be able to provide further insights 

and more detailed answers. 

 

Immature forms: While morphological keys for adult specimens can be applicable until deep into 

phylogenetic relationships, immature insect forms prove to be more challenging. Though important 

pests in their own right, immatures are rarely identified due to a lack of distinct morphological 

characteristics [107]. Most morpho-taxonomic keys are produced for adult specimens, requiring raising 

of immatures to adult stages, which can be time consuming and problematic, but becomes impossible 

when the immatures are dead [43]. Again, molecular approaches, such as DNA analysis, help bridge the 

knowledge gap to include immature insect specimens and provide species information. 

 

Damaged and stored specimens: An important prerequisite for morphology-based identification is the 

intactness of specimens. The smaller the differences the better preserved the insect needs to be to 

allow identification, minute damages can render an identification impossible [108,109]. While 

molecular methodologies are not as easily affected by morphologically damaged specimens, specimen 

integrity and freshness can affect them. While freezers are a popular storage choice, they are not 

always available near the collection site. Standard field sampling and preservation methods include 

trapping insects dry or in soapy liquids [110,111]; the lack of preservatives is especially problematic for 

DNA based approaches. Specimens meant for DNA analysis are usually stored immediately in ethanol 

to stop the degradation process, if stored for longer time the preservative can affect morphological 

features making a combined approach with morphological examination difficult [111]. As more and 

more molecular techniques are commonly used for identification purposes or join the repertoire, 

method limitations are explored to adapt to common field conditions [112–116]. 

 

Factors without morphological traits: This domain covers characteristics which are not easily observable 

through morphological examination excluding species ID. The previously mentioned factors age, vector 

status and food source fall into this category. Molecular analytical approaches are the most prominently 

used techniques as they can detect what is visually difficult to observe. Food determination almost 

exclusively relies on immunological assays and DNA analysis to identify insect gut contents [96,98]. Only 

blood analysis from mosquitoes and other hematophagous insects is conducted using a wider analytical 

range including mass spectrometry based approaches [99,117]. Analysing insects regarding their vector 

status is starting to shift from morphological examination to DNA analysis and immunological assays, 
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mostly due to the limitations of the visual approach (high sporozoite concentration necessary for 

plasmodium detection) and high level of dissection expertise required [70,72]. Not only can molecular 

tools detect lower pathogen levels, they also identify the pathogen species [74]. One of the most 

difficult factors to determine accurately is age. While DNA analysis is the preferred method for many 

different types of insect analysis, it is less useful to determine age as it depends on monitoring gene 

expression levels of age-related genes, a process with is technically difficult and time-consuming 

[118,119]. A wide array of other techniques have been employed to determine age, such as 

hydrocarbon analysis and mid-infrared spectroscopy [120,121], but most are either time consuming 

and costly or unreliable and unproven in the field. The search for and improvement of methods to 

identify age structures is ongoing, however, morphological examination of female reproductive organs 

remains the ‘gold standard’ in a field setting [75,122].  

 

1.2.2 Analytical aspects 

Aside from producing correct results, identification methods are also evaluated for their applicability 

using the following factors.  

 

Accuracy: High confidence in an identification result is the goal for all methods, however, is it not 

achieved at all times by all approaches. The limitations of morphological identification have been 

mentioned previously, due to available molecular analysis the boundaries of what is possible are now 

clearer. In the past specimens were treated and identified as if being part of the same species, only to 

be identified as genetically apart years (or even decades) later. The accuracy of certain morphological 

identifications were therefore very low, but not recognised. Identification accuracies of DNA analysis 

are generally high, but can suffer when samples start degrading [123] or due to insufficient 

representation and coverage of species in barcode databases [124–126].  Factors such as age are 

difficult to determine with sufficiently high accuracies across different techniques as it is a continuous 

variable and not a clearly defined state [67]. Accuracy therefore depends not only on the method, but 

the sample and investigated factor, which has to be taken into account when evaluating identification 

outcomes and methods. 

 

Speed & sample sizes: Low sample numbers used in identification experiments do not only make it 

difficult to judge a method’s performance, as the outcome could be skewed and not representative, it 

can also infer low sample processing speed, limiting  a method’s suitability for large scale field sampling. 

Surveillance programs have been established for many insect populations, mostly because they present 

a threat to flora and fauna. This includes invasive species threatening the native ecosystem [127], 

agricultural pest species causing economic losses [36] and insects affecting human health through 

pathogen transmission [128]. Most surveillance actions collect large sample numbers; if methods 
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require a long time to analyse a single specimen a diagnostic bottleneck will ensue [129]. Biosecurity 

programs are not always confronted with large sample numbers but require fast identification methods 

to allow timely response actions [44,130]. While in-depth research can afford more time-consuming 

methodologies, field-related applications seek faster high-throughput solutions.    

 

Expertise: Expertise can be a major hurdle for identifications and mainly affects morphological methods. 

Many molecular techniques have been simplified with easy to follow protocols and access to databases 

circumventing the need for taxonomic expertise [129,131]. Morphological taxonomy, however, is a 

complex field that relies largely on highly trained personnel with specific knowledge and experience 

[132]. Not only are many morphological examinations time-consuming, results can vary with 

technicians impeding comparisons of identification results [75]. While some might argue that methods 

relying on specific instruments require highly trained users, it is usually the maintenance that requires 

certain knowledge than the actual usage of the laboratory instrumentation. High-maintenance (and 

usually costly) instrumentation however will require a certain skill set. Most approaches using 

chromatography and mass spectrometry fall into this category and are therefore not widely adopted; 

despite promising results the transfer to the field i.e. simplification attempts can fail [133–135]. Even 

though many methods are suitable for insect analysis, only techniques which require a low level of 

training are truly sought after for routine use in the field.  

 

Comprehensiveness: Depending on the scope and aim of an insect analysis action a method’s working 

principle can be very species-specific or needs to be generally applicable to a variety of samples. If the 

target species is clearly defined, an identification method can be geared towards a specific challenge in 

the field [136,137]. However, it will prevent the method from being easily transferrable to new species 

and research questions. In fields such as surveillance and biosecurity species-specific approaches are 

impractical. The large number of unpredictable species requires a comprehensive approach capable of 

dealing with most if not all collected samples [42]. Morphological identification is vital to deal with the 

variety of samples that are for example found at border control, specimens which cannot be identified 

to species level are often subsequently analysed through DNA barcoding which will return a correct 

identification for most samples [43,130]. Species specificity also creates an additional hurdle when 

seeking to identify factors other than species, e.g. sex or age. An insect family, such as the Coleoptera, 

can have a very wide range of sexual dimorphism ranging from strong differences in features to 

indistinguishable [57,138]. The key to distinguish sex will depend on the species, which therefore has 

to be established first. Age determination faces a similar difficulty, with many of the (traditionally) used 

methods only applicable to certain species groups [68,118,139].   

 

Cost: Many laboratories, especially in the field, have to operate on a smaller budget than many 

institution-based researchers. Even if a method can tick all the previously mentioned requirements, if 
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equipment and processing costs are too high, installation in field settings remains unlikely. Publications 

focusing on reviewing and comparing available methods mention cost as an important factor and 

categorise them accordingly [67,140,141]. 

 

1.3 Identification techniques 

The array of methods used for insect identification purposes is vast and likely to keep growing in the 

future. The most widely used techniques were selected for further description and discussion; some 

are traditional, established approaches while others are promising newcomers to the field of insect 

identification. 

 

1.3.1 Morphological examination 

The long-established approach to identifying specimens is by morphological examination. Many 

important traits can be inferred from differences in morphology, whether it may be external or internal. 

The morphology of an insect allows identification of species, sex, pathogen infection and even 

gonotrophic cycles i.e. age [68,122], and has been and still is the most widely used approach when 

analysing insects. It requires minimal (microscope) to no equipment and can be done in a field setting 

making it versatile for many fields and circumstances requiring insect identification.  

One of the major drawbacks of morphological examination as a way of identification is that it requires 

or at least greatly benefits from experience. Despite the availability of taxonomic keys it requires many 

years of training and experience to become a taxonomist, a specialist in species description and 

identification, a profession that seems to be a shrinking community relative to modern objectives and 

workload [142–144]. There is the notion that far more trained taxonomic experts are needed for 

diagnostics than are available to cover the range of areas, where species identification plays a pivotal 

role [132]. Expertise is not the only limiting factor to its applicability; existing morpho-taxonomic keys 

display deficiencies and limitations, especially when it comes to morphologically indistinguishable 

species, immature life stages, sibling species or damaged specimens [108,109,145–147]. Many of these 

limitations can be overcome with molecular techniques such as DNA barcoding, which has become a 

popular tool for many identification challenges [107,148]. 

Some in the scientific community are wary of the rise of DNA analysis and other molecular approaches 

and the important role they seem to be taking in insect taxonomy [149–151]. There is scepticism about 

using a single gene to differentiate a variety of life forms and applying it to discover new species and 

delimit taxa. There are calls for caution to use barcoding as a single character system, instead it should 

be incorporated into a multi-methodology approach. The limitations and time constraints of 

morphological identifications, however, need to be acknowledged. Biosecurity and border control 

actions have limited time for decision making and require fast identification results, which often entails  
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a balanced approach between morphological identification and molecular analysis [43,152,153]. 

Although concerns that future taxonomy will be purely based on molecular tools seem unfounded, 

morphological examination is still the first step in many instances and the most used identification 

approach. 

 

1.3.2 DNA barcoding 

DNA barcoding is possibly the most popular identification technique after morphological based 

approaches, but certainly the one that has had the biggest impact in the insect identification field in 

the last two decades. Compared to other techniques is has few limitations; it is applicable to adult and 

immature specimens, can distinguish morphologically identical species and has been tested on 

differentially stored samples [107,111,112,148,154]. DNA barcoding equipment has even been 

miniaturised for on-site identification. 

DNA barcoding assesses the degree of DNA sequence similarity between the sample and a set of 

reference species. A fragment (710 base pairs) of the mitochondrial cytochrome c oxidase subunit 1 

gene is amplified using polymerase chain reaction and a set of specific primers and serves as a standard 

sequence used for comparison [155]. The similarities between the sequences are then statistically 

investigated to establish genetic distance; the reference species with the lowest genetic distance 

defines the identification [131]. 

DNA barcoding has a very wide applicability across many different taxa, making it a popular 

identification tool beyond insects [156–159]. The method is considered to be cost-effective and simple 

to use. However, the approach is not without fault and its reliability and comprehensiveness regularly 

questioned.  Identification success can be low due to insufficient representation and coverage of 

species in the reference databases [124–126], some researchers worry about the effect of bacterial 

infections, in specific Wolbachia, on mitochondrial variations  and correct identification rates [160,161] 

and the use of alternative statistical approaches to calculate genetic similarity have been proposed 

[162–164]. 

As all methodologies it has had many successes as well as failures and remains strongly controversial 

with avid advocates and opponents [149–151,165,166]. Integrative Taxonomy is the proposed way 

forward, combining multiple methods and complementary perspectives. To cite Benoit Dayrat [167]: 

“In cases where it is demonstrated that sequences of particular molecular markers provide faster, more 

reliable identifications than morphological features, there is no reason not to use them. However, in 

instances where it is shown that morphological features provide faster, more reliable identifications, 

there is no reason to discard them.”  
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The fast development of molecular identification techniques has caused a gap between new and more 

traditional approaches; future identification efforts will hopefully use the complementing potential to 

distribute the identification work load more efficiently [168]. 

To make DNA barcoding deployable for on-site identification in the field, miniaturised and portable 

sequencing devices have been developed. Hand-held thermocyclers and sequencers that can be 

plugged into computers via a USB port are part of the new “pocket laboratories”, which aim to provide 

PCR and nanopore sequencing for real-time analysis in diverse environments [169,170].  

  

1.3.3 Immunological assays 

Enzyme-linked immunosorbent assays are an important biochemical method, which does not only give 

a qualitative, but a quantitative answer to many insect related questions. While not used for routine 

insect species identification, ELISAs have been applied for targeted approaches and investigations such 

as vector status, food source studies and arthropod impact on humans, i.e. antibody responses to bites 

[114,171].  

ELISA is a plate-based assay allowing detection and quantification of soluble molecules (e.g. proteins 

and antibodies), which are immobilized on a surface before being treated with antibodies linked to a 

reporter enzyme. Upon adding a suitable substrate to the enzyme a product is generated, which can 

then be detected and measured. 

ELISAs are often applied in the field of vector research where it is used for the detection and 

identification of malaria parasites [72,172]. Serological studies have been used in the past to monitor 

malaria transmission, but variations in the antigen source and detection methods led to a decline in 

application [173]. Standardisation efforts and the availability of specific recombinant antigens for higher 

sensitivity has brought the method back into the field [174]; the technique is still being improved to 

maximise its sensitivity for plasmodium detection [175,176].    

Insect food source analysis also regularly applies immunological assays, alongside PCR, to identify gut 

content by recognising species specific proteins. This has been used to unravel prey-predator 

relationships [95] as well as identify blood-meal sources of mosquitoes [177,178]. 

ELISAs are also considered for potential age discrimination in the future. Identification of age-specific 

proteins is carried out by chromatography and mass spectrometry set-ups [179,180], which have 

identified proteins such as hexamerins (responsible for oxygen transport) and glutathione S-transferase 

(involved in cell detoxification) to be correlated with age. If robust biomarkers were found, they could 

be detected using an immunoassay, allowing analysis to be transferred to a field setting. 

Assay methods are appreciated for their low cost and equipment being available in most laboratories. 

Being carried out in 96-well plates they are also high-throughput and, compared to microscopic 
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examinations, can be performed whenever convenient, as samples are being frozen and homogenised 

for analysis [175]. Despite those properties, immuno-assays share many areas of application with PCR, 

which is investigated as an alternative to immunological assays or applied as complementing technique 

[95]. 

 

1.3.4 Cuticular hydrocarbons  

Cuticular hydrocarbons (CHCs) form part of the lipid layer that covers an insect’s epicuticle [181]. Not 

only do they provide protection from abrasion they also function as pheromones for short and long-

range communication among insects, conveying information about species, sex and colony to 

conspecifics [182–184]. Due to their species-specificity they were first tested for their suitability as 

chemotaxonomy tool in the 1970s [185] and have since been under investigation in various fields. CHC 

profiles not only display sexual dimorphism, making them an interesting analytical target to distinguish 

males and females [184,186], they are complex enough to allow differentiation of species.  

CHC patterns, defined by the presence of CHC molecules as well as their abundance, have been used 

successfully to discriminate morphologically indistinguishable cryptic species as well as species 

complexes and even strains of mosquitoes [187–189]. It was also investigated whether cuticular 

hydrocarbons change over an insect’s lifetime and could therefore be used for age determination 

[120,190,191].  

The field of forensic entomology has recognised this potential and used hydrocarbon analysis as ways 

to identify insect species as well as the age of single specimens using immature stages. It is viewed as 

an alternative method in cases where specimens are too damaged for morphological examination and 

too degraded for DNA analysis [192,193].  Cuticular hydrocarbon analysis might also be able to help 

shed light on the development of resistances against insecticides as increased expression of resistance 

related genes seems to also catalyse cuticular hydrocarbon production [194,195].  

Despite being capable of identifying insect specimens regarding species and age, it has been noted that 

CHC patterns can be very variable as they evolve differently under different environmental conditions 

and are likely to be affected by geography, diet and temperature [120,190,196]. This not only causes 

intra-species differences, but makes it difficult to compare laboratory raised with wild specimens or 

insects collected from different ecological environments [197].  

As analysis is mostly carried out with either GC-MS or GC-FID (MALDI and spectroscopic methods have 

been tried as well) CHC analysis is associated with high equipment and sample costs; together with the 

variability issues application settings are likely to stay limited. 
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1.3.5 Protein profiling 

The analysis of proteins that either stem from insects or are insect related (e.g. antibodies against insect 

bites) is conducted using a variety of different techniques in a wide range of fields; from species 

identification and pathogen detection to age-related biomarkers and pest control.   

In a field or routine identification setting, protein targets are usually analysed in form of immunological 

essays, such as ELISA, which have been discussed previously. Protein biomarkers allow pathogen 

detection and identification in insects (sporozoite protein) [172,175,176] as well determining levels of 

human exposure to arthropod bites (antibodies against salivary protein) [114,171]. The transmission of 

malaria can be monitored through detection of antibodies against antigens from malaria pathogens 

[173,174] and the search for new biomarkers against plasmodium infection continues with the help of 

proteomics approaches [198]. Mosquito host preferences have been studied by typing blood-meals 

through proteins detected with either ELISA or mass spectrometry [101,177]. While ELISA detects 

specific proteins such as IgG (using anti-sera), MALDI has been used for identification by comparing 

acquired protein spectra with library reference spectra.  

Protein analyses are used to study other vector interactions as well, such as plant virus transmissions 

[199,200] and play an important role in understanding the development of insecticide resistances [201]. 

As previously mentioned, protein analysis has also produced biomarker candidates for age profiling 

[179,180,202].  Other, slightly more niche fields, also benefit from insect proteomics: proteomics 

techniques help with the development of species-specific pesticides in pest control [203] and analysis 

of edible insects meant for consumption to prevent food and feed fraud [204–206]. 

Though protein-based approaches are capable of identifying the species of not only adult but also 

immature specimens, the amount of applications is modest [101,136,207]. Instead of routine 

identification work, insect proteomics is rather used to understand underlying principles and identify 

useful protein biomarkers for all kinds of insect-related research questions.  

The range of research fields aided by protein-based approaches is wide [208], it is, however, unclear 

how many of the identified biomarkers will be robust enough for actual application in the future and 

whether findings can be translated from expensive mass spectrometry equipment to the field. 

 

1.3.6 Spectroscopic methods – NIRS & MIRS 

Near-infrared spectroscopy (NIRS) measures the absorption of energy at wavelengths in the near-

infrared spectrum, which ranges between 700 and 2500 nm (or also described as wavenumbers, 

between 14000 and 4000 cm-1). The amount of absorption depends on external and internal 

biochemical composition, i.e. water content, carbohydrates, protein, oil, alcohols, and differs between 

insect specimens due to a variety of factors.  
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The method has been known and in use for some time and was first applied to identify mosquitoes in 

1953 [209]. The number of application fields has since grown to include entomological taxonomy, 

pathogen detection, age-grading and the agriculture and food industry. 

NIRS has been used to differentiate species of many different insect groups [210] and shown potential 

to be applicable to cryptic species as well [211]. Infections with the zika virus and other pathogens were 

detectable in insect samples [212,213] as well infection with Wolbachia, which were differentiated at 

strain level [214]. NIRS has also proved useful in detection of insect pests in agricultural and stored 

products [215,216]. 

The method has also been studied for its potential to detect age differences in mosquitoes, which could 

be noticeable in the insect cuticle [217–220]. 

The biggest advantages of NIRS are its non-destructive nature and high-throughput potential, which 

has even led to it being suggested as “barcoding” method [221]. 

However, most studies have been based entirely on laboratory-raised insects and have yet to be 

evaluated with wild specimens. Some approaches, such as differentiating age groups, struggle with low 

prediction accuracies, with and without the use of wild-caught samples [222]. Age grading is still lacking 

robustness, which could have to do with the influence of environmental factors on the cuticular 

components; temperature has been reported to greatly affect the identification success [223].  The 

changeable uniqueness of the cuticle composition is what allows NIRS to detect various characteristics, 

but it also creates unwanted variability thwarting reliable and accurate prediction. 

Mid-infrared spectroscopy (MIRS) uses wavelengths between 2500-25000 nm (wavenumbers between 

4000 and 400 cm-1) and is not as widely used as NIRS. Despite MIRS producing more specific and 

characteristic absorption peaks, hence providing greater resolution and information, application is less 

popular because of higher instrumentation costs [224–226]. Most systems scan the entire spectrum 

simultaneously using a Fourier transform algorithm, which is why the terms MIRS and FTIR (Fourier 

transform infrared) are used interchangeably. Though providing higher resolution, the scanning depth 

is less than with NIRS, obtaining information only from the sample surface [224]. 

For that reason, cuticular hydrocarbons provide a good target and were used to distinguish species 

[227] and study insect castes [226] as well as find age-related surface changes [228]. When studying 

species related differences among wasps it was found that there is also distinct changes between 

populations of the same species, leading to the suggested use of the method for biogeographical 

analysis [229]. 

Mid-infrared spectroscopy also helped distinguish moth biotypes, identify forensically important larvae 

and identify Wolbachia infections [230–232]. A study by Jiménez et al [121] suggests the use of MIRS 

for identifying mosquito species and determining population age structures, however, similarly to NIRS 
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only very young and very old mosquitoes can be clearly distinguished and field-caught mosquitoes 

remain to be tested.  

MIRS does not only differ from NIRS in terms of costs, some variations of the method, such as 

photoacoustic FTIR, are very time-consuming and low-throughput. 

 

1.3.7 MALDI 

Matrix-assisted laser-desorption ionisation (MALDI) allows soft ionisation of biological molecules 

through charge transfer from a matrix substance to sample molecules. The ion source is usually 

attached to a time-of-flight mass spectrometer as detection system (MALDI-TOF). 

Though MALDI has been used to analyse proteins and cuticular hydrocarbons, as previously mentioned 

under 1.2.4 and 1.2.5, it deserves closer inspection due to its rising popularity over the past decade.  

Sample preparation is usually simpler and analysis time shorter than other chromatography-mass 

spectrometry techniques, making this proteomic approach competitive to other molecular insect 

analysis techniques. An often used approach is to extract protein from homogenised samples. Data is 

analysed by comparing mass peaks, previously identified as discriminatory in the reference mass 

spectra.  

MALDI has been used to analyse insects in different developmental stages from larvae to adult. Adult 

specimens of sand flies [233], fruit flies [234] and mosquitoes [115,235,236] have been distinguished 

regarding their species, some of them being cryptic species or part of species complexes and therefore 

morphologically indistinguishable. Other studies used immature insect specimens from sand flies [207] 

and mosquitoes [116,237] and even used exuviae (cast-off skin after a moult) from these stages for 

species identification [238].  

MALDI-MS has also helped investigate the blood meal sources of mosquitoes [101,115,117] and 

infections with plasmodium parasites [239]. 

Compared to other techniques, MALDI-TOF studies have not only been conducted with laboratory 

raised specimens but successfully tested with wild-caught insects too, creating more confidence in the 

methods capabilities [101,115,233]. Additionally, the need for evaluating the method with differently 

stored samples (ethanol, dry-frozen, silica gel and different storage durations) has been recognised as 

well, proving the versatility of the approach [115,116,233,237]. 

An impediment to implementing MALDI in laboratories meant for field work with limited budgets is the 

high cost of the instrumentation. Also the need for an open access central reference data base has been 

mentioned repeatedly [101,233,240]; currently each research group has to create their own reference 

library. 
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This list of techniques and methods is by far incomplete; many more approaches have been explored 

in the field of insect identification and characterisation, some of which have great potential. For 

example, real time-high-resolution mass spectrometry (DART-HRMS) has been successfully used to 

differentiate various necrophagous insect species in all life stages (from eggs to adults), based on 

ethanol suspensions of specimens [241–244]. 

  

1.4 Automation and machine learning 

Due to the many fields relying on insect identification and the large numbers of specimens collected, 

sample throughput has become imperative and defines which identification methods are preferably 

applied or have promising potential. Techniques are improved and tweaked to make them as simple 

and as fast as possible to get more specimens analysed with a minimum of technical expertise. The 

challenge in routine identifications or monitoring actions is often not caused by identifying unknowns, 

but by the large numbers of samples collected. The number of professionals and resources available 

are often not capable to meet the demands for insect identification. To ease this situation, 

morphological identification work is increasingly carried out by para-taxonomists and non-specialised 

taxonomists and has been subject to automation efforts for years. [245–247] 

Most automation efforts so far focus on image identification through the use of pattern recognition 

algorithms and neural networks. While automated morphological identification has been around for 

more than 20 years [247], improvement of feature resolution and the rising popularity of machine 

learning approaches only recently led to an increase of studies in this research area. High resolution 

images and sophisticated feature selection and recognition have enabled successful identification of 

insects (adult and immature stages), down to the species level at accuracies comparable to taxonomic 

experts [248–252]. Even in cases where whole specimens cannot be easily retrieved, e.g. insect pests 

in food, automated species identification can be possible [253,254]. 

Some have taken a completely different approach and use wing-beat frequencies and flight sounds to 

distinguish insects. Again, this approach is not new [255], but has recently received increased interest 

and been improved to detect mosquito vector species and differentiate between bees and hornets 

[256,257]. This approach to identifying flying insects is also under investigation for its potential use in 

precision farming; studying and classifying insect populations in flight could help optimise insecticide 

applications in the field [258]. 

Machine learning approaches are not only useful for automated image or sound analysis, many insect 

identification methods producing complex data increasingly incorporate machine learning algorithms 

like neural networks and pattern recognition into their data analysis pipelines. To extract more 

information and small differences from acquired data, machine learning algorithms have been applied 

to a variety of data sets whether they have been acquired through near and mid-infrared spectroscopy 

[121,220], real time-high-resolution mass spectrometry [241,243] or MALDI-TOF [259].  
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Both, automation and machine learning are trying to minimise human input and overcome our 

limitation in what can be perceived, in order to explore new ways of identifying and characterising 

insects and accelerate identification rates, ideally without sacrificing accuracy. 

 

1.5 Rapid Evaporative Ionisation Mass Spectrometry 

Within this thesis the suitability of rapid evaporative ionisation mass spectrometry (REIMS) for insect 

analysis was explored. REIMS is an ambient mass spectrometry technique, which was developed by a 

research group led by Zoltan Takáts in 2009 to distinguish different types of tissue with the help of 

electrosurgical tools. The field of ambient mass spectrometry and the working principle and 

applications of REIMS in specific will be further discussed under the following points. 

 

1.5.1 Ambient ionisation mass spectrometry 

The term ambient ionisation has only recently been coined [260], trying to group new emerging 

desorption/ionisation techniques. Classification of these methods is difficult as they combine different 

desorption and ionisation types, however, they all use atmospheric pressure ionisation (API) sources. 

API sources ionise molecules at atmospheric pressure before transferring ions into the high vacuum 

environment of the mass analyser. This is achieved by stepwise increase of the vacuum through 

compartments and differential pumping systems [261]. One of the most common ionisation types that 

falls into this category is electrospray ionisation, which is especially popular for protein analysis. 

Ionisation at atmospheric pressure means that separation systems (e.g. HPLC, CE) can be easily coupled 

to a mass spectrometer and that sources, as they are attached to the outside of the instrument, can be 

exchanged when needed.  

There are two other characteristics that help define an ambient ionisation technique: direct sample or 

surface analysis and requirement of minimal or no sample preparation. Ambient techniques, compared 

to many other mass spectrometric approaches, do not require a lengthy sample preparation protocol; 

in most cases samples are analysed in their natural state. This enables analysis of samples of unusual 

form or surface [262–264], which would be difficult to prepare or extract interesting molecules from 

for direct MS analysis.  

This lack of sample preparation brings other additional benefits: many samples can be analysed within 

a short amount of time making the techniques high-throughput, and a minimal amount of solvents and 

chemicals are needed prior to or during analysis, which helps save money and reduces matrix effects 

[265]. Due to these properties ambient ionisation techniques are not only attractive for institute based 

research labs, but also other analytical laboratories in a wide range of fields searching for simple and 

fast solutions.  
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So far ambient ionisation techniques have been applied in several major fields. First, there are the 

biological/biomedical samples which mostly cover analysis of healthy and cancerous tissues from 

various organisms as well as analysis of blood samples [266–270]. Then there is application in the 

pharmaceutical sector and drug analysis [271–274], which leads into forensics and explosive detection 

[262,275–278]. Lastly, there are microbiological studies [279–282] and the wide field of food and 

environmental analysis, covering food fraud and contamination [283–287] to the analysis of  pesticides 

and toxins [288–290].     

As previously mentioned, classification of these ambient techniques is challenging and different ways 

of grouping them have been proposed. The techniques differ in their sample processing steps (liquid-

solid extraction, thermal/chemical/laser desorption), their ionisation mechanisms (spray or jet 

ionisation, electric discharge, gas/heat/laser assisted) and even ionisation steps (number of steps 

required to ionise the molecules, 1-3) [265,283,291,292].  

A large number of ambient ionisation techniques have been reported (48, end of 2018) [293]  and there 

are likely more in development. The simplicity of the direct analysis approach allows easy adaption and 

development of techniques to optimise analysis of certain samples, leading to an increasing amount of 

ambient ionisation variations (and abbreviations). The most commonly used techniques, however, are 

Desorption Electrospray Ionisation (DESI) [260] and Direct Analysis in Real-Time (DART) [294], likely 

because they were among the first to be developed and become commercially available. 

A range of molecules, such as proteins, lipids, metabolites, carbohydrates or small drug molecules, can 

be detected using ambient techniques. However, the detection largely depends on the ionisation 

mechanism and sample type [295]. Not all molecule types present in a complex sample can be ionised 

and detected using a single ionisation method. While all techniques can provide qualitative data good 

enough for classification and identification, compound quantification can be problematic, particularly 

when analysing solid samples as internal standards can’t be added [283,293]. 

Nevertheless, the rapid development of new ambient techniques has proven that many researchers 

see great potential in them. Cooks et. al [295] predicted that the popularity of ambient ionisation 

techniques will accelerate the development of miniature mass spectrometers to enable easy, 

preparation-free sample analysis in real time.  

 

1.5.2 REIMS working principle 

The ionisation principle of REIMS was first developed by Zoltan Takáts and his research team, but 

commercialised through the company Waters (Wilmslow, UK) [296]. The REIMS ionisation source was 

specifically designed to analyse aerosols resulting from thermal disintegration caused by the passage 

of electricity through the sample of interest.  
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The electric current is applied through handheld electrodes which are either bi or mono-polar and 

connected to an electrosurgical generator. Monopolar electrodes require a counter electrode to enable 

the flow of electricity, usually in form of a rubber mat placed underneath the sample. Diathermy tools 

have been used in surgery for a long time to cut and cauterise tissue and come in all shapes and sizes. 

When an electrosurgical knife was first connected to a mass spectrometer the term iKnife was created 

(at the Imperial College, London); the intelligent knife that could recognise what it was cutting into 

(Figure 1.4).  

The resulting aerosol is then evacuated through a tube to the source and subsequently the mass 

spectrometer. The source consists of a metal tube called Venturi and a metal whistle, which help guide 

the aerosol as well as a potential lock-mass solution through a transfer capillary to the inside of the 

source. This also filters the incoming aerosol to prevent larger particles from entering the inlet capillary. 

Due to the way molecules are gained from a sample, REIMS has been given the category of thermal 

absorption and the ionisation mechanism was described as chemical/thermal evaporation in a recent 

publication from 2019, reviewing old and new ambient ionisation techniques. Despite nearly 50 

different methods being currently available, REIMS is still quite unique in how it operates and produces 

ions [293]. 

 

Figure 1.4: REIMS schematic 

Overview of the REIMS set-up showing an instrument schematic (Waters, REIMS Research 

System with iKnife Sampling, original schematic: https://www.waters.com/waters/en_GB/REIMS-
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Research-System-with-iKnife-Sampling-Device/nav.htm?locale=en_GB&cid=134846529). Samples are analysed 

with a handheld electrode (iKnife), the resulting aerosol is aspirated into the sample inlet tube, 

introduced into the venturi device and transferred to the heated impactor via a transfer 

capillary before being detected in the mass analyser. 

 

The ionisation mechanism is not as clearly defined as with other techniques. Molecules can retain their 

natural charge state during the thermal degradation process, become ionised in the gas phase through 

interaction with charged water molecules or, once transferred through an inlet capillary to the inside 

of the source, the molecules in the aerosol can obtain charge upon contact with a heated impactor 

(Kanthal metal coil at 900 °C) which de-clusters the incoming particles. 

The molecule types detected with REIMS are mostly lipids, fatty acids, phospholipids and triglycerides 

[296]. While there are attempts at identifying the molecules in the spectra, it is the overall signal pattern 

that is used for sample identification.  

Two other similar approaches were developed after REIMS. While the handheld electrode is useful 

during surgery, it is not necessarily a requirement for other sample types. To avoid contamination 

between certain samples, such as bacterial cultures, the electrode needs to be wiped clean or replaced 

in-between samples. Ambient laser desorption ionisation (ALDI) was developed as an improvement to 

REIMS by using an infrared laser instead of electrical current to thermally combust the sample, 

therefore eliminating the need for sample contact [297]. The next optimisation step involved removing 

the handheld technology and replacing it with an automated platform; samples are deposited into well 

plates and automatically analysed through a laser, the resulting aerosol is aspirated and transported 

through thin tubing to the inlet. The technique is called laser-assisted REIMS (LA-REIMS) and has the 

potential to significantly increase sample throughput without the presence of the analyst [298,299]. 

Analysis of REIMS data is often conducted in a similar way. Instead of using a library to compare the 

sample spectrum against a reference, REIMS data is usually subjected to a machine learning approach 

(Figure 1.5). Sample classification is enabled by detecting small differences in the mass spectral 

patterns, identification of individual molecules is not required.  



23 
 

 

Figure 1.5: Workflow example 

Overview of general steps involved in REIMS analysis from data acquisition (a) to data analysis 

(b). A sample is analysed using thermal disintegration applied through an electrode (or laser). 

The resulting aerosol is aspirated into tubing leading to the source and mass spectrometer, 

where ions are detected and form a signal peak; an example of the underlying mass spectra 

can be seen on the right. Samples are then assigned to classes, data is processed and binned 

before using the data matrix for machine learning and classification analysis. 

 

Acquired mass spectra are pre-processed by subtracting background and correcting for mass-shift 

through a lock-mass (introduced at the same time as sample) before being compartmentalised into 

bins, which can have varying sizes, but are most commonly 0.1 or 0.05 m/z (mass-to-charge ratio) wide. 

Binning reduces the complexity of the data matrix, which is subsequently analysed through statistical 

methods such as principal component analysis, linear discriminant analysis or random forest to identify 

a variable pattern allowing separation of classes. After building a classification model it can be used to 

identify unknown test samples. 

This is just a general description of a potential workflow. In particular after creation of the data matrix 

approaches can vary widely; adjusting data analysis workflows to your data set or your analytical goal 

can be beneficial  [300]. 
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1.5.3 REIMS applications 

REIMS was originally developed to distinguish cancerous from healthy tissue during cancer surgery 

(iKnife), but has since found application in a variety of different fields. However, a majority of 

applications still focusses on medically related research questions. The idea was to develop a system 

that would be capable of giving a surgeon real-time information about the tissue being cut during 

cancer surgery through a simple colour signal (e.g. red = cancerous, green = healthy). It has since been 

applied to many types of cancer, from breast pathologies [301–303] to gynaecological tissues 

[266,267,299] and colorectal cancer. REIMS has even been used to analyse endoscopic tissues in vivo 

to explore its potential to detect gastrointenstinal cancer [304]. Recently, human faeces joined the list 

of medically relevant samples; faecal matter could allow observation of microbiome differences in the 

gut [305,306]. That faecal matter can contain all kinds of information has also been demonstrated for 

animal faeces which allowed identification of rodents according to their species, sex and maturity [307]. 

One of the first applications on non-tissue samples has been the analysis of bacterial and fungal 

colonies. Although considerably less biomass was available for analysis, REIMS enabled separation of 

different bacteria and fungi species and strains (some isolated from patients) grown on culture plates 

[279,280,297,308,309] and has even been able to detect differences in protein expression levels [282]. 

The possibility to apply the technique in-vivo without any kind of sample preparation is a big advantage 

that REIMS has over other techniques. This could also benefit other fields which require fast and simple 

routine analysis. REIMS has therefore been tested on animal tissue, such as beef and fish. It was soon 

recognised that REIMS can distinguish different meat qualities and even recognise fraudulent food. This 

opened up an extensive new field of application; the number of studies in the area of food fraud 

detection and quality assurance rivals the medically-related applications. REIMS analysis of meat allows 

species identification (meat origin) [287,310,311] as well as detection of differences correlated with 

quality [312,313]. The composition of fish products was put to the test too, leading to successful 

detection of fish species [314–316] and even catching method [286]. Non-meat samples such as 

pistachios, botanicals and honey have been analysed as well [317,318], and more food products are 

likely to be tested in the future. 

It has been reported that REIMS might not achieve as high accuracies as other ambient MS approaches 

[319], it also shares similar problems with other ambient ionisation techniques, such as quantification 

of components. Direct analysis of solid components prohibits the use of internal standards. Even 

establishing detection limits can be challenging and is often evaluated through other additional 

methods such as LC-MS/MS [320]. The different types of REIMS and variability introduced through the 

operator, especially in cases of handheld electrodes, can make the application less transferable and 

robust model building challenging [287]. Despite being possibly less suited for in-depth biological 

interpretation, the ease of sample analysis and rapid data acquisition make REIMS a promising tool for 
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many fields requiring simple and fast routine analysis. More types of samples and applications are likely 

to be explored in the future, hopefully alongside rigorous validation steps to help mature this technique. 

 

1.6 Project Aims 

Insects have been analysed using a wide range of methods and techniques, including ambient ionisation 

approaches such as DART-MS (direct analysis in real-time mass spectrometry). DART-MS analysis of 

necrophagous insects not only resulted in complex mass spectra [241], they also contained enough 

information to enable differentiation of species. Furthermore, the approach was successful with 

different life stages from eggs to adult specimens [241–243]. While DART-MS requires less sample 

preparation than many other mass spectrometry techniques, in case of insect analysis, it still requires 

the preparation of ethanol suspensions for each sample.  

In the course of this PhD training the suitability of rapid evaporative ionisation mass spectrometry 

(REIMS) for insect analysis was explored. The techniques simple set-up and ability to analyse samples 

in their natural state without any sort of prior treatment or processing turns REIMS into an easy-to-use 

method capable of high sample throughput. Many of the fields requiring insect identification and 

characterisation collect large numbers of samples on a regular basis. To ensure as many samples as 

possible can be processed, identification methods have to be straightforward in their application and 

capable of fast data acquisition and information output.  REIMS fits this brief and could be a useful new 

tool for entomological purposes. To facilitate a comparison with other techniques used for insect 

analysis (discussed under section 1.3) a method summary was tabulated in Figure 1.6. 
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Figure 1.6: Method summary of REIMS and other methodologies commonly used for insect analysis 

A comparison of REIMS and other methodologies used to identify and characterise insects; the features (species, 
age, etc.) they target, their working principles, their advantages and disadvantages as well as information 
regarding sample preparation effort required, sample throughput and costs. The classifications (low, medium, 
high) and their corresponding numbers are mere estimates and depend on the protocols and systems used, which 
can vary considerably depending on the targeted feature, sample, instrumentation and producer. Costs for 
consumables are only listed as relative categories (no numbers given); low: only few reagents are needed, 
medium: protocols require a number of steps and reagents, high: possibly extensive protocols and/or expensive 
reagents.   
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As REIMS had not been tested on insects before, exploration and tests had to start at the very beginning 

by determining whether insects can be easily analysed with a hand-held diathermy tool, produce 

sufficient aerosol to be detectable and result in complex mass spectral signatures. Throughout the 

project the challenges were step-wise increased to gauge the techniques capabilities and limitations. 

Potential application in the field was considered when deciding on research questions, sample sets and 

challenging factors. While many validation steps remain before comprehensive judgement of the 

methods suitability is possible, the conducted experiments, nevertheless, provide a valuable basis for 

further exploration in the future. 

The following summary provides a brief overview of the content in each research chapter (Chapters 3-

6). 

 

Chapter 3: Proof of concept studies for the application of REIMS as a new insect identification tool   

based on Drosophila species 

Experiments presented in chapter 3 were performed to establish whether rapid evaporative ionisation 

mass spectrometry could produce mass spectral data from insects, which are complex enough to 

contain variance between different sample groups. The first test included insects collected from the 

wild. After PC-LD analysis of the mass spectral data allowed separation of insects into their species 

groups, the test was expanded to Drosophila species, which are closer in morphology and genetic 

relationship. A general workflow was created, which acted as guideline for following experiments. Many 

settings, data acquisition and analysis steps were kept constant throughput the project to enable 

performance comparison and detect changes in data patterns, which furthered understanding of 

underlying principles. 

 

Chapter 4: Using REIMS to characterise Anopheles mosquitoes and address challenges in population 

monitoring 

The species and research questions represented in chapter 4 were chosen for their importance in field-

related studies. While still relying on laboratory based specimens, the species and classifications used 

allowed investigating REIMS potential to address actual challenges in insect analysis and identification. 

Testing REIMS capabilities also meant including factors such as sample treatment and storage. The 

experiments are presented in an order reflecting the increasing levels of difficulty. 
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Chapter 5: Developing classification models by using “semi-wild” mosquito specimens to help study 

mosquito populations of salt-water marshes and surrounding areas in the Neston region 

The step from laboratory raised specimens to fully wild insects can be difficult to achieve, especially 

with respect to sample collection and treatment as well as sample numbers and pre-identification, 

which is necessary for model building. A number of adult wild-caught specimens were analysed for the 

experiments in this chapter, however, the majority of the sample pool consists of “semi-wild” insects, 

which had been sourced locally. These semi-wild specimens were fully wild up to different immature 

stages before being collected and raised to adults under non-controlled conditions. This approach 

simplified sample procurement and allowed gathering information which could not have been obtained 

easily from wild adults, such as age. It also enabled collection of mosquitoes of both sexes; mosquito 

traps mostly attract female adults. Despite samples lacking the degree of variability expected in wild 

populations, they contained a significant amount of confounding variance introduced by environmental 

influence, raising conditions, storage length and analysis. The experiments conducted in this chapter 

were a vital step in testing the method’s suitability for field application. 

 

Chapter 6: Explorative studies on indirect insect identification through analysis of frass 

Following analysis of immature and adult insects, the question arose as to whether it would be possible 

to identify insects by the traces, i.e. droppings they leave behind. This particular problem can be 

encountered in pest control; sometimes the damaged crops have to serve as evidence because the 

insect pest is either absent or there is uncertainty about the exact species responsible for the damage. 

This challenge stimulated a preliminary exploration of REIMS capability to analyse insect frass and 

whether information such as species or diet could be gleaned from such data. 
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Chapter 2: Methods 

 

2.1 Samples: sources, handling, storage & preparation 

Information about how samples were sourced, handled, stored and prepared for analysis listed 

separately for insect species/sample groups (presented in the same order as results). 

 

2.1.1 Wild arthropod samples and Drosophila specimens 

Specimen of five arthropod species were collected at Leahurst campus by myself, Prof Jane Hurst and 

Prof Rob Beynon from the University of Liverpool and Dr Sam Jones from International Pheromone 

Systems. Identification of the collected arthropods (garden spider (Araneidae), nettle aphid 

(Aphididae), common wood louse (Oniscidae), springtail (Collembola) and damsel bug (Nabidae) was 

provided by Dr Sam Jones. For the analysis of Drosophila specimens, adult and immatures were 

provided by Dr Tom Price and Dr Nicola White of the Ecology and Evolution Group in the Institute of 

Systems, Molecular and Integrative Biology at the University of Liverpool.  

 

Laboratory raised Drosophila 

For the laboratory-derived samples, Drosophila melanogaster (Dahomey), D. simulans, D. subobscura, 

D. bifasciata, D. pseudoobscura and D. hydei were reared in 250 mL glass bottles. All species were 

reared on standard ASG food (for 1 L of water: 10 g of agar, 20 g of yeast, 85 g of sugar, 60 g of cornmeal 

and 25 mL of nipagin (100  g /L) except for D. hydei which was reared on banana food (for 1  L of water: 

15 g agar, 30 g yeast, 150 g frozen bananas, 50 g blackstrap molasses, 30 g malt, 25 mL nipagin (100 

 g/L). Species were reared at the optimal temperature according to their natural habitats; 25°C for D. 

melanogaster, D. simulans and D. hydei, 22°C for D. pseudoobscura, and 18°C for D. bifasciata and D. 

subobscura with a 12:12 LD cycle. Stocks were transferred to new food weekly, with adults replaced 

every 4-5 weeks. To represent what would realistically be collected in the wild, individuals for 

experiments were chosen at random, irrespective of age or virginity. Sex was determined under CO2 

anaesthesia. 

Species identity was checked using the mitochondrial universal barcode gene cytochrome oxidase 

subunit 1 (COI). DNA was extracted from 3 male flies with DNeasy kits (Qiagen) following the Qiagen 

invertebrate protocol. A sequence from COI was PCR amplified using the primers C1-J-1718 (5’ – 

GGAGGATTTGGAAATTGATTAGT – 3’) and C1-N-2191 (5’ – CCCGGTAAAATTAAAATATAAACTTC – 3’) 

using HotStart Taq (Promega) with (5-minute initial heating, 30 cycles at 95°C for 30s, 56 for 30s, and 

72°C for 30, with an final elongation step of 72°C for 120s). The products of these PCRs were visualised 

using SYBRSafe-stained gel electrophoresis. Products were then cleaned up using Exonuclease I and 
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Shrimp Alkaline Phosphatase incubation using the recommended BioLine protocol. BigDye based 

sequence reactions were carried out with both forward and reverse primers, followed by NaOH and 

ethanol clean-up and precipitation. Sequences were then analysed with an ABi 3500XL Genetic 

Analyzer. Forward and reverse sequences for each species were aligned to derive a consensus 

sequence. The sequences were assessed using publicly available CO1 sequences from the same species 

available on the BOLD database. 

 

Sample specimen collection and storage 

For the initial study, a few individuals of five different arthropod species were collected from the 

University Leahurst campus, killed by freezing and stored at -20 °C for 6 days.  A total of 800 specimens 

of the Drosophila species D. melanogaster, D. subobscura, D. pseudoobscura, D. bifasciata and D. 

simulans were selected for REIMS analysis. The conspecifics of each species were separated into male 

and female subgroups to facilitate species as well as sex separation experiments. All specimens had 

been raised to their adult stage; further age differences as well as reproductive state were not taken 

into account. Specimens were directly transferred to fresh container vials and killed by freezing and 

stored at -20 °C for 3-6 days, as samples were analysed over several days. Approximately 30 min prior 

to REIMS analysis specimens were returned to room temperature. In a separate experiment, 3rd instar 

wandering stage larvae of D. melanogaster and D. hydei were collected, frozen, stored and returned to 

room temperature for REIMS as per the adults. 

 

2.1.2 Anopheles 

Anopheles specimens were provided by Dr Linda Grigoraki and Prof Hilary Ranson from the Liverpool 

School of Tropical Medicine. Morphological identification of males and females was conducted by Linda 

Grigoraki and Iris Wagner. 

 

Laboratory raised mosquitoes 

Specimens were collected from three Anopheles mosquito species maintained at the Liverpool School 

of Tropical Medicine: an An. gambiae s.s strain called Kisumu, an An. coluzzii strain called N’gusso and 

an An. arabiensis strain called Moz. All three strains were reared at 26 ± 2 °C and a relative humidity 

(RH) of 80 ± 10 % under a L12:D12 h light:dark cycle with a 1-h dawn and dusk. All stages of larvae were 

reared in distilled water and fed on ground fish food (Tetramin tropical flakes, Tetra, Blacksburg, VA, 

USA). Adults were provided with 10 % sucrose solution ad libitum. 

Anopheles laboratory-raised mosquitoes were collected as pupae and placed in paper buckets for a 24h 

emergence period (day 0). Thereafter non emerged pupae were removed or kept for an additional 24h 



31 
 

(in cases where two consecutive age groups are reported). Age profiling samples were collected at 

different days post emergence. Females were separated from males based on clear morphological 

differences (sexual dimorphism of the antenna) and aspirated into paper buckets. Males were only kept 

for building a sex separation model and as part of the blinded samples, in other cases they were 

discarded. Mosquitoes were killed either by freezing at -20˚C, in which case samples were stored in the 

freezer until the day of analysis, or through dehydration by placing the buckets at 36-38˚C overnight 

without a water source. In the latter case samples were transferred the next day into plastic tubes with 

cotton wool on top of silica gel to be stored at room temperature until the day of analysis. 

 

2.1.3 Wild and ‘Semi-wild’ mosquitoes from the Neston area 

Wild mosquito specimens collected as larvae and adults from the Neston area/Dee Estuary (as well as 

Norfolk) were provided for REIMS analysis by Prof Michael Clarkson and Dr Peter Enevoldson. A small 

set of mosquito samples, visually identified as Culex pipiens, were further examined and identified 

through DNA analysis, which was carried out by Arturo Hernandez-Colina from the Institute of Infection 

and Global Health at the University of Liverpool. 

 

‘Semi-wild’ mosquitoes: Larvae of seven different species (Aedes detritus, Aedes rusticus, Aedes 

punctor, Aedes cantans, Aedes caspius, Culiseta annulata, Culex pipiens s.I) were collected from pools 

in the Dee estuary; only one set of specimens was collected in Norfolk at the banks of the river Bure. 

Larvae were reared in their original water and fed intermittently with yeast. After emerging as adults, 

they were captured in nets attached to the original container that was emptied every 24 hours. Adults 

were killed by freezing, and their species and sex identified morphologically according to standard keys 

[321,322]. The pool of larval origin, date of larval collection, date of emergence and date of killing (and 

thus, adult age at death), sex and species were recorded for each individual. All samples were then 

stored at -20˚C until analysis. Mosquitoes were reared dry, unless a feeding experiment was conducted. 

During the feeding experiment mosquitoes were split into three groups: one was again raised dry, one 

was provided fresh water and the third was fed with sucrose solution. Water and sucrose solution were 

offered in form of soaked cotton wool.  

No attempt was made to distinguish Culex pipiens pipiens and Culex torrentium. Sample classes 

containing Culex pipiens s.I mosquitoes were therefore simply labelled as Culex pipiens. Only one set of 

mosquitoes, which had been visually identified as Culex pipiens s.I, was further analysed to distinguish 

Culex pipiens pipiens from Culex torrentium using conventional PCR and an enzyme digestion protocol 

following the protocol proposed by Hesson et al [323], with some modifications. To this end the legs of 

the mosquitoes were removed for analysis, the rest of the body was analysed later using REIMS.  

 



32 
 

Wild-caught mosquitoes: Wild adult mosquitoes (almost exclusively females) were captured in 

Mosquito Magnet traps using carbon dioxide and octenol as attractants. Trapping occurred over a two 

day period every week between March and November 2019 in up to 4 sites in the Neston area [324]. 

Mosquitoes were stored at -20˚C in the time between collection from traps and REIMS analysis. 

 

2.1.4 Frass samples 

Crickets were obtained from a life-foods provider and the populations maintained by Dr Sam Jones and 

Prof Jane Hurst, who also collected and stored the frass samples. The infested apples were provided by 

Dr Sam Jones. 

 

Frass produced by controlled populations: 

Frass (insect faecal matter) was collected from four cricket species: the black cricket (Gryllus 

bimaculatus), the silent cricket (Gryllus assimilis), the brown cricket (Acheta domesticus) and the striped 

cricket (Gryllodes sigillatus). For the first set of samples, specimens of the four species were fed the 

same diet consisting of a mix of oatmeal and fish food and were kept in the same type of housing. 

Populations were replenished when necessary and the frass was collected over the course of three 

months. For most of the time frass was stored at -20˚C, however, shipping took place at ambient 

temperature resulting in inconsistent storage conditions. For the second set of samples, black crickets 

(Gryllus bimaculatus) were raised on three diets – greens (kale), oats and potato - at two locations 

(different handler and environment). Frass was collected at four different time points ensuring the 

crickets had been switched completely to their new diet before starting the sampling process. The 

samples were collected over the course of nine days from a total of 61 individuals and stored at -20˚C 

until REIMS analysis. 

 

Frass produced by wild populations: 

Apples from different varieties, which showed outward signs of insect infestation, such as entry holes, 

were collected from an orchard. The apples were stored in a cold-room until they were cut open and 

inspected for frass. The frass was removed, transferred to an Eppendorf container and stored in the 

freezer at -20˚C until REIMS analysis.   
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2.2 REIMS system 

A description of the different components involved in REIMS analysis and their settings. Set-up and 

settings were kept constant throughout the project to enable comparisons of different sample groups 

and better judgement of REIMS capabilities and classification outcomes.  

 

2.2.1 Electrosurgical equipment 

The used REIMS system required hand-held electrodes for sample processing, sample analysis was 

therefore done manually. The electrosurgical or diathermy equipment included: 

 the electrosurgical tool, e.g. the pen or tweezers, which would analyse the sample on contact 

 a counter electrode (black rubber mat), if the tool was mono-polar 

 a generator to provide the electric current 

 long section of tubing to transport the aspirated aerosol from the hand-held electrode to the 

ionisation source inlet (this is already attached to the hand-held electrode) 

  

Figure 2.1: REIMS laboratory set-up 

The actual laboratory set-up used during the project, consisting of: the electrosurgical pen (1), 

the counter-electrode/rubber mat (2), the fume box (3), the generator (4), the aerosol tube 

connecting the pen with the source inlet (5) and the inlet to the REIMS source (6). 
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A diathermy pen with knife attachment (Erbe Medical UK Ltd, Leeds) was used for analysis throughout 

the project; samples were analysed using the ‘cutting’ option (instead of ‘coagulation’ mode) on the 

pen system. The pen was mono-polar, therefore samples had to be analysed on top of a counter 

electrode mat to facilitate the flow of electric current. The generator (VIO 50 C) was set to 40 W, which 

was used for all samples. This setting, of intermediate power, enabled analysis of insect samples of 

different size and consistency. A higher wattage was not needed to successfully ‘burn’ the samples, a 

lower one on the other hand would not have been sufficient for samples with more biomass and a drier 

consistency (e.g. Aedes mosquitoes). 

To increase conductivity and protect the counter electrode during analysis, specimens were placed on 

a piece of glass microfibre paper (GFP, GE Healthcare Whatman) on top of a wet paper surface 

(moistened with MilliQ water). Analysis was performed under a fume box (Air Science) to avoid 

inhalation of fumes during analysis. While burning the entire biomass of individual specimens, the 

aerosol was aspirated through the pencil and the attached 3m long tubing into the REIMS source. The 

whole laboratory set-up can be seen in Figure 2.1. 

The knife part of the hand-held electrode was wiped clean after every sample and cleaned thoroughly 

daily using isopropanol and fine sand paper. The pen, knife attachment and tubing leading to the source 

inlet were discarded and replaced with new equipment after a few hundred samples (dependent on 

the amount of accumulated dirt). For every type of sample or sample set a different electrosurgical set 

was used to avoid cross-contamination.    

 

2.2.2 Rapid evaporative ionisation source 

Aspiration of sample aerosol through the tubing into the rapid evaporative source (REIMS, Waters, 

Wilmslow, UK) was facilitated by a nitrogen powered venturi valve on the source inlet. The Venturi tube 

and the incorporated whistle guided the incoming aerosol as well as a lock mass solution through the 

inlet capillary into the source (Figure 2.2). 
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Figure 2.2: REIMS source inlet 

A picture of the outer source parts, which include the inlet for the aerosol produced during 

sample analysis, the inlet for the lock-mass solution, which is constantly introduced during 

analysis and the venturi tube and whistle which help guide both into the source. The inlet 

capillary is situated behind the whistle. The waste tube is attached at the bottom of the venturi 

tube. 

 

The lock mass solution was leucine enkephalin (Waters, UK) in propan-2-ol (CHROMASOLV, Honeywell 

Riedel-de-Haën) at a concentration of 0.4 µg/ml. The lock mass enabled correction of sample spectra 

for minor m/z shifts occurring over time. The lock mass solution was continuously introduced during 

sample analysis at a flow rate of either 50 µl/min, used for the initial arthropod sample set, or 30 µl/min, 

used for all other samples. The decrease of flow rate to 30 µl/min was an adaptation to the smaller 

insect samples and less aerosol being obtained during the burn event.   

Molecules can be ionised at different time points: they can retain their natural charge state during the 

thermal degradation process, become ionised in the gas phase through interaction with charged water 

molecules or, once transferred through an inlet capillary to the inside of the source, the molecules in 

the aerosol can gain their charge upon contact with a heated impactor (Kanthal metal coil at 900 °C) 

which de-clusters the incoming particles. The ions are then guided through lens stacks into the mass 

spectrometer.  

The source inlet parts (Venturi tube, whistle, plastic connector, inlet capillary) were cleaned daily 

through a 20 minute sonication step in a 50:50 mix of milliQ water and propan-2-ol. After sonication 
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parts were dried using nitrogen. Every six months or after heavy use, the parts were deep cleaned using 

Liquinox. 

 

2.2.3 Mass spectrometer 

The REIMS source was attached to a Synapt G2Si instrument, an ion mobility equipped quadrupole time 

of flight mass spectrometer (Waters, UK). Acquisition of the mass spectra was performed in negative 

ion mode at a rate of 1 scan per second over a mass/charge range of m/z 50-1200. The sample cone 

and heater bias were set to 60 V. Instrument calibration was performed daily in resolution mode using 

a 0.5 mM solution of sodium formate (flow rate 50 µl/min). 

The first MS component the sample stream contacts is the StepWave, an ion transfer device that 

removes uncharged particles and therefore diminishes contamination. In the process the stacked rings 

accumulate dirt, especially so with a REIMS source which filters the incoming aerosol only to a certain 

degree. The StepWave was therefore removed and cleaned after every three months of continuous 

usage or as required. 

 

2.2.4 Different modes of sample analysis 

In addition to the electrosurgical pen with knife attachment, electrosurgical tweezers (bipolar) were 

also tested (Figure 2.3 a). However, the tweezers did not lead to any usable aerosol production (30-50 

W, test sample: common woodlouse). 

 

Figure 2.3: Electrosurgical tools 

Pictures of the hand-held electrosurgical devices used for sample analysis: bi-polar tweezers 

(a), pen with knife attachment (b) and the pen with knife attachment and additional wide 

plastic tubing to increase aerosol uptake (c). The latter was used for most experiments.  



37 
 

The insect samples used for the initial REIMS test had been analysed with the electrosurgical pen with 

knife attachment (Figure 2.3 b). Every other sample analysed over the course of this PhD project was 

analysed with an additional piece of wide plastic tubing attached to the electrosurgical pen (Figure 2.3 

c). Insects provide a small amount of biomass for analysis and consequently limited aerosol production, 

the wide tubing aided aspiration to maximise aerosol uptake. Additionally, the insect sample is not 

homogenous and the molecule content changes depending on the body part analysed, enabling 

constant aspiration was therefore vital. 

 

2.3 GC-MS system 

Cuticular hydrocarbon analysis was conducted using gas chromatography-mass spectrometry (GC-MS) 

and solvent based extraction. 

 

2.3.1 Sample preparation  

Flies were killed by freezing at -20˚C, dried at room temperature for 30 min before being transferred to 

a glass vial and being covered with 20 µl of hexane for 10 min to extract the cuticular hydrocarbons. At 

the end of the extraction time around 10 µl were removed and transferred to a fresh vial to be placed 

in the GC auto-sampler for analysis. 

 

2.3.2 Gas chromatography 

1 µl of the prepared hexane extract was separated on a gas chromatography column (DB-1ms, Agilent 

J&W) using helium as carrier gas and a 30 min long temperature gradient of 70˚C to 340˚C. The column 

dimensions were: length 30 m, inner diameter 0.25 mm, film 0.25 µm. Samples were injected using an 

auto-sampler and the inlet temperature was set at 300 ˚C. To prevent any possible carry-over from one 

sample to the next, blanks (hexane injections) were run in-between samples. 

Gradient details: 1 min at 70˚C, followed by a temperature raise of 10˚C per minute until 340 ˚C were 

reached. A temperature of 340˚C was maintained for further 2 min before end of acquisition. 

 

2.3.3 Mass spectrometry 

Molecules separated on the GC-column were ionised in an electron impact source (positive mode), 

using an electron energy (eV) of 70, followed by analysis through a Time-of-Flight mass spectrometer 

(GCT Premier, Waters, UK). Scan time was set to 0.9 sec, Interscan was 0.1 sec and the mass range was 

set to 40-650 m/z. The mass spectrometer was calibrated using a solution of heptacosa (Waters GCT 

standard) and the Masslynx calibration wizard. Only a small amount (wet needle) was introduced to the 

reference reservoir inlet. 
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2.4 Data analysis 

The raw data were imported into the model building software packages Offline Model Builder (OMB-

1.1.28; Waters Research Centre, Hungary) and LiveID (Waters, UK), which allow separation of sample 

groups (classifications) based on principal component analysis (PCA) and linear discriminant analysis 

(LDA). Data were additionally analysed using R (version 3.6.1)[325] in the R Studio environment [326], 

by PCA and LDA, as well as random forest analysis. 

 

2.4.1 Software packages 

Offline Model Builder:  

In the Offline Model Builder software package, raw sample files were imported and the burn events of 

the analysed samples defined individually, summing up the MS scans within each chosen area. In most 

cases the data for each specimen was acquired in an individual file, i.e. a file contained only one burn 

event resulting from the analysis of one specimen. However, it sometimes happened that a burn event 

was split, because the specimen could not get analysed in one go (often a part of the biomass got stuck 

on the knife).Therefore the option to create only one spectrum per sample was selected. This ensured 

that even though a burn event is split it is still treated as belonging to one sample. The only exemption 

were two cases in which more than one specimen was analysed and the data acquired within the same 

file: (1) the first arthropod samples were analysed in species groups, with all specimens from one 

species being in the same file and (2) frass samples collected from crickets on different diets, when 

more than one frass pellet was collected from an individual cricket. When analysing those two data 

sets, the setting to treat all samples individually was selected. 

Other pre-processing parameters included the intensity threshold, which was set between 4e5 and 9e5, 

depending on the background baseline. If samples with varying baselines were included for model 

building the threshold was set approximately in the middle.  

For all sample files the background was subtracted and the spectra corrected using the lock mass 

(leucine enkephalin, m/z 554.26). Most models were built using the full mass range from m/z 50 to 

1200 (if not it is stated within the results), to ensure all signals can be used for classification purposes. 

It was unclear which signals of an insect based REIMS pattern would be useful for various classification 

attempts, the choice was therefore to use all available information. All sample sets were reduced in 

their complexity by combining data points into mass bins, each 0.1 m/z unit wide; the binning mode 

was set to advanced. 

Subsequent model calculation was either based on principal component analysis (PCA) alone or on a 

combination of PCA and linear discriminant analysis (PCA-LDA). The number of principal components 

to be used for model building was adjusted for every sample set (details under 2.4.2 and 3.6.1). 
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Data matrices, including classifications and intensities, were exported from Offline Model Builder for 

further analysis. For sample recognition (identification), models were exported to the Offline Model 

Builder Recognition software. 

 

LiveID: 

Only a small number of sample sets were additionally analysed using the model building software 

LiveID; results obtained through LiveID are described accordingly. 

To enable data analysis in LiveID, the data files had to be pre-processed using Progenesis Bridge (part 

of MassLynx software, Waters, UK): mass spectra were lock mass corrected, the background subtracted 

and the scans summed and averaged to provide uniform burn events (Figure 2.4). This prevented 

incorrect splitting of burn events during the automated recognition in LiveID. The burn events resulting 

from insect analysis are variable, with signal intensities dropping and rising in between sample analysis, 

which is due to the sample being non-homogenous and small in size compared to the diathermy knife. 

While burn events can be selected manually in OMB, LiveID selects them automatically without the 

option to adjust the selection. Therefore burn events have to be averaged to gain a uniform profile 

beforehand. 

 

Figure 2.4: Data processing through Progenesis Bridge 

Automatic detection of burn events in LiveID can cause split burn events (a), i.e. one burn event 

is recognised as two. Processing of the raw data files through Progenesis Bridge produced 

uniform burn events, which enabled correct detection in LiveID (b).  

 

Again, a mass range of m/z 50-1200 and a bin size of 0.1 were used to build models based on PCA and 

PCA-LDA. The number of principal components to be used for model building was adjusted accordingly 

(details under 2.4.2 and 3.6.1). 
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R and R packages: 

For further analysis with R, the data matrix of each model was exported as a .csv file from Offline Model 

Builder, containing information about classification and the relative intensities for every mass bin, listed 

for every sample. The matrices were used to conduct two different types of analysis in R:  

1.  Random forest analysis, using the package ‘randomForest’ [327] as well as a package called 

‘randomForestExplainer’ [328], which was used to identify the most informative bins/ions that 

were driving class separation. 

 

2. Principal component analysis followed by linear discriminant analysis, which was based on 

differing numbers of principal components. PCA was conducted through the in-built ‘stats’ 

package in R using the function prcomp [325]. Linear discriminant analysis was enabled by the 

package ‘MASS’ [329]  

Plots (2D scatter plots, kernel density plots and mass spectra) were created using ‘ggplot2’ [330] and 

the package ‘scatterplot3d’ (3D plots)[331]. 

Data manipulation and analysis additionally required the packages ‘reshape2’ and ‘caret’ [332,333]. 

The majority of the used code was written by colleague Ms Natalie Koch from the Centre of Proteome 

Research (Institute of Systems, Molecular and Integrative Biology at the University of Liverpool). 

Changes were only made for better visual representation and new code added for new 

plots/visualisations. 

 

2.4.2 Analytical algorithms 

REIMS data was analysed using different machine learning approaches. Machine learning algorithms 

help detect patterns in large and complex data sets, which can be used for classification purposes. The 

following section gives a short overview of the used algorithms (PCA, LDA, random forest) and how they 

were applied. 

 

Principal component analysis: 

Principal component analysis was conducted in the model building software tools Offline Model Builder 

and LiveID as well as in the R environment. It usually served as the primary data analysis step before 

conducting linear discriminant analysis, in these cases the analysis step is described as PC-LDA. In some 

cases, when the separation of classes seemed very distinct, principal component analysis alone was 

conducted. 
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Principal component analysis can serve two purposes: detection of differences between sample groups 

and reduction of data complexity. PCA functions as a variance concentration step and even though it is 

not specifically designed for classification (it is an unsupervised method, which ignores class labels) it 

can potentially provide separation of sample groups, however, this depends strongly on the variance 

comprised in a data set. If the factor of interest is responsible for the biggest variance in the data set, 

samples can cluster into groups using the first three principal components. If the factor of interest is 

smaller in variance or explained by a combination of smaller variances, formation and separation of 

sample groups will not occur. 

Principal component analysis is one of the most widely used techniques to reduce dimensionality of 

large data sets, while maximising variance and minimising data loss. To achieve this reduction in data 

size and complexity, new variables are created (the principal components) which are linear functions 

of the original variables. Eigenvalues and eigenvectors are used to transform the original data matrix to 

a new matrix containing the maximum of variance represented by the principal components. The first 

principal component represents the biggest variance in the data set, the second PC contains the second 

biggest variance and needs to be orthogonal (uncorrelated) to the previous one.  

Most models presented in this thesis are based on PC-LDA as PCA alone did not produce sample clusters 

that represent the factor of interest (e.g. specie, sex, age).    

 

Linear Discriminant Analysis: 

Linear discriminant analysis was performed in Offline Model Builder, LiveID and in the R environment 

after prior principal components analysis and is henceforth only mentioned as PC-LDA. While PCA is an 

unsupervised method, LDA is designed for classification purposes. It takes into account the class 

individual samples have been assigned to. It is therefore a supervised machine learning algorithm. LDA 

aims to maximise the separation between classes by computing linear discriminants. First the mean 

vectors are calculated for all classes, which are used to compute within-class matrices and between-

class matrices. Eigenvectors are then sorted by decreasing eigenvalue; the eigenvectors with the top 

eigenvalues will then be used to create the new axis (linear discriminants). The samples are then 

transformed to fit into this new space. 

The outcome of linear discriminant analysis depends greatly on the amount of variance used for 

calculation, i.e. the number of principal components selected from the previous PCA. The number of 

principal components used for LDA needs to be adjusted because the variance distribution is different 

in different sample sets. For example, the variance profile seen with laboratory raised samples, which 

were analysed within a few days’ time can be quite different from a data set comprising of wild caught 

specimens stored in different ways for different durations and were analysed over a long period of time. 

Due to the large number of variables, the maximum number of principal components is dependent on 

the number of samples. 
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Most PC-LDA models were built using the number of principal components (variance), which resulted 

in the highest identification accuracy with the lowest number of failures and outliers. Additionally, 

models were built with lower principal component numbers (25 % of maximum) to prove that 

separation can also be achieved with less variance. These two approaches were chosen, because they 

could be reproduced with every sample set, independent of sample size, classification factor or variance 

distribution. Model robustness was not taken into account when choosing principal component 

numbers. 

The models built by PCA-LDA in Offline Model Builder and LiveID were cross-validated (leaving out 20 

% of data, for outliers the standard deviation multiplier was set to 5) to obtain the correct classification 

rate, as well as the number of failures and outliers and a matrix displaying the number of correctly and 

incorrectly identified samples of each classification. During cross-validation the sample set is divided 

into five parts (20 % each); each part is removed once for model testing, the model is therefore 

validated five times. In cases were 20 % of the sample number lead to a fractional number, the number 

was either rounded up (all samples are tested during cross-validation) or rounded down (samples were 

excluded during cross-validation). To additionally test obtained separation results, sample 

classifications were randomised and re-analysed, expecting a random distribution of samples and failed 

separation. 

 

Random forest: 

Random forest is a type of decision tree, which uses a limited, randomly selected, amount of variables 

(predictors) for each decision split (defined by mtry). Instead of only using one decision tree a large 

number of them are compiled, creating a classification forest. Only the training data is used to build the 

trees. To validate the decision trees they are presented with test samples. Each tree classifies the test 

sample using its set of predictors and decisions splits and votes for a class. The class of the test sample 

is then determined through majority vote (Figure 2.5 b). 

Random forest analysis was performed using R. Data sets were randomly split into a training set 

(approx. 70 % of the data) and a test set (approx. 30 % of the data) before starting analysis. Each sample 

had a 30 % chance to be assigned to the test set and a 70 % chance to be added to the training set. In 

the first instance, the optimal number of trees and mtry value were determined before building the 

forest using the samples in the training data set. The number of trees was chosen by plotting tree 

number (2000) against error (Figure 2.5 a); the number of trees was selected from a region which 

produced a low and constant error rate (error stayed the same whether a few trees were added or 

subtracted). Mtry was determined using the function tuneRF.  

The samples in the test data were then used for class prediction and establishing the models accuracy. 

Random forest results are displayed in form of confusion matrices, containing the number of test 

samples, which had been correctly and wrongly classified. Random forest analysis was performed ten 
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times, using a different randomly selected sample set for training and testing each time. The number 

of trees and mtry value were kept constant for all ten runs. The number of correctly and wrongly 

classified samples were turned into percentages and averaged over the ten repeats. The random forest 

results in this thesis are presented as averaged percentages for the correctly classified as well as the 

confused samples. For the correct classification percentages, the standard error of the mean (SEM ±) 

and the range of obtained accuracies (minimum-maximum) are given as well. 

 

 

Figure 2.5: Random forest tree plot and schematic 

Tree plots showing tree number and corresponding error rate helped select the number of trees 

to be used for analysis (a). The tree number was selected from a region which produced a stable 

and low error rate. The coloured lines represent the error rates for each individual class (class 

1 = blue line, class 2 = red line, etc.) The schematic gives a simple overview of the working 

principle of random forest (b). It is a type of decision tree, which is presented with 70 % of the 

data to create its decision splits. Many trees are built and presented with test data (30 %) for 

evaluation. Every tree determines and votes for a class, the class with the most votes is then 

assigned to the sample.   
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2.4.3 Sample recognition 

To identify samples, known and unknown, models which had been built in Offline Model Builder were 

exported to the Offline Model Builder recognition software. The model was selected accordingly and 

the test samples selected individually. The recognition software then scanned each burn event and the 

underlying mass spectra and classified the sample (giving class name and colour code), while also giving 

a probability reflecting the likelihood of correctness (Figure 2.6). 

 

 

Figure 2.6: Screenshot of the recognition software – correct classification 

The raw data file is selected and the TIC scanned (bottom); mass spectra above a certain 

threshold are then summed and compared to the background model. The software then gives 

an identification by stating the class and associated colour code (here: red). Additionally, a 

probability score is given (in percent) showing how likely it is that this identification is correct. 

 

Most settings within the Recognition software were kept constant and only adjusted when necessary. 

The intensity threshold was adjusted for each test sample to exclude background signals before and 

after the burn event. The signal range was set to 30 sec, the time out for good spectra (above threshold) 

was set to 10 sec. This setting was necessary to ensure the whole burn event was scanned and used for 

identification. While this is less problematic with homogenous samples, all the burn event data has to 

be used when analysing insects. As different parts of the insect body will produce different signals, the 

mass spectral pattern changes over the course of the burn event. If the settings were not sufficient to 

capture the burn event fully, they were adjusted. The standard deviation was set to 5; if the sample 

was not identified the standard deviation was raised to a maximum of 10. If the sample was not 

identified using a standard deviation boundary of 10, the outlier boundary was removed completely, 
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the species result noted, but the sample marked as outlier. For some samples, which were identified 

using a standard deviation of 5, the threshold was lowered step-wise until identification failed; the 

lowest possible standard deviation allowing identification was noted. If the recognition software cannot 

identify a sample with the given settings it will give ‘Outlier’ as result (Figure 2.7). 

 

 

Figure 2.7: Screenshot of the recognition software – outlier 

If a sample cannot be identified with the given settings (e.g. standard deviation), the software 

will label it as an outlier. To obtain an identification, boundaries need to be widened or removed 

entirely. 

 

 

2.5 Data files 

Data files used in published material have been deposited on the MetaboLights database. 

The raw data files used in the following publication are available under the accession number 

MTBLS1878. Link: https://www.ebi.ac.uk/metabolights/MTBLS1878/descriptors 

Wagner I, Koch NI, Sarsby J, White N, Price TAR, Jones S, Hurst JL, Beynon RJ. 2020 The 

application of rapid evaporative ionization mass spectrometry in the analysis of Drosophila 

species—a potential new tool in entomology. Open Biol. 10, 200196 
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Chapter 3: Proof of concept studies for the application of REIMS as a new insect identification 

tool based on Drosophila species 

 

3.1 Introduction & Aims 

The first tests of using REIMS on insect samples were of truly exploratory nature. It was unknown 

whether these samples could be easily analysed with the common hand-held diathermy tools or 

whether they would produce sufficient aerosol. A wide variety of samples had been tested and analysed 

through REIMS in the past, mostly tissue samples with medical relevance [266,301], food products 

[286,310] or bacterial cultures [279,280,282]. Tissue samples usually provide enough biomass to enable 

several burn events per sample. A burn event is defined by the aerosol produced during analysis and 

detected through the mass analyser; the detected signal increases with the amount of aerosol and 

decreases back to baseline when sample analysis is stopped or interrupted (an example can be seen in 

Figure 3.1 b). The biomass of insects is not only of limited amount but very heterogeneous. The spectral 

information can be expected to change with the body part analysed. Due to the small amount of 

biomass (species dependent) available for analysis, the amount of aerosol and thus data that can be 

obtained from it are limited. It had to be determined whether the aerosol produced by one insect would 

be sufficient to be detectable and whether it would result in high intensity signals and in complex mass 

spectra. 

To start investigating REIMS suitability for insect analysis and gauge its potential as identification device 

a mixture of wild-trapped arthropod species and five laboratory-raised Drosophila species were used 

for a proof-of-principle study. To test whether rapid evaporative ionisation can generate informative 

mass spectra from insect samples, we conducted some initial analyses of five arthropods, the garden 

spider (Araneidae), the nettle aphid (Aphidian), the common wood louse (Oniscidae), a springtail 

(Collembolan) and a damsel bug (Nabidae). 

For these samples, relatively small numbers of individuals were collected in the field. The arthropods 

were killed by freezing and stored at -20˚C for 6 days before REIMS analysis. Two different types of 

electrosurgical tools, bipolar tweezers and a monopolar pen with knife attachment, had been tested on 

individuals beforehand; only the knife resulted in a proper burn event and smoke development, 

henceforth being the diathermy tool used for all future insect analysis. Leucine enkephalin in IPA was 

used as lock-mass (m/z 554.26), continuously introduced to the system at a flow rate of 50 µl/min. The 

samples’ biomass was burned completely using a power setting of 40 Watts for the diathermy knife. 
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Figure 3.1: REIMS analysis of different arthropod species  

Arthropods, killed by freezing, were analysed by REIMS using an electrosurgical pen with the 

knife attachment (panel a). Each sample from five different arthropod species was burned 

completely with little or no residual biomass in a burn event of about 10 s duration (panel b). 

The aerosol was aspirated and transported via a long tubing to the REIMS source attached to 

the mass spectrometer. There are recurrent differences between the acquired mass spectra 

(average of three burn events each) of the different species, making them visually distinctive 

(panel d). The phylogenetic relationship of the five arthropod species is depicted in panel c. 

 

Analysis of the arthropod specimens produced a visible amount of smoke and aerosol, leading to signal 

intensities (total ion current) of up to 6e7 per individual. The arthropods were analysed individually, 

letting the signal go back to baseline in-between samples. This led to distinct signal peaks, each 

comprising approx. 10 mass spectra (scan rate 1 scan/sec). Each species yielded detailed REIMS mass 

spectra, which seemed to share a general pattern, despite large morphological differences between 
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the arthropod species. The molecule types detected with REIMS are mostly lipids, fatty acids, 

phospholipids and triglycerides [293]. The most intense signals are found in the lower mass region 

between 200 and 300 m/z (likely fatty acids), followed by a group of signals around 400 m/z and a very 

distinct, nearly bell curved, ion pattern between 650 and 900 m/z (phospholipids). However, when 

comparing the different mass spectral regions, the spectra exhibit noticeable differences and are 

visually distinct from each other (Figure 3.1). 

Encouraged by the complexity of the mass spectra, the samples were imported to a model building 

software called Offline Model Builder to attempt separation of samples according to their species. Even 

with the caveat of small numbers, the five species were readily resolved by principal component 

analysis (PCA) and linear discriminant analysis (LDA) of the ensuing mass spectra, clustering members 

of one species together and convincingly resolving different species (Figure 3.2). 

 

 

Figure 3.2: Principal component and linear discriminant analysis of arthropod data  

The high-resolution mass spectra were processed and analysed by PCA (panel a) and PCA-LDA 

(panel b) using the software Offline Model Builder. 

 

Unsupervised machine learning, here principal component analysis, was based on five principal 

components (PCs) and roughly clustered the samples into species groups (Figure 3.2a). However, the 

individual samples seemed to be scattered along principal component 1, suggesting the largest variance 

in the data set to be introduced by individual differences. Using the first three PCs in the 3D space 

allows visual observation of group formation, but limited separation of the species classes. To aid class 

formation, PCA was followed by linear discriminant analysis. LDA is designed for classification and 
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focusses of differences between the classes. Adding class information visibly aided defining and 

separating the five arthropod species (Figure 3.2b). Due to evident differences in the spectra, it is 

possible that only a few variables would be sufficient to identify the species of specimens, eliminating 

the need for machine learning algorithms. However, the sample numbers are not sufficient to judge 

whether differences in the mass spectra are truly representative of the species.  

 

3.2 First examination of Drosophila REIMS data 

Having established proof-of-concept data that arthropods were able to yield detailed REIMS spectra 

that could readily be used to discriminate species, we explored the subtlety of the method in a more 

closely focused and controlled study, based on higher number of individuals from different laboratory-

reared Drosophila species. Adult male and female D. melanogaster, D. subobscura, D. pseudoobscura, 

D. bifasciata and D. simulans were killed by freezing and stored at -20 °C for several days before being 

analysed in a randomised order over 3 days. Analysing samples in a random fashion is important to 

avoid unwanted correlation of sample classes with instrument differences (e.g. mass or performance 

shifts, changing background signals) over time. To achieve randomisation, species and sex information 

were randomly assigned to sample numbers, specimens were then analysed in the given order (e.g. 

sample 1 has to be a Drosophila melanogaster specimen and female).  Analysis was conducted in a 

similar fashion to the arthropods: The individuals were placed on wet glass fibre paper and aerosolised 

using an electrosurgical pen with knife attachment at a power level of 40 W. However, an additional 

wide piece of tubing (Figure 3.3a) was used to maximise aerosol collection and ensure comparable 

aerosol aspiration among samples. Analysis of a single fly (dry weight approx. 200 µg, 

bionumbers.hms.harvard.edu) generated sufficient aerosol to create a strong REIMS signal. 

Replicated analysis of specimens, even from the same species and sex, can lead to the elaboration of 

different signal profiles over time (Figure 3.3b); this is because of variability in the manual position of a 

relatively large REIMS electrode on a small subject (Figure 3.3a). However, the mass spectra, summed 

across the burn events, yielded consistent and reproducible signal patterns (Figure 3.3c) and data 

derived from a large number of different individuals were readily combined into one group or 

classification cluster. The following data processing steps were the same as the ones conducted with 

the arthropod data. First, the complexity of the mass spectral data is reduced by binning the signals 

into 0.1 m/z wide windows. Background is subtracted from the manually adjusted burn event spectra 

and a signal threshold chosen to help differentiate between background and low-intensity signals (here 

5e5). Registration and alignment of individual mass spectra is achieved by locking them, in a post-

acquisition step, to the used ‘lock mass’ (leu-enkephalin, at m/z 554.26). During analysis of the first set 

of arthropods the lock-mass was introduced at a flow rate of 50 µl/min. For every other sample analysis 

presented in this thesis, the lock-mass flow was set to 30 µl/min. The flow was decreased to lower the 

overall background intensity and match it with the amount of aerosol coming from smaller insect 
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specimens such as Drosophila flies. The m/z data, aligned and binned, facilitated subsequent analysis 

and model building through pattern recognition algorithms, including principal component analysis and 

linear discriminant analysis (PCA and LDA) as well as random forest classification. 

 

 

Figure 3.3: REIMS analysis of Drosophila species  

Drosophila specimens were analysed using the electrosurgical pen with knife attachment, 

surrounded by a plastic tube to enhance capture of the aerosol (panel a). Each sample was 

completely consumed in a burn event that differed in shape and intensity for individual 

specimens (four individuals, panel b). The mass spectra from individuals were consistent, 

irrespective of shape or duration of the burn event (panel c). For subsequent data analysis the 

spectra were lock mass corrected, the background was subtracted, and the high-resolution 

mass spectra were compartmentalised to 0.1 m/z wide bins prior to further analysis (panel d). 

Abbreviation: D.m: Drosophila melanogaster. 

 

The mass spectra originating from individuals of different Drosophila species exhibited an overall 

similarity (Figure 3.4). REIMS data is commonly analysed using machine learning algorithms due to high 

visual similarity of the mass spectra and the high number of potential variables; the insect-derived 

REIMS data is no exception. Due to the complexity and similarity of the REIMS spectra, data analysis 

had to be based on pattern recognition algorithms, which take into account the differences in overall 

mass spectral patterns rather than focus on differences in a single ion. This approach has the advantage 

that small differences in the abundance of specific ions between groups can still be useful for separation 

purposes when combined with further differences elsewhere in the mass spectrum.  
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Figure 3.4: REIMS spectra of female individuals from five Drosophila species 

Five Drosophila species were analysed by REIMS. Representative mass spectra (of 

female specimens, males not shown) are given in panel a. 

 

To ensure the spectra in Figure 3.4 were not similar by coincidence, the processed and binned mass 

spectral information was used to re-build spectra for each species, including every analysed specimen. 

The normalised signal intensities for more than 150 samples per species were averaged and combined 

into one spectrum each (Figure 3.5).   
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Figure 3.5: Averaged mass spectra of all five species 

A total of 800 Drosophila specimens were analysed. The data matrix, obtained after processing 

and binning the mass spectral data, was used to create averaged mass spectra for all species. 

Each mass spectrum represents an average of all samples (sample number n) available for each 

species, including males and females.  
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The averaged spectra, despite combining large amounts of data, did not reveal clear differences either, 

highlighting the need for machine learning to detect small amounts of variance in the data. 

 

3.3 Drosophila species separation 

3.3.1 Separation based on adult specimens 

For visual representation of the differences and similarities between the species, photos were taken of 

female specimens of all five species (Figure 3.6a). The phylogenetic relationship, including the approx. 

speciation time points can be seen in Figure 3.6b. 

 

Figure 3.6: Drosophila species phenotypes  

Photos of female specimens of the five Drosophila species used in this study (panel a). The 

phylogenetic relationship of the species, including divergence timeline, can be seen in panel b. 

Photos were taken by Dr. Nicola White (University of Liverpool). 

 

The REIMS data obtained from the Drosophila specimens were imported to model building software 

packages LiveID and Offline Model Builder (both Waters) and divided into the five species 

classifications. The settings for data processing and model building used in each software are specified 

in the Methods chapter. First, unsupervised principal component analysis (PCA) was used in Offline 

Model Builder to see if samples cluster without using class information. Following PCA, samples from 

different species completely overlap, showing, aside from slight differences in overall colour 

distribution, no indication to separate (Figure 3.7a). However, the models based on PCA followed by 
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LDA, whether built in Offline Model Builder or LiveID, yielded successful separation of the five 

Drosophila species (Figure 3.7b) 

 

Figure 3.7:  Species discrimination of Drosophila by REIMS 

Analysis of the processed and binned REIMS data was based on principal component and linear 

discriminant analysis. First, species discrimination was attempted using unsupervised analysis 

(PCA in Offline Model Builder), which failed to separate samples into cluster (panel a). PCA 

followed by linear discriminant analysis, however, was able to detect differences in the data set 

(panel b and c). Model construction using PCA-LDA was carried out using model building 

software packages Offline Model Builder (panel b, left) and LiveID (panel b, right). Additionally, 

PCA-LDA separation was performed in R and visualised using different orientations and 

combinations of linear discriminants (panel c). 

 

The separation between the classification groups in the models is uneven, placing D. bifasciata, D. 

pseudoobscura and D. subobscura closer but separated from a second group comprising D. 

melanogaster and D. simulans. This separation into groups of three and two species is especially 

pronounced in the PCA-LDA model created in R (Figure 3.7c), due largely to differences in linear 

discriminant 1 which has the largest discriminatory power in the data set (0.52). The results can be 

correlated with the phylogeny of the five species (Figure 3.6), which demonstrates similar clustering. 

Within each group, the member species are also differentiated. The variance in the lipid/metabolite 

profile is greater between D. melanogaster and D. simulans than between the other three species (D. 

subobscura, D. bifasciata and D. pseudoobscura) as they can be resolved by linear discriminant 2 (0.24; 

Figure 3.7c centre), while the larger group is resolved by linear discriminants 3 (0.15) and 4 (0.1) (Figure 
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3.7c right). The packages ‘stats’ and ‘MASS’ were used for principal component and linear discriminant 

analysis and ‘scatterplot3D’ for visualisation. 

In addition to PCA and LDA, the data set was analysed using random forest (package ‘randomForest’) 

classification, based on the data matrix exported from Offline Model Builder containing the binned data 

and classifications. Here, the data were split before each analysis; 70 % were being used for model 

building, the remaining 30 % were used to test the classification performance. Random forest analysis 

was repeated 10 times, leading to different randomly selected data sets for training and testing every 

time. The number of trees used for forest calculation was chosen by comparing every possible number 

of trees between 1 and 2000 and their respective error rates (see Methods). The number of trees used 

was the same for every repeated analysis. For species separation the number of trees was set to 1500 

and each forest was built and tested using the 70 % model / 30 % test data. The classification 

performance is displayed as a confusion matrix of identification for all species (Figure 3.8). 

 

Figure 3.8:  Classification of Drosophila species by random forest analysis 

The binned m/z data from five species and both sexes, were analysed by random forest analysis 

and repeated 10 times, using different randomly selected training (70 % of the data) and test 

(30 % of the data) data sets (panel a ). The confusion matrix contains the mean percentages of 

correctly identified and misidentified samples for every species, rounded to the nearest integer, 

as well as the standard error of the mean. The range of species classification accuracy for each 

of the 10 models (lowest and highest percentage) is listed in parentheses below the standard 

error of the mean. The average number of samples per species used for testing the model are 

listed on the side (n = x). The overall model accuracy was 95 ± 0.6 % (mean ± SEM). For the 10 

individual random forests, prediction accuracies for each species are plotted in panel b (median, 

25th and 75th percentiles, all data shown). Abbreviations are D. mel: Drosophila melanogaster, 

D. sub: Drosophila subobscura, D. pse: Drosophila pseudoobscura, D. bif: Drosophila bifasciata 

and D. sim: Drosophila simulans. 
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For every species a correct classification rate (mean % ± SEM) of 91 ± 1.3 or higher was achieved, the 

overall model scored an accuracy of 95 ± 0.6. Thus, on average, 95 specimens out of 100 can be assigned 

to the correct species by employing REIMS data for model building, using only a few seconds of 

acquisition time for each insect. In the case of D. simulans, it is unlikely that samples would be mistaken 

for D. melanogaster; even the female specimens (around 50 % of the samples) were distinguished, 

despite their near identical morphology. The separation of D. melanogaster and D. simulans highlights 

the ability of REIMS to distinguish even closely related species that are phenotypically distinguishable 

only by examining male genitalia. As females of D. melanogaster and D. simulans cannot reliably be 

distinguished phenotypically [64], a separate model was built using only the females of both species 

(Figure 3.9). 

 

Figure 3.9:  Separation of closely related species 

Separation of D. melanogaster and D. simulans using only the morphologically highly similar 

females. Pictures of the flies (taken by Dr. Nicola White, University of Liverpool) and the number 

of samples used for model building are listed under panel a. The two species were successfully 

separated using PC-LD analysis in Offline Model Builder (panel b). PC-LD analysis in R yielded a 

similar result (c): distinct separation of the two species in the kernel density histogram, the 

slight overlap caused by mistaking three samples (visible in the scatter plot). 

 

Following random forest classification, another R package, ‘randomForestExplainer’, was used to 

extract information about the variables that contributed to class separation. In a top 10 approach, only 
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variables which were registered as important in all repeated random forest runs were included. To 

visualise how and to what extent the variables add to the separation of the five Drosophila species, the 

bin intensities were plotted (Figure 3.10). The resulting intensity distribution of the top 5 variables 

allows interpretation of the relative molecule abundances and their impact on the classifying model. 

 

 

Figure 3.10:  Comparative m/z bin intensities for five Drosophila species  

The m/z bins that are most important for the resolution of five species by random forest, were 

identified and their individual intensity values plotted here for every individual of each species 

(male and female samples are not discriminated). These m/z bins were repeatedly identified as 

essential separators for the random forest models, using the R package 

‘randomForestExplainer’. The pattern within each bin shows its contribution to the 

identification process, highlighting the differences in relative abundance among the five 

Drosophila species. 

 

The five most important variables for species resolution cover a fairly wide mass range, starting with 

the bin at m/z 225.2 ranging to the bin at m/z 747.5. The former might represent a fatty acid, whereas 

the latter is likely to be a phospholipid [296,301]. The ion bin at m/z 225.2 seems to define a major 

difference between the D. melanogaster/D. simulans group and the other species, which was already 

observed in the PCA-LDA models. The higher mass range bins, m/z 720.5 and m/z 747.5, display 
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intensity variances that contribute to the discrimination of D. melanogaster and D. simulans. To 

distinguish D. subobscura, D. bifasciata and D. pseudoobscura, however, a combination of several ions 

with smaller variance is needed. Comparison of the plotted intensity values with the PCA-LDA models 

allows one to draw conclusions, which bin - and its inherent variance - is represented in the different 

linear discriminants. The bin m/z 225.2 for example seems to be the separating force behind LD 1, 

whereas the two higher mass bins, m/z 720.5 and 747.5, are likely to provide a major variance portion 

to LD 2. 

The 13C isotopomers of two variables were also identified as important (in every run) and were removed 

from the top 5 list after the pairs in question had been tested for correlation (Figure 3.11).  

 

 

Figure 3.11:  Potential isotopomers  

The top 10 variables influencing the separation of the five Drosophila species, identified using 

‘randomForestExplainer’, contained potential isotopomers. The mass bins in question are 

directly compared and their intensities (in all 800 samples) correlate enough to confirm their 

status as isotopomers. As expected, they also contribute to the species separation in the same 

way, which might emphasise the variables importance, but renders them redundant in the 

separation process. 
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Subsequently, all repeatedly nominated bins were compared against each other (Figure 3.12). In the 

process it was discovered that, while some variables seemingly correlate because they add to the model 

in the same way, some seem to form patterns. One of these comparisons, bin m/z 225.2 and 747.5, 

leads to clustering of values into two groups (Figure 3.13).   

 

 

Figure 3.12:  Pairwise comparison of variable intensities  

The variable bins identified through ‘random forest explainer’ as the most influential in random 

forest analysis were compared with each other by plotting their intensities for all samples of 

the five Drosophila species (n = 800). The intensities of two pairs (225.2/226.2 and 747.5/748.5) 

strongly correlate, confirming prior assumption that they are likely to be isotopomers. Other 

intensity comparisons, such as 225.2 and 747.5, indicate formation of sample groups.    
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Figure 3.13:  Two-variable species model  

Comparison of the intensities in the bins 225.2 m/z and 747.5 m/z for all 800 specimens 

revealed a clustering pattern. To examine whether an actual separation of samples/sample 

groups is taking place, two types of information, sex (male = red, female = blue) and species, 

were added to colour individual samples. Adding species information revealed a preliminary 

model based on only two variables, exhibiting a separation pattern comparable to the 

corresponding boxplots. 

 

To test what might cause this pattern, the two types of available information, sex and species were 

added to the intensity values. Adding the information male (red) or female (blue) did not explain the 

separation into two clusters, but they did not seem to fully overlap either. Instead the female samples 

are located slightly more to the right within each cluster. When adding the samples’ species 

classification, it becomes apparent that formation of species groups and their position caused the 

pattern, which is indeed a species model based on only two variables. 

Seeing the separation two variables can enable, the data matrix, previously containing bins (0.1 m/z 

wide) from 50-1200 m/z, was reduced dramatically to include only the top five influential variables 

identified through random forest explainer. This matrix was then used to carry out PCA-LDA based on 

five principal components (Figure 3.14). Using only the variance provided by five bins, a rudimentary 

species model was built. Samples are grouped into classes and the five species are at least partially 

separated. However, it is less defined in what way or extent the individual LDs contribute to the overall 



61 
 

separation. The combinations and orientations of the linear discriminants in Figure 3.14 are the same 

as in Figure 3.7c. While it is impressive that five variables can provide a certain level of separation, it 

also underpins the importance of the many smaller differences contained within the REIMS data set. 

Alone they might only provide limited separation, but combined they can pull apart classes and build 

highly accurate models. 

   

 

Figure 3.14:  PCA-LDA species model based on the top five informative m/z bins 

PCA-LDA analysis (conducted in R) using a data matrix containing only the intensities of the five 

most influential m/z bins driving species separation. LD analysis was based on 5 principal 

components and the 3D models and their LD combinations are the same as in Figure 7. The first 

outlines of a species separation can be seen, with samples clustering into their respective 

classes. 

 

To confirm that the algorithm separated species based on real rather than chance differences (given 

the large number of ion bins), the five species model (Figure 3.7b) was re-built using randomly assigned 

species classifications. As expected, the model was incapable of separating species when spectra were 

randomly assigned. A comparison of the models (built using the Offline Model Builder software) built 

with correct and with randomly assigned classifications, is presented for the five species model, in 

Figure 3.15, as well as for the D. melanogaster/D. simulans model, in Figure 3.16. 
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Figure 3.15:  Species model based on randomised classification 

Comparison of PCA-LDA results using correctly and randomly assigned species classifications. 

A clear difference can be found when the species information is correct. When the five 

classifications are randomly assigned to samples, groups completely overlap and no distinction 

can be found, proving that the successful separation, of correctly assigned classifications, is 

based on species-specific variances. 

 

 

Figure 3.16:  Separation of female D. melanogaster and D. simulans based on randomised classes 

Separation of D. melanogaster and D. simulans using only the morphologically highly similar 

females. The two species were successfully separated using PC-LD analysis (in Offline Model 

Builder)(left). A model based on randomly assigned classifications did not yield a separation 

(right). 
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Additionally, cross-validation of the five species model was performed after PCA-LDA analysis using 

Offline Model Builder and LiveID software, the results are summarised in Figure 3.17. 

 

 

Figure 3.17:  OMB cross-validation results – species model 

The PCA-LDA based species models were cross-validated within Offline Model Builder and 

LiveID, using the setting ‘Leave 20 % out’ and a standard deviation of 5. The results are depicted 

in form of confusion matrices with detailed information about the number of passes, failures 

and outliers. The correct classification rate is calculated differently in the two types of software: 

OMB’s rate is based on the number of failures, LiveID also takes into account the number of 

outliers. 

 

Lastly, separation achieved by PCA-LDA can always be optimised by the number of principal 

components (PCs) chosen for LDA; more principal components means added information, but also 

possibly unrelated variance is incorporated into the model. The models (Figure 3.7) were adjusted 

individually to find the optimal number of PCs: 100 PCs were used in Offline Model Builder (maximum 

number), 500 PCs in LiveID and R. Separation was achieved with 100 PCs; additional variance (PCs) 

served the purpose of fine tuning the model to increase class separation (example in Figure 3.18). 
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Figure 3.18:  Species model built with less principal components 

Comparison of the species separation achieved through PCA-LDA using 500 and 100 principal 

components. A clear clustering of samples into species classifications can already be observed 

using only 100 components, an increase to 500 components merely served the purpose of fine-

tuning to optimise separation. 

 

3.3.2 Separation based on immature specimens 

After successfully separating adult specimens of highly similar morphology (females of D. melanogaster 

and D. simulans), REIMS capabilities were further tested using a small set of Drosophila larvae. Larval 

Drosophila are typically very difficult to identify, requiring skilled microdissection and morphological 

analysis under a microscope [334], with many species pairs being impossible to distinguish until 

adulthood [335]. For this preliminary experiment the larvae of D. melanogaster and D. hydei, all in the 

3rd instar stage, were analysed by the same procedures and settings as adult specimens. The REIMS 

spectra resulting from the two species in their larval stage are quite similar, but interestingly, exhibit a 

mass spectrum that is different from specimens in their mature state. Even if larvae and adult are 

derived from the same species, shown here for D. melanogaster, there is a substantial difference in the 

spectrum in the higher mass region (m/z 600 – 900; Figure 3.19a) 
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Figure 3.19:  REIMS can discriminate species at the larval stage 

Larvae from two Drosophila species (D. melanogaster and D. hydei) were analysed by REIMS. 

The mass spectrum obtained from the larval stage was clearly different to the adult, but both 

larval species yielded similar spectra (panel a) that permitted discrimination by PCA-LDA (panel 

b). Distinct discrimination between species was obtained through cross-validation in Offline 

Model Builder (panel c). The random forest models (panel d), built and tested 10 times each 

with a 70 %/30 % training/test split, reached an average percentage accuracy of 98 ± 1.9 (mean 

± SEM, n-=10). The boxplot adjacent to the confusion matrix displays the performance for each 

species across all ten random forests. 

 

Despite the observation that the mass spectra of the D. melanogaster and D. hydei larvae were strongly 

alike, the m/z bin data matrices were used to perform PCA-LDA and random forest analysis to explore 

species related variance of larval samples. Despite the small number of samples, both types of analysis 

located sufficient differences in the mass patterns to provide a clear separation between the two 

species (Figure 3.19 b, d). To gauge the model’s performance, cross-validation was carried out within 

Offline Model Builder (leaving 20 % of data out). The results, including a confusion matrix, outlier 

numbers, as well as the correct classification rate, are presented in Figure 3.19 c. Random classification 

assignment, by contrast, led to overlap between the two species (Figure 3.20). Due to small sample 

numbers of only two classifications, a full overlap in the randomised model was not expected. 
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Figure 3.20: Species separation of Drosophila larvae based on randomly assigned classes 

Comparison of PCA-LDA separations of D. melanogaster and D. hydei larvae based on correctly 

and randomly assigned classifications. 

 

 

3.4 Drosophila sex separation 

The acquired REIMS data was used not only to discriminate species but was also investigated for its 

potential to distinguish sex. The sample analysis randomisation was blind to species and to sex. Initially 

only D. melanogaster specimens were used for model building, to test if the REIMS spectra exhibited 

sex specific variance of sufficient magnitude for separation (Figure 3.21 a, b; upper half). The average 

accuracy of the random forest classification (10 repeats) of males and females of D. melanogaster is 99 

± 0.4 % (mean ± SEM), with only 2 % of females misclassified as males and no males misclassified as 

females. PCA-LDA (using 80 principal components) yields a clear separation of male and female 

conspecifics, thus supports the existence of sex specific variance in the REIMS spectra. 
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Figure 3.21:  REIMS can discriminate sex 

Separation of male (red) and female (blue) specimens of either D. melanogaster (top, a and b) 

or of all five species combined (bottom, c and d). The models were built using PCA-LDA, results 

are visualised in form of kernel density and scatterplots (panels a and c), or random forest 

analysis (confusion matrices and boxplots, panels b and d). The random forest models, built and 

tested 10 times each with a different 70 %/30 % training/test split, reached an average 

percentage accuracy of 99 ± 0.4 (mean ± SEM, n=10, D. melanogaster only) and 97 ± 0.5 for all 

species. The boxplots on the right of the confusion matrices display the accuracies of all ten 

random forest models for both classes, male and female. 

 

To further explore the ability to resolve sexes, independent of the species attribute, males and females 

of all five Drosophila species were combined for model building in a subsequent step. A resolving 

pattern, true for every species, reached 97 ± 0.5 (mean % ± SEM, n=10) accuracy in random forest 

analysis, only 2 % lower than the accuracy obtained with a single species. Both types of analysis, random 

forest and PCA-LDA, agree that only a few samples are confused in the classification process. (Fig. 3.21 

c, d)  

For both sex models, using only D. melanogaster or all species, the m/z bins which are most important 

for the random forest separation process were identified. The variables which have been identified in 

all 10 repeats are listed in Figure 3.22; this approach left four variables for D. melanogaster and five for 

the model including all species. 
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Figure 3.22:  Comparative m/z bin intensities for male and female Drosophila specimens 

Intensities of the most influential m/z bins driving separation of male and females, shown for 

both sex separation models (D. melanogaster and all species combined). Only variables which 

had been identified in all 10 random forest runs are shown; four for the D. melanogaster sex 

model and five for the sex separation based on all species. One variable, bin 375.2 m/z, was 

identified to drive separation in both models. 

 

In almost all cases, the variable intensities were higher for males and lower for female specimen. One 

of the bins, m/z 375.2, was identified as separator in both models. The other variables important for 

distinguishing male and female D. melanogaster, were only true for this one species, but cannot be 

applied to all five Drosophila species.   
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Again, to test the separation process, samples were randomly assigned to the male or female category, 

anticipating a large overlap between the two classes in a repeated classification attempt. As expected, 

the classifications were noticably worse. A comparison of PCA-LDA separation with correctly and 

randomly assigned classifications for the D. melanogaster model, as well as for the model including all 

species, is presented in Figures 3.23 and 3.24. 

 

 

Figure 3.23:  D. melanogaster sex separation model based on randomised classification  

Comparison of PCA-LDA separation of males and females of Drosophila melanogaster using 

correct and randomly assigned classifications. Both separations are based on 80 principal 

components. 
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Figure 3.24:  Sex separation model (incl. all species) based on randomised classification 

Comparison of PCA-LDA separation of males and females of all five species using correct and 

randomly assigned classifications. Both separations are based on 400 principal components. 

 

Both sex models were also built using the Offline Model Builder software and subsequently tested via 

cross-validation, the results can be seen in Figure 3.25. 

In addition, both sex separation models were built with a lower number of principal components, 

proving that the numbers of principal components used in Figure 3.21 were maximised for accuracy, 

but not essential to achieve separation (Figures 3.26 and 3.27). 
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Figure 3.25:  OMB cross-validation results for the sex separation models 

The PCA-LDA based sex models (D. melanogaster model based on 80 PCs, All species model 

based on 100 PCs) were cross-validated within Offline Model Builder using the setting ‘Leave 

20 % out’ and a standard deviation of 5. During cross-validation of the D. melanogaster model 

two samples were left out as 20 % of 157 results in a fractional number. 

 

 

Figure 3.26:  Sex separation models (based on D. melanogaster) built with fewer principal components  

Comparison of PCA-LDA separation of males and females of Drosophila melanogaster using 

correct and randomly assigned classifications. Both separations are based on 40 principal 

components, a quarter of the maximum number of components possible. Despite the lower 

number, males and females are separated when using the correct assignment of classes and 

overlap when samples are randomly assigned to a sex category. 
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Figure 3.27: Sex separation models (based on all five species) built with fewer principal components 

Comparison of PCA-LDA separation of males and females of all species using correct and 

randomly assigned classifications. Both separations are based on 200 principal components, a 

quarter of the maximum number of components possible. Despite the lower number, males and 

females are separated when using the correct assignment of classes and overlap when samples 

are randomly assigned to a sex category. 

 

3.5 Cuticular hydrocarbon analysis vs. REIMS 

Drosophila specimens were also analysed via cuticular hydrocarbon (CHC) analysis, a commonly used 

and established approach for insect identification and characterisation. Cuticular hydrocarbons are part 

of the lipid layer that covers an insect’s epicuticle, which not only provides protection but acts as an 

important tool for communication, conveying information about species, sex and colony to conspecifics 

[182,183].  Cuticular hydrocarbons have been identified to act as pheromones in many different insect 

species and display sexual dimorphism, making them an interesting analytical target to distinguish 

males and females [184,186]. The complexity and variety of CHC profiles also allow species 

differentiation and have been intensely studied among arthropod species [185]. Due to the methods’ 

well-known capabilities to distinguish males from females (and separate species) of Drosophila [336], 

CHC data was acquired for a number of Drosophila samples and compared to data obtained through 

REIMS. 
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Figure 3.28:  Cuticular hydrocarbon analysis of a female D. melanogaster 

CHCs were extracted by covering a female D. melanogaster fly with hexane for 10 min; 1 µl of 

the extract was injected. The cuticular hydrocarbons in the extract were separated via gas 

chromatography using a temperature gradient from 70˚C to 340˚C (panel a). Molecules were 

ionised using electron impact (EI) ionisation and analysed with a ToF mass spectrometer. A 

typical cuticular hydrocarbon mass spectrum can be seen in panel b with the intact CHC mass 

highlighted in red. Zoom-in into the intact mass reveals a ladder of decreasing masses (panel 

c) representing the variants with increasing number of double bonds. 
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CHC analysis was conducted using gas chromatography-mass spectrometry (GC-MS) and solvent based 

extraction. Flies were killed by freezing at -20˚C, dried at room temperature and then covered with 

hexane for 10 min to extract the CHCs. 1µl of the hexane extract was then separated on a gas 

chromatography column using a temperature gradient (70˚C to 340˚C), followed by ionisation and 

analysis through an EI (electron impact) source and a ToF mass spectrometer (GCT Premier, Waters). 

An example chromatogram and a typical cuticular hydrocarbon mass spectrum obtained from a female 

Drosophila melanogaster specimen can be seen in Figure 3.28. 

A set of 10 males and 10 females (D. melanogaster) was analysed via GC-MS and the data used to build 

a model for sex differentiation. The data was processed and used in two different ways: the first method 

involved hydrocarbon retention times and peak areas, the second used the mass spectral information 

within a certain retention time window (Figure 3.29). 

Retention time model: 

The retention times of all peaks within an extracted ion chromatogram (extracted using masses of the 

most intense CHC fragments, m/z 55 and 57) plus the corresponding peak areas were summarised in a 

data matrix for all samples. Subsequently, the data matrix was analysed with random forest to look for 

a distinguishing pattern between males and females. 

Combined mass spectra model: 

The GC-MS data were analysed using the Offline Model Builder software, which is usually used for 

REIMS data. The mass spectra between 16 min and 26 min were summed up as 1 “burn event”. A model 

was built and cross-validated within OMB. Additionally, the data matrix was exported and analysed with 

random forest to allow direct comparison with the retention time based separation. 
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Figure 3.29:  Data analysis approaches for CHC data 

The peaks of the CHC profiles of 10 males and 10 females (D. melanogaster) were integrated 

between retention time 16 and 28 min (examples of three female flies shown). The observed 

retention times and corresponding peak areas obtained from these 20 flies were listed to form 

a data matrix for subsequent random forest analysis (panel a). In a second approach, the mass 

spectra resulting from the CHC analysis were used for pattern recognition analysis. The sample 

data were processed using Offline Model Builder. For every sample the mass spectra (m/z 40-

650) between retention time 16 and 28 min were summed up and used for model building to 

separate males and females. Mass spectra based separation was tested using cross-validation 

and random forest analysis (panel b). 

 

Results of the random forest analysis, based on the two different types of data matrices, indicate better 

classification accuracy when using binned mass spectral data as opposed to retention time/peak area 

information (Figure 3.30). The mass spectral data produced a model with higher accuracy, sensitivity 

and specificity and lower estimated error rate than the retention time based model. A reason for the 

lower accuracy of the first model might be explained through a higher variety of retention times, which 

can be caused by slight changes in abundances of double bond variants underneath a peak. It has to be 

noted that both pattern recognition processes (PCA-LDA and random forest) benefit from larger sample 

numbers and that the sample numbers used for these models are not sufficient to ensure a robust 

separation process and stable results.  
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Figure 3.30:  Evaluation of models based on different data types 

Summary of results obtained from Random Forest analysis (and cross-validation within OMB) 

for both analytical approaches, which were used to separate male and female D. melanogaster 

using their CHC profiles. 

 

However, there are several reasons to choose mass spectral data over chromatographic separation. 

Whilst a peak gives only one retention time point and total peak area, the mass spectra underneath 

could be richer in information due to co-elution of molecules and variants. It is also more efficient to 

import data files into OMB and having the data matrix computed automatically, than the semi-

automatic steps necessary to create the chromatographic data matrix. Finally, processing the GC-MS 

data in OMB, similarly to the REIMS data, allows for easier comparison of the two methods. Any 

following GC-MS data was therefore analysed using the mass spectral approach. 

 

Figure 3.31:  Sex separation based on GC-MS and REIMS data 
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Models (based on PCA-LDA) were built within OMB using mass spectral data obtained with 

REIMS and GC-MS. 20 male and 20 female D. pseudoobscura flies were analysed with each 

approach. Both models were based on 20 principal components. 

 

A direct comparison of REIMS and CHC analysis was conducted using male and female Drosophila 

pseudoobscura. Twenty individuals per sex were analysed using REIMS, another set of twenty males 

and females were analysed with GC-MS to obtain cuticular hydrocarbon profiles (settings are described 

in the Methods section). Both data sets were processed and used to build PCA-LDA models in OMB 

(Figure 3.31), followed by cross-validation (Figure 3.32) and random forest analysis (Figure 3.33). 

 

 

 

Figure 3.32:  OMB cross-validation results for GC-MS and REIMS based sex models 

Summary of OMB cross-validation results for models based on different MS data (GC-MS and 

REIMS). Cross-validation was performed using the setting ‘Leave out 20 %’ and a standard 

deviation of 5. Number of samples which have passed cross-validation (not failures nor 

outliers), as well as the correct classification rate are highlighted in yellow. 
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Figure 3.33:  Random forest results for GC-MS and REIMS based sex models 

Summary of random forest results for both data sets, REIMS and GC-MS, including confusion 

matrices at the top. 70% of the samples were used for training, the other 30 % (here, 7 males 

and 7 females) were used to test the models. Analysis was based on 350 trees for the GC-MS 

matrix and 700 trees for the REIMS data matrix. The accuracies of both models are highlighted 

in yellow. 

 

Models based on REIMS data display nearly half the number of wrongly classified samples/failures than 

the GC-MS based models and have higher accuracies with both algorithms, OMB and Random Forest. 

Of course, both models are built with a relatively small number of samples and only give an idea about 

the quality of more comprehensive separating models. Nevertheless, the results prove that cuticular 

hydrocarbon analysis is a valuable tool that can help distinguish males and females from arthropod or 

insect species. In fact, it can even be used to separate species; analysis of four Drosophila species (D. 

melanogaster, D. subobscura, D. pseudoobscura and D. bifasciata) resulted in clear separation (Figure 

3.34).  
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Figure 3.34:  Separation of Drosophila species based on CHC profiles 

Separation of four Drosophila species using data obtained through hexane extraction and GC-

MS analysis. The raw data was imported into Offline Model Builder, the spectra (40-650 m/z) 

between retention time 16 and 28 min summed up as burn event and the resulting data matrix 

subjected to PC-LD analysis (using 15 PCs). 

 

However, besides slightly lower accuracy, GC-MS based CHC analysis is more time-consuming and 

sample throughput considerably slower than REIMS. The number of samples used for model building 

were low due to the time requirements of GC-MS analysis. The sample preparation (hexane extraction) 

is simple, but had to be timed correctly to ensure that extractions are treated and analysed in the same 

way to avoid introducing unwanted variance. 

CHC profiles can be information rich and can reflect a variety of characteristics, making them a useful 

source for classification purposes. GC-MS analysis of solvent based extractions is a fairly easy and, 

compared with many other methodologies, fast process. REIMS, however, could provide a whole new 

level of simplicity and analytical speed, allowing fast classifications of samples using models built from 

large data sets.  

 

3.6 Influencing factors for model building and classification 

There are several factors that can impact model building, sample classification and long-term stability 

of classification processes. Some might affect machine learning approaches in general, however, the 

following discussion points are based on observations made with REIMS data, in specific data from 

insect samples, which might exhibit different properties than data derived from other sample types.  
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3.6.1 Principal component numbers 

Finding the right number of principal components to use for PCA-LDA is usually about finding the 

balance between too much and not enough information or variance. Using REIMS data (with a large 

number of variables/bins) the number of principal components is primarily dependent on and limited 

by sample numbers. While the variance in the data set is an important factor for choosing principal 

components numbers, in the first instance, the number needs to be adapted to the number of samples 

used for model building. If the principal component number would be kept constant a model with a 

larger sample size could possibly lack variance for separation, whereas a model with small sample 

numbers is very likely to be over-fitted with many samples classified as outliers (Figure 3.35). With every 

principal component more variance or information is added to the model, however, model 

performance does not steadily increase with increasing number of PCs. Sometimes added information 

can add confusion to the separation process, causing the separation performance to dip. Every model 

behaves slightly differently, there is no specific number that fits all; it depends on the distribution of 

variance in the data set and the separating factor one is looking for.  

 

Figure 3.35:  Dependency of principle component numbers on sample size  

Comparison of sex separating PC-LDA models built using samples from the same data set (incl. 

male and female Drosophila melanogaster). 100 samples were used to build the model on the 

left, 40 samples were randomly selected to build the model on the right. When using the same 

principle component number, here 25, both result in separation of males and females and a 
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similar percentage of failures. However, the percentage of outliers is far greater for the small 

model, indicating overfitting. 

 

When dealing with separation of multiple classes, some classes might separate with a lower number of 

principal components while others require more PCs because the variance that could explain the 

difference is spread over many principal components. When trying to gauge which PC number is the 

maximum before overfitting, it is helpful to look at cross-validation results, as well PC-LDA visualised in 

form of kernel density and scatterplots. When validating a model through cross-validation it is 

important to not only look at the correct classification rate but the number of failures and outliers. 

To demonstrate the effect different principal component numbers can have on model performance the 

sex separation model, based on D. melanogaster specimens, was built with 10, 40, 80 and 100 PCs 

(Figure 3.36). The PC-LDA model based on 80 PCs is also depicted in Figure 3.21 and represents an 

optimised model using the highest number of PCs possible before fully over-fitting.  

 

 

Figure 3.36:  D. melanogaster sex separation model built with differing PC numbers 

Comparison of various models separating males and females of D. melanogaster to 

demonstrate the effects the number of principal components used for PC-LD analysis can have 

on model building and classification success.  
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Model over-fitting does not happen at a clearly defined point, but the process can be recognised 

through examination of the class separation. Over-fitting happens when the model becomes too 

specific, leading to strongly separated groups which are defined in a very narrow way. While looking 

good at first glance, these models have less chance to be suitable for classification; any new samples 

would be identified as outliers, because they don’t fit into the tight frame created. One way to recognise 

over-fitting is to observe outlier numbers. In the process of becoming too specific, samples are excluded 

and classified as outliers. This cannot only be observed through cross-validation, but also in the 

smoothed histograms showing sample distribution: the distribution of male and female samples using 

80 PCs shows two smooth peaks, whereas separation based on 100 PCs displays a number of shoulders 

and side-peaks, with the main peak becoming very high and narrow. Taken to the extreme, samples are 

separated from the main group and form individual sharp peaks (Figure 3.37). If the principal 

component number used is too low, samples will fail in the classification process because the model 

does not contain enough information to assign them correctly (see model based on 10 PCs).  

 

Figure 3.37:  D. melanogaster sex separation model built with 150 PCs 

Separation of male and female D. melanogaster specimens using PC-LD analysis based on 150 

PCs (max. 155). Both, the kernel density (left) and the scatter plot (right) display the signs of a 

strongly over-fitted model. The sample distributions have turned into sharp peaks with some 

samples clearly separated (outliers) in the kernel density plot and tightly grouped classes in the 

2D scatter plot. The separation pattern has become highly specific for this particular data set. 

 

There is usually a wide range of possible PC numbers which facilitate separation without large numbers 

of failures or outliers, increasing principal component number in this range tends to improve separation 

only marginally, but will help to find the right amount of variance to get the best possible separation. 
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As an example, the models based on 40 PCs and 80 PCs (Figure 3.36) are at opposite ends of that range, 

both leading to separation of males and females with acceptable numbers of failures or outliers. There 

will be no specific PC number, which will result in the perfect model, a compromise needs to be made 

between samples failing to be correctly classified and samples being classified as outliers. It is worth 

mentioning that not every sample has to be correctly assigned and no data set is without outliers.   

 

3.6.2 Sample size 

For any kind of data analysis, sample numbers can be crucial for statistical evaluation as well as validity 

of results and their interpretation. Some algorithms and data analysis approaches, such as machine 

learning or multivariable analysis, perform better with larger sample sets. A smaller sample size will 

yield results, but they might not be as robust as when analysis is performed on a large pool of samples. 

There are several effects sample size can have on analysis of REIMS data and model building; some are 

general in nature, others depend on the data variance and research question. First of all, PCA-LDA as 

well as random forest benefit greatly from larger sample sizes. If separation of two classes can be based 

on one variable, which introduces significant variance, then classification will be relatively easy. 

However, that is rarely the case with multivariable data. If separation is based on a multitude of small 

differences creating the need to look for patterns, sample numbers can be vital in finding a variance 

pattern that is robust against intra-class variability and actually correlates with the searched for 

difference (e.g. species, sex, age).  

An example of the relationship between sample numbers and model performance can be seen in Figure 

3.38. If a model - here separation of male and female D. melanogaster – is built with different sample 

sizes (all samples are randomly picked from the same sample pool) and adjusted principal component 

numbers (half the number of samples), a decline in correctly identified samples and increasing outlier 

numbers can be observed. The separation pattern achieved with only a few samples is simply not as 

robust during validation as a model based on larger sample sizes. 
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Figure 3.38:  Model performance with decreasing sample numbers 

Models separating male and female D. melanogaster were built with either 50, 40, 30, 20 or 10 

samples per class and the same percentage of principle components numbers (50 % of total 

sample number). Despite adjusting the PC numbers for each model the percentage of correctly 

identified samples (blue bars) decreases, while the percentage of outliers (red markers and line) 

increases. 

 

An often-encountered problem in machine learning is not having enough variability in a data set and/or 

enough samples to handle the data variability. Without variability the separation of classes will only be 

true for the original data set and will have limited suitability for identification purposes. Having too 

much variety can be problematic as well, especially when dealing with small sample numbers. When 

intra-class variation among individuals becomes bigger than the variance between the classes, samples 

of the same class will scatter instead of cluster, classes will start to overlap and separation is likely to 

worsen or fail altogether. This effect of data variance on required sample numbers is illustrated in Figure 

3.39, using a Drosophila sample set with high variability caused by type and length of sample storage. 

Selection of 40 samples from this ‘high variance’ sample set led to an immensely high number of failures 

(22), but only two outliers, indicating that there is not enough information to separate the samples into 

male and female classes. To increase the amount of variance – and hopefully useful information – the 

number of principal components used for LD analysis was increased to 30. This resulted in a problem 

discussed under point 3.6.1: model overfitting and an increase of outliers (from 2 to 12). At this point 

the performance of the model cannot be improved without increasing sample numbers. Only by 

increasing the sample numbers drastically (169 samples), enough intra-class variance could be found 

to offset the large differences among the individuals. 
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Figure 3.39:  The effect of data variance on sample numbers 

Models separating male and female Drosophila specimens were built in OMB using samples 

from the same set. The set comprises specimens stored at different temperatures (freezer, 

fridge and room temperature) for different lengths of time (1, 2 or 4 weeks). First, only 40 

samples were selected from the set to build a model using 20 principal components (top left) 

resulting in poor separation with a high number of failures. Increasing the principal component 

number to 30 (top right) decreases the number of failures slightly but increases the number of 

outliers. By including all available (169) samples in the model, the correct classification rate 

more than doubles (bottom). 

 

Due to this balancing act of inter vs intra-group variability, validation of small models can go two ways: 

either classification is very successful because there is intergroup difference but low intragroup 

variability or validation fails because there is too much variance among individuals of the same group 

or just not enough difference between the classes. Both possibilities make it difficult to judge the 

performance of a small model and trust the outcome of validation efforts. 

Summed up, the number of samples necessary for model building depend on three properties: the 

amount of variance related to the feature of interest (amount of variance in the REIMS data caused by 

species, sex, age, etc.), artefactual sample variance (storage type/length, analysis) and inherent 

variability (sex, age, diet, reproductive state, etc.). The latter can be especially important when moving 

from laboratory based to field application. If there is lots of variation among individuals in a sample set 
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(e.g. wild caught insects), more samples will be needed to outweigh those variances. If the samples in 

the respective classes are very similar (e.g. laboratory raised specimens), less samples might be needed 

to achieve a high performing model. 

 

3.6.3 Sample storage 

Storage conditions as well as storage duration of samples have the potential to influence separation 

performance, the underlying classification principles as well as future identification efforts. Throughout 

the storage process different degrees of biomass degradation can occur, changing the signal profile 

obtained through REIMS analysis. An example can be seen in Figure 3.40; comparison of mass spectra 

acquired after storing Drosophila flies (D. melanogaster, females) in the fridge for up to eight weeks. 

 

 

Figure 3.40:  Change in REIMS profile due to storage condition and length 

Female D. melanogaster flies were stored in less ideal conditions (fridge) to observe the change 

in REIMS signals due to sample ageing and degradation over time (1 to 8 weeks). Each time 

point panel (1 weeks, 2 weeks, 4 weeks and 8 weeks) comprises two spectra, one covering the 

lower mass region (250-300 m/z, on the left) and one displaying the signals in the higher mas 

region (600-850 m/z, on the right).   

 



87 
 

While ions in the lower m/z range undergo only slight changes (both in intensity and signal pattern), ion 

signals in the higher mass range (m/z 600-800) start decreasing after only 1 week of storage and are 

nearly completely below baseline after storing the samples for eight weeks. 

This pattern change will look different for every type of storage (e.g. freezer, fridge, room temperature) 

or sample treatment (collection and killing method) in general. In Chapter 4, models will be based on 

samples stored under different conditions and will demonstrate that REIMS can be used for 

classification purposes independent of the chosen storage conditions.  

When building a classification model to be used for sample identification in the future, sample 

treatment must be kept in mind. Using fresh samples on a model built with stored samples, or the other 

way round, might fail as the signal pattern is likely to be different and relative molecule abundances 

will not match. To avoid restrictions regarding sample condition, samples that have been stored for 

various lengths of time should be included in a model. It will ensure that the classification pattern is 

robust against sample ageing/degradation and will therefore greatly enhance a model’s robustness. 

 

3.6.4 Instrument performance 

Despite calibrating the mass spectrometer daily and using a lock-mass solution to correct for mass shifts 

post acquisition, instrument performance and variations due to the user will occur and affect sample 

analysis. Not all parts can be routinely cleaned or exchanged (largely because of the need to vent the 

instrument) causing accumulation of dirt. As REIMS involves direct sample analysis and production of 

smoke and aerosol, parts will accumulate sample residue very quickly. This can cause differences in 

sample analysis, ionisation and signal detection within hours, making random sample analysis a 

prerequisite to avoid skewing data and introducing unwanted variance between classes. Of course, if 

small shifts in analytical performance already occur within one day, they can also be observed when 

comparing days, weeks or months. 

This makes the time point of sample analysis another important factor for robust model building. To 

ensure a pre-built model can be used for classification purposes months later, the data used for model 

building should be acquired over a longer period of time. This could help detach the model building 

process from sample classification, making classification and identification through REIMS more 

serviceable and user-friendly long-term. 
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3.7 Discussion 

This initial study suggests that REIMS can be used to identify insects, whether they are mature or in 

their immature developmental stages. Even in cases of similar or near-identical morphology, a number 

of differences can be found in the REIMS profiles. Despite those differences being small and variable, 

pattern recognition across numerous differences facilitated consistent classification, and hence 

separation of species and sex. 

However, only laboratory reared Drosophila specimens were used which exhibit limited individual 

variety due to precise and constant raising conditions. Additionally, most samples were stored at -20˚C 

for limited times and were analysed over the course of a few days. As previously mentioned, factors 

such as nutritional status, age of the specimens and storage conditions or storage duration might be 

expected to impact the pattern-based models to various degrees. In order to build a robust and reliable 

model, capable of identifying a wide array of specimen and independent of their inherent properties, 

these variables will need to be taken into account. Some of these will be addressed and examined in 

the Chapters 4 and 5. 

Nevertheless, the results of the Drosophila based study proved that REIMS analysis of insects does not 

only produce informative spectra, but enables distinct discrimination of classes, making further 

investigation with new sample types and research questions promising and worthwhile to explore. 
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Chapter 4: Using REIMS to characterise Anopheles mosquitoes and address challenges in 

population monitoring 

 

4.1 Introduction & Aims 

After successfully testing REIMS with arthropod and Drosophila specimens, mosquitoes were chosen as 

the next subject for further investigation of the method’s capabilities. Mosquitoes are at the heart of a 

wide array of research questions, many of which are associated with public health concerns. 

Mosquitoes from tropical regions are under particular focus due to their status as important disease 

vectors, continuously sparking research, in-depth studies and development of intervention strategies 

and tools [337]. Much of the field-based research revolves around mosquito characterisation: 

identifying species, age, infection status or insecticide susceptibility [67,74,87,101]. Based on the 

success with Drosophila species, it was appropriate to evaluate the ability of REIMS as a new valuable 

tool for field studies and vector control. The Liverpool School of Tropical Medicine kindly provided the 

mosquito specimens used for the experiments presented in this chapter. 

The experiments and results are divided into three main categories. First, male and female mosquitoes 

of the species Anopheles gambiae were analysed to test whether mosquitoes would produce sufficient 

aerosol and signal during REIMS analysis and whether the spectra would be complex enough, yielding 

sufficient information to allow separation of males and females. There are distinct morphological 

differences between male and female mosquitoes, such as the appearance of their antennae – the 

male’s antenna has more hair-like structures called fibrillae – which can be observed even without a 

microscope (schematic representation in Figure 4.1)[59]. Separating the sexes is therefore not a 

challenge. Generally, the females are the focus of interest as they are the source of disease 

transmission. As REIMS was able to easily distinguish male and female Drosophila specimens, the 

assumption was made that, should the mosquito give sufficient signal, separation of male and female 

mosquitoes, based on REIMS data, should be feasible too. 

As discussed in Chapter 3, distinguishing species using REIMS spectra and machine learning is possible, 

even if the species are morphologically very similar. The three mosquito species used for analysis not 

only exhibit very similar morphology, all are part of the Anopheles gambiae species complex and closely 

related [104].  

Additionally, mosquitoes were raised to different ages to explore whether REIMS could be applied as 

an age grading tool, which could be immensely useful in the field of vector control. One way of reducing 

risk through diseases such as malaria is to eliminate the older portion of the mosquito population, as 

only mosquitoes which are over 10 days old are actually infectious. Most mosquitoes do not blood feed 

until they are two days old [63]; if they ingest their blood meal from an infected source, the parasite 

needs around 10 days to develop within the mosquito and form sporozoites, which are needed to infect 

the next host [65]. 
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Figure 4.1: Overview of aims and sample cohort 

REIMS analysis of Anopheles can be put into three categories. First, male and female 

mosquitoes, which can be easily distinguished using morphological traits, were analysed to test 

whether REIMS spectra gained from mosquitoes would be information-rich enough to allow 

classification into male and female classes. The second goal was to investigate species 

classification further by introducing the challenge of high morphological similarity and degree 

of relatedness through mosquitoes from the same species complex. Lastly, REIMS was explored 

for its potential as age grading tool, which could be immensely useful in the field of vector 

control. One way of reducing risk through diseases such as malaria is to eliminate the older 

(infectious) portion of the mosquito population. To evaluate such intervention strategies the 

age profile of the mosquito populations needs to be assessed, which can be difficult and time-

consuming. Used sample types and properties are listed at the bottom. (top left mosquito icons 

were designed using resources from Flaticon.com)   

 

To reduce parasite transmission, control actions aim to skew the mosquito populations towards a 

younger age to reduce vectorial capacity [338]. To evaluate such intervention strategies the age profile 

of the mosquito populations needs to be assessed, which is difficult and time-consuming with many of 
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the current methods [67]. Examination of the female reproductive organs through dissection remains 

the method of choice, despite being laborious and providing limited age information [75,122]. 

Finally, the issues of storage conditions and confounding factors which arise from field collected 

samples, are taken into consideration throughout the Anopheles based experiments to gain further 

insight into possible boundaries of REIMS applicability and limitations. 

 

4.2 REIMS test on mosquito samples – separation of sexes 

To test whether REIMS data collected from mosquito samples are as informative as data obtained from 

the originally tested Drosophila flies, male and female Anopheles gambiae specimens were raised in the 

lab for analysis. These mosquitoes were not blood fed but provided with sucrose solution and kept 

under ideal raising conditions, including temperature and humidity. The mosquitoes were separated 

into males and females (using morphological traits) before being killed by freezing and were stored at 

-20˚C for 10 days before REIMS analysis. Males (54) and females (61) were analysed in a random order 

(using a list containing a randomly generated order of males and females) over one day. The resulting 

data was imported to Offline Model Builder, where it was processed (background subtracted and lock-

mass corrected) before being analysed through principal component-linear discriminant analysis. The 

resulting data matrix was exported and used for PC-LD analysis as well as random forest analysis in R 

(Figure 4.2). PC-LDA was based on 60 principal components. For random forest analysis data was split 

into 70 %/30 % portions for training and testing and repeated 10 times with different randomly selected 

sample sets. The resulting separations clearly demonstrate that there are sex specific differences to be 

found. While only a few samples seemed to be mistaken during PC-LD analysis causing a slight overlap 

of groups (Figure 4.2, a+b), the accuracy of random forest seems lower, with only 83 % of females and 

87 % of males correctly identified on average. A photographic comparison of a male and female 

Anopheles gambiae mosquito can be seen in Figure 2 d. Distinct morphological differences, such as the 

antenna structures, do not necessarily translate to an equally different REIMS spectrum, which is mostly 

produced by lipid heavy body regions. Despite struggling to attain highly accurate separation with 

random forest, the overall separation provides enough conformation that mosquito specimens can be 

analysed via REIMS and produce valuable data.  
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Figure 4.2: Separation of male and female Anopheles gambiae 

Male and female Anopheles gambiae mosquitoes were raised in the laboratory, before being 

killed by freezing and analysed through REIMS. Data was imported to Offline Model Builder and 

processed and compiled into male (n=54) and female (n=61) classes. The resulting data matrix 

was exported for principal component and linear discriminant analysis in R (using the packages 

‘stats’ and ‘MASS’). The results of PC-LDA (based on 60 PCs) are visualised in form of kernel 

density (a) and scatter plots (b), which both depict good separation of the sexes with only a 

small amount of samples (5) overlapping. The data matrix was additionally used to conduct 

random forest analysis. Using a 70 %/30 % split for model training and testing, the analysis was 

repeated 10 times with different samples in the training and testing category each time 

(randomly selected). The averaged results are listed as percentages in the confusion matrix (c) 

with SEM ± and the range of achieved accuracies (min-max) stated for the correct classification 

percentages. The average number of samples used for testing from each class are listed at the 

end of the class rows (n=x). Photos (d) were taken by Dr. Linda Grigoraki (Liverpool School of 

Tropical Medicine). 

 

To validate the separation achieved through PC-LD analysis, the models were re-built in R using 

randomly assigned classifications. Additionally, fewer principal component numbers were used for 

model building to see whether classes could also be separated based on less variance. Reducing the 

principal component number to 29, which is a quarter of the maximum number possible, reduced the 

distance between the classes causing two more samples to move into the overlapping region, however, 

the separation is still well-defined (Figure 4.3, upper panel). After randomly assigning the male and 
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female classes and re-building the model using 60 PCs, it seems that, although separation is significantly 

worse, a certain amount of separation is left (Figure 4.3, lower panel).  

 

 

Figure 4.3: Evaluating separation – lower principal component numbers & randomly assigned classes 

To prove that separation of males and females is also successful with a lower number of 

principal components, PC-LD analysis was repeated using only 29 PCs (¼ of max) (top panel). 

Reduction of principal component numbers only slightly increased the number of confused 

samples from 5 to 7, still providing acceptable separation of males and females. Additionally, 

sample classifications (male, female) were randomly assigned to samples and the model was 

re-built using the initial principal component number (60 PCs) (bottom panel). The resulting 

separation is noticeably worse than seen in Figure 2 with nearly half of the male samples 

completely overlapping with the female class.  
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To test whether a real separation has formed with the randomly assigned classes, it was put to test 

through cross-validation in Offline Model Builder (Figure 4.4). Cross-validations (‘Leave 20 % out’, 

standard deviation 5) were also carried out for the models with correct affiliation of class to sample. 

Cross-validation of the correct model based on 60 PCs resulted in a very high correct classification rate; 

even with outliers taken into account 94 % of all samples were correctly identified. 

 

Figure 4.4: Cross-validation of mosquito sex separation models 

All three sex separation models – based on correct classifications and built with 60 PCs and 29 

PCs as well as based on randomly assigned classifications, built with 60 PCs – were cross-

validated in Offline Model Builder using the setting ‘Leave 20 % out’ and a standard deviation 

of 5. 
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Basing LD analysis on only 29 PCs decreased the correct classification rate, nonetheless the percentage 

of correctly assigned samples is still over 90 %.  

Despite seeing potential separation of classes in the kernel density and scatter-plots of the randomised 

classification model, cross-validation revealed that separation of classes failed with only 52 % of 

samples correctly identified. As the model only comprises two classes, this accuracy equals the 50:50 

chance of selecting the correct class. This outcome confirms that samples with randomly assigned 

classes cannot be separated and that, when using the correct male or female classification, separation 

is based on differences correlated with sex. 

After successful analysis of the first set of Anopheles mosquitoes the focus shifted towards actual 

questions and challenges present in the field - classifying species and age – while also trying to address 

the difference sample storage could make for REIMS analysis.  

 

4.3 Distinguishing closely related Anopheles species 

Three Anopheles species were selected to test species discrimination with mosquito specimens. 

Analysis of Drosophila melanogaster and Drosophila simulans had already indicated that separation 

through REIMS is possible even without distinct differences in morphology between species. The 

mosquito species Anopheles coluzzii, Anopheles gambiae s.s and Anopheles arabiensis are all part of the 

An. gambiae species complex and therefore closely related sibling species; they are known as the most 

important vectors for malaria in Africa [339]. Anopheles coluzzii and Anopheles gambiae s.s went 

through speciation only recently (possible split about 540,000 years ago) and were still commonly 

referred to as M and S form of Anopheles gambiae a few years back [5,6,83,340]. Hybrids between the 

three species are still found in the wild and their morphology is very similar [5,104]. As this sets a new 

level of difficulty for the separation process, no adjustments were made to sample treatment or storage 

(killed by freezing and stored at -20˚C) and the sample pool was kept as homogenous as possible by 

ensuring that all used specimens were female, raised on sucrose solution, not blood fed and 4 days-old 

at the time point they were collected. REIMS mass spectra were acquired in a randomised order from 

202 specimens; 54 specimens of An. coluzzii (strain Ngusso), 59 specimens of An. gambiae s.s, (strain 

Kisumu) and 89 An. arabiensis mosquitoes (strain Moz). Before data analysis, mass spectral data were 

pre-processed in Offline Model Builder; the background signal was subtracted, spectra were mass 

corrected (leucine enkephalin, 554.26 m/z) and finally, spectra were discretised by binning signals into 

0.1 m/z wide bins. Principal component analysis followed by linear discriminant analysis (PC-LD, based 

on 90 principal components), using the Offline Model Builder, resolved the three groups effortlessly 

with a single Ngusso strain individual being co-localized with the individuals from the Kisumu strain 

(Figure 4.5a). The first discriminant function was responsible for resolution of An. arabiensis from the 

other two An. gambiae s.l strains whereas the second function yielded good resolution of An. gambiae 

s.s and An. coluzzii, a result which correlates with their genetic relatedness (Figure 4.5d). This finding is 
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mirrored in the kernel density (Figure 4.5b) and scatter plots (Figure 4.5c) based on PC-LD analysis 

conducted in R.  

 

Figure 4.5: Distinguishing morphologically similar and closely related species 

A total of 202 specimens from the species An. arabiensis (Moz, n=89), An. coluzzii (Ngusso, 

n=54) and An. gambiae s.s (Kisumu, n=59) were killed through freezing and stored at -20˚C until 

REIMS analysis. All specimen were female and 4 days old. Principal component - linear 

discriminant (PC-LD) analysis of the REIMS data within the model building software Offline 

Model Builder led to a clear separation of the 3 classes (panel a). After exporting the data 

matrix (incl. classifications and signal intensities after pre-processing) PC-LD analysis was 

repeated in R; results are displayed in form of kernel density (panel b) and scatter plots (panel 

c), shown for both linear discriminant 1 and 2. Both models are based on 90 principal 

components. The group formation correlates with the genetic relatedness of the three groups 

(panel d); the biggest variance (LD 1) supporting separation of An. arabiensis, followed by 

separation of An. coluzzii and An. gambiae via LD 2. Photos of females from all three species 

are displayed in panel e (taken by Dr. Linda Grigoraki (Liverpool School of Tropical Medicine)). 

 

To explore visible differences in the acquired REIMS spectra, the data matrix exported from OMB was 

used to create averaged mass spectra for all three species (Figure 4.6). Each spectrum represents the 
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average of all samples available for each species (An. coluzzii n=54, An. gambiae s.s n=59, An. arabiensis 

n=89).  

 

 

Figure 4.6: Averaged spectra of three mosquito species 

The data matrix, obtained after processing and binning the mass spectral data in Offline Model 

Builder, was used to create averaged mass spectra for all three species. Each mass spectrum 

represents an average of all samples available for each species (Ngusso n=54, Kisumu n=59, 

Moz n=89).  
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The obtained spectra were very similar across the acquired m/z range (50-1200), especially between 

the strains Ngusso and Kisumu. Only the pattern in the region 600-900 m/z seems to be different (with 

a higher relative intensity) in the Moz spectrum, but it is unclear whether this actually aids the 

separation process. It is apparent that once more the separation is based on small differences that 

require a machine learning approach to detect them. The subtlety of this discrimination and the ability 

to resolve different species aligns with prior observations on Drosophila species. 

To test whether background signals could be enabling this separation the mosquito species model was 

re-built using randomly assigned classifications (Figure 4.7). 

 

 

Figure 4.7: Anopheles species models with correctly and randomly assigned classes 

The PC-LDA model separating Ngusso, Kisumu and Moz, built in Offline Model Builder using 90 

PCs (left), was re-built after randomly assigning classifications to samples (right). The random 

classification model, also based on 90 PCs, displays no separation of the three species; samples 

are widely dispersed and groups strongly overlap. 

 

The random classification model, also based on 90 PCs, displays no distinct separation of the three 

species; samples are widely dispersed and groups strongly overlap. Additionally the PC-LDA model was 

built using fewer principal components to attest that separation can be also achieved with less variance 

(Figure 4.8). 
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Figure 4.8: Anopheles species separation based on fewer principal components 

The model separating Ngusso, Kisumu and Moz was re-built using a lower number of principal 

components. The PC number was decreased to 50, which is ¼ of the maximum number possible. 

As can be seen in the OMB model (a) as well as the kernel density- and scatter plots (b), reduced 

variance in the model still resulted in a clear separation of all three species. 

 

Less variance in the model had no negative effect on the separation of Moz from the other species. The 

distance between the classes Kisumu and Ngusso, however, decreased slightly, leading to an increase 

of misclassified samples from six to nine. All three models - one built with 90 PCs, one with 50 PCs and 

one based on randomly assigned classifications – were cross-validated within OMB to define their 

correct classification rates (Figure 4.9). Reduction in principal component numbers from 90 to 50 lead 

to a decrease of the correct classification rate from 95 % to 92 %; even built with less variance the 

model is still highly accurate. The model built with randomly assigned classes reached a correct 

classification rate of only 36 %, which was expected. 
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Figure 4.9: Cross-validation of Anopheles species models 

The PCA-LDA based species models (with correct classification, built with 90 and 50 PCs; with 

randomly assigned classes, built with 90 PCs) were cross-validated within Offline Model Builder 

using the setting ‘Leave 20 % out’ and a standard deviation of 5. During cross-validations two 

samples of the species Kisumu and/or Moz were not tested as 20 % of 202 results in a fractional 

number. 
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As the experiments and aims of this chapter are more targeted towards field biology related questions, 

the limitations that arise from field work need to be explored. Samples used in previous experiments 

had all been killed by freezing and stored at -20˚C until analysis. Unfortunately, freezer storage may not 

always be feasible in the field due to limited or no availability. Therefore different sample treatments, 

which align with commonly applied practices, need to be taken into account and tested. A frequently 

used approach is to kill field-collected mosquitoes through dehydration (high temperatures and no 

water) and store the specimens with desiccant material, allowing long-term storage at room 

temperature.      

To test whether samples treated this way were also compatible with REIMS analysis, mosquitoes from 

all three species were divided into two sets: one set was killed by freezing and stored at -20˚C, the other 

was killed through dehydration and stored with desiccant material at room temperature. Additionally, 

samples within each category were stored for different lengths of time (5 time points); analysis took 

place within one day after killing and after storing samples for 1, 2, 4 and 10 weeks.   

Data gained from these samples were used to build a set of three models (Figure 4.10). For both storage 

conditions (desiccated and frozen) samples from all storage time points were combined to build PC-

LDA based species models in OMB (based on 35 and 30 PCs). Despite incorporating samples affected 

by storage to various degrees, PC-LDA managed to cluster them into species classes (Figure 4.10a+b). 

Following successful separation in individual models, all samples were then combined (n=130) for 

species classification (Figure 4.10c). First, PC-LDA was attempted in Offline Model Builder before 

exporting the data matrix and conducting the analysis in R (both models were based on 70 PCs). Despite 

the large amount of variability in the sample set specimens were clustered into their respective species 

group.  

However, the separation is not as distinct as in Figure 4.5; higher sample numbers would be needed to 

improve the model. Also, sample storage has caused the variance distribution to shift: LD 1 now 

separates Ngusso and Kisumu, LD 1 and 2 combined separate Moz. This change in separation could be 

caused by either a lack of samples or a change introduced through storage. The former scenario would 

mean that the model could revert back to the previously observed separation process (first separation 

of Moz, then Kisumu and Ngusso) given enough samples are added to the model. The latter could be 

caused by uneven effects of storage on the three species. Interestingly, it seems to affect both storage 

conditions and can be observed in all three models. The mass spectral patterns do change with length 

of storage, but there are no visually distinct differences between the species (Supplemental Figures 4.1-

4.6, listed at the end of this chapter).  
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Figure 4.10: Species separation based on differently stored samples 

Female specimens from the three species Anopheles arabiensis (Moz), Anopheles gambiae 

(Kisumu) and Anopheles coluzzii (Ngusso) were equally split into two groups: one group was 

killed through dehydration and stored at room temperature with desiccant material, the other 

group was killed by freezing and stored at -20˚C in falcon tubes. Within each group samples 

were additionally split to be analysed at five different time points: immediately after killing (no 

storage) and after storage for 1, 2, 4 and 10 weeks. For every combination of storage type and 

length 5 Ngusso, 5 Kisumu and 3 Moz mosquitoes were analysed. For both storage conditions 

(desiccated and frozen) samples from all storage time points were combined to build PC-LDA 

based species models in OMB (based on 35 and 30 PCs). Both storage types, dry at room 

temperature (panel a) and frozen at -20˚C (panel b) led to informative REIMS spectra allowing 

differentiation of species through PC-LD analysis. Following successful separation in individual 

models, all samples were combined (n=130) for species classification (c). First, PC-LDA was 

attempted in Offline Model Builder (left) before exporting the data matrix and conducting the 

analysis in R (right); both were based on 70 PCs. Despite the large amount of variability in the 

sample set specimens were clustered into their respective species group.  
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Species separation using REIMS is possible, independently of the sample storage condition. This is 

promising and reassuring as it allows adaption to sample type and sampling conditions in the field. The 

variables allowing separation are likely to be very different for the two storage types and it is possible 

that one approach might lead to models with higher accuracy or robustness than the other. The models 

presented in Figure 4.10, however, are based on too few samples to allow in-depth evaluation and 

comparison. 

 

4.4 Age grading – detecting changes associated with ageing and development 

A characteristic of particular significance in vector control is that of female mosquito age. Establishing 

the age of individual mosquito specimens could, in combination with regular sampling and high-

throughput analysis, allow determination of population age profiles. Mosquito longevity in relation to 

the duration of the extrinsic incubation period of a pathogen is an important factor in mosquito-borne 

pathogen transmission. Many vector control strategies, including insecticide usage, target mosquito 

survivorship, which in turn affects disease transmission rates. For in-depth evaluation of vector control 

actions this intermediate effect on mosquito mortality and population age structure needs to be 

assessed. Observing the changes in the age distribution of vector populations is critical to product 

development and would help monitor and inform routine vector control operations in the field, 

particularly when in validation stages. To establish if REIMS data can be used to resolve mosquitoes 

according to age Anopheles gambiae mosquitoes were raised for 0-1, 2, 3, 4 and 5 days under standard 

insectary conditions (see methods), without being blood fed. Mosquitoes of all five age groups were 

killed by freezing on the same day and stored at -20˚C for 4-7 days before analysis through REIMS. 

Although a different way of sample treatment could have been chosen, the primary age experiments 

were built with freezer stored samples to keep samples as fresh as possible and increase chances to 

detect differences caused by the process of ageing. 

After REIMS analysis of specimens of all ages (analysed randomly over three days), PC-LD analysis in 

Offline Model Builder led to a clear clustering according to age, with the location of each age group 

reflecting the progressive age of specimens (Figure 4.11a). Further PC-LD analysis in R and visualization 

through 3D plots with different triads of the top four linear discriminants reveals a similar picture of 

age progression along LD 1. The values of LD 1 contain enough information to provide some distinction 

for all groups but with overlap; the second to fourth LDs add further resolution of specific groups, 

improving the overall separation. 

 A second set of An. gambiae specimens (freezer stored for 1-4 days) was subsequently analysed, 

focusing on more broadly spaced age groups: very young (0 days, 1-2 days) and old (12 and 13 days) 

(Figure 4.11b). 
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Figure 4.11: Discrimination of Anopheles gambiae mosquitoes by age 

Two groups of Anopheles gambiae specimens (panels a and b) of different ages were killed by 

freezing before REIMS analysis. Mosquitoes were raised on sugar solution, regardless of age. 

Differences between age groups were explored by PC-LD analysis and visualized using OMB (i) 

as well as R, in form of 3D models (using different linear discriminant combinations) (ii) and 

kernel density plots for each LD). The difference between classes in model a (based on 100 PCs) 

is only 24 h, nonetheless a distinct group formation can be observed with chronological 

positioning within the 3D space, leading to a transition from younger to older samples. Model 

b, comprising young and old mosquitoes (2 groups each), revealed greater variance between 

the young classes than between the old. Analysis of model b is based on 88 (in OMB) and 85 

PCs (in R). Sample numbers per class, model a: 0-1 day (n=47), 2 days (n=84), 3 days (n=39), 4 

days (n=27), 5 days (n=30); model b: 0 days (n=17), 1-2 days (n=29), 12 days (n=46), 13 days 

(n=83). 

 

Again, samples grouped depending on their age class, however, with unequal separation between the 

three classes. The difference between mosquitoes that had just emerged (day 0) and those which were 

1-2 days old was bigger than the difference between adults at 12 d and 13 d, which could reflect 
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metabolic and developmental changes in the first 24 h after emergence from pupae. This difference in 

variance can also be clearly seen in the 3D and kernel density plots, with both LD 1 and 2 adding to the 

separation of the young mosquitoes, whereas LD 3 was able to provide limited variance to distinguish 

between 12 and 13 d mosquitoes. 

  

 

Figure 4.12: Anopheles age models built with fewer principal components 

Age groups were separated by PC-LD analysis and visualized using OMB (i) as well as  R , in form 

of 3D models (using different linear discriminant combinations) (ii) and kernel density plots for 

each LD) using only a quarter of principal components possible. The difference between classes 

in model a (based on 56 PCs) decreased with the lower PC number. This is especially noticeable 

between groups 2 and 3, which now strongly overlap and groups 4 and 5, where samples are 

clustered only loosely without clear group boundaries. The young groups in model b (based on 

44 PCs), moved closer to each other due to the reduction in PC numbers, however, separation 

is still very distinct. The main portion of the older sample classes (12+13 days) are now 

completely overlaid. 
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Both age models (0-5 days and 0-13 days), were also built using less principal components (¼ of the 

maximum) to test how less variance affects separation (Figure 4.12). While this reduction in PC numbers 

has often only a minor effect on separation efficiency in general, here it clearly increased the overlap 

of close classes in both age models. Further, models were re-built using randomly assigned 

classifications to ensure separation occurs due to age related differences; the separation patterns seen 

in both models could not be replicated when classifications were randomly assigned to samples (Figure 

4.13). 

Figure 4.13: Anopheles age models built with correctly and randomly assigned classifications 

To test the separation principle of model a (based on 100 PCs) and model b (based on 88 PCs), 

classifications were randomly assigned to samples before rebuilding the models in Offline 

Model Builder. The original separations (left panel) can be directly compared to the randomly 

assigned classification models (right panel). For both models the separation following the 

randomisation is significantly worse with samples from the same class clustering only very 

loosely compared to previous grouping and significant overlap of groups. 



107 
 

The ease with which age could be revealed as a REIMS-accessible parameter might reflect a change in 

lipid deposits over time. A strong difference in lipid amount or composition could be revealed in a REIMS 

profile. Averaged spectral information was therefore compared for all age groups included in the first 

age model (0-5 days). The spectra were created from the Offline Model Builder data matrix; each 

representative spectrum is the average of all samples available for an individual age class (Figure 4.14). 

The averaged spectra for the five age groups did unfortunately not reveal any easily detectable 

differences in the signal patterns. Low intensity signals could be involved, but would not be visually 

noticeable without comparison of many small m/z windows. 

 

 

Figure 4.14: Comparison of averaged spectra from mosquitoes of different age classes  

The data matrix, obtained after processing and binning the mass spectral data in Offline Model 

Builder, was used to create averaged mass spectra for all age classes from 0-5 days. Each mass 

spectrum represents an average of all samples available for each age group: 0-1 day (n=47), 2 

days (n=84), 3 days (n=39), 4 days (n=27), 5 days (n=30). 



108 
 

Despite achieving chronological group positioning within both age groups and clear clustering of 

samples into their respective age classes, class boundaries touch or even overlap causing the precision 

of classification to drop. This can of course be expected when using continuous factors for classification 

purposes. Even within age classes, samples will exhibit small differences in age; some specimens might 

have emerged a few hours earlier than others. When faced with a continuous range for a classification 

factor it can be helpful to either introduce a gap between classes to make boundaries more distinct or 

to reduce the number of classes and therefore the total amount of overlap and confusion in the 

separation process. Using the second approach, both age models (0-5 days and 0-13 days) were re-built 

with a reduced number of classes. To this effect, mosquitoes of the age 2 or 3 days were combined into 

one class, as well as specimens which are 4 or 5 days old, reducing the number of classes in the model 

from five to three. The second model comprising young and old mosquitoes was handled similarly, 

however, the decision was made to keep the just emerged mosquitoes (0 days) and the 1-2 days old 

samples separate as they already exhibit strong dissimilarity.  

Both models were re-analysed through PC-LD analysis in Offline Model Builder as well as in R (Figure 

4.15). The results show a definitive improvement in the separation of the classes and bigger intervals 

between sample groups. It needs to be mentioned that the groups combined already displayed a 

tendency for more overlap; combining them allowed for age intervals that improved the separation 

even further. 
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Figure 4.15: Improving separation of continuous age classes 

To improve separation of the individual age classes for both models some age groups were 

combined into one class. For the model in panel a the 2 and 3 day old mosquitoes, as well as 

the 4 and 5 day old specimens, were combined into one group each, reducing the overall 

number of classes from 5 to 3 (panel a). As mosquitoes which have just emerged and 1 day old 

mosquitoes can be readily distinguished, only the 12 and 13 day old mosquitoes were combined 

into one group for the model in panel b. As with the previous age models, PC-LD analysis was 

conducted first in Offline Model Builder (i) to extract the data matrix, before repeating analysis 

in R to visualise separation results through kernel density histograms (ii) and 2D scatter plots 

(iii). Principal component numbers were the same as used for the previous model (model a: 100 

PCs, model b: 88 and 85 PCs) to solely observe the effect of class reduction. For both models all 

age groups are now separated along linear discriminant one; LD 2 merely contributes additional 

variance to increase separation of the younger groups. There are now distinct gaps between all 

age classes. 
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To get a more definitive idea of the magnitude of improvement achieved through class reduction, all 

models were cross-validated within Offline Model Builder using the ’Leave 20 % out’ option and a 

standard deviation of 5.  

The cross-validation results for the 0-5 days age range are compared for the model with five age classes 

and the model with three age classes (Figure 4.16). While the outliers percentage was low to begin with 

(changed from 1.8 % to 0.9 %), the percentage of failures dropped significantly from 20.9 % to 7.1 %, 

leading to an improvement of the correct classification rate from 78.7 % to 92.8 %. 

 

Figure 4.16: Comparison of cross-validation results for the ‘0-5 days’ models 

The PCA-LDA based age (0-5 days) models, one comprising 5 classes and the other 3 classes, 

were cross-validated within Offline Model Builder using the setting ‘Leave 20 % out’ and a 

standard deviation of 5. Combining the age classes ‘2 days’ and ‘3 days’ as well as ‘4 days’ and 

‘5 days’ clearly improved separation accuracy from 79 to 93 %. During cross-validations two 

samples were left out: model 1, comprising 5 classes, is missing one sample each in the ‘0-1 day 

old’ and ‘2 days old’ categories. Model two, with a reduced class number of three, is missing 

two samples from the 2-3 day old mosquitoes. These samples were not tested as 20 % of 227 

results in a fractional number.  
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When comparing the validation outcomes for the 0-13 days range, the change in classification 

performance is even steeper (Figure 4.17). The 12- and 13-day old samples overlapped strongly and 

clustered very tightly making separation extremely difficult. After combining the groups into one class, 

and taking away the difficulty, the percentage of misclassifications decreased from 25 % to 0 % giving 

the model a correct classification rate of 100 % (4 outliers not taken into account). These numbers 

highlight the enormous difference that can be found between very young and very old mosquitoes as 

well as the distinctiveness of mosquitoes in their first few hours after emerging as adults. 

 

 

Figure 4.17: Comparison of cross-validation results for the ‘0-13 days’ models 

The PCA-LDA based age (0-13 days) models, one comprising 4 classes and the other 3 classes, 

were cross-validated within Offline Model Builder using the setting ‘Leave 20 % out’ and a 

standard deviation of 5. Combining the ‘12 day’ and ‘13 day’ old mosquitoes into one age class 

greatly improved separation accuracy from 74 to 100 %. 
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This increase in correct classifications moved both models from a performance that would be unusable 

for classification in field studies (< 80 % accuracy) to being valuable and suitable for high confidence 

identifications. The reduction in age resolution due to class reduction is not of particular disadvantage 

to field applicability. The results of the age grading process should merely give an idea of the age 

distribution of the population, whether a mosquito is one day older or younger would not influence the 

overall distribution or the conclusions being drawn. The demonstration that calendar day differences 

can be revealed by REIMS data is impressive, but would likely not be of use in field research, which 

looks for optimal balance between pragmatism and the gain of actionable information. 

 

4.5 Combined Species-Age experiment 

Following the successful separation of laboratory-reared mosquitoes according to their species or age, 

potentially confounding factors were introduced to the next sample set to further test the concept of 

mosquito characterization through REIMS. Female specimens from An. arabiensis (strain Moz), An. 

gambiae s.s (strain Kisumu) and An. coluzzii (strain Ngusso) were each raised and sampled into three 

different age groups: 1 day, 5-6 days and 14-15 days. This time the mosquitoes were killed by 

dehydration and then stored with desiccant at room temperature for 1.5 to 2 weeks – as previously 

mentioned this is a procedure commonly used in field sampling when storing collected material in a 

freezer is not possible. The same set of samples and data was used to build two different models: one 

to resolve species, the other to explore resolution according to age. Thus, mosquitoes of different ages 

are part of the species model (Figure 18a) and age separation was tested on aggregated data from all  

three species (Figure 18b).  

Data obtained from 540 mosquitoes were first analysed by PC-LD analysis in Offline Model Builder (i), 

followed by PC-LD analysis using the stats and MASS packages in R, depicted as kernel density (ii) and 

scatter plots (iii), and lastly used to conduct random forest analysis (iv). For the random forest analysis, 

samples were split into 70 % for model building with the remaining 30 % used to test the model 

predictions. The random forest construction and analysis was repeated 10 times, using randomly 

selected samples for model construction and testing each time. The average performance statistics, 

correct and incorrect classifications plus the errors and ranges of achieved accuracies confirm a high 

level of discrimination (Figure 4.18). Despite increased variability in the data set through inclusion of 

specimens of different ages, separation of species was still successful. The average accuracy achieved 

through random forest analysis was 87 % correct identification for An. arabiensis, 81 % for An. coluzzii 

and 83 % for An. gambiae s.s. The greatest degree of misclassification was clearly between An. gambiae 

s.s and An. coluzzii (12-13 %). Compared to the species model based on freezer stored mosquitoes of 

the same age (Figure 4.5) samples within groups are slightly more scattered and overall group 

resolution was slightly reduced. Also, linear discriminant 1 now not only holds distinguishing variance 

for Moz but also supports a partial separation of Ngusso and Kisumu.  
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Figure 4.18: Age and species independent separation of mosquito species and age classes 

Mosquitoes (total n=540) were raised to three different age groups (1 day , 5-6 days, 14-15 

days; 180 samples each) for each of the three species (Ngusso, Kisumu, Moz). The specimens 

were killed by dehydration and stored at room temperature with desiccant for 1-1.5 weeks prior 

to analysis. The samples were used to build two models: one separating the three species (panel 

a) and one separating the three age groups (panel b). Data was processed using PC-LD analysis 

in Offline Model Builder (i) and R, latter visualized for each linear discriminant (LD 1 and LD 2) 

separately in form of kernel density (ii) and scatter plots (iii). The models built in Offline Model 

Builder are based on 100 principal components, the analysis conducted in R was based on 235 

PCs (same values were used for species and age separation). The data matrix exported from 

Offline Model Builder data was additionally analysed using the random forest algorithm in R; 

70 % of the samples were used for model building, 30 % as test samples. The test results are 

depicted as a bar graph, showing percentages of correctly and wrongly identified samples (iv). 

Depicted are the average values of 10 random forest repeat runs ± the standard error of the 

mean, with the range of accuracy values that were achieved in brackets. 
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The second model, separating mosquitoes according to their age, displays a tight clustering of samples 

within age groups and a very distinct separation of the age classes themselves. As previously observed, 

the very young mosquitoes (1 day old) resolve readily from older specimens and show the biggest 

variance. Both analytical approaches, PC-LDA and random forest, concur that the 1 day old specimens 

are easily separated from the rest, leaving a pronounced separation in all three LDA plots (b i-iii) and 

scoring the highest identification accuracy in random forest (98 %). Overall, the age model achieves an 

average accuracy of 91 % and is true for all three species, making this age separation species 

independent.  

Although samples had been treated differently, compared to the previous main species and age models 

(Figures 4.5 and 4.11), REIMS data allowed for clear separation of species and highly accurate age 

discrimination. The different storage conditions used in Figure 4.10 already proved that building a 

species separation model with desiccated samples is possible, however, it is encouraging that the 

separation maintains when using a larger sample size. Obtaining separation of age groups with room 

temperature samples is equally promising, indicating that age related differences remain after 

dehydrating samples for over a week.  

Both, the species and age model, were additionally cross-validated in Offline Model Builder (models 

built with 100 PCs) resulting in correct classification rates of 98 % and 99 % (Figure 4.19). 
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Figure 4.19: Cross-validation of Anopheles species and age model 

The species model and age model (both based on 100 PCs) were cross-validated within Offline 

Model Builder using the setting ‘Leave 20 % out’ and a standard deviation of 5. 

 

The separations achieved when conducting PC-LDA in R were based on the maximum number of PCs 

possible before overfitting (235 PCs); re-building the species as well as the age model with lower PC 

numbers (135) still resulted in good class separation (Figure 4.20). Despite a smaller amount of variance 

available for model building classes are still visibly separated. The scatterplots reveal that, while most 

samples are still in their correct categories, a portion of them is now wrongly positioned causing classes 

to overlap. This consequence is more noticeable in the separation of species than it is in the age model, 

which still exhibits very distinct groups and could likely provide sufficient separation with even fewer 

principal components.  
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Figure 4.20: Anopheles species and age models built with fewer principal components 

The PCA-LDA models separating Anopheles mosquitoes by species and age were re-built in R 

using a lower number of principal components. The separation depicted in the kernel density 

histograms and scatter plots is based on 135 PCs (¼ of max) for both models. 

 

After each random forest analysis, the package ‘randomForestExplainer’ was used to determine the 

Top 10 variables responsible for class separation. Two variables per model were identified as driving 

factors in all random forest repeats; the intensities observed in all 540 samples are plotted for each 

variable (Figure 4.21).  

The bins m/z 439.2 and m/z 552.5 both seem to support separation of the strains Kisumu and Moz. 

They also partially explain the separation of Kisumu and Ngusso, though a small overlap remains with 

both variables. The intensities observed for Moz and Ngusso, however, are very similar; the separation 

observed in the model therefore cannot be explained using those two variables. The two variables 

important for age separation, m/z 227.2 and 269.3, exhibit very different intensity patterns and make 

clearly defined contributions to the separation process. Bin m/z 227.2 provides good separation of the 

5-6 and 14-15 day old mosquitoes, whereas m/z 269.3 contains a distinct difference between the young 

1 day old specimens and the other two classes. 
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Figure 4.21: Intensity distributions of variables important for random forest based separation 

After performing random forest analysis (repeated 10 times) on the species and age models the 

R package ‘randomForestExplainer’ was used to determine the ion bins driving the separation 

process using a Top 10 approach. For the species as well as the age model, 2 variables each 

were identified as important in all 10 random forest runs. The intensities of all 540 samples 

were plotted for these bins in a boxplot diagram.  The bins m/z 439.2 and m/z 552.5 seem to 

support separation of Kisumu from Moz and, to a certain degree from Ngusso. The separation 

of Moz and Ngusso, however, cannot be explained using those two variables. The two variables 

identified as driving forces behind the age model, m/z 227.2 and 269.3, provide very good 

separation of the 5-6 and 14-15 day old mosquitoes and a distinct difference between the 

young 1 day old mosquitoes and the other two groups.   

 

Due to the large intensity differences seen in the bins identified as important for age separation, these 

variables could be used as main variance to distinguish classes in random forest analysis. Separation of 

the three used Anopheles species on the other hand clearly cannot be based on or explained by the 

two plotted variables (m/z 439.2 and 552.5). To investigate which other variables contribute to the 

separation and in which way, other variables were added to the intensity box plot. 

For both, the species and age model, all variables which had been in the Top 10 variable list at least 7 

out of 10 times (70 % of the time) were plotted (Figure 4.22). The additional variables listed for the 

species model now explain separation and add necessary variance which could not be provided by the 

variables that stayed constant in the separation process. The m/z bins 580.5, 683.5 and 808.5 appear 

to support the separation of Moz from the other two classes, importantly from Ngusso, which was not 
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achieved previously. A bin of very low m/z value, m/z 89, exhibits intensities which seem to differ among 

Kisumu and Ngusso samples, making it an important separator in 7 out of 10 cases. 

The separation principle behind the random forest classification of species highlights that bins, even 

though they aren’t identified as highly important in every run, can nevertheless play a vital role in the 

separation process. It is possible that a number of bins contribute to the separation in the same way 

and move up and down the importance ladder, replacing each other. This can cause the separation 

process to shift and change with every repeat; many variables providing small and similar contributions 

to the separation make the classification principle less clear and machine learning even more important. 

 

 

Figure 4.22: Intensity plots of variables important for species separation 

An extended list of the variables identified as important for the random forest based separation 

of the three mosquito species Kisumu, Moz and Ngusso. Only the intensities of ion bins, which 

have been in the Top 10 variables list in at least 7 out of 10 random forest runs, are plotted. 

Although some of the bins had not been identified as very important in every run, they 

nevertheless play an important role in the separation process. The m/z bins 580.5, 683.5 and 

808.5 appear to support the separation of Moz from the other two classes, especially from 

Ngusso, which was not achieved with the variables identified in every run (100 %). 
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For the age classification only two more variables made it into the list of bins identified at least 7 out of 

10 times (Figure 4.23). As the initial two variables, identified 100 % of the time, provided sufficient 

variance to clearly separate all three age classes, the new variables (m/z 510.5 and 283.3) do not add a 

vital intensity pattern. Instead, they feed additional variance to the process and aid class definition to 

increase accuracy. Curiously, both additional variables exhibit an intensity profile which supports 

separation of the young (1 day old) mosquitoes. This large amount of variance (and variables) aiding 

the separation of the 1 day old specimens explains the distinct separation and high accuracy observed 

for both random forest and PC-LDA results. Merely the variable 227.2 provides no separation for the 

young mosquitoes, instead it seems to be the only Top 10 variable containing signal intensities which 

clearly vary between the 5-6 and 14-15 day old specimens. Based on the other three variables, the older 

mosquitoes seem to separate only halfway. 

 

Figure 4.23: Intensity plots of variables important for separation by age 

An extended list of the variables identified as important for the random forest based separation 

of 1 day, 5-6 day and 14-15 day old mosquitoes. Only the intensities of ion bins, which have 

been in the Top 10 variables list in at least 7 out of 10 random forest runs, are plotted. As the 

bins which are driving separation 100 % of the time already provided enough variance to 

separate all three groups, the other two bins (510.5 and 283.3) merely add further variance to 

the process. Interestingly, they only support the separation of the young mosquitoes; bin 227.2 

seems to be the only bin that was included in the Top 10 list and contains signal intensities 

which clearly vary between the 5-6 and 14-15 day old specimens.  
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This difference in variable contributions might be the reason for different classification accuracies of 

the species and age model. While the age separation reached 91 % average accuracy, based on clear 

distinction provided by the intensity distributions of only a few variables, the average accuracy for the 

species model was noticeably lower with only 84 %, which might be the result of requiring a larger 

number of variables due to smaller individual variance contributions. It was seemingly easier to find 

strong separators for the classifications of age groups than for species. This presumption was further 

examined in the following test (Section 4.6). 

 

4.6 Two-factor classification model 

Both characteristics, species and age, would be of interest when identifying trapped mosquitoes, 

leaving two options: acquire data and test with two separate models or build a two-factor model 

capable of providing both types of information at once. To test whether a two-factor model could be a 

viable option, the same data set used to build the species and age models (Figure 4.18) was split into 

nine classes, each representing two factors, one species and the other age (Figure 4.24). Regardless of 

the added difficulty of splitting variance to enable separation of nine classes with two properties each, 

samples were successfully grouped and separated using PC-LD analysis in Offline Model Builder. 

Surprisingly, separation was facilitated in ways similar to the separate species and age models. The 

average random forest accuracy of the age model (91 %) was higher than the accuracy achieved for 

species separation (84 %) but both were within acceptable bounds. Also, fewer variables provided a 

more distinct separation for age than for species. A similar picture can be seen with the nine-class 

model. The two-factor model assigned more variance to the age separation than the separation of 

species, which is apparent in the clustering according to age rather than species.  

First, three clusters (1 day, 5-6 days, 14-15 days) are separated along linear discriminant 1 (Figure 

4.24a). As observed previously, the classes containing young samples are very different and are 

positioned far away from the 5-6 day and 14-15 day old samples within the 3D space. Due to the large 

amount of space taken up by the younger samples (distance is proportionate to the extent of 

separation) and the high number of linear discriminants, it is difficult to visually observe the separation 

of classes within the ‘5-6 days’ and ‘14-15 days’ groups. For visual purposes the 1-day old classes from 

Kisumu, Ngusso and Moz were removed and the model re-built leaving only the older mosquitoes for 

separation. Removal of the younger samples now leaves enough space for the remaining classes to 

clearly separate (Figure 4.24b). The order of separation along the linear discriminants reveals that 

samples are first separated according to age (biggest variance), followed by species resolution of An. 

arabiensis from the other two Anopheles species through LD 2 and further separation of An. gambiae 

s.s from An. coluzzii via LD 3 (Figure 4.24b, c). 
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The succession in this separation process mirrors exactly what was noted for the separate species and 

age models and supports the prior observation that more variance in the data set explains the process 

of aging than species relatedness.  

 

Figure 4.24: Two-factor model combining species and age information 

The same samples used to build the species and age models in Figure 4.18 were used to 

construct a two-factor model, comprising nine classes, each containing species and age 

information. Separation of all 9 classes (60 specimens each) was attempted using PC-LD 

analysis (based on 100 PCs) in Offline Model Builder (section a). Due to wide dispersion of the 

1 day old groups, spatial resolution of the 5-6 and 14-15 day old groups in the 3D space is 

hindered. To help visualize the separation, the 1 day old sample groups were removed (section 

b). The largest variance in the data set (LD 1) is correlated with age, followed by species 

separation enabled by LD 2 (Moz) and LD 3 (Ngusso and Kisumu) (section c). 
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To examine if all nine groups are separated and can be distinguished, despite their visually close 

proximity, the two-factor species and age model was cross-validated within Offline Model Builder by 

leaving out 20 % of data and applying a standard deviation of 5. Validation confirmed that even the 5-

6 day old classes and the 14-15 day old classes are separated and only a small number of samples are 

misclassified (Figure 4.25). Out of 540 samples, 15 failed to be classified correctly and 4 samples were 

identified as outliers; this results in a correct classification percentage of 96.5 % when including outliers 

and 97.2 % when outliers are not taken into account. It is evident in the confusion matrix that the main 

source for misclassification is the species factor; it is not the age groups within each species group that 

are misclassified, the confusion arises from the different species within an age group, e.g. Ngusso 5-6 

days, Kisumu 5-6 days, Moz 5-6 days. 

 

Figure 4.25: Cross-validation of the nine-class species-age model 

The nine-class species/age model (LDA based on 100 PCs) was cross-validated within Offline 

Model Builder using the setting ‘Leave 20 % out’ and a standard deviation of 5. 

 

The data matrix of the nine-class model was exported from Offline Model Builder for further analysis in 

R. PC-LD analysis was repeated in R, using more principal components (235) for LDA, to ensure analysis 

outside the OMB software produces the same separation of classes. The resulting separation along LD 

1, visualised as kernel density plot (Figure 4.26a), is indeed very similar to the one obtained in OMB. 

The 1 day old mosquitoes from all three species are separated first, while the 5-6 day old and 14-15 

day old classes are positioned closely to each other and overlap. Again, visualising all nine groups on 

eight different linear discriminants is challenging, so to increase clarity the 1 day old samples were once 

more removed from the model.  



123 
 

 

Figure 4.26: PCA-LDA separation achieved for the two-factor model in R 

After building the nine-class model in Offline Model Builder, the data matrix was exported to 

repeat PC-LD analysis in R. The kernel density plot (LDA was based on 235 PCs) demonstrates 

an age related separation along LD1 (a), quite similar to what was observed in the Offline 

Model Builder result. Again, to simplify visualisation, the 1 day old mosquitoes were removed 

from the data set and the PC-LDA (180 PCs) separation process further examined using 3D 

scatter plots (b). While having a similar distribution of variance across the linear discriminants 

as seen in the Offline Model Builder model, the separation seems less defined and the class 

‘Moz 14-15 days’ is now separated along LD1, together with the age clusters, instead of LD 2. 

Nevertheless, separation of groups due to age seems to happen along LD1, Moz is separated 

along LD1 and LD 2 and to distinguish Ngusso and Kisumu groups LD 3 is needed. Interestingly, 

separation of differently aged mosquitoes is easier with Ngusso than with Kisumu specimens. 

Plotting the outcomes of PC-LD analysis as a matrix table reveals that the six classes are very 

well separated (c). 
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The remaining six classes were separated using 180 PCs and visualised within 3D plots with different 

combinations of linear discriminants to demonstrate which LDs drive the separation of specific classes 

(Figure 4.26b). Though the separation process is similar to the one seen in OMB, the separation 

themselves seem less distinct; furthermore there is a change in separation of the oldest Moz class (14-

15 days). The line in the 3D plot on the left indicates the separation according to age, which seems 

more distinct for Ngusso than Kisumu. In addition, the separation of ‘Moz 14-15 days old’ is now based 

on LD 1 as well. Nevertheless, the overall variance distribution is the same, with Moz (LD 1 and 2) being 

separated before Kisumu and Ngusso (LD 3). A good portion of the separation can be observed on the 

first three linear discriminants, nonetheless there is also contribution from the other LDs; classes seem 

to be in close proximity with each other, but when all variance is included, separation accuracy is high 

(Figure 4.26c). 

The nine-class data was also analysed through random forest, but only achieved an average accuracy 

of 79 % (Figure 4.27).  

 

Figure 4.27: Results of random forest analysis of the nine-class species and age model 

The data matrix from the nine-class species/age model was used for random forest analysis, 

which was repeated 10 times, using different randomly selected training (70 % of the data) and 

test (30 % of the data) data sets. The confusion matrix contains the mean percentages of 

correctly identified and misidentified samples for every species as well as the standard error of 

the mean. The range of classification accuracy achieved for each of the 10 models (lowest and 

highest percentage) is listed in parentheses below the standard error of the mean. The average 

number of samples per class used for testing the model are listed on the side (n = x). The overall 

model accuracy was 79 ± 1.4 % (mean ± SEM). 
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While PCA-LDA was able to find and focus on the small differences explaining species separation, 

random forest seemed to struggle to find enough variance resulting in a larger number of mismatched 

species classes. Still, the variables used for separation were identified after all 10 random forest runs 

(Figure 4.28). Just as PC-LDA seemed to find more variance explaining age separation, random forest 

classification is repeatedly based on two variables, both of which were previously identified as age 

separators: m/z 227.2 and 269.3. The two variables identified as important for separation in 80 % of 

the runs (m/z 685.5 and 836.5), haven’t been identified in the species nor the age model and seem to 

be specific for the nine-class separation. Both mainly highlight separation of the 1-day old classes of the 

three species, m/z 685.5 separates Moz, m/z 836.5 separates Kisumu and Ngusso. Lastly, a variable only 

listed as important in 6 out of ten analyses (m/z 439.2) was plotted, as it is the only variable which was 

also identified as separator in the species model. 

 

 

Figure 4.28: Intensity plot of the variables driving separation of classes by species and age 

The top 10 most important variables were collated from ten repeated random forest analyses 

of the two-factor species/age model. Variables which had been identified as separation drivers 

in more than half the runs were selected to have their intensities plotted.  The first two 

variables, identified 100 % of the time, m/z 227.2 and 269.3 had also been identified in the age 

model as important separators. The fact that they have also been identified in the nine-class 

model, in all 10 runs, confirms their importance for age separation. One of the two main 
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separators of the species model, m/z 439.2, also features in this model’s variable list. The other 

two variables 685.5 and 836.5 have not been identified and seem to be uniquely important for 

this two-factor model, separating the 1-day old classes of the three species.  

 

Despite separating the same set of 540 samples in three different models using two classification 

factors – species and age - the variance in the mass spectral data is the same and is reliably dissected 

to enable class separation even when using different types of machine learning. It can be confidently 

said that, in this experiment, the ageing process of the mosquito specimens has influenced the REIMS 

profile more than genetic variations defining the species type. This creates a promising outlook for 

REIMS analysis of field-trapped samples; a strong variance profile created through age will hopefully be 

robust enough to withstand confounding factors such as environmental influences.  

Finally, all three Anopheles models were re-built with PC-LDA in Offline Model Builder using randomly 

assigned classifications to test whether random background or unrelated signals could cause separation 

of classes (Figure 4.29). Though some sample groups are roughly held together in clusters, no 

separation could be obtained in any of the three models. 
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Figure 4.29: Species and age models based on randomly assigned classifications 

After using 540 Anopheles mosquito specimens, from three species and three age groups each, 

to build models separating species, age as well as both properties at once, models were re-built 

with randomly assigned classifications. When re-building the PC-LDA models in Offline Model 

Builder with classes randomly assigned to samples, separation failed for all three models. 
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4.7 Blind sample identification 

Together with the 540 mosquitoes to build the species and age separation models, a set of blinded 

samples was received, of unknown species and age, containing females and males. These unknown 

samples were analysed at different time points and identified using the separate species and age 

models built in Offline Model Builder (Figure 4.18). These models were exported to the OMB 

Recognition software and used to determine the species and age of the unknown samples. 

Subsequently, the blind code was released and the performance was evaluated. 

The identification results are presented in Figure 4.30 as percentages of correctly identified samples 

and the average probability that the resulting identification is correct. The results are split into two 

groups: ‘All samples’ contains male and female specimens, ‘Only females’ only takes into account the 

results received for females. This differentiation was made because the species as well as the age model 

were built using only females. Being able to identify males as well is an unexpected bonus, but the 

percentage received for both sexes does not correctly reflect the model’s performance. 

Furthermore, the test samples were allocated to three sets: one was analysed one day before start of 

the analysis of samples used for model building (a), the second was analysed at the same time as model 

samples (b), and the third was analysed 5 weeks later (c), after having been stored for seven weeks. 

The results show that the species of samples was identified at the accuracy previously determined by 

random forest analysis of the species model (84 %), whereas age identification performed even better 

than predicted (100 % instead of 91 %). In general, identification success increased slightly when male 

samples were left out, as they have a higher error rate. That some male samples were identified 

correctly at all, even though the models were trained solely with female specimens, hints at a sex-

independent identification process. 

A more detailed list of the age identification results is depicted in Figure 4.31. The age of the unknown 

specimens (3-days old and 7-8 days old) and the age classes of the classification model (1 day, 5-6 days, 

14-15 days) did not match. The 3-day old samples were expected to be classified as 5-6 days old, as 1-

day old samples are very different in general. However, the difference between samples is smaller when 

they are older, so some samples might fall into the 14-15 day category. Therefore only samples which 

were identified as 1-day old were counted as misclassifications. 
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Figure 4.30: Identification of blind samples using the species and age models 

The separate species and age PC-LDA models (Figure 4.18) built in Offline Model Builder with 

100 PCs was exported to the Recognition software and used to identify blind samples from 

three species (Kisumu, Moz, Ngusso) and two age groups (3 days old and 7-8 days old). The age 

categories of the blind samples (3 days old and 7-8 days old) did not match with the age classes 

of the model (1 day, 5-6 days, 14-15 days). Only samples which were identified as 1 day old 
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were counted as misclassifications. Additionally, blind samples were categorised depending on 

their time point of analysis: samples which had been analysed one day before the samples used 

for model building (a), samples which had been analysed at the same time as samples used for 

model building (b) and samples which had been stored for 7 weeks and were analysed 5 weeks 

later than model samples (c). The number of tested samples are listed next to the table rows.  

 

 

Figure 4.31: Age identification of unknown samples with non-matching age groups 

Detailed listing about the age identification results using blind samples. The 3-day old samples 

would be expected to be classified as 5-6 days old (1 day old samples are very different from 

other age groups), which was observed in all three samples groups (a, b, c). However, the 

difference between samples is smaller when they are older, so some samples might fall into the 

14-15 day category. Therefore only samples which are identified as 1 day old would be counted 

as misclassifications. There are no samples identified (wrongly) as 1 day old in the first two 

groups (a, b), but the number of misclassifications increased to 6 % when blind samples had 

been stored for longer and were analysed more than 5 weeks later. 
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Unfortunately, only samples from the first two sample sets, analysed around the same time as the 

model samples, had high correct identification rates. Samples which were analysed more than a month 

later and which had been stored approximately five weeks longer were successfully identified at 

noticeably lower rates. Whereas age identification only decreased slightly from 100 % to 94 %, the 

species identification rate dropped from around 83 % to 58 %. This drop in performance has two 

potential explanations: time point of analysis and storage. The specimens used for model building had 

been analysed on four consecutive days. Instrument performance usually does not vary hugely over the 

course of a few days, so if samples are analysed weeks or months later they are more likely not 

recognised correctly by the model, as the model has not been trained to compensate for drift and 

differences causes by the instrument or user. A longer storage time (7 weeks instead of 2), might also 

have altered the REIMS pattern enough to impede successful recognition. All in all, the models, 

especially the species separation, are not robust enough to be utilisable over a longer period of time or 

when using samples which are different due to inherent variation or outside influences.  

 

4.8 Discussion 

The experiments conducted in this chapter helped to further test REIMS capability and potential 

suitability for field related questions and samples. The objective of separating specimens according to 

species was further extended by using closely related species, which are part of the same species 

complex. Even the strains Ngusso and Kisumu were successfully separated, despite the very recent 

speciation event (0.5 MYA).  

The knowledge that insect samples are not only suitable for REIMS analysis when stored frozen, but 

produce complex spectra capable of supporting class separation when desiccated, is immensely 

important for field applicability. The possibility to store samples at room temperature makes sample 

procurement, handling and even logistics easier. How long the dehydrated samples can be stored for, 

however, has not yet been fully investigated. Samples that were ten weeks old still produced an 

information-rich signal pattern, but currently unknown is whether storage beyond this time would have 

a negative impact on separation performance or signal quality. 

The ability to separate specimens according to their age provides an exciting possibility, which could 

turn REIMS into a new tool for age grading and vector control. The ease with which an age class is 

determined and the high sample throughput could mean a big change for age grading and validation of 

population control actions. However, despite taking the first steps towards field related research and 

monitoring, REIMS is still a long way from actual applicability and requires more tests and in-depth 

investigations. A special hurdle will be the addition of variability to the data, introduced through sample 

treatment, environmental influences and individual variety. Insect specimens raised in the laboratory 

under stable conditions will always add less variation to a data set than mosquitoes collected from the 

wild. For the samples analysed in this chapter variation was kept to a minimum and factors, which will 
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play an important role for trapped insects, were not incorporated. These include different 

temperature/humidity levels, blood feeding, egg-laying cycles and potential infections. Also the 

variation that can be found among individuals of the same species is likely to have an effect on a sample 

pool. While inbred strains were used to build the Anopheles species complex model, wild mosquitoes 

will be genetically diverse. Different populations will add to intraspecies variation as well, especially if 

they can be found in geographically distinct regions and diverse environments. If identification were to 

work on specimens from different regions, mosquitoes collected from various locations would have to 

be included in model-building or, in case of strong negative impact on accuracy, be used to build site-

specific models. 

Blood-feeding and egg-laying is likely to also have a strong impact on the differentiation of males and 

females. When comparing closely related species such as An. gambiae, An. coluzzii and An. arabiensis 

the difference between female specimens might actually be smaller than between males and females 

of the same species. This was not observed for the results presented in this chapter - the accuracies of 

the sex separation model and of the females-only species model were very similar (both PCA-LDA and 

Random forest). However, the female specimens used for experiments did not undergo a full 

reproductive cycle, including a blood meal and oviposition, which can be expected to introduce larger 

physiological changes and therefore differences between males and females, which in turn could 

translate into more pronounced sex-specific REIMS signatures. 

In Chapter 5 the sample profile will move closer to a wild specimen and the range of characteristics will 

be expanded. Moreover, sample storage and analysis time will be prolonged and integrated into the 

model building process. This will allow better examination of the effect of variability on separation 

processes and will further test REIMS limitations and abilities.    
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4.9 Supplemental Figures 

Supplemental Figure 4.1: Anopheles mass spectra after freezer storage for 0 and 1 week 

The data matrix, obtained after processing and binning the mass spectral data in Offline Model Builder, 

was used to create averaged mass spectra for all three species with different storage conditions and 

storage lengths. Each mass spectrum represents an average of all samples available for each species 

and condition/time point (Ngusso n=5, Kisumu n=5, Moz n=3). The intensities were normalised, the 

spectra split into two parts (m/z 50-600, m/z 600-1200) and the bins 554.2 and 554.3 removed (high 

intensities) to enable a more detailed view of the patterns in the lower mass region. Listed are the mass 

spectra of specimens, which had been killed by freezing and were analysed either within 24 hours or 

after 1 week of storage at -20˚C. 
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Supplemental Figure 4.2: Anopheles mass spectra after freezer storage for 2 and 4 weeks 

The data matrix, obtained after processing and binning the mass spectral data in Offline Model Builder, 

was used to create averaged mass spectra for all three species with different storage conditions and 

storage lengths. Each mass spectrum represents an average of all samples available for each species 

and condition/time point (Ngusso n=5, Kisumu n=5, Moz n=3). The intensities were normalised, the 

spectra split into two parts (m/z 50-600, m/z 600-1200) and the bins 554.2 and 554.3 removed (high 

intensities) to enable a more detailed view of the patterns in the lower mass region. Listed are the mass 

spectra of specimens, which had been killed by freezing and were analysed after 2 and 4 weeks of 

storage at -20˚C. 
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Supplemental Figure 4.3: Anopheles mass spectra after freezer storage for 10 weeks 

The data matrix, obtained after processing and binning the mass spectral data in Offline Model Builder, 

was used to create averaged mass spectra for all three species with different storage conditions and 

storage lengths. Each mass spectrum represents an average of all samples available for each species 

and condition/time point (Ngusso n=5, Kisumu n=5, Moz n=3). The intensities were normalised, the 

spectra split into two parts (m/z 50-600, m/z 600-1200) and the bins 554.2 and 554.3 removed (high 

intensities) to enable a more detailed view of the patterns in the lower mass region. Listed are the mass 

spectra of specimens, which had been killed by freezing and were analysed after 10 weeks of storage 

at -20˚C. 
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Supplemental Figure 4.4: Anopheles mass spectra after storage at room temperature for 0 and 1 

week 

The data matrix, obtained after processing and binning the mass spectral data in Offline Model Builder, 

was used to create averaged mass spectra for all three species with different storage conditions and 

storage lengths. Each mass spectrum represents an average of all samples available for each species 

and condition/time point (Ngusso n=5, Kisumu n=5, Moz n=3). The intensities were normalised, the 

spectra split into two parts (m/z 50-600, m/z 600-1200) and the bins 554.2 and 554.3 removed (high 

intensities) to enable a more detailed view of the patterns in the lower mass region. Listed are the mass 

spectra of specimens, which had been killed by dehydration and were analysed either within 24 hours 

or after 1 week of storage at room temperature (with desiccating material). 
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Supplemental Figure 4.5: Anopheles mass spectra after storage at room temperature for 2 and 4 

weeks 

The data matrix, obtained after processing and binning the mass spectral data in Offline Model Builder, 

was used to create averaged mass spectra for all three species with different storage conditions and 

storage lengths. Each mass spectrum represents an average of all samples available for each species 

and condition/time point (Ngusso n=5, Kisumu n=5, Moz n=3). The intensities were normalised, the 

spectra split into two parts (m/z 50-600, m/z 600-1200) and the bins 554.2 and 554.3 removed (high 

intensities) to enable a more detailed view of the patterns in the lower mass region. Listed are the mass 

spectra of specimens, which had been killed by dehydration and were analysed after 2 and 4 weeks of 

storage at room temperature (with desiccating material). 
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Supplemental Figure 4.6: Anopheles mass spectra after storage at room temperature for 10 weeks 

The data matrix, obtained after processing and binning the mass spectral data in Offline Model Builder, 

was used to create averaged mass spectra for all three species with different storage conditions and 

storage lengths. Each mass spectrum represents an average of all samples available for each species 

and condition/time point (Ngusso n=5, Kisumu n=5, Moz n=3). The intensities were normalised, the 

spectra split into two parts (m/z 50-600, m/z 600-1200) and the bins 554.2 and 554.3 removed (high 

intensities) to enable a more detailed view of the patterns in the lower mass region. Listed are the mass 

spectra of specimens, which had been killed by freezing and were analysed after 10 weeks of storage 

at room temperature (with desiccating material). 
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Chapter 5: Developing classification models by using “semi-wild” mosquito specimens to help  

study mosquito populations of salt-water marshes and surrounding areas in the  

Neston region 

 

5.1 Introduction & Aims 

Whilst laboratory strains can be reared under controlled conditions and feeding regimens, a critical test 

of the methodology arises when it is applied to specimens recovered from the natural environment. 

The aim of this chapter is to start approaching a wild sample type and the challenges that come with 

increased sample and data variability. The samples needed for this kind of study were sourced locally 

with the help of local mosquito experts Professor Michael Clarkson and Dr Peter Enevoldson. 

Mosquitoes in their immature and adult stages were caught from the marshes around the town of 

Neston on the Wirral peninsula (located in the Northwest of the U.K). This area and terrain supports 

the proliferation of a number of different mosquito species, which have been monitored over many 

years [324,341]. 

Immature mosquito specimens were collected from a multitude of fresh and salt water sources, before 

being raised to adults and identified using morphological examination (using the morphological keys in 

Cranston et al (1987) and Snow (1990)[321,322]). Species, sex, pool of origin and age at the time they 

were killed by freezing, were documented to support a number of characterisation and classification 

attempts through REIMS. Beside the effect of environmental conditions during their immature stage, 

the variability of the sample pool was also increased by unstable raising conditions. Mosquitoes were 

not raised in a professional insectary, therefore factors such as temperature or humidity were not 

controlled but subject to season and weather conditions. The mosquito collection took place 

throughout the year; these populations seem to be less affected by temperature than the availability 

of water sources for breeding [324,341]. As it was unclear whether classification using REIMS data 

would be successful with the prevalent mosquito types, preliminary studies were conducted (Figure 

5.1). 
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Figure 5.1: The potential of utilising local mosquito populations 

Collection of mosquito specimens from the Dee Estuary. Mosquito specimens, adults and 

immatures, were collected by local experts to explore ways of characterising populations 

through REIMS. Initial experiments separating mosquitoes in regard to their species, sex, age 

and origin, showed promising results and led to collection of larger numbers to further 

investigate REIMS capabilities. The above species model contains the species Aedes detritus 

(n=21), Culiseta annulata (n=13), Culex pipiens (n=17) and Anopheles claviger (n=4). The 

models separating sex, pool of origin and age are based on Culiseta annulata specimens. Sex: 

males (n=62) and females (n=50). Pool of origin: Fresh water (n=40), brackish water (n=10) and 

nitrogen rich water (n=60). Age: 0-24 h (n=51), 25-48 h (n=19), 49-72 h (n=13) and >72 h (n=24). 

Photos were taken by/are displayed with permission of Dr. Peter Enevoldson and Prof. Michael 

Clarkson; source of photo on the right: https://www.cheshire-live.co.uk/news/local-news/dee-estuary-

mosquito-menace-7747428). 

 

A small number of samples from the species Aedes detritus, Culiseta annulata, Culex pipiens and 

Anopheles claviger were analysed through REIMS after having been stored at -20˚C for up to three 

years. Despite this very long storage time, the 4 species were readily resolved using PC-LD analysis. 

Following this first success, a larger sample set of Culiseta annulata specimens was provided, including 

information regarding sex, collection pool of the larvae and age of the adult specimens at the time point 

of freezing. Using this information samples were sorted into a number of classes to attempt three 
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different types of separation: (1) separation of males and females, (2) separation into age (0-4 days) 

and (3) separation into pool types (fresh water, nitrogen-rich water and brackish water). All three 

classifications resulted in sample groupings and separation to different degrees. 

These results were sufficiently encouraging to start a larger scale sample collection process, which 

would encompass samples of seven local mosquito species, most of which were collected over a course 

of up to six months. Samples for REIMS analysis were picked randomly from this collection of samples 

resulting in a variety of storage times ranging from a few weeks to 8 months. To simplify the process, 

all samples were freezer stored at -20˚C. REIMS analysis was conducted over the course of 10 months, 

however, the main bulk was analysed in a three month period. 

The data set was considerably larger and enabled a large number of classification experiments: 

separation of males and females, discrimination of species, resolution of age groups and differentiation 

of breeding pools. Furthermore, separation according to species was also explored using immature 

specimens (3rd and 4th instar larvae) and mosquitoes of two cryptic species (Culex pipiens pipiens and 

Culex torrentium). 

This study addresses a number of challenging factors, which had not been relevant with the laboratory 

derived insects. In particular, increased inherent and individual variability resulting from environmental 

conditions, differences among local populations and raising conditions, but also introduced variability 

due to sample storage and time points of analysis. All these properties could potentially effect the 

REIMS profile, resulting in a more heterogeneous data matrix and difficulty in extraction of meaningful 

patterns. Yet, they also provide the opportunity to build more robust separation processes, which can 

be successfully applied to a variety of samples and over a longer period of time using separators that 

are not only true for one specific data set but all samples. 

There are still a number of confounding factors, which will remain untested at this time, such as the 

effects of blood feeding and gonotrophic cycles a well as potential pathogen infections. But the 

incorporated factors and the use of ‘semi-wild’ mosquitoes enabled a vital step towards potential field 

applicability. 

 

5.2 Establishing models for population characterisation 

5.2.1 Separation of males and females 

As with previous studies the first characteristic to be explored was sex. Mosquito larvae collected 

around Neston were allowed to develop to adulthood under semi-natural conditions before being 

separated into males and females using morphological examination. The mosquitoes were analysed 

with REIMS, applying the same settings used for sample sets presented in previous chapters. First, 

separation of males and females was attempted using only Aedes detritus specimens. Raw sample data 

were imported to Offline Model Builder and analysed using PC-LDA; the data matrix was then exported 
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for further analysis. The separation achieved through PC-LD analysis in R is depicted in Figure 5.2, panel 

a. The male and female specimens are clearly separated, with only a small part of the data distribution 

overlapping (7 samples are misplaced).  

To test whether this separation can be expanded to include other species, male and female mosquitoes 

from four different species (Aedes detritus, Aedes punctor, Aedes rusticus and Aedes cantans) were 

combined (30 specimens per species). The resulting PC-LD separation presents a small increase in class 

overlap, but the majority of samples is still clearly distinguished (Figure 2b). 

 

Figure 5.2: Species specific and species-independent sex separation 

Separation of male and female specimens based on principal component-linear discriminant 

analysis displayed in form of smoothed histograms (left) and scatterplots (right). First, 

separation was attempted using only Aedes detritus specimens, which had been stored for 

different lengths of time and analysed on several days spread over 3 months (panel a). In a 

second attempt, males and females were taken from four different species (Aedes detritus, 

Aedes punctor, Aedes rusticus, Aedes cantans) to test for species independent separation 

(panel b). The Aedes detritus model comprises 66 females and 70 males and LDA was based on 

75 principal components. For the multi-species model an equal number of males and females 

(15 each) were selected from each species; separation was based on 80 PCs. 
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For both models a rather high number of principal components had to be used to maximise separation 

(75 and 80 PCs) indicating a slight struggle to accumulate sufficient variance for separation. To put the 

separation to test, both data matrices were subjected to random forest analysis using a 70 %/30 % data 

split for model building and testing (Figure 5.3). Random forest analysis (2200 trees for the Aedes 

detritus model, 1700 trees for the multi-species model) was repeated 10 times for both models; the 

averaged accuracies are listed in the confusion matrices, the average number of tested samples on the 

left. The achieved average accuracies are rather low for both, merely 82 % of samples were correctly 

identified as male or female when using only Aedes detritus specimens, the correct identification rate 

was worse (73 %) when multiple species were involved. In both cases the identification of males fared 

better with less samples being mistaken for female.  

 

 

Figure 5.3: Testing and validation of sex separation models 

Both sex separating models were built in Offline Model Builder, using either multiple species or 

only Aedes detritus specimens, before exporting the data matrices for random forest analysis 

in R. The samples in each data matrix were separated into training and test sets using a split of 

70 %/30 %. The decision trees were built using the training data set and then tested using the 

test samples. The analysis was repeated 10 times with different sample sets for training and 

testing each time. The results are depicted in confusion matrices containing information about 

the percentages of samples, which had been either correctly or wrongly classified, including the 

standard error of the mean (±) and the range of accuracies achieved (min and max) for the 

correct classifications. The average number of samples (n) tested from each class is listed on 

the left-hand side of the tables and the average model accuracy (plus SEM) underneath. 
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Despite a promising looking separation when analysing the data sets with PCA-LDA, the high number of 

principle components necessary and the modest accuracies achieved through random forest indicate 

that, while delivering separation, the models are not very robust when validated. Following these 

indications, the models built within Offline Model Builder (using the same number of PCs used for PC-

LDA in R) were cross-validated to examine their performance (Figure 5.4).  

 

 

Figure 5.4: Cross-validation of sex separation models 

After the PC-LDA models, attempting to separate males and females, had been built in Offline 

Model Builder, the models (using Aedes detritus or multiple species) were tested via cross-

validation using the option ‘Leave out 20%’ and a standard deviation of 5. The validation 

results, including the number of passes, failures and outliers as well as the confusion matrix 

with the number of correctly and wrongly identified samples are listed in two tables each. The 

number of principal components used for model building are given in brackets underneath the 

tables (70 PCs for Aedes detritus, 80 PCs for the multiple species model). One sample from the 

Aedes detritus model was left out as 20 % of 136 samples results in a fractional number that is 

rounded to the nearest integer. 

 

The correct identification rates achieved for the PC-LDA models are higher than the ones following 

random forest analysis, reaching 84 % for the Aedes detritus based model and 78 % for the multi-species 
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separation. The increase, however, is only moderate and the error rates are arguably still too high to 

be useful for classification in some applications.  

Both models were also built using a lower number of principal components (to test separation with less 

variance) and randomly assigned classifications (Figures 5.5 and 5.6), which show a similar picture as 

already discussed.  

 

 

Figure 5.5: Aedes detritus based sex model built with less variance and randomly assigned classes 

The male-female separation model, using Aedes detritus specimens, was built using the 

maximum number of principal components possible before overfitting (80 PCs), as well as using 

only a quarter (34 PCs) of possible PCs. Additionally, the classifications ‘male’ and ‘female’ were 

randomly assigned to samples to test whether the separation is based on variance that is not 

sex-specific. For easier comparison of the effects on sample distribution, all kernel density and 

scatter-plots are stacked. 
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Figure 5.6: Multi-species sex model built with less variance and randomly assigned classes 

The male-female separation model, using specimens from four different mosquito species, was 

built using the maximum number of principal components possible before overfitting (75 PCs), 

as well as using only a quarter (30 PCs) of possible PCs. Additionally, the classifications ‘male’ 

and ‘female’ were randomly assigned to samples to test whether the separation is based on 

variance that is not sex-specific. For easier comparison of the effects on sample distribution, all 

kernel density and scatter-plots are stacked. 

 

The lower PC numbers cause a lot of overlap between classes, whereas the models with randomly 

assigned classifications still exhibit quite a high level of separation. There is therefore too much 

unrelated variance that can be extracted for separation purposes. Despite the visual appearance of 

separation, the cross-validation results (Figure 5.7) confirm that the models with randomly assigned 

groups do not classify samples correctly. 
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Figure 5.7: Cross-validation of sex separation models with randomly assigned classes 

The two sex separation models, built with randomly assigned classifications, were tested via 

cross-validation in OMB using the option ‘Leave out 20%’ and a standard deviation of 5. The 

number of principal components used for model building are given in brackets underneath the 

tables. One sample each was left out from the Aedes detritus model as 20 % of 136 samples 

results in a fractional number that is rounded to the nearest integer. 

 

Overall, this is the lowest identification accuracy achieved for male and female specimens so far 

(compared to lab raised Drosophila and Anopheles spp). It could be the first sign of the influence of 

higher sample variability (biological variance) can have on model performance. Either there is indeed 

not much difference in the REIMS data between males or females in mosquitoes of the Aedes genus or 

the variability in the data set obfuscates sex-related variance. It is likely that this has become noticeable 

because of insufficient sample numbers. It is logical to assume that higher variability requires higher 

sample numbers to extract group variables. 
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5.2.2 Distinguishing species 

Seven species were represented in the local mosquito sample set: Aedes detritus, Aedes rusticus, Aedes 

punctor, Aedes cantans, Aedes caspius, Culiseta annulata and Culex pipiens. All had been collected as 

larvae from the Dee Estuary and were raised to adults under conditions which varied in terms of 

temperature and humidity, however, all were raised dry without providing food (blood and/or sucrose 

solution). The specimens were identified as adults using morphological examination. It needs to be 

mentioned that specimens identified as Culex pipiens could be either a member of the Culex pipiens 

species complex or Culex torrentium [105]. The (female) specimens cannot be readily distinguished 

morphologically; identification would require DNA analysis, which was not performed for this set of 

samples. The dates of collection and duration of storage (at -20˚C) vary for samples of all species as 

mentioned under section 5.1. An equal number of samples (80) was selected for each species to be 

incorporated in a species model. The samples include males and females, of various ages (between 0 

and 4 days old) and different dates of collection and REIMS analysis. The raw data were imported into 

Offline Model Builder and subjected to PC-LD analysis using 100 principal components (Figure 5.8). The 

3D PC-LDA model reveals that three species are quite distinctly separated. Five of the seven species are 

from the genus Aedes; Culex pipiens and Culiseta annulata are not included. It is therefore plausible to 

see them more distinctly separated in the model. Aedes caspius, however, is of the Aedes genus, but is 

positioned further away from the other Aedes species, which strongly cluster and even overlap. To see 

whether these four Aedes species (Ae. cantans, Ae. punctor, Ae. rusticus and Ae. detritus) can actually 

be separated distinctly, the three already distinct classes were removed from analysis to enable a clear 

visualisation (Figure 5.8b).  In the process the four remaining Aedes species were readily distinguished. 

Between Aedes punctor and Aedes detritus some overlap remained as two samples from each class 

positioned between the two clusters. The overall separation pattern partially resembles the 

phylogenetic relationship of these local mosquito species, but there are clearly other factors influencing 

the variance and the separation process.  
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Figure 5.8: Resolution of seven local mosquito species 

Mosquito larvae collected from the wild (Neston region, north west UK) were raised to adults 

(males and females, ages from 0-4 days) and identified by morphological examination, before 

being killed and stored at -20˚C for varying lengths of time. Collection of larvae as well as REIMS 

analysis of stored adults occurred over several months. The data acquired for a total of seven 

species (80 individuals per species) was analysed in Offline Model Builder via PC-LD analysis 

using 100 principal components (section a). Visualisation was aided by removing clearly 

separated species groups (Cs. annulata, Cx. pipiens, Ae. caspius) from the model (section b). 

The PC-LC separation was resonant with the phylogenetic relationship of these species (panel 

c). 

 

To ensure that PCA-LDA in Offline Model Builder was able to separate all seven species enough to allow 

classification, even if challenging to depict visually, the model was validated through cross-validation 

(Figure 5.9). The correctly and wrongly classified samples in the confusion matrix confirm that all seven 

species are well separated with only one or two samples confused per species (out of 80 individuals for 

each species), only Aedes punctor has a higher number of misclassifications. Out of five wrongly 

classified Aedes punctor specimens four were confused with Aedes detritus; this potential for confusion 
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was already visible in the 3D model. It is reassuring that 97 % of the 560 specimens included in the 

species separation, were correctly classified during validation. 

  

 

 

Figure 5.9: Cross-validation of the OMB seven species model 

Cross-validation results for the seven species model built using 100 PCs. Cross-validation was 

performed within OMB using the option ‘Leave 20 % out’ and a standard deviation of 5. Results 

are listed in form of a confusion matrix containing the numbers of samples which have been 

either correctly or wrongly classified, as well as the number of outliers per classifications. The 

summary underneath contains the total number of spectra (samples) used for validation, the 

number of passed and failed samples, total number of outliers and the calculated correct 

classification rate (%) of the model. 

 

Following PC-LD analysis and validation, the data matrix was exported from Offline Model Builder for 

random forest classification in R. Random forest analysis (using 1500 trees) was repeated 10 times using 

a different sample set for model training (70 %) and testing (30 %) each time. The average model 

accuracy was 91 %, the individual accuracies calculated for each model ranged from 85 % to 98 % 

(Figure 5.10). This is particularly interesting as the accuracies mirror the variance distribution seen with 

PC-LDA. Culex pipiens, Culiseta annulata and Aedes caspius are more readily identified with 

classification accuracies of 98, 94, and 93 %. The correct classification rates of the Aedes species are 

generally lower (below 90 %), aside from the Aedes detritus class, which reached 93 % accuracy.  
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Figure 5.10: Random forest analysis of the seven species data set 

Random forest analysis of the seven species data set was repeated 10 times, using a different 

set of samples for model training (70 % of data) and testing (30 % of data) each time. The 

resulting confusion matrices, containing the numbers of correctly and wrongly classified 

samples, were turned into percentages and averaged over the 10 runs. The averaged correct 

classification accuracies (in %) plus SEM (±) and the range of achieved accuracies over 10 

repeats (min and max) are listed in the white cells. The column on the right (n) states the 

average number of samples used for testing for each class. In total, the model achieved a 

classification accuracy of 91 %; meaning 91 out of 100 test samples would be identified 

correctly. 

 

The species model was also re-built using PCA-LDA and randomly assigned classifications. The 

comparison of the original and re-built models demonstrates that separation of classes clearly fails 

when species information is allocated in a random fashion (Figure 5.11). There is no signal pattern which 

could enable separation of these arbitrarily formed sample groups. 
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Figure 5.11: Comparison of the species model built with correct and randomly assigned classes 

Comparison of the PC-LDA based 7-species model built with correct sample classifications (left) 

and randomly assigned classifications (right). Both models were built with the same settings in 

Offline Model Builder, using 100 principal components. 

 

Compared to the Anopheles species analysed in Chapter 4, these species local to the Dee Estuary can 

be distinguished morphologically, therefore seem to provide less challenge for the REIMS system and 

the machine learning approach. The fact these specimens were collected from the wild over the course 

of several months, raised under less controlled conditions, stored for differing amounts of time and 

analysed on a number of days, months apart, introduced a new type of challenge for this insect 

identification approach. While previously exploring whether variances related to specific characteristics 

exist, it now needs to be established whether these variances are robust enough to withstand sample 

variability. Being able to separate seven species using species-related variance although there is an 

increased amount of individual differences among samples is a vital step in testing REIMS suitability for 

insect analysis. 

 

 

 

 

 



153 
 

5.2.3 Age grading 

The application of age discriminating tools is sought after in regions with high populations of pathogen 

transmitting mosquito species. The chances of pathogen transmission through mosquitoes, which could 

be harmful to humans, are currently low in the U.K., subsequently creating less need for intervention 

strategies and age grading methods. However, due to climate change, invasive species and possible 

importation of exotic mosquito species and their pathogens, pathogen transmission through mosquito 

populations in the U.K. might become a threat in the future and is under surveillance [77,342]. While 

the task of age grading might not be as important for the characterisation of mosquito populations in 

the U.K. at the moment, the local mosquitoes provided the unique opportunity to expand previous age 

grading experiments. Even though separation of different age groups was successful with laboratory 

raised Anopheles mosquitoes, the sample pool needed to become more heterogeneous to reflect wild 

populations. In order to even consider REIMS as a potential tool for age determination, the transition 

to wild caught mosquitoes must be successful. 

The mosquito larvae collected from around the Neston area were raised to adults, but killed shortly 

after emergence which is the reason why only younger age groups are represented in the following 

models. The mosquitoes were not fed and the females were nulliparous when transferred to the freezer 

for storage. The number of egg laying cycles is an often used factor for estimating mosquito age which 

can be determined through microscopic examination [68,75]; as none of the females were blood fed 

for this experiment none went through an oviposition cycle. 

In the first instance, only Aedes detritus specimens were used to form age classes. The Aedes detritus 

sample set had the largest portion of mosquitoes older than 24 hours so was best suited for a 

classification attempt. Aedes detritus specimens, male and female, were sorted into the following 

classes: 0-24 h, 25-48 h, 49-72 h and 73-96 h after emergence. The selected samples files were 

imported to Offline Model Builder and analysed using PC-LDA. The resulting classification shows 

noticeable signs of group formations and separations according to variance quantity (Figure 5.12a).  

Interestingly, the biggest proportion of the model variance goes toward separation of the 0-24 h old 

specimens, which was also observed when separating laboratory specimens in Chapter 4. This indicates 

that any of the physiological changes within the first 24 hours after emergence, which seem to cause a 

change in REIMS patterns, occur independently of the availability of a food source. While laboratory 

raised adult mosquitoes were provided sucrose solution, the semi-wild mosquitoes were kept without 

food. Lipid storage, which is determined in the immature stage, might undergo changes during early 

adult development, which includes maturation to undergo the first gonotrophic cycle [343] and 

development of host seeking behaviour [344–346]. 
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Figure 5.12: Discrimination of Aedes detritus mosquitoes by age 

Aedes detritus mosquitoes, emerged from larvae collected from natural pools, were killed by 

freezing at different ages ranging from zero to 4 days (males and females). As a first step 

samples were combined into four age groups for PC-LD analysis (based on 75 PCs), resulting in 

a definitive grouping according to age (panel a) , with linear discriminant 1 separating just 

emerged mosquitoes (0-24 h) (i) and linear discriminants 2 and 3 separating specimens which 

are between 25 and 96 h old (ii). To improve separation a 24 h gap was introduced and two 

groups merged (panel b). PC-LD analysis shows a clear reduction in class overlap in OMB (based 

on 50 PCs) (i), which can also be observed in the kernel density (ii) and scatter plots (iii) produced 

in R (based on 55 PCs). Random forest analysis, using a 70 %/30 % ratio for training and testing, 

resulted in identification accuracies of 93 % for 0-24 h old specimens and 89 % for 49-96 h 

mosquitoes (iv). Samples numbers used for the model in panel a: 0-24 h (71), 25-48 h (28), 49-

72 h (21), 73-96 h (31). Sample numbers used for the model in panel b: 0-24 h (55), 49-96 (52); 

sample numbers from 0-24 h were reduced for random forest analysis. 
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After separation of the 0-24 h old mosquitoes (LD 1), the oldest group (73-96 h) is distinguished along 

LD 2, followed by discrimination of the 2 and 3 day old mosquitoes based on LD 3. The youngest age 

group might be sufficiently separated, the other three age classes, however, are in close proximity and 

overlapping. Insufficient separation success can be expected when using a continuous age range, but 

can be improved. As mentioned in the previous chapter, identification of the exact age (to a resolution 

of calendar day) is unnecessary for population profiling and a reduction in sample classes or 

introduction of gaps in the covered age range are not only permissible, but usable in the field (Professor 

H. Ranson, personal communication).  

The classes 49-72 h and 73-96 h were therefore combined and the 25-48 h old mosquitoes were 

removed entirely from the sample set (Figure 5.12b). Additionally, the number of 0-24 old specimens 

was reduced to ensure comparable sample numbers in both classes before rebuilding the model in 

Offline Model Builder. Largely uneven sample sizes can affect model validation, especially subsequent 

random forest analysis. Class reduction and the introduction of a gap helped define class outlines; both 

age classes are now separated with only a small amount of overlap remaining, as can be seen in the 

OMB model as well as the kernel density and scatter-plots produced through PC-LDA in R. The sample 

set was also analysed through random forest (10 runs of 1200 trees), giving the model an accuracy of 

93 % for the identification of 0-24 h old mosquitoes and 89 % accuracy for 49-96 h old specimens.  

With a model accuracy of over 90 % an accurate picture of the age distribution of a population could 

be created. Of course, this model lacks older sample groups which could impact on the accuracy to 

decrease, but equally, could improve it. From this model it is reasonable to conclude that there might 

be accessible age related variance among Aedes detritus specimens. 

To test how the separation would be affected when other species are included, samples from three 

more species were added to the initial Aedes detritus age model.  

The multispecies model encompasses samples from Aedes detritus, Culiseta annulata, Aedes rusticus 

and Aedes punctor. For every species a greater number of young (0-24 h) mosquitoes are available than 

of older specimens. The sample numbers added from the three additional species were therefore 

limited, based on the number of available mosquitoes in the age categories 49-72 h and 73-96 h. In 

total, 151 Aedes detritus specimens, 12 Aedes rusticus specimens, 10 Aedes punctor specimens and 53 

Culiseta annulata specimens were used to build the multi-species age model (Figure 5.13a). The 

majority of the sample set still consists of Aedes detritus specimens, however, samples from the other 

species will need to be taken into account when detecting age-related variance. 
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Figure 5.13: Separation of 0-4 day old mosquitoes from different species 

Samples from 4 species (Aedes detritus, Culiseta annulata, Aedes rusticus, Aedes punctor) are 

included in these age models, separating age groups between 0 and 4 days. Separation is 

demonstrated using four adjacent age groups (panel a), as well as 2 groups separated by a 24 

h gap (panel b). First models were built within OMB using PC-LDA (i), before exporting the 

matrix and conducting PC-LDA in R, depicted in form of kernel density plots (ii) and scatter plots 

- 3D and 2D (iii). The age model based on two age groups promised sufficient separation to be 

used for classification and was therefore additionally analysed via random forest (iv), using 70 

% of samples for model building and 30 % for testing (1200 trees). The random forest result is 

presented in two bars stating the correct classification percentage, including SEM value and 

the range of achieved accuracies in 10 runs (min and max), and the percentage of misclassified 

test samples. Sample numbers used for model in panel a: 0-24 h (108), 25-48 h (55), 49-72 h 

(23), 73-96 h (40). Sample numbers used for model in panel b: 0-24 h (65), 49-96 (63); sample 

numbers from 0-24 h were reduced for random forest analysis. Separation in panel a were 

based on 100 (OMB) and 130 PCs (R). Separation in panel b were based on 60 (OMB) and 65 

PCs (R). 
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The additional samples from the three species (Culiseta annulata, Aedes rusticus, Aedes punctor) were 

added to the Aedes detritus sample set (used to build the model in Figure 15.2a.) before repeating the 

PC-LD analysis in OMB. The positioning of classes and order of separation along the linear discriminants 

remained the same as seen in the Aedes detritus model, the level of separation remained mostly 

unchanged as well; only the 25-48 h class now locate closer to the 0-24 h old specimens. Repeated PC-

LD analysis in R (visualised through kernel density and 3D plots) confirms that all classes are separated 

along the three linear discriminants with small amounts of overlap remaining between all classes. Again, 

the most difficult separation, with the smallest amount of variance supporting it (LD 3) is the resolution 

of the two middle age groups 25-48 h and 49-72 h. The addition of mosquitoes from other species 

seems to have not drastically impacted the separation of age groups, which could mean a simpler 

approach regarding field collected samples. Requiring individual age models for every species would 

entail more effort when building the models (more samples are needed in total) as well as using them 

for identification; mosquitoes would need a species ID before selecting the suitable age model. 

As with the Aedes detritus age model the clustering of samples into age classes and separation of groups 

seem to be distinct enough visually, for classification purposes, however, the boundaries are not 

resolved enough. To see whether class re-modelling could increase clarity of separation, the 49-72 h 

old specimens and the 73-96 h specimens were combined into one group and the second age group 

(25-48 h) was discarded. PC-LDA separation, conducted in OMB and R, resulted in clear separation of a 

majority of samples in both classes, but a small portion of the samples still causes confusion (Figure 

5.13b). In the OMB model as well as the scatter plot is becomes apparent that samples do not cluster 

tightly and that there is noticeable space between samples of the same class, i.e. intra-class variability. 

The multi-species data was also analysed with random forest which produced an average model 

accuracy of 88 %. Curiously, the identification accuracy of the older age group, 49-96 h, is this time 

higher (92 %) than for the freshly emerged mosquitoes, which only reached 84 %. This model 

encompasses a lot of variance while being based on only 65 and 63 samples per class. Increasing sample 

size could help focus sample groupings and increase separation and therefore identification accuracy. 

The Aedes detritus as well as the multi-species based age separation were also attempted without the 

24 h gap, but with combined groups. This in-between improvement step is shown for both models in 

Figures 5.14 and 5.15; the other two models are depicted as well for comparison.  
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Figure 5.14: Separation of 0-4 day old Aedes detritus mosquitoes using different age classifications 

Original and improved age models including only Aedes detritus specimens. The original age 

model (a) comprises four consecutive age groups demonstrating separation of calendar days. 

Due to the continuous nature of these classes, separation accuracy is low. Combination of 

groups (b) reduces the overall class overlap in the model, subsequently improving separation 

efficiency. Introduction of a 24 h gap between age groups (c) helps to enhance the difference 

between mosquitoes of different ages even further. All results are based one PC-LD analysis, 

depicted in form of OMB models and kernel density and scatter plots produced in R (from left 

to right). The correct classification rates, achieved through ‘Leave 20 % out’ cross-validation in 

OMB, are highlighted in yellow for each model. The number of samples per class are listed in 

brackets after the age information. 
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Figure 5.15: Separation of 0-4 day old mosquitoes (multiple species) using different age classes 

The original and improved age models including specimens from four species: Aedes detritus, 

Culiseta annulata, Aedes rusticus and Aedes punctor. The original age model (a) comprises four 

consecutive age groups demonstrating separation of calendar days. Due to the continuous 

nature of these classes, separation accuracy is low. Combination of groups (b) reduces the 

overall class overlap in the model, subsequently improving separation efficiency. Introduction 

of a 24 h gap between age groups (c) helps to enhance the difference between mosquitoes of 

different ages even further. All results are based one PC-LD analysis, depicted in form of OMB 

models and kernel density and scatter plots produced in R (from left to right). The correct 

classification rates, achieved through ‘Leave 20 % out’ cross-validation in OMB, are highlighted 

in yellow for each model. The number of samples per class are listed in brackets after the age 

information. 
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The comparison of the original models, including four age classes, with the two improvement steps 

highlights how models, built to define continuous variables, benefit from a limitation of number of 

classes and increase of class distance. Detailed cross-validation results for all three model types (4 age 

classes, combined age classes, combined classes with 24 h gap) are listed for the Aedes detritus as well 

as the multi-species model in Figures 5.16 and 5.17. 

 

 

Figure 5.16: Cross-validation results for the Aedes detritus age models 

The three Aedes detritus age models were tested via cross-validation in OMB using the option 

‘Leave out 20 %’ and a standard deviation of 5. The number of principal components used for 

model building are given in brackets underneath the tables. One sample each was left out from 

the first two models as 20 % of 151 samples results in a fractional number that is rounded to 

the nearest integer. 
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Figure 5.17: Cross-validation results for the multi-species age models 

The three multi-species age models were tested via cross-validation in OMB using the option 

‘Leave out 20 %’ and a standard deviation of 5. The number of principal components used for 

model building are given in brackets underneath the tables. One sample each was left out from 

all models as 20 % of 226 and 171 samples results in fractional numbers that are rounded to 

the nearest integer. 

 

 

Although it was encouraging that both PC-LDA and random forest analysis were capable of finding age-

related variances among semi-wild specimens, there was a potentially problematic factor present in 

the used sample sets. As stated, all adult mosquitoes were kept dry and not fed with blood or sucrose 

solution. While blood meals are only a requirement for egg production in females, mosquitoes need 

nutrients from sugar-rich sources to survive. As adult specimens were not provided with a source of 
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nutrients, it is possible that a starvation process started within four days after emerging. This could 

affect the mosquito (and lipid deposits) dramatically, which in turn could be having an effect on the 

REIMS profile. To ensure that age-related variances can be detected independent of the availability of 

food sources, a second experiment was set up using two species, Aedes detritus and Aedes caspius, and 

three different raising conditions.     

Specimens of Aedes detritus and Aedes caspius, raised from larvae collected in the wild, were separated 

into three groups: one was raised dry, one with a fresh water source and the last one was provided with 

sucrose solution. Specimens from all conditions and both species were raised to three different ages: 

0-24 h, 49-96 h and 168-240 h. When mosquitoes reached their age they were killed by freezing, 

however, some mosquitoes (none from the 0-24 h group) died naturally just before collection. Instead 

of discarding them, they were included in the sample pool to further increase the variance and 

confounding factors. 

In a first step, Aedes detritus specimens from this experiment were added to the previous Aedes detritus 

based age model (Figure 5.12b) using only samples from the classes ‘0-24 h’ and ‘49-96 h’. This 

expanded sample set was analysed via PC-LDA in Offline Model Builder (using 100 PCs) and tested 

through cross-validation (Figure 5.18a). Even though fed mosquitoes were included both age classes 

were clearly resolved enabling a correct identification rate of 95 % during model validation. Encouraged 

by this result, a variety of other samples were added step wise. 

Next, the older age group, 168-240 h, was added as a third class and the model re-analysed through 

PC-LDA and cross-validated within OMB (Figure 5.18b). This class contained less samples (57) than the 

two younger age classes and was distinctly separated in the 3D space with a bigger inter-class gap. This 

could be caused by a higher percentage of sucrose fed individuals among the 7-10 day old specimens; 

mosquitoes do not get old without a food source. The identification accuracy stayed high at 95 %. 

After proving that age separation is still achievable when introducing fed Aedes detritus specimens, the 

second species of the experiment (Aedes caspius) was added to the model (Figure 5.18c). The first two 

age classes have now considerably grown in sample size and exhibit a tight clustering of samples. 

Despite adding specimens from a second species to all three age groups, there is no indication that 

classes are split; the Aedes detritus and Aedes caspius samples completely overlap. The identification 

accuracy of the cross-validation remains stable at 95 %. Detailed cross-validation results for all three 

models shown in Figure 5.18 are listed in Figure 5.19. 
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Figure 5.18: Expanding age separation 

The original Aedes detritus age model (Figure 5.12b) contained only specimens which had been 

raised dry. To increase the complexity of the data set and its resemblance to one derived from 

wild-caught mosquitoes, a variety of other samples were added step wise. First, Aedes detritus 

specimens, which had been additionally raised with fresh water or sugar solution, were added 

to the 2-age class model; these samples also include samples that had been killed through 

freezing (-20˚C) or died due to other reasons before collection. Next an older age group, 168-

240 h, was added to cover a wider age range (b). Finally, specimens from a second species 

(Aedes caspius) were added (c), also raised either dry, with water or with sugar solution, to test 

whether this age model, despite its already increased variability, could provide species-

independent separation. The correct classification rates, achieved through ‘Leave 20 % out’ 

cross-validation in OMB, are highlighted in yellow for each model. The number of samples per 

class are listed in brackets after the age information. All models are based on 100 PCs. 
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Figure 5.19: Cross-validation of age models including fed specimens 

The three extended age models were tested via cross-validation in OMB using the option ‘Leave 

out 20 %’ and a standard deviation of 5. The number of principal components used for model 

building are given in brackets underneath the tables. Two samples were left out from the ‘Aedes 

detritus – 3 age group’ model as 20 % of 372 samples results in a fractional number that is 

rounded to the nearest integer. 

 

In order to fully evaluate the performance of age separation a sample set containing balanced sample 

sizes and a maximum of variance and potentially confounding factors was compiled. In addition to 

Aedes detritus and Aedes caspius specimens, raised under different conditions and collected alive and 
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dead, samples from the previous sample set (all raised dry) were added as well, including samples from 

four different species analysed over a long period of time and stored for various durations. Four species 

(Ae. detritus, Ae. rusticus, Ae. punctor and Cs. annulata) are represented in the first two age classes (0-

24 h and 49-96 h) and two species (Ae. detritus and Ae. caspius) are part of the older age class (168-

240 h). 

Linear discriminant analysis in OMB, based on 100 principal components, produced distinct separation 

of the three age groups (Figure 5.20a). Similar results can be seen when conducting LD analysis (based 

on 95 PCs ) in R, the scatterplots show that only a few samples are confused between the 0-24 and 49-

96 h classes, and that all 168-240 h old mosquitoes are correctly located (Figure 5.20b). The latter can 

be explained when viewing the variance distribution in the kernel density plots; the oldest group is 

separated clearly via LD 1, whereas separation of 0-24 h and 49-96 h is mostly based on LD 2, meaning 

there is slightly more variance benefitting the distinction of 7-10 day old specimens (Figure 5.20c). In 

random forest analysis, the 0-24 h old test samples scored the highest identification accuracy with 94 

%, followed by the 168-240 h old class with 92 % of samples correctly identified and the 49-96 h old 

group with 84 % correct identification (Figure 5.20d). 

This model does not contain all variance which can be expected from adult mosquitoes trapped in the 

wild, however, the deliberate introduction of several variables added enough challenge to put the 

separation process to the test.  



166 
 

 

Figure 5.20: Age separation based on highly variable data set 

Additionally to the Aedes detritus samples used in Figure 7, samples from four other species 

and another age class (168-240 h, 7-10 days) were introduced including mosquitoes which were 

raised with or without water or fed sucrose solution. A portion of specimens was killed by 

freezing, some died due to other reasons shortly before being collected; all were stored at -20˚C 

before analysis. PC-LD analysis achieved separation of the three age groups (0-24 h, 49-96 h, 

168-240 h), as can be seen in the OMB model (section a) and the scatterplots (section b) and 

kernel density distributions (section c) created in R. An overall 90 % of test samples were 

correctly identified during random forest analysis (1200 trees)  with group specific accuracies 

of 94 % for newly emerged specimens (0-1 day old), 84 % for 2-4 day old mosquitoes and 92 % 

for the 7-10 day old group (section d).  Number of samples used for model building: 0-24 h (75), 

49-96 h (75), 168-240 h (69). Separations are based on 100 (OMB) and 95 PCs (R). 
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As this model now contains different species and fed specimens, it might be comparable to the 

Anopheles age model (containing three species) in chapter 4. They both reached similar accuracies with 

91 % for the laboratory raised Anopheles and 90 % for the semi-wild specimens from Neston. Also in 

both cases the 0-24 h old classes achieved the highest accuracies (98 % and 94 %), followed by the 

oldest groups with 91 % and 92 % correct classifications and the middle age classes reaching accuracies 

below 90 % (85 and 84 %). To see whether these similarities also extend to the underlying separation 

process, the variables identified as most important during random forest analysis of the Neston 

mosquito age model were examined by plotting their intensities (Figure 5.21). 

 

Figure 5.21: Important variables to distinguish age  

After performing random forest analysis (repeated 10 times) on the age model (Figure 5.20) 

the R package ‘randomForestExplainer’ was used to determine the ion bins driving the 

separation process using a Top 10 approach. Four variables were identified as important in all 

10 random forest runs. The intensities of all 219 samples were plotted for these bins in a boxplot 

diagram.  A second panel with compacted y-axis is placed on top to show separated values for 

bin m/z 275.2 
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Most of the bins seem to enable separation of the 0-24 h old specimens, only bin m/z 275.2 supports a 

clear separation of the 49-96 h and 168-240 h classes. Though the separation patterns are slightly 

different between the bins m/z 424.4 and 425.4, they are likely 13C isotopomers. These bins are not the 

same as the ones identified for the laboratory specimens, but they are also located in the lower mass 

region. The bin m/z 269.3 identified as separator for the just emerged mosquitoes in the laboratory 

based age model was also listed among the top 10 variables for the Neston mosquito age model, 

however in only one run. The reason that the separation of age classes is driven by different variables 

dependent on whether the specimen were raised in the laboratory or semi-wild, might be that different 

age classes were used in those models. It is, however, more likely that the samples are just too different 

from each other in terms of age, species, raising conditions and levels of variability. 

The three main age models, all with 24h gaps between classes and adjusted sample numbers, were re-

built in Offline Model Builder using randomly assigned classifications (Figure 5.22). A comparison of the 

models with correctly and randomly assigned classes shows that, while samples can still loosely form 

groups, separation of classes is not achieved when classes contain random sets of samples. 
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Figure 5.22: Age models based on correct and randomly assigned classifications 

All age models with a 24 h gap between age classes, one Aedes detritus and two multi-species 

ones, were rebuilt using randomly assigned classifications. The PC-LDA based models built with 

correct (left) and randomly assigned classifications (right) are listed for comparison. Randomly 

assigned classifications lead to a considerably worse separation, with individual samples being 

scattered and classes overlapping. The number of principal components and other settings used 

for model building were identical for both approaches. 
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Detailed cross-validation results for the three age models, each with correctly and randomly assigned 

classifications, provide information about the models’ performances with increasing amount of 

variability in the sample set (Figure 5.23). 

 

Figure 5.23: Cross-validation of high accuracy age models 

The three main age models, with correct and randomly assigned classifications, were tested via 

cross-validation in OMB using the option ‘Leave out 20 %’ and a standard deviation of 5. The 

number of principal components used for model building are given in brackets underneath the 

tables. Two samples from the Aedes detritus age model were left out as 20 % of 107 samples 

results in a fractional number that is rounded to the nearest integer. 
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The age models with the highest accuracies were re-built with lower principal component numbers (25 

% of max) to see whether less variance proves to be disadvantageous for the separations. For easier 

comparison the models built with the optimal PC numbers and the separations based on fewer PCs are 

presented side by side (Figure 5.24).   

 

 

Figure 5.24: Separation of age classes with fewer principal components 

The PC-LDA separation achieved for the three main age models is presented here using the 

maximum number of principal components possible before overfitting (left side), as well as 

using only a quarter of possible PCs (right side). 



172 
 

Following reduction of PC numbers separation quality does decline for all models; classes are still clearly 

distinguished, but the number of wrongly assigned samples has increased. The number of samples 

available to build these age models were unevenly distributed; the lower numbers available for the 

older age classes limited the sample size used for model building. Larger samples numbers in all classes 

could potentially further increase separation accuracy and model robustness.  

The semi-wild specimens used to investigate age separation in this chapter did not fully resemble wild-

caught mosquitoes, however, they proved very useful in expanding the challenge through addition of 

confounding variance. Since age determination is of special importance for vector control actions in the 

field, this sample pool of local mosquitoes helped lay necessary groundwork for potentially more 

complex experimental setups in the future.  

 

5.3 Prediction of future populations through analysis of immature forms 

While species identification of adult mosquitoes - based on morphological examination - can be 

challenging when specimens are closely related or part of species complexes, the identification of 

immature mosquitoes can be close to impossible. Even in cases where taxonomic keys are available for 

species identification, it requires time-consuming examination under a microscope.    

Drosophila larvae (Chapter 3) were successfully resolved by REIMS, but the model contained only a 

small number of samples and specimens had been grown in the laboratory under stable conditions and 

food sources. To test if separation is also possible with fully wild specimens, water samples, containing 

mosquito larvae, were taken from the mosquito breeding pools around Neston.   

It had previously been established that some breeding pools harbour only one mosquito species. Water 

samples were taken from such sources and divided into two groups.  Group one (identification set) was 

left untreated until adults started to emerge, the second group was used for REIMS analysis of larvae. 

The REIMS water samples were filtered through filter paper and the resulting larvae (mostly in their 3rd 

or 4th larval stage) rinsed with MilliQ water two to three times (depending on how murky the water 

was) before being transferred to a plastic tube and stored in the freezer at -20˚C. The adults emerging 

from set one were collected and identified to ensure that only one species of mosquitoes was present 

in the sampling pools. 

The larval forms of both species were analysed in a randomised order (randomised in respect to 

species) over the course of two days. The frozen filter paper pieces were removed from the freezer half 

an hour before analysis, once defrosted the larvae were rinsed off the paper into a plastic container 

using MilliQ water. This helped to rinse off any left-over particles from the original water source. 

 

 



173 
 

 

Figure 5.25: Species separation based on immature specimens 

Immature mosquitoes were obtained by filtering water collected from different pools, followed 

by 2-3 rinsing steps before killing and storing the larvae at -20 C. The samples, mostly 3rd instar 

larvae were analysed with the same REIMS settings used for adult specimens. Their species was 

confirmed by sampling larvae and raising them to adults before, during and after taking 

samples to be used for this model. The differences detected by PC-LD analysis are visualised in 

form of a OMB model (a) and kernel density and scatterplots produced in R (b). The separation 

was put to test via cross-validation in OMB (c) and random forest analysis with training/test 

dataset split of 70 %/30 % (d).  

 

The sample data was analysed through PC-LDA in OMB as well as in R. In both cases the separation of 

Aedes detritus and Aedes punctor larvae required little information/variance, reaching very distinct 

separation with only 20 principal components (Figure 5.25a+b). After using the data matrix to conduct 

random forest analysis (10 times), the test samples were identified correctly most of the time leading 

to correct identification rates of 100 % (Ae. detritus) and 99 % (Ae. punctor) (Figure 5.25d). Cross-

validation of the OMB model resulted in one misclassification and one outlier out of 250 samples (Figure 

5.25c). Seeing this distinct separation through PC-LD analysis, principal component analysis alone was 

performed in OMB (Figure 5.26a). Even through unsupervised analysis, the two sets of species 

separated into their own clusters along principal component 3. The variance of the PCs 1 and 2 only 

represent individual differences among the samples. 
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The larvae based species model was also re-built using randomly assigned classifications, the resulting 

model is devoid of any form of separation or sample clustering; the samples of both classes fully overlap 

(Figure 5.26b). 

 

 

Figure 5.26: Unsupervised analysis and random classification assignment 

The difference between the larvae of Aedes detritus and Aedes punctor is adequate to provide 

separation even when using unsupervised methods such as PCA. The individual differences are 

represented by the principal components 1 and 2. The variance in component 3, however, 

supports a clear clustering of samples into their respective species (a). To test separation the 

PC-LDA model was also built with classifications randomly assigned to samples. A comparison 

of the larval species model with and without correctly assigned classes can be seen in panel b. 
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This very distinct separation could be solely based on species-related variance, however, the 

environmental effect has to be considered as well. The larvae were collected from different pools, 

which will have different water qualities, level of nutrients and maybe even temperatures depending 

on the location. These factors could strongly influence the growing and developing larvae and cause 

additional differences between the sample sets. 

To avoid these environmental differences, specimens would need to be collected from the same 

source, which would require identification of each individual larvae either through morphological 

means or DNA analysis. This would necessitate a more complex experimental design and was not 

attempted for these studies.   

 

5.4 Identification of breeding pools 

Different characteristics were noted for the specimens collected within the large scale sample process 

mentioned at the beginning of this chapter. So far sex, species and age have been used to classify the 

collected mosquitoes. The last remaining information type involves the breeding grounds mosquitoes 

were collected from. Every pond, pool and water-holding location has previously been assigned a code 

and was noted when raising the collected larvae to adults. As mentioned after the analysis of larvae for 

species separation, environment can have strong influences on the physiology of mosquitoes and even 

drive speciation processes [347]. The bodies of water mosquitoes use for breeding and their 

surroundings will have effects on the larval populations and are sometimes specifically chosen by 

females during their oviposition cycle [62,348–350]. The following analyses will explore whether this 

environmental effect during larval development can still be observed after the mosquitoes 

transformation to adults.  

Only Aedes detritus specimens were included in the first attempt to separate breeding pools. From a 

large number of pools only those from which more than 10 specimens had been collected from, were 

compiled in a class list. The sample numbers per class were small (12-26) but enough to explore whether 

there is pool specific variance that could allow separation. Data was analysed through PC-LDA in Offline 

Model Builder using 35 PCs (Figure 5.27).  
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Figure 5.27: Differentiating mosquito breeding pools 

Aedes detritus specimens were collected as larvae from various pools in different locations 

before being reared to adults and killed by freezing. The mosquitoes originating from the same 

pool, even if collected at different times, were combined into a class. The six most prominent 

pools (more than 10 specimens) and the corresponding mosquito samples were used to build a 

PC-LDA model in Offline Model Builder. The class names (YP, PS, IP, RN, RU, P8) are 

abbreviations/codes for the pools used for larval collection, the model was built without further 

information about the pools’ nature or properties. The PC-LDA model (based on 35 PCs) is 

shown from two different angles, one using variance information along LD 1 and 2 (left), the 

other showing separation only visible along LD 3 and 5 (right). 

 

The resulting model definitely exhibits a degree of sample clustering, which are separated from each 

other to a limited extent. The pools are separated in a certain order along the different linear 

discriminants. First the pool RU is separated (LD 1), followed by P8 (LD 1+2) and YP (LD2). The pool 

classes IP and RN are separated along LD 3 and class PS separates through the variance of LD 3 and 5.  

The class names (YP, PS, IP, RN, RU, P8) are abbreviations/codes for the pools used for larval collection; 

at the time point of model building there was no further information available about the pools’ nature 

or properties. 

To test whether the separation is caused by random, unrelated factors, the model was re-built using 

randomly assigned classes (Figure 5.28). As a result, samples are now widely scattered and groups 

overlap, suggesting that the separation based on correct classifications is indeed based of variances 

caused by the specimens’ pool of origin. 
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Figure 5.28: Comparison of pool separations based on correct and randomly assigned classifications 

To test whether the group formation observed in the six pool model is based on variables which 

are actually influenced by the location, the pool classifications were randomly assigned to 

samples and the model re-built. After re-building the model (right) group formations and 

separations were substantially worse than seen in the original model (left). 

 

After enquiring about further information regarding the pools’ nature and location, a potential reason 

for the observed separation pattern was found. The class RU is separated first, because it is located in 

Norfolk at the banks of the river Bure and therefore far away from any of the other pools. The pools P8 

and YP are both surrounded by heavy growth of reed, as is RN. That leaves the last two pools which are 

quite close to each other, IP and PS, which are completely devoid of vegetation. Aside from its location 

being far away from the other pools, the pool RU also has a different type of vegetation, which is sparse 

and short but green. These differences in vegetation are likely to affect the water pools in some way, 

through soil composition and nutrient levels or by attracting various wildlife.   

Since the pool RU is in Norfolk and not part of the other Dee Estuary pools, samples that were collected 

in both regions were combined into the categories ‘Norfolk’ and ‘Dee Estuary’ to further investigate the 

magnitude of the variance caused by longer distance (~ 240 miles) and different populations. Two 

species were collected at both sites, Aedes detritus and Aedes caspius.  
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Figure 5.29: Difference between far apart pools/larval populations 

Mosquito larvae collected from pools in the Dee Estuary and larvae collected in Norfolk were 

raised to adults and analysed by REIMS. Both classes (Dee Estuary and Norfolk) contain 

specimens from the species Aedes detritus and Aedes caspius. While the samples from Norfolk 

were collected from only one pool (RU), the Dee Estuary class contains samples from various 

pools in the region. The classes seem to be different enough that separation is not only visible 

following PC-LD analysis (b), but also on the principal component level (a). PC-LDA based 

separation was validated through cross-validation in OMB using the ‘Leave out 20 %’ option 

(c). To put the separation to a test, the data set was also analysed via random forest, using the 

usual 70 % for training and 30 % for testing sample split and 10 repetitions (1400 trees). The 

sample numbers per class were balanced (45 each) for random forest analysis. The achieved 

identification accuracies as well as misclassifications and average sample numbers used for 

testing are tabled (d). 

 

Expecting big differences between specimens of the two regions, the data set was first analysed using 

unsupervised principal component analysis (Figure 5.29a). The first few principal components (5) did 

uncover a certain level of differentiation between samples from Norfolk and the Dee Estuary; the 
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clusters are, however, very close and overlapping. After combining principal component and linear 

discriminant analysis the separation became more distinct, as can be seen in the kernel density and 

scatter plots (Figure 5.29b). Also cross-validation within OMB produced a high correct classification rate 

of 98 % (Figure 5.29c). After adjusting the sample numbers for an even sample size in both classes, the 

data matrix was also used for random forest analysis, which resulted in an average identification 

accuracy of 90 % (Figure 5.29d). 

 

Figure 5.30: PCA-LDA models built with fewer principal components and randomly assigned classes 

The population separation model, using specimens from 2 different mosquito species, was built 

using the maximum number of principal components possible before overfitting (50 PCs), as 

well as using only a quarter (26 PCs) of possible PCs. Additionally, the classifications ‘Dee 

Estuary’ and ‘Norfolk’ were randomly assigned to samples to test whether the separation is 

based on variance that is not associated with the location. For easier comparison of the effects 

on sample distribution, the kernel density and scatter-plots are stacked. 
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The PCA-LDA model was re-built using fewer principal components and randomly assigned 

classifications to further establish the variance used for separation (Figure 5.30). Reduction of principal 

components numbers did affect separation, indicating that more PCs with smaller variances are needed 

to enable separation. While more variance aids the separation it also causes the classes containing 

randomly assorted samples to separate to some degree; this effect would likely decrease with larger 

sample numbers per class. The model based on randomly assigned classes still exhibits worse 

separation than the model with a low number of PCs. 

Focussing back on the separation of individual pools, different species were incorporated to further test 

the separation process. While many pools are breeding grounds for only one mosquito species at a 

time, some pools produced mixed populations containing two or three different species. A list of such 

pools was compiled, together with the specimens collected from them. Three pools harbouring six 

species were selected for model building: LE (Culiseta annulata, Aedes rusticus, Culex pipiens), RU 

(Aedes detritus, Aedes caspius), DK (Aedes rusticus, Culiseta annulata, Aedes cantans). Not all species 

are represented in each pool, but the incorporation of more than one species per pool class should 

provide enough confounding variance to help reduce species-related influence in the separation.  

As the RU from Norfolk is part of the model, the expectation was that it would be the first to separate 

and indeed PC-LDA based separation separates the pool RU first along LD 1, followed by separation of 

LE and DK along LD 2. Also, RU is a saltwater pool whereas LE and DK are both fresh water pools. The 

distinction of classes through PC-LD analysis is very clear, both in OMB (Figure 5.31a) as well as in R 

(Figure 5.31b); cross-validation established a correct classification rate of 98 % (Figure 5.31c). For 

random forest analysis the same numbers of the classes LE and DK were both reduced to 60 to reduce 

the difference to the 45 samples available from RU. There is still a 15-sample difference, which could 

cause a problem - through uneven sample selection during model building and testing - if separation of 

RU were not as distinct. As can be seen in the random forest accuracies, samples from the pool RU are 

correctly identified 100 % of the time (Figure 5.31d). The correct identification rates for the other two 

pools are also very high, reaching 91 % (DK) and 95 % (LE). 
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Figure 5.31: Species independent differences between breeding pools and locations 

Three pools, which had been breeding grounds for two or more species, were selected to 

attempt classification through PC-LDA as well as random forest. Each class contains data from 

adult mosquitoes from at least two different species: LE (Culiseta annulata, Aedes rusticus, 

Culex pipiens), RU (Aedes detritus, Aedes caspius), DK (Aedes rusticus, Culiseta annulata, Aedes 

cantans). PC-LD analysis was carried out in Offline Model Builder (a) and R studio (b), both 

revealing a separation of the class RU along LD 1 and separation of LE and DK along LD 2. PC-

LDA based separation was validated through cross-validation in OMB using the ‘Leave out 20 

%’ option (c). Before random forest analysis the sample numbers in the classes LE and DK were 

reduced to 60 each to reduce the gap in sample size between these classes and RU. Again, the 

data set was divided 70 %/30 % for training and testing and random forest analysis was 

conducted 10 times (based on 1800 trees) using different randomly selected sample sets for 

training and testing. The results are listed in the confusion matrix (d), showing the average 

percentages of correct and wrong classifications, SEM values, lowest and highest accuracies of 

the 10 runs and the average number of samples used for testing. 
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After achieving such strong differentiation through PC-LDA and random forest, the sample set was 

analysed with less principal components (Figure 5.32a) and through stand-alone principal component 

analysis (Figure 5.32b). Moreover, the PC-LDA based model was re-built after random assignment of 

classes to samples (Figure 5.32c). 

 

Figure 5.32: Investigation of pool separation through PC reduction and randomly assigned classes 

The three-pool model was re-built using only 25 % of possible principal components (a) as well 

as with randomly assigned classifications (which is directly compared to the correct class 

model) (c). The data set was also analysed through PCA alone, representing an unsupervised 

classification approach (b). 
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The variance between the pools RU, LE and DK is so distinctive that reduction of principal components 

numbers hardly affected the separation performance. Even through principal component analysis alone 

a certain level of class separation could be achieved along PC 2 and 3. Random classification assignment 

resulted in widely scattered samples and strongly overlapping classes, confirming that the separation 

seen in Figure 5.31 is related to the pool classification. 

The specimens used for the pool-separation models were all adults at the time point of analysis 

(between 0 and 4 days old), making the separation even more intriguing. It implies that environmental 

influences are carried over from the larvae and pupae state to the adult form. Several factors need to 

be considered when considering the validity of these results. First, the larvae and pupae were left in 

the original pool water until emergence. Residues from the pool water might have still covered the 

adult mosquitoes; they were not rinsed before REIMS analysis. Secondly, these mosquitoes were raised 

dry without access to a food source. If the source pools affected their physiology, this effect might have 

lasted longer as the adult mosquitoes had to survive solely on nutrients stored during larval 

development. Whether the environment during immature stages could have long-lasting effects 

covering the mosquito’s lifetime, would need to be further investigated before conclusions can be 

drawn about REIMS capability to differentiate breeding pools using adult specimens.    

 

5.5 Classification of unknown samples and wild-caught mosquitoes using a previously built model 

To test the utility of REIMS further, the seven-species model in Figure 5.8 was used as a predictive tool. 

Three sample types were available as test samples for species identification. 

RAISED: These samples were not included when building the seven species model but were raised and 

stored in the same way. To achieve even sample sizes for all species, samples were randomly removed 

from the available sample sets. 

TRAPPED: These are wild caught mosquitoes, captured in Mosquito Magnet traps using carbon dioxide 

and octenol as attractants. 

UNKNOWNS: A further 188 samples were collected as larvae, reared to adults and their species 

identified by morphological examination. Raising and storage conditions were the same as used for 

model samples. To ensure a blinded study each sample was given a number code before being provided 

for analysis. 

As mentioned at the beginning of the chapter a bulk of the samples, which were also used to build the 

seven species model, were analysed within three months (total was four months, but one month was 

without analysis). The samples used for prediction can be put into three groups depending on their 

time point of analysis: (I) samples were analysed on the same days as the samples used for model 

building, (II) samples were analysed on other days but within the same four months, (III) samples were 

analysed over two months later than samples used for model building. This categorisation is important 
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as it can influence the identification success; test samples analysed at the same time as model samples 

are more similar and have therefore a higher chance of correct identification. 

For species prediction the seven species model (Figure 5.8) was exported to the Offline Model Builder 

Recognition software. The test samples were selected and their burn events and underlying mass 

spectra scanned individually. Using the PC-LDA based species model each sample was then assigned a 

species and given a probability score reflecting the likelihood of correctness. Most settings within the 

Recognition software were kept constant and only adjusted when necessary. The intensity threshold 

was adjusted for each test sample to exclude background signals before and after the burn event. The 

signal range was set to 30 sec, the time out for good spectra (above threshold) was set to 10 sec. The 

standard deviation was set to 5. If the sample was identified the standard deviation was lowered until 

identification was no longer possible (outlier), if the sample was not identified the standard deviation 

was raised to a maximum of 10. If the sample was not identified using a standard deviation boundary 

of 10, the outlier boundary was removed completely, the species result noted, but the sample marked 

as outlier. 

The identification results obtained for all three sample groups are provided in Figure 5.33; the 

percentage of correctly identified samples and the corresponding probability are highlighted. As 

mentioned, the time point of analysis plays an important role for identification success. Test samples 

analysed around the same time as the model samples (I + II) have higher correct identification rates 

than samples from group III. However, a noticeable drop (to 55 %) was only observed for the trap-

caught specimens, the samples which had been raised in the same way as the model samples are still 

successfully identified two months after model building.  

The correct identification rates of 87 % and 91 % for wild-caught mosquitoes are a very positive 

outcome; the species models had been built using only semi-wild mosquitoes, which had not been 

exposed to their natural environment after their larval stages. The model has therefore never seen fully 

wild specimens, nevertheless their species was correctly identified in most cases. However, as soon as 

more variance is incorporated through the instrument at a later analytical time point, the identification 

rate dropped significantly.  

Not all seven species (Aedes detritus, Aedes rusticus, Aedes punctor, Aedes cantans, Aedes caspius, 

Culiseta annulata and Culex pipiens) were (equally) represented in all sample types and time-groups. 

The results achieved for each individual species are listed in the Supplemental figures 5.1-5.3, which 

can be found at the end of this chapter. 
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Figure 5.33: Species identification of samples analysed in the same year as model samples 

The seven species PC-LDA model built in Offline Model Builder with 100 PCs was exported to 

the Recognition software and used to identify samples (analysed in the same year as samples 

used for model building) from three groups: mosquitoes which were raised in the same way as 
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samples used for model building (RAISED), wild mosquitoes caught in traps (TRAPPED) and blind 

samples of unknown species (UNKNOWNS). Additionally samples were categorised depending 

on their time point of analysis: samples which had been analysed at the same time as samples 

used for model building (I), samples analysed on other days than model samples, but same time 

period (II) and samples which were analysed over two months later than the last samples 

included in the model building. The number of tested samples is stated in brackets. The 

percentage of correctly identified samples and the likelihood that the identification is correct 

are highlighted in yellow for easier comparison. 

 

Another smaller set of samples was analysed 10-12 months later, including specimens collected as 

larvae and raised to adults (RAISED) and wild-caught mosquitoes (TRAPPED) (Figure 5.34). The 

specimens were identified using the species model built a year before, using the same settings and 

approach as outlined for the 2019 samples. 

 

 

Figure 5.34: Species identification of samples analysed a year after model samples 

The seven species PC-LDA model built in Offline Model Builder with 100 PCs was used to identify 

samples analysed 10-12 months after model building. Sample were from two different groups: 

mosquitoes which were raised in the same way as samples used for model building (RAISED) 

and wild mosquitoes caught in traps (TRAPPED). The percentage of correctly identified samples 

and the likelihood that the identification is correct are highlighted in yellow for easier 

comparison.  

 

This time the correct identification rate is considerably lower for both sample types; only 69 % of the 

raised samples and 62 % of the trapped samples were correctly identified. While the quality of the 

trapped samples was acceptable, it was noted during REIMS analysis that some of the raised specimens 

were of low quality (very wet and soft, with individual specimens sticking together). The quality was 

recorded for each species. Not all species are represented in the groups and identification success 

seemed to vary with the species or sample condition. Results are therefore listed for each species 

individually in Figures 5.35 and 5.36. 
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Figure 5.35: Identification results listed for each species (raised samples 2020) 

Identifications results of samples (raised) analysed 10-12 months after model building, listed 

for each species. The percentage of correctly identified samples and the likelihood that the 

identification is correct are highlighted in yellow for easier comparison (a). The observed 

sample conditions are listed below (b). 

 

The detailed results for the raised specimens show that the species marked as ‘bad quality’ has a higher 

rate of misclassifications than species groups marked with good or okay sample quality.  Aside from 

sample condition, the identification success seemed to depend strongly on the species; some reached 

100 % correct identifications (Aedes caspius and Aedes detritus) while others had all samples wrongly 

identified (Culex pipiens). This indicates that the underlying separation principle of the model does not 

align anymore with the obtained sample patterns. This can also be observed for the trapped 

mosquitoes: Aedes caspius achieved a correct identification rate of 93 %, whereas none of the trapped 

Culex pipiens were identified correctly (Figure 5.36). 
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Figure 5.36: Identification results listed for each species (trapped samples 2020) 

Identifications results of samples (trap-caught) analysed 10-12 months after model building, 

listed for each species. The percentage of correctly identified samples and the likelihood that 

the identification is correct are highlighted in yellow for easier comparison. 

 

There are two main factors that could influence identification performance. There could be differences 

associated with the samples themselves, e.g. inherent properties, sample treatment and storage 

conditions. Or the change is introduced through the analytical process, i.e. the analyst and the 

instrument. Both factors feed into a model’s robustness and determine its versatility in identifying 

unknown samples. 

The seven species model is not yet robust enough to be successfully used on sample sets analysed a 

year later, but it is by far more robust than any model built with laboratory specimens. Not only did the 

Neston specimens themselves introduce confounding variance, but the samples were also analysed on 

many different days scattered over (mostly three) months. A model built with specimens raised as one 

batch and then analysed within a few consecutive days will exhibit hardly any robustness. While such a 

model can point out the variances between classes, it is not suitable for long-term identification.  

There are many questions still left unanswered and analytical approaches that have yet to be tried. It is 

possible that the PC-LDA model would be robust for longer if fewer principal components were 

incorporated or another data analysis approach, such as random forest, could perform better in the 

identification of unknowns. Perhaps spreading the data analysis over a whole year could increase later 

success rates. Furthermore, other characterisation factors such as age, sex and pool of origin have not 

been tested yet; the long-term behaviour of these models might be different.  

Building a model which can be reliably used for sample identification is by far the most challenging task 

and the biggest hurdle between hypothetical capabilities and actual applicability in the field. 
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5.6 Separation of cryptic species 

Under point 5.2.2, separation of species, it was noted that the class Culex pipiens could consist of two 

different species Culex pipiens s.l and Culex torrentium, which can only be partially distinguished 

morphologically; the males can be separated through their hypopygia (terminal abdominal segment), 

the females are in most cases indistinguishable [108]. The members of the Culex genus are known 

vectors for human pathogenic arboviruses, such as the West Nile virus, and therefore under 

surveillance [78]. The different species of the genus Culex differ in their vector competencies and 

preferred blood meal sources, clear discrimination is therefore important for distribution and 

abundance studies [105].  

Adult specimens, identified as Culex pipiens after emergence, were selected for DNA analysis, which 

allowed categorisation into the classes Culex pipiens pipiens and Culex torrentium before being handed 

over for REIMS analysis. Since only the legs had been removed for DNA analysis, the main biomass, 

including the abdominal fat body, was available for REIMS analysis. 

 

 

Figure 5.37: Distinguishing cryptic species 

Culex torrentium and Culex pipiens are highly similar species and can hardly be distinguished 

by morphological means. Larvae were collected from ponds, raised and identified as belonging 

to the Culex genus, before removing the specimens’ legs for DNA analysis. The adults were 

identified as either Culex pipiens pipiens (n=41) or Culex torrentium (n=13) and stored at -20 C 

until REIMS analysis. Whether analysed by PC-LDA in OMB (a) or in R (b), samples cluster into 
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their respective species group. Cross-validation was carried out within OMB using the option 

‘Leave out 20 %’ and a standard deviation of 5(c). 

Specimens of Culex pipiens pipiens (41) and specimens of the species Culex torrentium (13) were 

analysed with REIMS and the data analysed through PC-LDA in Offline Model Builder (Figure 5.37). 

Whether analysed by PC-LDA in OMB (Figure 5.37a) or in R (Figure 5.37b), samples cluster into their 

respective species group. However, due to the small and uneven sample sizes individual differences are 

quite apparent leading to loose grouping within each class. During cross-validation only 5 % of Culex 

pipiens pipiens were confused for Culex torrentium, however, 23 % of C. torrentium are mistakenly 

identified as C. pipiens pipiens, which is likely due to the small number of samples available for this 

species. 

The model was also analysed using principal components analysis (Figure 5.38a) and re-built using 

randomly assigned classifications (Figure 5.38b). PC analysis alone was not able to provide separation 

along the first five principal components, which could be because the classes are not distinct enough 

or due to the small sample sizes. The model built with randomly assigned classes exhibits worse 

separation and an area containing mixed samples from both classes. A lot of variance stems from 

individual differences, a proportion, however, seems to be species related.  

The separation achieved for these highly similar species is promising, even though cross-validation 

results need to be viewed critically when dealing with low sample numbers. It is, however, very likely 

that the separation would remain stable and perhaps even improve with more samples per class.  

 

 



191 
 

 

Figure 5.38: Cryptic species model built with fewer PCs and randomly assigned classes 

Unsupervised analysis unfortunately did not result in separation of Culex pipiens pipiens and 

Culex torrentium (a), the largest variance (first few principal components) in the data is 

introduced by individual variety. Rebuilding the PC-LDA model in OMB with randomly assigned 

classifications lead to noticeably worse positioning along LD 1 (red line) and overlapping of 

groups (b). 
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5.7 Discussion 

The local mosquitoes used in this chapter proved to be invaluable for further exploration of REIMS 

capabilities, but also its limitations and challenges. While the characterisation of insect samples through 

REIMS seemed to be successful with laboratory raised specimens, the mosquitoes collected from the 

Dee Estuary put the separation principles and underlying processes truly to a test. 

Putting all the results achieved with semi-wild mosquitoes into consideration, there is reason to be 

carefully optimistic about the method’s suitability for fully wild insects. A considerable amount of 

potentially confounding variance was deliberately introduced by using specimens which were collected 

from the wild over the course of several months, raised under less controlled conditions and stored for 

differing amounts of time and analysed on a number of days, months apart. 

To establish whether variance related to specific characteristics exist, other variables must be kept at a 

minimum to ensure that the difference between classes is caused only by that one factor (species, age, 

sex etc.). To test whether these specific variances are robust enough to withstand variability - caused 

by individual differences, sample collection, treatment and storage or REIMS itself - variability needs to 

be introduced on purpose. 

After ascertaining that REIMS data can be used to discern sexes, species and age groups based on 

insects raised in the laboratory, it was a vital next step to show that these separations are also possible 

with a variety of samples and potentially more, unrelated, variance in the data set. While providing an 

outlook for what is possible, the results in this chapter are not definitive. Far more experiments need 

to be conducted, including factors, which have not yet been considered, such as feeding from natural 

sugar sources, blood feeding, mating, egg laying cycles and pathogen infections.  

The samples and experiments presented in this chapter also helped to identify challenges and become 

aware of the many steps still required to validate REIMS suitability for insect identification in the field. 

While the samples did not produce a perfect working model – the accuracy of the seven species model 

declined after some time - it provided much needed insight into the complexity of the task ahead. 

Potential experimental designs in the future will undoubtedly benefit from the classifications achieved 

with these locally collected samples.  
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5.8 Supplemental Figures 

 

Supplemental Figure 5.1: Detailed identification results for raised samples 

Identifications results of samples (raised) analysed in the same year as samples used for model 

building, listed for each species. The percentage of correctly identified samples and the probability that 

the identification is correct are highlighted in yellow for easier comparison.  
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Supplemental Figure 5.2: Detailed identification results for trapped samples 

Identifications results of samples (trap-caught) analysed in the same year as samples used for model 

building, listed for each species. The percentage of correctly identified samples and the probability that 

the identification is correct are highlighted in yellow for easier comparison. 
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Supplemental Figure 5.3: Detailed identification results for unknown samples 

Identifications results of samples (raised) analysed in the same year as samples used for model 

building, listed for each species. The percentage of correctly identified samples and the probability that 

the identification is correct are highlighted in yellow for easier comparison. 
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Chapter 6: Explorative studies on indirect insect identification through analysis of frass 

6.1 Introduction & Aims 

After analysing immature and adult insect specimens, and demonstrating the ability of REIMS to recover 

valuable information, the challenge was extended to include a biological product e.g. faecal matter 

(from now on referred to as frass). Previously, insect gut content has been analysed to learn more about 

insects preferred food sources as well as prey-predator relationships [96]. The possibility of gaining 

food source information from frass instead of gut content can be advantageous in some scenarios. In 

cases of insect pests, the insect responsible for damage might be absent at the time point of inspection 

or it may be unclear which species exactly caused the damage. Collecting specimens can also be too 

expensive and time-consuming for routine analysis [351]; especially wood pests can be difficult to 

locate and extract. Collection and analysis of frass is also non-invasive, which is of special importance 

when monitoring threatened or endemic insect species [352,353].  

Insect frass analysis is widely used in forestry where specimens are often located in the tree canopies 

and therefore out of reach. Frass from wood eating insect species is collected (often on sheets or 

funnels underneath the canopy) and analysed as part of phytosanitary surveys and monitoring actions 

to assess the presence and spread of specific pests [351,354–356]. It can also aid food web studies 

connecting the presence and availability of insects to the behaviour of other species such as birds [357–

360].  

Examination of insect frass can also be beneficial in agriculture and field settings to help understand 

prey-predator relationships among insects and inform biological pest control actions [92,353].  

Frass has been identified through dimensional and morphological analysis of pellets [361], which often 

lacks taxonomic resolution [357], or through DNA barcoding, which can give detailed species 

information, but might be restricted by the sequence information available on databases [362]. 

To explore whether REIMS use could be extended to insect frass, a short study was conducted using 

frass collected from crickets. The main objective was to establish whether REIMS analysis of frass would 

result in complex spectra and whether they contained species or diet related variance, which could 

potentially be used for identification purposes. 

  

6.2 Species differentiation through frass 

Frass was collected from four different cricket species: the black cricket (Gryllus bimaculatus), the silent 

cricket (Gryllus assimilis), the brown cricket (Acheta domesticus) and the striped cricket (Gryllodes 

sigillatus). Hereafter they will be referred to using their common names. Specimens of the four species 

were fed the same diet consisting of a mix of oatmeal and fish food and kept in the same type of 

housing. Cricket populations were replenished when necessary (due to crickets dying) and the frass was 
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collected over the course of three months. For most of the time frass was stored at -20˚C, however, 

shipping took place at ambient temperature resulting in varying storage conditions. Frass pellets were 

analysed through REIMS using the same settings used for other sample types. The consistency of the 

pellets varied considerably; a few drops of water were added to very dry samples to allow the current 

to flow through the sample and enable thermal degradation. Despite the small size of the cricket frass 

(2-3 mm pellets) analysis with the electrode resulted in sufficient aerosol to be detected and to elicit a 

complex mass spectrum (Figure 6.1 a). However, not all frass pellets resulted in high intensity signals. 

Therefore, only samples with intensity values higher than 5xe6 were imported to Offline Model Builder 

and analysed through PC-LDA. Different mass ranges were explored and the range 100-750 m/z 

selected as optimal, which resulted in a clear grouping of samples into their respective species classes 

(Figure 6.1b). The data matrix was exported for further PC-LD analysis in R, which confirmed the 

separation of species classes and helped visualise which linear discriminates are responsible for 

individual separations (Figure 6.1 c). The biggest variance in LD 1 separated the striped crickets, LD 2 

enabled separation of the black cricket class and the smallest variance was found between the frass 

samples collected from the brown and silent crickets.  

 

 

Figure 6.1: Species signature in cricket frass 



198 
 

Frass was collected from four cricket species (males and females): black cricket (Gryllus 

bimaculatus, n=74), silent cricket (Gryllus assimilis, n=119), brown cricket (Acheta domesticus, 

n=117) and striped cricket (Gryllodes sigillatus, n=55). A photo shows an example of the frass 

size (panel a, left). Despite its small size it produced enough aerosol to obtain complex mass 

spectra of sufficient intensity through REIMS analysis, an example can be seen for a frass pellet 

collected from Gryllodes sigillatus (panel a, right). The mass spectral data for all frass samples 

(with an intensity >5xe6) were imported to Offline Model Builder and subjected to PC-LD 

analysis (using a mass range of 100-750 m/z, based on 100 PCs), which enabled separation in 

regard to species (b). The data matrix was exported and PC-LD analysis (based on 140 PCs) 

repeated in R (c). Three 3D models show the separation achieved along the different linear 

discriminants (groups are circled in); LD 1 enables separation of the striped cricket samples, LD 

2 supports separation of black cricket frass and LD 3 distinguishes the frass collected from 

brown and silent crickets. 

 

To examine whether this separation was based on variance which is truly species related, the model 

was re-built in Offline Model Builder with randomly assigned classifications (Figure 6.2). No class 

separation was observed as a result indicating that some of the variance in the frass data set is caused 

by species differences.  

 

 

Figure 6.2: Comparison of species separation using correct and randomly assigned classes 

A comparison of the four species frass model built in Offline Model Builder using PCA-LDA 

(based on 100 PCs) with correctly and randomly assigned classifications. 

 

 



199 
 

Both models were tested through cross-validation in Offline Model Builder (Figure 6.3). The results 

reflected what was observed visually in the 3D models: There is noticeable separation of classes in the 

model built with correctly assigned classifications, leading to a correct classification rate of 88 %. The 

model built with randomly assigned classes showed no visual separation of classes and fails cross-

validation with a correct classification rate of only 22 %. 

 

 

Figure 6.3: Cross-validation results for species models based on correct and randomly assigned classes  

Detailed cross-validation results for both four species frass models, built with correct and 

randomly assigned classifications in Offline Model Builder. For cross-validation the option 

‘Leave out 20 %’ and a standard deviation of 5 were chosen. 

 

The frass samples exhibited great variability regarding colour and consistency, even within species 

groups. Nevertheless, the data matrix was used to produce averaged mass spectra of all samples 

available for each class to produce a general mass spectral pattern for each species and examine 
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whether differences could be observed visually between frass spectra from different species (Figure 

6.4).  

 

Figure 6.4: Averaged mass spectra obtained from frass of four cricket species 

The data matrix, obtained from Offline Model Builder, was used to create averaged mass 

spectra for all four frass groups/species. Each mass spectrum represents an average of all 

samples available for each species (black cricket n=74, silent cricket n=119, brown cricket n=117 
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and striped cricket n=55). The intensities were normalised and the bins 554.2 and 554.3 

removed (high intensities) to enable a more detailed view of the patterns. 

 

The mass spectral pattern of frass consists of two major parts, a lower mass region between 100 and 

450 m/z and a middle to higher region ranging from 550 to 750 m/z. Both regions exhibit visible 

differences between the frass groups from different species. However, despite differences in relative 

abundance of signals between the averaged spectra, they could not be used as reference spectra for 

identification. Due to the high variation seen in the frass pellets, many samples would not match with 

the averaged patterns. While differences may be visible, they might not be suitable as separators. 

To subject the separation to more rigorous testing samples were analysed through random forest. To 

ensure an equal sampling process while keeping the sample number as high as possible, the frass 

samples collected from striped crickets were removed entirely from the sample set and the sample 

numbers of the silent and brown cricket classes were reduced to 82 each. The species model was re-

built with the new class combination and sample numbers within OMB using PC-LDA and 80 principal 

components (Figure 6.5 a). To see whether the change in the sample set greatly affected the separation 

performance the model was tested through cross-validation resulting in a correct identification 

accuracy of 86.4 % (Figure 6.5 c), only 1.2 % lower than the previous model. Random forest analysis 

was conducted ten times using a different set of samples of training and testing each time (70:30 split); 

the averaged percentages of correct and mis-classifications are presented in form of a confusion matrix 

(Figure 6.5 b). The three species model reached an overall accuracy of 81 %, which is 5 % lower than 

the PCA-LDA based model. The range of correct identification accuracies achieved in each random 

forest run (stated in brackets underneath the SEM values) indicates large differences in performance, 

which is likely caused by different combinations of samples used for training and testing. Possibly, some 

samples are less suitable for training or testing because they display a different sort of variance; larger 

sample sizes could potentially solve this problem of unbalanced variability. 
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Figure 6.5: Three species cricket model with adjusted sample numbers 

Before conducting random forest analysis the sample numbers per class were adjusted. 

Because of low sample numbers the striped cricket (Gryllodes sigillatus) class was removed 

entirely and the sample numbers of the silent and brown cricket classes reduced to 82. The 

model was re-built in Offline Model Builder using PC-LD analysis (based on 80 PCs)(a) and cross-

validated using the ‘Leave 20 % out’ option and a standard deviation of 5, which gave a correct 

classification rate of 86 % (c). The data matrix was exported and used for random forest analysis 

in R, which was carried out 10 times using a new 70 %/30 % data split for model training and 

testing each time. The averaged accuracies, standard error of the mean and the range of 

obtained accuracies (min-max) are listed in the confusion matrix (b). The average number of 

samples used for testing per class are listed on the right-hand side of the matrix. 

 

While separation of frass according to species does not result in highly accurate models, the difference 

between classes is pronounced enough to be suitable for classification. The simplicity of the 

experimental design kept the variability at a minimum. Whether the species related signal differences 

could withstand changes such as diet and environmental influences is unknown. 
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6.3 Diet identification 

Diet could provide a different perspective to the analysis of insect frass. While it could be a confounding 

factor for species identification, it could also be an interesting characteristic in its own right. Insect gut 

content has been analysed in the past to identify food sources and potential prey and predator 

relationships [95,96,98]. Being able to retrieve food source information from faecal matter instead of 

having to sacrifice and morphologically damage the insect specimens could be advantageous [352,353]. 

Black crickets (Gryllus bimaculatus) were fed three different diets – greens, oats and potato - at two 

locations (different handler and environment). Frass was collected at four different time points 

ensuring the crickets had been switched completely to their new diet before starting the sampling 

process. The samples were collected over the course of nine days from 61 individuals and stored at -

20˚C until REIMS analysis. Again, a bit of water was added to very dry samples to facilitate sample 

analysis. All available samples were included in model building, independent of their intensity. Samples 

were analysed using PC-LDA in Offline Model Builder, using 100 principal components and a mass range 

of 100-750 m/z (Figure 6.6 a). The frass samples clearly clustered according to the crickets’ diets. The 

oat based diet seems to be have more distinguishing variance than the other two diets, possibly 

because it was less fresh than greens and potato. The separation of food sources was also attempted 

using random forest analysis. The averaged accuracies of ten random forest runs are presented in figure 

6.6 b; giving a total model accuracy of 92 %. Interestingly, the range of achieved accuracies is smaller, 

possibly due to a more homogenous sample set. The frass resulting from a diet with greens had the 

highest accuracy, which is not surprising given the appearance of the frass pellets. The faecal matter 

collected from crickets fed with greens was usually bright green in colour, whereas the frass based on 

the other two diets looked more similar. The strong influence of the diet on the frass appearance might 

also result in more distinct REIMS data aiding separation of diet classes. 
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Figure 6.6: Separation of frass samples according to diet 

Black crickets (males and females) were fed three different diets (greens, oats and potato) and 

their frass was collected on four different time points at two different locations. The frass data 

was imported to Offline Model Builder and analysed through PC-LDA using a mass-range of 

100-750 m/z and 100 principal components (a). The data was also used for random forest 

analysis (repeated 10 times, 70 %/30 % data split for training and testing). The averaged 

accuracies, standard error of the mean and the range of obtained accuracies (min-max) are 

listed in the confusion matrix (b). The average number of samples used for testing per class are 

listed on the right-hand side of the matrix. Total number of frass samples: Greens n=168, Oats 

n=168, Potato n=170) 

 

 

To test how much of the variance is actually cause by the crickets’ diet, the PC-LD model was re-built in 

Offline Model Builder using randomly assigned classifications (Figure 6.7 right panel). For this data set 

samples were not fully randomised as classes were randomly assigned to data files, which contained 

one or more frass burn events. Frass pellets which were collected together from one individual 

therefore kept the same classification. Nevertheless, separation failed with all three classes strongly 

overlapping. 
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Figure 6.7: Comparison of diet separation using correct and randomly assigned classes 

A comparison of the three diet frass model built in Offline Model Builder using PCA-LDA (based 

on 100 PCs) with correctly and randomly assigned classifications. The classification assignment 

was not fully randomised for this data set as the classes were assigned to data files and each 

data file contained a various number of burn events/samples. 

 

 

Both models, built with correctly and randomly assigned diet classes and 100 PCs, were tested through 

cross-validation in OMB (Figure 6.8). The model with correct classifications reached an accuracy of 91 

% which matches the accuracy of the separation achieved through random forest (92 %). The model 

built with randomly assigned classes only reached 53 % accuracy, proving that random unrelated 

variance cannot support class separation. The identification rate would likely have been even lower if 

all burn events had been fully randomised. 
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Figure 6.8: Cross-validation results for diet models based on correct and randomly assigned classes 

Detailed cross-validation results for both three diets frass models, built with correct and 

randomly assigned classifications in Offline Model Builder. For cross-validation the option 

‘Leave out 20 %’ and a standard deviation of 5 were chosen. The classification assignment was 

not fully randomised for this data set as the classes were assigned to data files and each data 

file contained a various number of burn events/samples. In both cross-validations one sample 

was left out as 20 % of 506 samples results in a fractional number that is rounded to the nearest 

integer. 

 

As previously mentioned, the appearance of frass pellets resulting from a green diet were quite distinct 

and could affect the mass spectral data as well. The data available for each diet class were averaged to 

produce diet specific mass spectra and allow visual comparison of the signal patterns. 
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Figure 6.9: Averaged mass spectra obtained from frass of black crickets fed three different diets 

The data matrix, obtained from Offline Model Builder, was used to create averaged mass 

spectra for all three frass groups/diets. Each mass spectrum represents an average of all 

samples available for each species (Greens n=168, Oats n=168, Potato n=170). The intensities 

were normalised and the bins 554.2 and 554.3 removed (high intensities) to enable a more 

detailed view of the patterns. 

 

The averaged mass spectrum obtained for the oats diet resembles the averaged spectra of the previous 

experiment, which was based on cricket species which had been fed oats. The differences in the lower 

mass region (100-450 m/z) are less pronounced compared to the pattern differences in the second 

signal region (550-750 m/z). Extending the diet from oats to greens and potato greatly affected the 
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signals around 600 and 700 m/z, which are much lower in intensity and exhibit a changed pattern. The 

fact that greens and potato based signatures were more alike explains the separation observed after 

PC-LD analysis, which separated the oat based frass group first (LD 1) before separating the other two 

classes. Cross-validation also resulted in more misclassifications between greens and potato diet than 

samples wrongly being identified as oat based.  

 

6.4 Effect of diet on species identification 

Only black crickets had previously been fed different diets, so a species separating model fully based 

on frass from different diets was not possible. However, some pellets collected in the diet experiment 

were incorporated into the black cricket group. Not all samples were replaced, half was kept from the 

previous species model, half was taken from the diet experiment (every diet included). A complete 

replacement could have otherwise caused separation based on unrelated variance introduced through 

different experimental conditions and a different time point of analysis.  

 

 

Figure 6.10: Addition of frass from different diets to the black cricket class 

From the frass data set based on three diets, 42 samples were selected and added to the Black 

cricket class in the three species model. Other black cricket frass samples were removed until 

sample numbers were the same as in the other two classes (82 each). The new sample set was 

analysed through PC-LDA in Offline Model Builder (using 80 PCs) (left). Subsequently, the model 

was cross-validated (‘Leave 20 % out’, StDev 5) to see whether the different diets represented 

in the black cricket class would affect accuracy negatively. 
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The new species sample set was analysed through PC-LDA in OMB using the same settings as used for 

the previous species model to allow direct comparison of the separation outcome (Figure 6.10).  

Visually the separation has not changed drastically; the black cricket group is now slightly closer to the 

other two species and a bit more scattered, but still separated. While some samples cluster quite 

loosely, there is no distinct split of the two different sample sets present in the black cricket class. To 

see whether the additional diet samples affect model performance, cross-validation was performed 

leading to a correct classification rate of 84 %, only 2 % lower than the original three species model 

(Figure 6.5). If the other two species classes would behave similarly and cluster more loosely upon 

introduction of different diets, separation performance could decrease further as a result of minor class 

overlap. 

 

6.5 Preliminary examination of fruit frass 

The frass which had been collected from crickets was kept separate from the food source. In a field 

setting insect faecal matter, food source and perhaps other materials are potentially in close contact. 

Additionally, the food source itself might be variable, i.e. have different degrees of ripeness and of 

course the frass can stem from different insects. There are many factors which could influence the 

properties of relatively small amounts of sample. To assess the potential variability these factors could 

cause in REIMS data, some frass was collected from a more natural environment. Different sorts of 

apples were collected from an orchard, all showing outward signs of insect infestation (e.g. entry holes). 

The apples were cut open and the frass removed for REIMS analysis (Figure 6.11).   
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Figure 6.11: Frass samples removed from apples 

Three different apple varieties (A, B, C) were collected and frass removed from one to two 

apples each. Photos were taken of all extracted frass samples. The apple schematic was 

produced in BioRender. 

 

The frass samples were analysed with the usual settings using the knife attachment, additional wide 

tubing and a current of 40 Watts. To get a better view of the mass spectral pattern for each sample, 

the lower (100-550 m/z) and higher mass region (600-1200 m/z) are presented separately (Figures 6.12 

and 6.13).  
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Figure 6.12: REIMS spectra of extracted frass samples – lower mass region 

Mass spectra of the frass samples extracted from infested apples ranging from 100-550 m/z. 

For comparison a piece of undamaged apple was analysed as well (top spectrum). 
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Figure 6.13: REIMS spectra of extracted frass samples – higher mass region 

Mass spectra of the frass samples extracted from infested apples ranging from 580-1200 m/z. 

 

The various m/z regions which exhibit signal patterns are mostly the same, however, not one pair of 

samples shows the same combination of patterns. Similarities or dissimilarities are independent from 

the variety of apple. Also the appearance of the frass does not distinctly correlate with certain signals; 

samples A1 and B1 are quite similar in appearance, but there are some differences in the mass spectra.    
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The small number of frass samples does not allow conclusions as to whether specific information, such 

as species, could be gained from it. However, it is clear that not only frass collected in a controlled 

environment, but also frass samples produced by insects in the wild, are suitable for REIMS analysis and 

provide complex mass spectra.  

 

6.6 Discussion 

The conducted experiments were restricted in sample variety and scope, but provided some initial 

information regarding REIMS suitability for frass analysis. Using commercially available populations, 

which were kept in similar conditions, it was possible to separate frass sample sets according to species 

and diet of the crickets. Whether these separations are possible when frass is produced under variable 

environmental conditions and by a number of different species, is unknown and would require more 

complex experimental designs. Variability could be a significant challenge; the colour and consistency 

of frass pellets already varied under constant conditions. Faecal matter from wild individuals will exhibit 

further variance due to a wider range of possible food sources and potentially different gut 

microbiomes and digestion processes. However, these short exploratory experiments proved that 

insect frass can be analysed using REIMS and result in rich mass spectral profiles, potentially containing 

variance which could be used to identify and characterise the source insect. Moreover, interesting frass 

profiles were not only created by insects under controlled conditions, but also by wild insects in a 

natural environment. Although preliminary in scope, the quality of the mass spectra, and the degree of 

separation obtained with laboratory models, coupled with the informative spectra from ‘wild’ frass 

samples suggest that future exploration of this area would be promising. The sample sets collected and 

the models presented in this chapter were conducted to explore possibilities rather than aimed at 

actual application in the field. The capability to identify pests down to species level and detect their 

food sources might not be required or necessary in cases where food sources are already known or 

identification of the genus or insect class is sufficient to inform pest management plans. However, there 

are scenarios where detailed information is key to ensure appropriate and effective pest management 

actions. The success of predator-release programmes, as part of integrated pest management 

approaches, is based on the correct determination of specific prey-predator relationships, i.e. predator 

food sources. Alternatively, a sacrificial food source might be released or planted to avert damage from 

the main crop. It is also worth mentioning that not every species of an insect class poses a threat to 

specific crops and that insecticide resistances can develop faster in one species than another, which 

can have a big impact on insecticide application plans. While frass analysis through REIMS might not be 

of interest in every insect pest scenario, the in-depth information it could potentially provide could be 

beneficial or even essential to tackle pest management challenges. 
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Chapter 7: Concluding remarks 

 

7.1 Strengths and limitations of REIMS 

The results of the experiments performed over the course of this PhD project have demonstrated the 

capabilities of rapid evaporative ionisation mass spectrometry in entomology. Data acquired through 

REIMS and analysed through machine learning algorithms were able to inform recognition and 

classification of samples according to their species, sex, age, habitat and diet. The samples included 

immature specimens, adult insects and insect faecal matter and were treated and stored in various 

ways, mimicking the variety of field collected samples. Experimental designs progressed throughout 

the project, trying to step away from the controlled laboratory environment by purposefully introducing 

challenges into the sample sets and subsequently the REIMS data.  

The main goal of this project was to explore whether REIMS data obtained from insect samples are 

complex and rich enough in signals to be used for pattern recognition purposes and if yes, how many 

factors (species, sex, age..) are reflected in the variances of a data set. The number of characteristics 

which can seemingly be investigated through REIMS is impressive and strongly encourages the 

exploration of further factors. But while the clear separation of classes achieved in many experiments 

impresses, the limitation of the methodology needs to be highlighted as well.  

Being able to successfully separate classes is no guarantee that the underlying separation principles are 

robust enough to withstand variability and time. Building a model for future classification purposes, 

suitable for day-to-day identification work, is a difficult task, one which was only partially attempted 

due to its many challenges. Natural as well as introduced variety (e.g. through sample treatment and 

storage) have to be taken into account when aiming to build a ‘universal’ and robust model capable of 

highly accurate identifications. While it is crucial to incorporate variety, it can make identification of 

separating patterns more difficult. Unrelated, unwanted variances introduced by confounding factors 

and data bias pose significant challenges to machine learning approaches and also affect REIMS based 

classification.  

The most robust models built within this project are based on the locally sourced mosquito samples. 

These models contained more variance introduced by the samples themselves (through individual 

differences and sample treatment) and the instrumentation, as analysis was scattered over a long 

period of time. Despite these efforts to increase model robustness, identification accuracy dropped 

after several months, indicating that a portion of the used variance could be either influenced or 

created by the REIMS instrumentation. Further investigations are needed to identify the causes of these 
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problems as well as fitting solutions. However, high variability in the instrumentation and data 

acquisition could be one of REIMS disadvantages and will have to be considered in future studies. 

A simple solution could be the use of less principal components for model building, which would require 

finding the balance between unreliable variance and sufficient information to provide accurate 

identifications.  Other machine learning approaches, such as random forest, could produce more stable 

identification models and will have to be compared to PCA-LDA. Gredell et al. [300] compared different 

machine learning approaches used for REIMS data and highlighted that PCA-LDA might work well for 

data sets with large variances, but that other algorithms might be more successful with data containing 

less distinct variance. It is therefore possible that other algorithms, which have yet to be tested, can 

produce more accurate and potentially more stable identification models based on insect-derived 

REIMS data.   

The exploration of REIMS suitability for insect analysis is still at the beginning and will require more in-

depth studies to identify the method’s exact limitations and develop potential solutions. Nonetheless, 

the lack of sample preparation and ease of use makes REIMS a very promising tool for high-throughput 

insect analysis worthy of further studies and investigations. The field of insect identification has shown 

great interest in new techniques and methods in the past and is still searching for new approaches to 

address challenges in the field.  

REIMS could be a practical solution for routine insect monitoring, which can create large amounts of 

sample specimens. It could help simplify species identification, especially when encountering 

morphologically identical or highly similar specimens. Due to a changing climate and interconnected 

world insect species can move to new potential habitats. Some of these species will be considered as 

harmful and their movement therefore monitored as is the case for members of the Culex pipiens 

complex and Culex torrentium mosquitoes in Europe. Accurate species identification is also important 

when trying to control and reduce the transmission of insect-borne pathogens. Members of the 

Anopheles gambiae species complex are morphologically indistinguishable, but exhibit different 

biological and ecological behaviours and can be impacted differently by vector control actions such as 

the use of insecticides. Determining the age structure of mosquito populations is another longstanding 

challenge in the field of vector control. REIMS could allow accurate age-grading of wild-caught 

mosquitoes and therefore observation of changes in mortality rate due to vector control actions. The 

methods high-throughput nature could help monitor routine vector control operations and their 

success in the field. The experiments conducted so far have proven that REIMS could potentially be 

used for any of these tasks in the future. 
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7.2 Key requirements for successful REIMS deployment 

During the final year of my PhD I have given presentations to two groups specialised on vector control 

solutions (funded by IVCC and the Bill and Melinda Gates Foundation), where I presented our results 

obtained through REIMS. The Innovative Vector Control Consortium (IVCC, https://www.ivcc.com/) is a 

product development partnership based in Liverpool, which works on the development of improved 

insecticide formulations while also exploring new vector control solutions to prevent the transmission 

of insect-borne diseases. The second group was the Malaria team at the Bill and Melinda Gates 

Foundation (https://www.gatesfoundation.org/).  

These talks provided the opportunity to explore possible deployment of REIMS in disease-related 

entomology, the related requirements and possible challenges. While the idea of REIMS for insect 

analysis was met with much enthusiasm, a number of challenges relating to field usage were raised, 

providing a much needed perspective on the requirements of applying a methodology in the field for 

routine purposes.  

The first point raised was the sample throughput. The ability to survey large numbers of samples is 

essential.  Many other methodologies are limited in the number of samples that can be processed daily; 

that includes most techniques with a protracted analytical process, such as LC-MS based analysis of 

proteins or cuticular hydrocarbon analysis using GC-MS[191,202]. Also, identification through 

morphological examination and dissection can be time consuming; the skill and concentration needed 

will limit the number of samples a single technician can process [363]. Other methods have developed 

ways of processing samples in parallel to achieve high-throughput, such as immunological essays which 

allow processing of hundreds of samples per day [95,175]. However, also the task of sample preparation 

needs to be considered; many methods require several preparation steps, which not only increases 

difficulty but also material requirements. High processing speed is one of REIMS biggest advantages as: 

 it takes only a few seconds to analyse a specimen and receive an identification.  

 samples are analysed in their natural state and do not require any preparation prior to analysis 

 REIMS can work with samples that are physically damaged  

 REIMS may be able to work with archival or long term stored specimens. 

Equally as important was the need for simplicity of the application and the skills required to handle the 

equipment. While maintenance of a mass spectrometer requires specialised abilities, the process of 

sample analysis through the diathermy tools is very simple and requires a minimum of training. A 

solution to this problem could be an appropriate maintenance contract or a limited number of people 

getting trained to care for the instrumentation.  
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One major discussion point was the cost of instrumentation. While the set-up used during this project 

was based on an expensive, high-resolution mass spectrometer, the REIMS source could potentially be 

combined with a much simpler instrument with less resolution. The REIMS source could likely be 

deployed on other mass spectrometers from the same manufacturer; the Waters systems are designed 

to ensure that all their ionisation sources and instruments are compatible. If the goal were to make 

REIMS a deployable technique, fitting the source onto a simpler instrumentation, such as a single 

quadrupole mass spectrometer would be a vital step. This would not only reduce the costs, but also 

simplify the maintenance and laboratory set-up.  

High-resolution equipment is important for in-depth analysis and molecule identification, but may not 

be required for pattern recognition approaches. In the process of model building the signals in the raw 

REIMS data are binned, which artificially reduces the resolution of the data. All models that were 

presented in this thesis were built with 0.1 m/z wide bins, however, separation of classes can potentially 

be achieved with much wider bins.  

 

Figure 7.1: Separation of mosquito species and age classes using a bin size of 1 m/z 

Models separating age groups (1 day, 5-6 days, 14-15 days; 180 samples each) and species 

classes (Ngusso, Kisumu, Moz; 180 samples each) were re-built in Offline Model Builder using 

a bin size of 1 m/z. Models were cross-validated in OMB (‘Leave 20 % out’, standard deviation 

5). 
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To confirm this, two Anopheles models were built with 1 m/z wide bins (Figure 7.1). Despite reducing 

the number of variables from 11,500 to 1,150, both models reached very high accuracies. Whether this 

could be replicated with a mass spectrometer with lower resolution has yet to be tested, but the minor 

impact of reduction of data complexity on classification accuracy is promising. 

One technical solution for researchers in the field would be a small, portable mass spectrometer that 

could be taken into the field. Realistically, this would be difficult to accomplish; even small and simple 

mass spectrometers need a power source sufficient to support vacuum pumps and high internal 

voltages. Waters has already succeeded in running mass spectrometers in unlikely places, e.g. the 

Acquity QDa on Ben Nevis [364], and many other researchers are aiming to establish portable or 

miniature mass spectrometers [365–368]. Simpler and more affordable instrumentation stationed in 

local laboratories could thus provide an easier solution. 

However, there are also other factors to consider, such as sensitivity and susceptibility to contamination. 

Would a simpler set-up with less capabilities (e.g. focussing lenses) to filter molecules accumulate dirt 

faster and how difficult would it be to clean the system regularly? 

The other option would be to perform sample analysis and identification in a centralised location. 

Samples would have to be stored accordingly and shipped to the location, which would likely not occur 

daily. Therefore, models would have to be adapted to ensure they can identify stored samples. 

However, the laboratory set-up could be of higher quality and the instrumentation more advanced. 

Until it is established whether a simpler REIMS instrumentation is possible, future experiments will have 

to be carried out from a central facility. 

Other factors, such as sample storage, shipping and the requirement for biomass, were also raised by 

the IVCC group. Storage has been included as a factor in a number of experiments, and the results 

herein show that it may be possible to accommodate this variable. One unknown that remains to be 

explored is compatability of REIMS with other identification methods. This could entail analysing only a 

part of the insect by REIMS, while using the rest for further molecular identification methods. So far, 

REIMS has only been combined with DNA analysis, the latter requires a few legs and does not 

compromise REIMS analysis. However, methods such as MIRS or NIRS could precede retention of a 

sample for DNA analysis. REIMS might even be compatible with prior hexane extraction for CHC 

analysis, as this is designed to remove superficial surface hydrocarbons, and the insect is visually 

unchanged after extraction. 
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7.3 Future prospects 

The experiments performed and factors addressed during this project have helped explore REIMS 

capabilities, as well as its weaknesses and limitations, and provide a good foundation for future work. 

There is much that still needs to be investigated, most importantly the effect that biological variance, 

implicit in studies with wild insects, could have on classification accuracy. These variables include food 

sources, number of egg laying cycles, endosymbionts, blood feeding and the effect of environmental 

conditions in general. Blood meals and parasite infections are expected to have an especially strong 

effect on the physiology of the insect and therefore possibly the REIMS signature. It is, however, 

unknown whether such changes would affect existing identification models, as the signal pattern used 

for identification might not be affected. Furthermore, models could be restricted to certain regions and 

locations due to differences in insect populations. There are many factors which need to be included 

or explored step by step to further test and evaluate REIMS suitability for insect identification in the 

field. However, there are also many more exciting research questions to be asked: Can REIMS detect 

insecticide resistance levels to help inform vector control actions? Could it detect pathogen infections 

as well as identify the pathogen? And what about detection of pest species or identifying insect food 

sources? 

REIMS has many strengths and, like many other ambient techniques, has shown great potential to be 

used in a variety of fields. However, as an identification method it still has hurdles to overcome. In-

depth investigations, long-term stress tests and creative problem solving will be necessary to advance 

REIMS and establish it as a fast and reliable identification tool.     

It is gratifying that the IVCC has demonstrated sufficient interest in this project and my data thus far, 

to invite a full funding proposal with colleagues in the Liverpool School of Tropical Medicine. I will be 

associated with the project, which has the following primary aims: 

 Testing the separation of age groups with diverse specimens, which have been fed with or 

without blood, or have finished different numbers of gonotrophic cycles (parous, nulliparous). 

REIMS will be directly compared to the “gold standard” of age grading, which is dissection and 

examination of the female reproductive organs, which can provide information as to whether 

a female has laid eggs or not (parous or nulliparous) and the number of past egg laying cycles. 

 Age grading of specimens, which will be collected from the wild (different locations in Burkina 

Faso) and raised in insectaries. Identification will be attempted using models based on 

laboratory raised specimens. 

 Identification of age level differences using field-collected adult specimens which have 

emerged in the wild/ under natural circumstances. 
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 Discussions to place the REIMS source on simpler, deployable instrumentation. 

 Development of protocols for large scale age grading 

 

These experiments provide significant challenges, but are vital next steps if REIMS is to be deployable 

in real-world field studies. The outcomes will determine future plans and further development of 

REIMS as an entomological tool. 
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There is increasing emphasis on the use of new analytical approaches in
subject analysis and classification, particularly in respect to minimal
sample preparation. Here, we demonstrate that rapid evaporative ionization
mass spectrometry (REIMS), a method that captures metabolite mass spectra
after rapid combustive degradation of an intact biological specimen, gener-
ates informative mass spectra from several arthropods, and more specifically,
is capable of discerning differences between species and sex of several adult
Drosophila species. A model including five Drosophila species, built using
pattern recognition, achieves high correct classification rates (over 90%)
using test datasets and is able to resolve closely related species. The ease
of discrimination of male and female specimens also demonstrates that
sex-specific differences reside in the REIMS metabolite patterns, whether
analysed across all five species or specifically for D. melanogaster. Further,
the same approach can correctly discriminate and assign Drosophila species
at the larval stage, where these are morphologically highly similar or
identical. REIMS offers a novel approach to insect typing and analysis,
requiring a few seconds of data acquisition per sample and has considerable
potential as a new tool for the field biologist.
1. Background
Insect identification and monitoring are essential to a number of diverse fields
and settings, seeking to identify and study insect populations to learn more
about their place in ecosystems as well as their impact on the environment
and other species [1]. Long-term biodiversity and environmental impact studies
[2,3] tend to observe and log the changes and make-up of insect populations.
In other circumstances, such as biological control in pest management, main-
taining the population of certain species is desirable or even necessary to
sustain ecosystem balance [4]. Conversely, many arthropod species can cause
considerable harm, economically as well as environmentally, and pose a risk
to human health, requiring population control or reduction. Every year insect
pests cause massive economic damage in agriculture and forestry [5,6], either
by directly attacking important crops or through the transmission of diseases
[7–11]. Biosecurity, which aims at curtailing risk through ‘biological harm’
[12], relies largely on rapid and accurate species identification as it affects risk
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assessments, the handling of imported goods and plans for
future surveillance or eradication [13,14]. Correct identification
likewise influences biological pest control strategies, such as
the use of insect pheromones or prey/predator interactions,
as their success is based on species-specific mechanisms
[15–18]. In countries and regions where insects are a public
health concern (for example, mosquitoes), specimens are
routinely trapped for identification and other analytical pur-
poses. Known vectors for diseases like malaria, dengue fever
or Zika are monitored to inform authorities and the general
public about threat levels and to predict disease transmission.

The long-established approach to identifying specimens
is by morphological taxonomy, which uses taxonomic keys
and requires or at least greatly benefits from experience.
However, far more trained taxonomic experts are needed
for diagnostics than are available to cover the range of
programmes where species identification plays a pivotal role
[19–22]. Additionally, not all insect specimens can be readily
identified based on morphological characteristics. Existing
morpho-taxonomic keys display deficiencies and limitations,
especiallywhen it comes tomorphologically indistinguishable
species, immature life stages, cryptic species or damaged
specimens [23–25].

Increasingly,molecular analytical tools have been developed
and applied to aid morphological examination and expand
capabilities. These include cuticular hydrocarbon analysis [26],
immunological [27] or protein-based assays [28] as well as
mass spectrometry-based applications such as matrix-assisted
laser desorption ionization mass spectrometry (MALDI-MS)
[29]. However, DNA barcoding is often the method of choice,
as it can handle a variety of sample conditions, developmental
stages and cover a large number of species and taxa [30–32].
In routine identification or monitoring actions, identifying
unknowns is not the only challenge. The large number of
samples being collected requires fast processing, which has led
to a number of automation efforts, most recently supported by
machine learning and neural network algorithms [33–36].

New, easy-to-use high throughput tools capable of hand-
ling a variety of samples in vast amounts are still sought after
and could provide much-needed support in the wide array of
fields requiring rapid insect identification. Here, we introduce
the use of rapid evaporative ionization mass spectrometry
(REIMS) as an addition to the insect identification armamen-
tarium. REIMS uses an ambient ionization source, specifically
designed to analyse aerosols resulting from thermal dis-
integration caused by the passage of electricity through the
sample of interest. The electric current is applied through dia-
thermy tools and the resulting aerosol evacuated through a
tube to the source and subsequently the mass spectrometer.
Identification of single molecules from the acquired mass
spectra is rarely the objective; instead pattern recognition is
applied to identify unique mass patterns that facilitate classi-
fication and consequently sample identification. REIMS is a
novel ionization technique, which has been developed to dis-
tinguish cancerous from healthy tissue during cancer surgery
(iKnife) [37,38], but has found application in a variety of
fields from food security and adulteration detection [39,40]
to identification and characterization of bacterial strains
[41–43] and, most recently, to recover information from
rodent and human faecal matter [44,45].

A mixture of wild-trapped arthropod species and five
laboratory-raised Drosophila species were used for a proof-
of-principle study to investigate REIMS suitability for insect
analysis and gauge its potential as an identification device.
Our results demonstrate the techniques ability to distinguish
species as well as the sex of specimens using models devel-
oped from the uninterpreted mass spectra that are derived
from aerosol analysis.
2. Material and methods
2.1. Laboratory-raised Drosophila
For the laboratory-derived samples, Drosophila melanogaster
(Dahomey), D. simulans, D. subobscura, D. bifasciata, D. pseu-
doobscura and D. hydei were reared in 250 ml glass bottles. All
species were reared on standard ASG food (for 1 l of water:
10 g of agar, 20 g of yeast, 85 g of sugar, 60 g of cornmeal and
25ml of nipagin (100 g l−1) except for D. hydei which was
reared on banana food (for 1 l of water: 15 g agar, 30 g yeast,
150 g frozen bananas, 50 g blackstrap molasses, 30 g malt,
25 ml nipagin (100 g l−1). Species were reared at the optimal
temperature according to their natural habitats; 25°C forD.mel-
anogaster, D. simulans and D. hydei, 22°C for D. pseudoobscura,
and 18°C for D. bifasciata and D. subobscura with a 12 L : 12 D
cycle. Stocks were transferred to new food weekly, with
adults replaced every four to five weeks. To represent what
would realistically be collected in the wild, individuals for
experiments were chosen at random, irrespective of age or
virginity. Sex was determined under CO2 anaesthesia.

Species identity was checked using the mitochondrial
universal barcode gene cytochrome oxidase subunit 1 (COI).
DNA was extracted from three male flies with DNeasy kits
(Qiagen) following theQiagen invertebrate protocol.A sequence
from COI was PCR amplified using the primers C1-J-1718
(50–GGAGGATTTGGAAATTGATTAGT–30) and C1-N-2191
(50–CCCGGTAAAATTAAAATATAAACTTC–30) using Hot-
Start Taq (Promega) with (5 min initial heating, 30 cycles at
95°C for 30 s, 56 for 30 s and 72°C for 30, with a final elongation
step of 72°C for 120 s). The products of these PCRs were visual-
ized using SYBRSafe-stained gel electrophoresis. Products
were then cleaned up using Exonuclease I and Shrimp Alkaline
Phosphatase incubation using the recommended BioLine
protocol. BigDye-based sequence reactions were carried out
with both forward and reverse primers, followed by NaOH
and ethanol clean-up and precipitation. Sequences were then
analysed with an ABi 3500XL Genetic Analyser. Forward and
reverse sequences for each species were aligned to derive a con-
sensus sequence. The sequences were assessed using publicly
available CO1 sequences from the same species available on
the BOLD database.

2.2. Sample specimen collection and storage
For the initial study, a few individuals of five different arthro-
pod species were collected from the University Leahurst
campus, killed by freezing and stored at −20°C for 6 days.
A total of 800 specimens of the Drosophila species D. melanoga-
ster,D. subobscura,D. pseudoobscura,D. bifasciata andD. simulans
were selected for REIMS analysis. The conspecifics of each
species were separated into male and female subgroups to
facilitate species as well as sex separation experiments. All
specimens had been raised to their adult stage; further age
differences as well as reproductive state were not taken into
account. Specimens were directly transferred to fresh container
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vials and killed by freezing and stored at−20°C for 3–6 days, as
samples were analysed over several days. Approximately
30 min prior to REIMS analysis, specimens were returned to
room temperature. In a separate experiment, 3rd instar
wandering stage larvae of D. melanogaster and D. hydei were
collected, frozen, stored and returned to room temperature
for REIMS as per the adults.

2.3. Rapid evaporative ionization mass spectrometry
analysis

Samples were analysed via a rapid evaporative source (REIMS,
Waters, Wilmslow, UK) attached to a Synapt G2Si instru-
ment ion mobility equipped quadrupole time of flight mass
spectrometer (Waters, UK). The specimenswere burned/evap-
orated using a monopolar electrosurgical pencil (Erbe Medical
UK Ltd, Leeds), whichwas connected to a VIO 50 C electrosur-
gical generator, providing electrical current, and to the source
inlet via plastic tubing. A black rubber mat, placed underneath
the samples, acted as a counter electrode and facilitated the
flow of electric current. To avoid inhalation of fumes during
analysis, the burning process was performed within a fume
box (Air Science). Insects were analysed using a 40 W setting
on the generator and the cutting option of the pencil. To
increase conductivity and protect the counter electrode
during analysis, specimens were placed on a piece of glass
microfibre paper (GFP, GE Healthcare Whatman) on top of a
wet paper surface (moistened with MilliQ water).

While burning the entire biomass of single specimens, the
aerosol was aspirated through the pencil and the attached
3 m long tubing into the REIMS source, using a nitrogen
powered venturi valve on the source inlet. To increase the
aerosol capture of Drosophila species, a wide bore piece of
plastic tubing was additionally placed over the tip of the elec-
trosurgical pencil. A whistle incorporated into the Venturi
tube guided the aerosol as well as a lock mass solution of
leucine enkephalin (Waters, UK) in propan-2-ol (CHROMA-
SOLV, Honeywell Riedel-de-Haën) into the source. This also
filters the incoming aerosol to prevent larger particles from
entering the inlet capillary. Inside the source, the ionized par-
ticles were declustered through contact with a heated
impactor (Kanthal metal coil at 900°C).

Acquisition of the mass spectra was performed in negative
ion mode at a rate of 1 scan per second over a mass/charge
range of m/z 50–1200. The sample cone and heater bias were
set to 60 V. Instrument calibration was performed daily in res-
olutionmode using a 0.5 mMsolution of sodium formate (flow
rate 50 µl min−1). The lockmass solution (0.4 µg ml−1)was con-
tinuously introduced during sample analysis at a flow rate of
either 50 µl min−1, used for the initial arthropod sample set,
or 30 µl min−1, used for all Drosophila samples. For the first
arthropod study, specimens were analysed in species order.
All 800 Drosophila samples, as well as the Drosophila larvae,
however, were analysed in a random order over 3 days.

2.4. Data analysis
The mass spectra were imported into the model building soft-
ware packages; Offline Model Builder (OMB-1.1.28; Waters
Research Centre, Hungary) and LiveID (Waters, UK), which
allow separation of sample groups (classifications) based on
principal component analysis (PCA) and linear discriminant
analysis (LDA). Data were additionally analysed using R
(version 3.6.1) [46] and the R Studio environment [47], by
PCA and LDA, as well as random forest analysis.

For Offline Model Builder, the burn events of the analysed
specimens were defined individually, summing up the MS
scans within each chosen area. The option to create only a
single burn event per sample was selected. Other pre-proces-
sing parameters included the intensity threshold, at 4 × 105,
spectra correction using the lock mass (leucine enkephalin,
m/z 554.26) and background subtraction. To reduce the com-
plexity of the mass spectral data, all acquired data points
from m/z 50 to 1200 were combined into mass bins, each 0.1
m/z units wide. The subsequent model calculation was
based on PCA-LDA. For LiveID, the data files were pre-
processed using Progenesis Bridge (part of MassLynx
software, Waters, UK): mass spectra were lock mass cor-
rected, the background-subtracted and the scans summed
and averaged to provide uniform burn events. This prevented
incorrect splitting of burn events during the automated
recognition in LiveID. Again, a mass range of m/z 50–1200
and a bin size of 0.1 were used to build models based on
PCA and LDA.

The models built by Offline Model Builder and LiveID
were cross-validated (leaving out 20% of data, for outliers
the standard deviation multiplier was set to 5) to obtain the
correct classification rate, as well as the number of failures
and outliers and a matrix displaying the number of correctly
and incorrectly identified samples of each classification. To
additionally test obtained separation results, sample classifi-
cations were randomized and re-analysed, expecting a
random distribution of samples and failed separation.

For further analysis with R, the data matrix of each model
was exported as a .csv file fromOfflineModel Builder, contain-
ing information about classification and the normalised
intensities for every mass bin. The matrices were used to per-
form random forest analysis in R using the package
‘randomForest’ [48]. The datasets were randomly split into a
training set (approx. 70% of the data) and a test set (approx.
30% of the data). Random forest results are displayed in the
form of confusion matrices. Trees were conducted 10 times
for every model (using a different, randomly selected subset
of samples for training and testing every time); the numbers
of correctly identified and confused samples were turned
into percentages and averaged. The optimal number of
trees and mtry value were determined during the first
analysis of each model and kept the same for each repeated
analysis. The numbers of trees and mtry values used for
random forest analysis of the species and sex datasets are
compiled in electronic supplementary material, figure S4.
A second R package, called ‘randomForestExplainer’ [49],
was used to identify the most informative bins/ions that
were driving class separation. For the sex separation results,
PCA-LDA was also performed with R and plots created
using ‘ggplot2’ [50].

All raw data files are freely available in the MetaboLights
database with the accession number MTBLS1878 [51].
3. Results and discussion
REIMS is a destructive method, in which materials are com-
busted by a diathermy current, and the aerosol subsequently
ionized to generate a mass spectrum. To test whether rapid
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evaporative ionization can generate informative mass spectra
from insect samples, we conducted some initial investigations
on five arthropods, the garden spider (Araneidae), the nettle
aphid (Aphididae), the common wood louse (Oniscidae), a
springtail (Collembola) and a damsel bug (Nabidae). For
these samples, relatively small numbers of individualswere col-
lected in the field and analysed. However, each species yielded
detailed REIMSmass spectra, and the spectrawere visually dis-
tinct from each other. Even with the caveat of small numbers,
the five species were readily resolved by PCA and LDA of the
ensuing mass spectra, clustering members of one species
together and convincingly resolving different species (figure 1).

Having established proof-of-concept data that arthropods
were able to yield detailed REIMS spectra that could readily
be used to discriminate species, we explored the subtlety of
the method in a more closely focused study, based on a
higher number of individuals from different laboratory-reared
Drosophila species. Adult male and female D. melanogaster,
D. subobscura, D. pseudoobscura, D. bifasciata and D. simulans
were killed by freezing and stored at -20°C for several days
before being analysed in a randomized order. The analysis
was conducted in a similar fashion to the arthropods: the
individuals were placed on wet glass fibre paper and aeroso-
lized using an electrosurgical pen with knife attachment at a
power level of 40 W. However, an additional wide piece of
tubing (figure 2a) was used to maximize aerosol collection
and ensure comparable aerosol aspiration among samples.
The complete set-up is depicted in electronic supplementary
material, figure S1. Analysis of a single fly (dry weight
approx. 200 µg, bionumbers.hms.harvard.edu) generated suffi-
cient aerosol to create a strong REIMS signal.
Replicated analysis of specimens, even from the same
species and sex, can lead to the elaboration of different
signal profiles over time (burn events) when expressed as a
time-dependent total ion current (TIC) trace (figure 2b); this
is because of variability in the manual position of a relatively
large REIMS electrode on a small subject (figure 2a). How-
ever, the mass spectra, summed across the burn events,
yielded consistent mass spectra (figure 2c) and data derived
from different individuals were readily combined into one
group or classification cluster. The first data processing step
reduces the complexity of the mass spectral data by binning
into 0.1 m/z wide windows. Registration and alignment of
individual mass spectra are achieved by locking them, in a
post-acquisition step, to the used ‘lock mass’ (leu-enkephalin,
at m/z 554.26), analysed continuously throughout sample
analysis. The m/z data, aligned and binned, facilitated
subsequent analysis and model building through pattern rec-
ognition algorithms, including PCA and LDA as well as
random forest classification.

The mass spectra originating from different Drosophila
species exhibited an overall similarity (figure 3a), reducing
the possibility of species-specific ions that would allow separ-
ation and identification. Due to the complexity and similarity
of the REIMS spectra, data analysis was based on pattern rec-
ognition algorithms, which take into account the differences
in overall mass spectral patterns rather than focus on differ-
ences in a single ion. This approach has the advantage that
small differences in the abundance of specific ions between
two groups can still be useful for separation purposes when
combined with further differences elsewhere in the mass
spectrum.
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The mass spectra obtained from five species were
imported to model building software packages LiveID and
Offline Model Builder (both Waters) or divided into the five
species classifications. The settings for data processing and
model building used in each software are specified in the
Methods section. The models, whether from LiveID and
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number of samples per species used for testing the model are listed on the side (n = x). The overall model accuracy was 95 ± 0.6% (mean ± SEM). For the 10 individual
random forests, prediction accuracies for each species are plotted in b (median, 25th and 75th percentiles, all data shown). Abbreviations are D. mel: Drosophila
melanogaster, D. sub: Drosophila subobscura, D. pse: Drosophila pseudoobscura, D. bif: Drosophila bifasciata and D. sim: Drosophila simulans.
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Offline Model Builder, yielded successful separation of the
five Drosophila species using PCA and LDA. (Figure 3b)

The separation could be optimized by the number of prin-
cipal components (PCs) chosen for LDA; more PCs means
added information, but also variance is incorporated into
the model. The models were adjusted individually to find
the optimal number of PCs: 100 PCs were used in Offline
Model Builder (maximum number), 500 PCs in LiveID and
R. Separation was achieved with 100 PCs, additional variance
(PCs) only served the purpose of fine tuning with modest
added gains (example in electronic supplementary material,
figure S2).

The separation between the classification groups in the
models is uneven, placing D. bifasciata, D. pseudoobscura and
D. subobscura closer but separated from a second group com-
prising D. melanogaster and D. simulans. This separation into
groups of three and two species is especially pronounced in
the PCA-LDA model created in R (figure 3c), due largely to
differences in linear discriminant 1 which has the largest dis-
criminatory power in the dataset (0.52). The results can be
correlated with the phylogeny of the five species (figure 3d ),
which demonstrates similar clustering. Within each group,
the member species are also differentiated. The separation
of D. melanogaster and D. simulans highlights the ability of
REIMS to distinguish even closely related species that are
phenotypically distinguishable only by examining male gen-
italia. As females of D. melanogaster and D. simulans cannot
reliably be distinguished phenotypically [52], a separate
model was built only using the females of both species
(electronic supplementary material, figure S3). The variance
in the lipid/metabolite profile is greater between
D. melanogaster and D. simulans than between the other
three species (D. subobscura, D. bifasciata and D. pseudoobscura)
as they can be resolved by linear discriminant 2 (0.24; figure 3c
centre), while the larger group is resolved by linear
discriminants 3 (0.15) and 4 (0.1) (figure 3ciii).
In addition to PCA and LDA, the datasets were analysed
using random forest classification. Here, the data were split
before each analysis; 70% being used for model building,
the remaining 30%were used to test the classification perform-
ance. For each model, random forest analysis was repeated 10
times, leading to different randomly selected datasets for train-
ing and testing every time. The number of trees used for forest
calculationwas chosen by comparing every possible number of
trees between 1 and 2000 and their respective error rates (elec-
tronic supplementary material, figure S4). The number of trees
used was the same for every repeated analysis. For species sep-
aration, the number of trees was set to 1500 and each forest was
built and tested using the 70%model/30% test data. The classi-
fication performance is displayed as a confusion matrix of
identification for all species (figure 4).

For every species, a correct classification rate
(mean % ± SEM) of 91 ± 1.3 or higher was achieved, the over-
all model scored an accuracy of 95 ± 0.6. Thus, on average,
95 specimens out of 100 can be assigned to the correct species
by employing REIMS data for model building, using only a
few seconds of acquisition time for each insect. In the case
of D. simulans, it is unlikely that samples would be mistaken
for the closely related D. melanogaster, showing no diffi-
culties in distinguishing even the females, despite their
near-identical morphology.

Following random forest classification, another R package,
randomForestExplainer [49], was used to extract information
about the variables that contributed to class separation. In a
top 10 approach, only variables that were registered as impor-
tant in all repeated random forest runs were included.
Additionally, the 13C isotopomers of certain variables were
removed, after testing the pairs in question for correlation
(electronic supplementary material, figure S5). To visualize
how and to what extent the variables add to the separation of
the five Drosophila species, the bin intensities were plotted
(figure 5). The resulting intensity distribution of the top five
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variables allows interpretation of the relative molecule
abundances and their impact on the classifying model.

The five most important variables for species resolution
cover a fairly wide mass range, starting with the bin at m/z
225.2 ranging to the bin atm/z 747.5. The formermight represent
a fatty acid,whereas the latter is likely to be a phospholipid [37].
The ion bin at m/z 225.2 seems to define a major difference
between the D. melanogaster/D. simulans group and the other
species, which was already observed in the PCA-LDA models.
The higher mass range bins, m/z 720.5 and m/z 747.5, display
intensity variances that contribute to the discrimination of
D. melanogaster and D. simulans. To distinguish D. subobscura,
D. bifasciata and D. pseudoobscura, however, a combination of
several ions with smaller variance is needed.

To confirm that the model separated species based on real
rather than chance differences (given the large number of ion
bins), the model was re-built using randomly assigned classifi-
cation of each specimen to species. As expected, the model
was incapable of separating species when spectra were ran-
domly assigned. A comparison of the species models (built
using the Offline Model Builder software), with correct and
with randomly assigned classifications is presented in electronic
supplementary material, figure S6. The results of the cross-vali-
dation performed after PCA-LDA (details are listed in the
methods section) using Offline Model Builder and LiveID soft-
ware are summarized in electronic supplementary material,
figure S7.

3.1. Sex separation
The acquired REIMS data were used not only to discriminate
species but were also investigated for its potential to
distinguish sex. The sample analysis randomization was
blind to species and to sex. Initially only D. melanogaster speci-
menswere used formodel building, to test if the REIMS spectra
exhibited sex-specific variance of sufficient magnitude for sep-
aration (figure 6a,b; upper half). The average accuracy of the
random forest classification (10 repeats) of males and females
of D. melanogaster is 99 ± 0.4% (mean ± SEM), with only 2% of
females misclassified as males and no males misclassified as
females. PCA-LDA (using 80 PCs) yields a clear separation of
male and female conspecifics, thus supports the existence of
sex-specific variance in the REIMS spectra.

To further explore the ability to resolve sexes, independent
of the species attribute, males and females of all five Drosophila
specieswere combined formodel building in a subsequent step.
A resolving pattern, true for every species, reached 97 ± 0.5
(mean%± SEM, n = 10) accuracy in random forest analysis,
only 2% lower than the accuracy obtained with a single
species. Both types of analysis, random forest and PCA-LDA,
agree that only a few samples are confused in the classification
process. (Figure 6c,d) Subsequently, samples were randomly
assigned to the male or female category, anticipating a large
overlap between the two classes in a repeated classification
attempt. As expected, the classifications were substantially
worse. A comparison of PCA-LDA separation with correctly
and randomly assigned classifications for the D. melanogaster
model, as well as for the model including all species, is presen-
ted in the electronic supplementary material, figures S8 and S9.
In addition, both sex separation models were built with a
lower number of PCs, proving that the numbers of PCs used
in figure 6 were maximized for optimization, but not essential
to achieve separation (electronic supplementary material,
figures S10 and S11).
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3.2. Species separation using Drosophila larvae
After successfully separating adult specimens of highly simi-
lar morphology (females of D. melanogaster and D. simulans),
REIMS capabilities were further tested using a small set of
Drosophila larvae. Larval Drosophila of closely related species
are typically very difficult to identify, requiring skilled micro-
dissection and morphological analysis under a microscope
[53], with many species pairs being impossible to distinguish
until adulthood [54]. For this preliminary experiment, the
larvae of D. melanogaster and D. hydei, all in the 3rd instar
stage, were analysed by the same procedures and settings
as adult specimens. The REIMS spectra resulting from the
two species in their larval stage are highly similar, but inter-
estingly, exhibit a mass spectrum that is different from
specimens in their mature state. Even if larvae and adult
are derived from the same species, shown here for D. melano-
gaster, there is a substantial difference in the spectrum in the
higher mass region (m/z 600–900; figure 7a)

Despite the observation that the mass spectra of the
D. melanogaster and D. hydei larvae were strongly alike, the
m/z bin data matrices were used to perform PCA-LDA and
random forest analysis to explore species-related variance of
larval samples. Despite the small number of samples, both
types of analysis located sufficient differences in the mass
patterns to provide a clear separation between the two
species (figure 7b,d ). To gauge the model’s performance,
cross-validation was carried out within Offline Model Builder
(leaving 20% of data out). The results, including a confusion
matrix, outlier numbers, as well as the correct classification
rate, are presented in figure 7c. Random classification assign-
ment, by contrast, led to considerable overlap between the
two species (electronic supplementary material, figure S12).

These results suggest that REIMS could be used to identify
insects, whether they are mature or in their immature develop-
mental stages (photos of Drosophila adults in electronic
supplementary material, figure S13). Even in cases of similar
or near-identical morphology, a number of differences can be
found in the REIMS profiles. Despite those differences being
small and variable, pattern recognition across numerous
differences facilitated consistent classification, and hence the
separation of species and sex in this study. Without the need
for sample preparation, entomological expertize or perfectly
preserved specimens, REIMSwith pre-built pattern recognition
models could allow identification within seconds, offering a
significant time advantage over other methods. Further investi-
gation of the method’s suitability and limitations, focused on
identification and characterization of insects, is of course
required. Factors such as feed, age of the specimens and storage
conditions or length of storage can be expected to impact the
pattern-based models to various degrees. In order to build a
robust and reliable identification system, capable of identifying
a wide array of specimen and independent of their inherent
properties, these variables will need to be taken into account.
The speed of data acquisition and the subtlety of discrimination
are promising and advocate the exploration of REIMS as a new
insect identification tool.
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