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quasi-discrete and topological paths. Finally, we prove that for general neighbourhood spaces, the17

logic does not have the finite model property, either for quasi-discrete or topological paths.18
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1 Introduction26

The safe and correct operation of systems in a wide range of application domains is increasingly27

dependent on spatial reasoning to evaluate the structure of space and how space might evolve28

over time. Examples include target counting in wireless sensor networks [19, 2], cyber-29

physical systems [22], transport systems [9], structural analysis [17], and medical imaging [6].30

Neighbourood spaces, also known as closure or pretopological spaces [23, 14], have emerged as31

a popular formalism in these scenarios due to their ability to natively represent topological32

spaces but also simple graphs and simple directed graphs. In this paper, we focus on SLCS,33

a modal logic introduced by Ciancia et al. [11] for the specification and verification of spatial34

properties over neighbourhood spaces. This logic features a closure modality N (near) and35

path modalities R (reachable from) and P (propagates to). While model checking algorithms36

and software support have been developed, the model theory of this logic is still not well37

understood. In particular, it is not known what kind of spaces can be expressed by various38

classes of formulas. Answering this question is complicated by how the near modality interacts39

with the path modalities which is substantially different from the modality interactions in40

discrete modal logic.41

We make the following research contributions:42

1. we show that SLCS does not admit finite models on general neighbourhood spaces;43
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2. we prove that there are formulas that are only satisfiable on infinite models even when re-44

stricting to either quasi-discrete paths (similar to paths on graphs) or standard topological45

paths;46

3. we define a finite model construction using filtration arguments for models with quasi-47

discrete underlying spaces and quasi-discrete or topological paths.48

Related Work49

The analysis of SLCS is increasingly gaining traction both in Theoretical Computer Science50

and Topology.51

In recent work [18], we presented bisimulations for SLCS formulas using path operators52

that show the equivalence of formulas between bisimilar models. Ciancia et al. [12] used co-53

algebraic methods to present bisimulations over quasi-discrete models that are well-matched54

(i.e., they characterise the class of quasi-discrete models), but did not extend this result to55

arbitrary spaces. Importantly, the authors restricted the set of SLCS formulas to omit path56

operators. Castelnovo and Miculan [7] defined a categorical semantics for various fragments57

of SLCS using hyperdoctrines with paths and investigated how to extend the logic to other58

spaces with closure operators, such as probabilistic automata.59

Rieser [20] used the unit interval to define and analyse a homotopy theory for closure60

spaces, that is, how paths can be transformed into one another. Bubenik and Milićević [5]61

further investigated how different generalisations of the unit interval yield different path62

objects. None of these definitions is immediately applicable to SLCS paths, which are much63

more concrete.64

2 Neighbourhood Spaces65

In this section we recall the notions of neighbourhood spaces and some related results from66

general topology we will use in this paper. Our main reference is [23]. For additional general67

results on these topics and for the proofs of the results reported here, we refer the reader to68

this source.69

▶ Definition 1 (Filter). Given a set X, a filter F on X is a subset of P(X), such that F is70

closed under intersections, whenever Y ∈ F and Y ⊆ Z, then also Z ∈ F , and finally ∅ ̸∈ F .71

▶ Definition 2 (Neighbourhood Space). Let X be a set, and let η : X → P(P(X)) be a function72

from X to the set of filters on it, where every η(x) is such that x ∈
⋂

N∈η(x) N . We call η a73

neighbourhood system on X, and X = (X, η) a neighbourhood space. For every set A ⊆ X,74

we have the (unique) interior and closure operators defined as follows.75

Iη(A) = {x ∈ A | A ∈ η(x)} Cη(A) = {x ∈ X | ∀N ∈ η(x) : A ∩N ̸= ∅}76
77

An element x ∈ X has a minimal neighbourhood if there exists N ∈ η(x) such that N ⊆ N ′
78

for any neighbourhood N ′ ∈ η(x). We use Nmin(x) to refer to the minimal neighbourhood79

of x. If each element x ∈ X has a minimal neighbourhood, then we call X quasi-discrete.80

Finally, if for every element x ∈ X and any neighbourhood N ∈ η(x), there is a neighbourhood81

M ∈ η(x), such that for every y ∈ M , we have also that N ∈ η(y), then X is topological.82

Neighbourhood spaces as we introduced them are exactly the pretopological spaces as83

defined by Choquet [8] and the closure spaces introduced by Čech [23], as shown by Kent84
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and Min [16].1 Furthermore, a topological neighbourhood space is just a topological space as85

usual.86

▶ Definition 3 (Connectedness ([23] 20.B.1)). Let X = (X, η) be a neighbourhood space. Two87

subsets U and V of X are semi-separated, if C(U) ∩ V = U ∩ C(V ) = ∅. A subset U of X88

is connected, if it is not the union of two non-empty, semi-separated sets. The space X is89

connected, if X is connected.90

We also introduce a special kind of connected neighbourhood space, endowed with a91

linear order.92

▶ Definition 4 (Index Space). If (I, η) is a connected neighbourhood space and ≤ ⊆ I × I a93

linear order on I with the bottom element 0 ∈ I, then we call I = (I, η,≤, 0) an index space.94

In the following sections, we will often use the concept of continuous functions. Generally,95

we will use the notation f [A] for the image of a set A ⊆ X under a function f : X → Y .96

▶ Definition 5 (Continuous Function ([23] 16 A.4)). Let Xi = (Xi, ηi) for i ∈ {1, 2} be97

two neighbourhood spaces. A function f : X1 → X2 is continuous at x1, if for every N2 ∈98

η2(f(x1)), there is an N1 ∈ η1(x1) such that f [N1] ⊆ N2. Equivalently, for every Y ⊆ X1, if99

x1 ∈ C1(Y ), then f(x1) ∈ C2(f [Y ]). If f is continuous at every x1 ∈ X1, we simply say that100

f is continuous. We will also write f : X1 → X2.101

Observe that this coincides with the well-known definition of continuous functions on102

topological spaces.103

▶ Definition 6 (Path). For an index space I and a neighbourhood space X , a continuous104

function p : I → X is an I-path on X . If p(0) = x, we will also write p : x⇝∞ to denote a105

path starting in x.106

Two typical index spaces are IR = ([0, 1], ηR,≤, 0), the unit interval with the standard107

topology based on open intervals, and IN = (N, ηN,≤, 0), where ηN is given by the quasi-108

discrete neighbourhood system induced by the successor relation. That is, the minimal109

neighbourhood of each point n is given by {n, n+ 1}. We call IR-paths topological paths and110

IN-paths quasi-discrete paths.111

▶ Definition 7 (Separation and Distinguishability). Let X = (X, η) be a neighbourhood112

space and x, y ∈ X be two distinct points of X . If η(x) ̸= η(y), we say that x and y are113

distinguishable in X . If there is both an N ∈ η(x) such that y ̸∈ N and an M ∈ η(y) such114

that x ̸∈ M , then we call x and y T1-separated. Equivalently, in terms of closures, two distinct115

points x and y are distinguishable, if x ̸∈ C({y}) or y ̸∈ C({x}). They are T1-separated, if116

({x} ∩ C({y})) ∪ (C({x}) ∩ {y}) = ∅.117

The space X is a symmetric space (or R0-space), if every two distinguishable points are118

T1-separated.119

The following lemma implies that quasi-discrete paths that visit a non-quasi discrete120

point on a symmetric space cannot get back into “quasi-discrete territory”.121

1 To be exact, Kent and Min’s definition of neighbourhood spaces is more general than ours, as they do
not require the neighbourhood systems to be filters. In fact, they show that a neighbourhood space
where each neighbourhood system is a filter constitutes a pretopological space.
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x y z

(a) Quasi-discrete space X

p(i) =


x i < 1

2

y i = 1
2

z i > 1
2

(b) A valid topological path over X

Figure 1 Example of a topological path on a quasi-discrete space.

▶ Lemma 8. Let Q = (Q, ηQ) be a quasi-discrete space and X = (X, η) be a non-quasi-122

discrete, but symmetric space. Furthermore let x ∈ X be a point that does not have a minimal123

neighbourhood. Any continuous function f : Q → X that visits x at some point q can only124

visit points that are indistinguishable from x at any q′ ∈ Nmin(q). In terms of closures, this125

is equivalent to the following condition: if q ∈ C({q′}), then f(q′) is indistinguishable from x.126

Proof. Let f : Q → X be a continuous function with f(q) = x and for some q′ ∈ Nmin(q),127

we have f(q′) = y where x and y are distinguishable. Hence, there is an N ∈ η(x) such that128

y ̸∈ N . However, for any M ∈ ηQ(q), we have that Nmin(q) ⊆ M , which of course means129

also q′ ∈ M . But f(q′) ̸∈ N , so f [M ] ̸⊆ N . So f is not continuous at q, which contradicts130

the assumption on f . ◀131

We will often refer to the fact that quasi-discrete spaces closely resemble graphs: we can132

consider the points in the minimal neighbourhood of a point x to be connected to x by an133

edge. The following example provides a better understanding of the difference in behaviour134

of topological and quasi-discrete paths over quasi-discrete neighbourhood spaces.135

▶ Example 9. Consider the quasi-discrete neighbourhood space X in Fig. 1a. Any path p136

defined over IN is such that for any i ∈ IN, if p(i) = x or p(i) = z, then p(j) = p(i) for any137

j ≥ i. However, path p defined in Fig. 1b is a valid path when considering topological paths.138

3 Spatial Logic for Neighbourhood Spaces139

In this section, we briefly recall SLCS on general neighbourhood spaces. To that end, we140

first present spatial models based on neighbourhood spaces and then present the syntax and141

semantics of SLCS.142

▶ Definition 10 (Neighbourhood Model). Let X = (X, η) be a neighbourhood space, I an index143

space, AP a countable set of propositional atoms, and let ν : X → P(AP) be a valuation. Then144

M = (X , I, ν) is a neighbourhood model over I-paths. We will also write M = (X, η, ν) to145

denote neighbourhood models, if the index space is clear from the context.146

We lift all suitable definitions from Sect. 2 to neighbourhood models in the obvious ways.147

For example, we will speak of continuous functions between the underlying spaces of two148

models as continuous functions between the models.149

We will often use the special case of models with quasi-discrete spaces over quasi-discrete150

paths, since such models are graph-like models with standard paths on graphs.151

▶ Definition 11 (Purely Quasi-Discrete Models). Let X be a quasi-discrete neighbourhood space.152

A model M = (X , IN, ν) over quasi-discrete paths is a purely quasi-discrete neighbourhood153

model.154
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▶ Definition 12 (Syntax of SLCS).

φ,ψ : : = p | ¬φ | φ ∧ ψ | N φ | φRψ | φP ψ155
156

N is read as near, R is read as reachable from, and P is read as propagates to.157

The intuition behind the modalities is as follows. A point satisfies N φ, if it is contained in158

the closure of the set of points satisfying φ. Hence, even if it does not satisfy φ itself, it is159

close to a point that does. A point x satisfies φRψ if there is a point y satisfying ψ such160

that x is reachable from y via a path where every point on this path between x and y satisfies161

φ. Propagation is in a sense the converse modality, i.e., if there is a point y satisfying ψ such162

that there is a path starting in x and reaching y at some index, and all points in between163

satisfy φ, then x satisfies φP ψ. This intuition is formalised in the following semantics.164

▶ Definition 13 (Path Semantics of SLCS). Let M = ((X, η), I, ν) be a neighbourhood model165

and x ∈ X. The path semantics of SLCS with respect to M are defined inductively as follows.166

M, x |= p iff p ∈ ν(x)167

M, x |= ¬φ iff not M, x |= φ168

M, x |= φ ∧ ψ iff M, x |= φ and M, x |= ψ169

M, x |= N φ iff x ∈ C({y | M, y |= φ})170

M, x |= φRψ iff there is p : y ⇝∞ and n such that p(n) = x and M, y |= ψ171

and for all 0 < i < n : M, p(i) |= φ172

M, x |= φP ψ iff there is p : x⇝∞ and n such that M, p(n) |= ψ173

and ∀i : 0 < i < n =⇒ M, p(i) |= φ174
175

In addition to the defined Boolean operators, we also allow for the other common derivable176

connectives. Specifically, φ ∨ ψ = ¬(¬φ ∧ ¬ψ), ⊤ = φ ∨ ¬φ, ⊥ = ¬⊤, φ → ψ = ¬φ ∨ ψ, and177

φ ↔ ψ = (φ → ψ) ∧ (ψ → φ). For a class of models M, we say that φ is valid in M if, and178

only if, M, x |= φ for every M = ((X, η), I, ν) ∈ M and x ∈ X.179

▶ Definition 14 (Relative Equivalence). Let Σ be a subformula closed set of SLCS formulas,180

M a neighbourhood model, and x, y ∈ M be two points of M. Then x and y are equivalent181

relative to Σ iff they satisfy the same formulas in Σ, i.e., x ≏Σ y iff {φ ∈ Σ | M, x |= φ} =182

{φ ∈ Σ | M, y |= φ}. This is an equivalence relation, and we will denote the equivalence183

classes of x by [x]Σ and [x], if Σ is clear from the context.184

The following lemmas present properties of formulas on different classes of models. We185

start with the most familiar class: purely quasi-discrete models. On these models, we have a186

clear connection between the near modality and the propagate path operator.187

▶ Lemma 15. On all purely quasi-discrete neighbourhood models M = (X , IN, ν) we have188

that M, x |= N φ iff M, x |= φ ∨ ⊥ P φ.189

Proof. If M, x |= φ, the equivalence is clear. Otherwise, assume M, x |= ⊥ P φ. This means190

that there is a point y and a path p : x ⇝ ∞ such that p(1) = y and M, y |= φ. Since p191

is continuous, this means that there is a neighbourhood N of 0 such that p[N ] ⊆ Nmin(x).192

Since every neighbourhood of 0 contains 1, this means y ∈ Nmin(x), and so M, x |= N φ.193

The other direction is similar. ◀194

MFCS 2021
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If we consider quasi-discrete models over topological paths, this connection is less clear.195

The main reason for this is that over topological graphs, ⊥ P φ is equivalent to φ, which196

is easy to prove. However, we can still establish a bit less obvious connection between the197

modalities.198

▶ Lemma 16. On quasi-discrete models over topological paths, (a ∧ N (b ∧ ¬a)) → N (¬a ∧199

(bP a)) is valid.200

Proof. Let M = (X , IR, ν) with X = (X, η) be a quasi-discrete model and let x ∈ X such201

that M, x |= a ∧ N (b ∧ ¬a). That is, x |= a and x ∈ C({y | M, y |= b ∧ ¬a}). Since X is202

quasi-discrete, this means that there is a y ∈ Nmin(x) such that M, y |= b ∧ ¬a. Then, the203

path p : IR → X with p(i) = y for i < 1 and p(i) = x for i = 1 is a witness for M, y |= bP a.204

This function is indeed continuous: Consider N ∈ η(p(i)). If i < 1, we can always choose an205

Ni ∈ ηI(i) such that ∀j ∈ Ni we have j < 1, since I has arbitrarily small neighbourhoods,206

which means p[Ni] = {y} ⊆ N . If i = 1, we have for any neighbourhood Ni ∈ ηI(i), that is207

p[Ni] ⊆ {x, y} ⊆ Nmin(x) ⊆ N . Furthermore, p(0) = y, and for n = 1, we have p(n) = x, and208

for all 0 < i < n, M, p(i) |= b. Since y ∈ Nmin(x), we have that M, x |= N (¬a∧ (bP a)). ◀209

Furthermore, on any kind of model over topological paths, we get that the reachable and210

propagate modalities are equivalent. Intuitively, this is clear, since for topological paths,211

there is no inherent direction on the index space, in contrast to the quasi-discrete index212

space, where the successor relation is directed.213

▶ Lemma 17. On any neighbourhood model over topological paths M = (X , IR, ν) we have214

that M, x |= φP ψ iff M, x |= φRψ.215

Proof. Let M = ((X, η), IR, ν) be a neighbourhood model over topological paths, and x ∈ X216

a point of M such that M, x |= φP ψ. So there is a path p : IR → M and n ∈ [0, 1], such217

that p(0) = x, p(n) = y and M, y |= ψ, and ∀k : 0 < k < n, we have M, p(k) |= φ. Since p is218

topological, we can assume without loss of generality that n = 1. Now the path p′ defined by219

p′(i) = p(1 − i) is a witness for M, x |= φRψ. Indeed, let N ∈ η(p′(i)) be a neighbourhood220

of p′(i). By definition of p′, we have p′(i) = p(1 − i). We know that p is continuous at221

1 − i, so there is a neighbourhood N ′ ∈ ηi(1 − i) such that p[N ′] ⊆ N . But, we also have222

that N i = {j | 1 − j ∈ N ′} is a neighbourhood of i and, since p′(j) = p(1 − j), we have223

that p′[N i] ⊆ N as well. So, p′ is continuous. Furthermore, p′(0) = p(1), so M, p′(0) |= ψ,224

p′(1) = x, and for all k with 0 < k < 1, we have M, p′(k) |= φ, by definition of p′. The other225

direction is similar. ◀226

4 No Finite Model Property for Arbitrary Neighbourhood Spaces227

In this section, we prove that SLCS does not have the finite model property if we consider the228

class of all neighbourhood models. That is, we show that there exist SLCS formulas that are229

satisfiable only over models M = ((X, η), I, ν) where X is not finite. Our first observation is230

that there are satisfiable formulas that are not satisfiable on purely quasi-discrete models.231

▶ Lemma 18. There exist SLCS satisfiable formulas that are not satisfiable on any finite232

model over quasi-discrete paths.233

Proof. Consider model M = ((R, ηR), IR, ν) in Fig. 2. It follows that M, 1 |= N a ∧ ¬a ∧234

¬(⊥ P a). By Lemma 15, this formula is a contradiction on purely quasi-discrete models.235

Finally, since every finite space is quasi-discrete, the lemma holds. ◀236
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(
−1

)
1

R
¬a ¬aa

Figure 2 Model M = ((R, ηR), IR, ν) such that M, 1 |= N a ∧ ¬a ∧ ¬(⊥ P a).

There are two key differences between the model in Fig. 2 and purely quasi-discrete237

models: the type of underlying space, and the type of paths allowed. So, we now restrict238

both of these dimensions one after the other. First, we show that SLCS does not admit239

finite models over topological paths, if we consider the full set of neighbourhood spaces, by240

constructing a counterexample based on the result of Lemma 16.241

▶ Lemma 19. There exist SLCS formulas that are satisfiable on models with topological242

paths, but not on any finite model with topological paths.243

Proof. We construct a topological model M = (X , IR, ν) that contains a point satisfying244

a∧N (b∧¬a)∧¬ N (¬a∧ (bP a)). For the topological space, we use the topologists sine curve.245

For that purpose, let S = {(r, sin 1
r ) | 0 < r ≤ 1}. The space is then defined by X = (X, η),246

where X = {(0, 0)} ∪ S, and η is the neighbourhood system induced by treating this set as a247

subset of the Euclidean plane R2. That is, N ∈ η(x) if there is an open ball of some radius r248

around x, i.e., some Br = {y | ∥x− y∥ < r}, where ∥ · ∥ is the Euclidean distance, such that249

N ⊇ Br ∩X. We set the valuation ν by ν((0, 0)) = {a} and ν(x) = {b} for x ̸= (0, 0).250

Now, every neighbourhood of (0, 0) contains a value from S, and thus M, (0, 0) |=251

a ∧ N (b ∧ ¬a). Furthermore, it is well known [21] that in this space, (0, 0) is not path-252

connected to S, which means that no path starting in any point s ∈ S can reach (0, 0). This253

implies, that no point s ∈ S satisfies bP a, since there is no path that ever reaches a point254

that satisfies a. So, no point on the model satisfies ¬a∧ (bP a). In particular, this means that255

M, (0, 0) |= ¬ N (¬a∧(bP a)). So, we have M, (0, 0) |= a∧N (b∧¬a)∧¬ N (¬a∧(bP a)). But256

this formula is not satisfiable on any quasi-discrete model with topological paths, according257

to Lemma 16. Since finite models are quasi-discrete, SLCS does not generally admit finite258

models over topological paths. ◀259

Finally, even when considering only quasi-discrete paths, there are SLCS formulas which260

are not satisfiable on finite models.261

▶ Lemma 20. There exist SLCS formulas that are satisfiable on models with quasi-discrete262

paths, but not on any finite model with quasi-discrete paths.263

Proof. Let X be an infinite, uncountable set and let X = (X ′, η) be the double pointed264

countable complement topology over X (see [21]). For this definition, let Y be the set of all265

subsets of X, such that for every Y ∈ Y, either Y = ∅, or the complement of Y is countable.266

X ′ is constructed from X by “doubling” all points, i.e., X ′ = {x′ | x ∈ X} ∪X, where each267

x′ is a new, distinct, element to the x it is constructed from. Then, let Y ′ be the doubling of268

every set in Y in a similar way, and η be defined by η(x) = {N | ∃Y ∈ Y ′ : Y ⊆ N ∧ x ∈ Y }.269

Note that this definition implies that for any y and its doubled point y′, we have η(y) = η(y′).270

Define M = (X , IN, ν) by letting x, x′ ∈ X ′ be a designated pair of points in X ′ and ν be271

given by ν(y) = {a}, if y ∈ {x, x′} and ν(y) = {b} otherwise.272

Now consider any neighbourhood N ∈ η(x). There is always some y ∈ N that is different273

from x and x′, since otherwise the complement of N would be uncountable. Hence, every274

neighbourhood N contains some element y with M, y |= b, which implies M, x |= N b.275

MFCS 2021
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However, since the underlying space of M is symmetric, by Lemma 8, any quasi-discrete276

path starting in x may only visit x or x′, which both do not satisfy b. Hence M, x ̸|= ⊥ P b.277

So, N b ∧ ¬(⊥ P b) is satisfiable on this model. But no finite model can satisfy this formula,278

since it is necessarily purely quasi-discrete. ◀279

5 Finite Model Property for Quasi-Discrete Spaces280

In this section, we prove that SLCS admits finite models if we restrict the class of models281

to quasi-discrete models. That is, the models correspond to directed graphs. Our approach282

is similar to standard approaches in modal logic [4]. In particular, we use filtrations with283

respect to a subformula closed set Σ for both types of models. Since topological paths and284

quasi-discrete paths behave very differently, we further distinguish the class into models over285

quasi-discrete paths and over topological paths.286

5.1 Quasi-Discrete Spaces with Quasi-Discrete Paths287

In this subsection, we prove that SLCS has the finite model property on purely quasi-discrete288

neighbourhood models. That is, the paths are similar to typical paths on graph structures.289

The following lemma allow us to transfer information about the satisfaction of the path290

operators to other points.291

▶ Lemma 21. Let M be a purely quasi-discrete neighbourhood model and x, y ∈ M two292

points such that y ∈ Nmin(x). Then the following hold.293

1. If M, y |= φ and M, y |= φP ψ, then also M, x |= φP ψ.294

2. If M, x |= φRψ and M, x |= φ, then also M, y |= φRψ.295

Proof. We only prove the first statement as the second is similar.296

From M, y |= φP ψ we know that there is a path p : I → M with p(0) = y and an index297

n ∈ I such that M, p(n) |= ψ and for all 0 < i < n, we have M, p(i) |= φ. Now consider the298

continuous function px : I → M given by px(0) = x and px(i+ 1) = p(i). Then px is indeed299

a path, since M is quasi-discrete and y ∈ Nmin(x). Also, we have M, px(n+ 1) |= ψ and,300

since M, y |= φ, for all 0 < i < n+ 1, we have M, px(i) |= φ. Hence M, x |= φP ψ. ◀301

We now define filtrations for purely quasi-discrete models. Most parts of this definition302

are standard, when we consider N similar to an existential modality. For the two path303

operators, we added additional properties that allow us to transfer information about the304

existence of paths from the filtration back to the original model.305

▶ Definition 22 (Filtration). Let Σ be a subformula closed set of SLCS formulas, and306

M = (X, η, ν) a purely quasi-discrete neighbourhood model. We call a purely quasi-discrete307

neighbourhood model Mf = (Xf , ηf , νf ) a filtration of M through Σ, if it satisfies the308

following conditions:309

1. Xf = {[x]Σ | x ∈ X}310

2. if y ∈ Nmin(x), then [y] ∈ Nmin([x])311

3. if [y] ∈ Nmin([x]), then for each N φ ∈ Σ, we have that if M, y |= φ, then M, x |= N φ312

4. if there is a sequence [x0] . . . [xn] with [xi+1] ∈ Nmin([xi]) for all 0 ≤ i < n, then for313

every φP ψ ∈ Σ, we have that whenever M, xi |= φ for each 0 < i < n and M, xn |= ψ,314

then also M, x0 |= φP ψ315

5. if there is a sequence [x0] . . . [xn] with [xi+1] ∈ Nmin([xi]) for all 0 ≤ i < n, then for316

every φRψ ∈ Σ, we have that whenever M, xi |= φ for each 0 < i < n and M, x0 |= ψ,317

then also M, xn |= φRψ318
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6. νf ([x]) = {p ∈ AP | M, x |= p}319

As usual, satisfiability of formulas in Σ is preserved between a model and its filtration320

through Σ. So our filtration is properly defined.321

▶ Lemma 23. Let Mf be a filtration of M through Σ. Then for all φ ∈ Σ, we have M, x |= φ322

iff Mf , [x] |= φ.323

Proof. We proceed by induction on the structure of formulas. The base case for atomic324

propositions is immediate by Def. 22. The cases for the boolean operators are standard.325

The case for φ = N ψ is similar to standard modal logic [4]: we have M, x |= N ψ326

iff x ∈ C({y | M, y |= ψ}) which by definition of the closure is equivalent to ∀N ∈327

η(x) : N ∩ {y | M, y |= ψ} ≠ ∅. On quasi-discrete models, this is equivalent to ∃y ∈328

Nmin(x) : M, y |= ψ. By property 2 of filtrations and the induction hypothesis, this implies329

∃[y] ∈ Nmin([x]) : Mf , [y] |= ψ. Applying similar equivalences as before, we get that330

Mf , [x] |= N ψ. Conversely, assume we have Mf , [x] |= N ψ. With the same reasoning as331

above, this is equivalent to ∃[y] ∈ Nmin([x]) : Mf , [y] |= ψ. By the induction hypothesis, we332

get M, y |= ψ, and from property 3 of filtrations, we have M, x |= N ψ.333

Now consider φ = ψP χ. If M, x |= ψP χ, this is equivalent to the existence of a path334

p : x⇝∞ and a n and M, p(n) |= χ as well as ∀i : 0 < i < n, we have M, p(i) |= ψ. That335

is, there is a sequence x0, . . . , xn such that x0 = x and xi+1 ∈ Nmin(xi) for all i < n. By336

property 2, we have [xi+1] ∈ Nmin([xi]) for all i < n, and by the induction hypothesis,337

Mf , [xn] |= χ and for all 0 < i < n, we get Mf , [xi] |= ψ, That is, Mf , [x] |= ψP χ.338

Conversely, assume Mf , [x] |= ψP χ. Then there is a sequence [x0], . . . , [xn] such that339

[xi+1] ∈ Nmin([xi]) for all 0 ≤ i < n, and Mf , [xn] |= χ, as well as for all 0 < i < n, we get340

Mf , [xi] |= ψ. By the induction hypothesis, we get M, xn |= χ and M, xi |= ψ for every341

0 < i < n. Hence, by property 4, and since x0 ≏ x, we have M, x |= ψP χ.342

The case for ψRχ is similar, by using property 5. ◀343

Finally, we prove that there is always a filtration through Σ for any given purely quasi-344

discrete model. This definition corresponds to the usual definition of smallest filtration [4].345

▶ Lemma 24. Let Σ be a subformula closed set of formulas and M a purely quasi-discrete346

model. Furthermore, let XΣ be the set of equivalence classes of ≏Σ, νΣ be defined as in347

Def. 22 (6), and ηs([x]) = ⟨{[y] | ∃y′, x′ : y′ ∈ [y] ∧x′ ∈ [x] ∧y ∈ Nmin(x)}⟩ for each [x] ∈ XΣ.348

Then the model (XΣ, ηs, νΣ) is a filtration of M through Σ.349

Proof. Properties 1, 2 and 6 are immediate. So now assume that [y] ∈ Nmin([x]) and let350

N φ ∈ Σ such that M, y |= φ. Then by definition of ηs, there are x′ ∈ [x] and y′ ∈ [y]351

such that y′ ∈ Nmin(x′). Since y ≏Σ y′, we have M, y′ |= φ, and due to y′ ∈ Nmin(x′), this352

implies x′ ∈ C({y | M, y |= φ}), which means M, x′ |= N φ. Since x ≏Σ x′, this implies353

M, x |= N φ. Hence property 3 holds.354

For proving property 4, we proceed by induction on the length of sequence [x0] . . . [xn].355

For the base case, we have M, x0 |= ψ, which implies M, x0 |= φP ψ. So, assuming the356

property holds for suited sequences of length up to n, consider a sequence [x0] . . . [xn] such357

that the conditions of the property are satisfied. In particular, [x1] . . . [xn] is a sequence,358

where [xi+1] ∈ Nmin([xi]), and for all 1 < i < n we have M, xi |= φ and M, xn |= ψ.359

Hence, by the induction hypothesis, M, x1 |= φP ψ. Furthermore, by assumption on the360

sequence, we get M, x1 |= φ. Now, by the definition of ηs, we know that there are x′
0 ∈ [x0]361

and x′
1 ∈ [x1] such that x′

1 ∈ Nmin(x′
0), and since x1 ≏ x′

1, both M, x′
1 |= φ as well as362

M, x′
1 |= φP ψ hold. Hence, by Lemma 21 (1), we have M, x′

0 |= φP ψ, and since x0 ≏ x′
0,363

also M, x0 |= φP ψ.364
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w x

y z

(a) Quasi-discrete model M

p(i) =


w i ≤ 1

2

x 1
2 < i < 1 ∧ i ∈ Q

y 1
2 < i < 1 ∧ i ∈ R \ Q

z i = 1

(b) Path with uncountably many changes

p′(i) =


w i ≤ 1

2

x 1
2 < i < 1

z i = 1

(c) Simplified path

Figure 3 Example of path simplification.

Property 5 can be proven similarly to the previous case, but using Lemma 21 (2). ◀365

From the definition of filtration and Lemmas 23 and 24, where XΣ is finite as the set of366

subformulas of a formula is finite, we obtain our first finite model property result.367

▶ Theorem 25. If φ is a SLCS formula that is satisfiable on a purely quasi-discrete neigh-368

bourhood model, then φ is satisifiable on a finite purely quasi-discrete neighbourhood model.369

5.2 Quasi-Discrete Spaces with Topological Paths370

In this section, we prove that SLCS also admits finite models for the class of quasi-discrete371

models over topological paths. This case is interesting, since topological paths behave very372

differently from quasi-discrete paths. For example, topological paths are not required to373

comply with the direction of the edges of the underlying graph.374

▶ Example 26. Consider the model in Fig. 3a. We can define a topological path p as in375

Fig. 3b. This function is indeed continuous. For i < 1
2 , the function is continuous, since it is376

constant. At i = 1
2 , we have that for the minimal neighbourhood Nmin(w) = {w, x, y}, we377

can always find a neighbourhood N ′ of 1
2 that does not contain 1, and so p[N ′] ⊆ Nmin(w).378

If 1
2 < i < 1, then Nmin(p(i)) = {x, y}, and we can choose any neighbourhood N ′ ∈ η(i) that379

does not contain values less than 1
2 and greater or equal to 1 to show continuity. At 1, the380

function is continuous for similar reasons as at 1
2 . So the function is a path.381

However, path p contains many “superfluous detours” in the set {x, y}. A simpler path382

would be path p′ in Fig. 3c, or a variation in which p′ maps to y instead of x. This path383

only visits points that were visited by p as well, but omits these detours.384

The following Lemma formalises the intuition explained in Example 26. We will use it to385

normalise the paths used as witnesses for the satisfaction of the propagate modality when we386

prove the existence of filtrations.387

▶ Remark 27. From this point onward, we will use the following slight abuse of notation. For388

two indices r, s ∈ [0, 1], we write p[r, s] = {p(i) | r < i < s} to denote the values of a path389

p on the open interval between r and s. If p[r, s] is a singleton (i.e., p is constant on the390

interval (r, s)), we will also treat p[r, s] as a single value, to avoid unnecessary parentheses.391

▶ Lemma 28 (Path Simplification). Let M = ((X, η), IR, ν) a neighbourhood model, where392

(X, η) is a quasi-discrete space, and let p : [0, 1] → X be a path on M such that p has a finite393

image. Then there is a path p′ and a sequence of indices i0, . . . , in with i0 = 0, in = 1 and394

ir < ir+1 for all r < n, such that395

1. p′(i) = p(i) for all the indices in the sequence,396

2. p′ is constant on each open interval (ir, ir+1),397
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3. p′[ir, ir+1] ̸= p′[is, is+1] for r ̸= s,398

4. if p′(ir+1) ̸= p′[ir, ir+1], then p′[ir, ir+1] ∈ Nmin(p′(ir+1)),399

5. if p′(ir) ̸= p′[ir, ir+1], then p′[ir, ir+1] ∈ Nmin(p′(ir)),400

6. if p(i) ̸= p′(i), then there are r, s ∈ [0, 1] and y ∈ X with r < i < s such that p(r) =401

p(s) = y and p′(r) = p′(s) = y.402

Proof. Let M and p be as required, let x ∈ X be a point in the space, and 0 ≤ s ≤ 1 an403

index. We indicate by sI(p, x, s) the smallest subinterval I of [s, 1] such that ∀i ∈ [s, 1] \ I it404

holds that p(i) ̸= x. Let a be the infimum (resp., supremum) of sI(p, x, s), then it follows405

that ∀N ∈ η(a) there exists an i ∈ N ∩ sI(p, x, s) such that p(i) = x.406

We now construct the sequence of indices i0, . . . , in and the path p′. We set i0 = 0,407

p′(0) = p(0), and then proceed as follows starting from sI(p, p(0), i0).408

Consider an index ik, a point x ∈ X, and let a be the supremum of sI(p, x, ik). We set409

p′(i) = x for all ik < i < a, we set p′(a) = p(a), and410

1. if a ̸∈ sI(p, x, ik), we set ik+1 = a, and then proceed with sI(p, p(a), ik+1);411

2. otherwise (i.e., a ∈ sI(p, x, ik)), we need to find a possible way to proceed with the path412

following the index a. That is, we need to find the right point and index for the function413

sI. Let S = {y ∈ Nmin(p(a)) | ∀N ∈ η(a) : y ∈ p[N ∩ [a, 1]]} \ {p(a)}. Observe that414

S ̸= ∅ as p is a continuous function on X, and any point in S is a good candidate for the415

continuation of the construction. Now we need to understand whether or not to move416

from the index ik to the index ik+1. If ik = a, then we proceed by choosing any of the417

y ∈ S and considering sI(p, y, ik). Otherwise, we proceed by choosing any of the y ∈ S,418

setting ik+1 = a, and considering sI(p, y, ik+1).419

Since p has a finite image, the process above terminates when ik = 1.420

Now let p′ be the path constructed as above. Properties 1, 2 and 3 are immediate results421

of the construction of p′. Let us show that property 4 holds, and consider the case where422

p′(ir+1) ̸= p′[ir, ir+1]. By construction we know that ir+1 is the supremum of sI(p, x, ir),423

which means that ∀N ∈ η(ir+1)∃i ∈ N ∩ (ir, ir+1) with p(i) = x = p′[ir, ir+1]. By continuity424

of p it must hold that ∃N ′ ∈ η(ir+1) such that p[N ′] ⊆ Nmin(p(ir+1)). As p′[ir, ir+1] ∈ p[N ′],425

then p′[ir, ir+1] ∈ Nmin(p′(ir+1)). Property 5 follows immediately from point 2 above since426

we select y among the elements in the minimal neighbourhood. Finally we consider property427

6. Let i be an index such that p(i) ̸= p′(i). By property 1, we know that i cannot be any428

of the indices in the resulting sequence. Let ik and ik+1 be the two indices in the resulting429

sequence such that ik < i < ik+1. By definition of sI(p, p′(i), ik), there must exist two430

indices r and s such that p(r) = p(s) = p′(i), and ik ≤ r < i < s ≤ ik+1. By property 2431

p′[ik, ik+1] = p′(i), and the property holds. ◀432

Similarly to the case with quasi-discrete paths, the following lemma allow us to transfer433

information about the satisfaction of the path operator to neighbouring points.434

▶ Lemma 29. Let M be a quasi-discrete neighbourhood model over topological paths and435

x, y ∈ M two points. Then the following hold.436

1. If y ∈ Nmin(x), M, y |= φ and M, y |= φP ψ, then also M, x |= φP ψ.437

2. If x ∈ Nmin(y), M, x |= φ, M, y |= φ and M, y |= φP ψ, then also M, x |= φP ψ.438

Proof. Case (1): Let p and n be witnesses for M, y |= φP ψ. There are two cases to consider.439

In the first case, p stays on y for an infinite number of indices. That is, the initial segment440

of p is not a singleton. Then we can define p′ by p′(0) = x and p′(i) = p(i) for i > 0. Since p441

is continuous p′ is continuous for every i > 0. For i = 0, we can take any neighbourhood442

N ∈ ηR(0) that only extends into the initial segment of p, where p(j) = y for any i ∈ N443
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with i ̸= 0. Then p′[N ] ⊆ Nmin(x). So p′ is also continuous at 0, and since M, y |= φ, it444

is a witness for M, x |= φP ψ. In the other case, p stays on y for the single index 0, and445

then moves to some point z. Then we define p′ by p′(0) = x, p′(i) = y for 0 < i ≤ 1
2 and446

p′(i) = p(2i−1) for i > 1
2 . Similar to the case above, p′ is continuous at 0. Since the constant447

path is continuous, p′ is continuous at 0 < i < 1
2 . And since p is continuous at 2i− 1, p′ is448

continuous at i for i ≥ 1
2 . Furthermore, with n′ = 1

2 (n+ 1), p′ is a witness for M, x |= φP ψ.449

Case (2): By assumption on y, there is a path p : R → M and a value n, such that450

p(0) = y, M, p(n) |= ψ and for all i with 0 < i < n, we have M, p(i) |= φ. Using this path,451

we can construct the path p′ by setting p′(i) = x if i < 1
2 and p′(i) = p(2i − 1) for i ≥ 1

2 .452

This function is continuous, and thus a path. Furthermore, we have M, p′(n+ 1) |= ψ, and453

of course for all i with 0 < i < 1
2 (n+ 1) we have M, p′(i) |= φ. So this path is a witness for454

M, x |= φP ψ. ◀455

We now proceed with the definition of filtrations for quasi-discrete models over topological456

paths. As can be expected, the definition differs from Def. 22 only in the treatment of paths.457

Instead of explicitly enumerating the equivalence classes on a path, we only assume the458

existence of a path on the filtration, and then transfer the satisfaction back to the original459

model. Furthermore, we do not need to consider the reachability path operator, since it is460

equivalent to the propagate modality, by Lemma 17.461

▶ Definition 30 (Filtration with Topological Paths). Let Σ be a subformula closed set of SLCS462

formulas, and M = ((X, η), IR, ν) a neighbourhood model, where (X, η) is a quasi-discrete463

space. We call the neighbourhood model Mf = ((Xf , ηf ), IR, νf ) a filtration of M over464

topological paths through Σ, if it satisfies the following conditions:465

1. Xf = {[x]Σ | x ∈ X}466

2. if y ∈ Nmin(x), then [y] ∈ Nmin([x])467

3. if [y] ∈ Nmin([x]), then for each N φ ∈ Σ, we have that if M, y |= φ, then M, x |= N φ468

4. if π : [0, 1] → Xf is a path on Mf where π(i) = [xi], then for every φP ψ ∈ Σ, we have469

that whenever M, xi |= φ for each 0 < i < n and M, xn |= ψ, then also M, x0 |= φP ψ470

5. νf ([x]) = {p ∈ AP | M, x |= p}471

As in the purely quasi-discrete case, satisfaction of all formulas in the subformula closed472

set Σ is preserved on filtrations through Σ.473

▶ Lemma 31. Let Mf be a filtration of the quasi-discrete model M over topological paths474

through Σ. Then for all φ ∈ Σ, we have M, x |= φ iff Mf , [x] |= φ.475

Proof. We proceed by induction on the structure of formulas. The base case for atomic476

propositions is immediate by Def. 30. The cases for the boolean operators are standard and477

the case for φ = N ψ is exactly as for Lemma 23.478

Now consider φ = ψP χ. If M, x |= ψP χ, this is equivalent to the existence of a path479

p : x⇝∞ and a n and M, p(n) |= χ as well as ∀i : 0 < i < n, we have M, p(i) |= ψ. Observe480

that for any j and k such that p(k) ∈ Nmin(p(j)), we have [p(k)] ∈ Nmin([p(j)]) by property 2.481

Furthermore, for any j, we know that there is a N ∈ η(j) such that p[N ] ⊆ Nmin(p(j)) by482

continuity of p. So, these two facts together imply that ∀k ∈ N , we have [p(k)] ∈ Nmin([p(j)]).483

Hence we can define π : [0, 1] → Xf by π(i) = [p(i)] and then have that π is a path on Mf484

such that π(0) = [x]. Furthermore, by the induction hypothesis, for all i with 0 < i < n, we485

have Mf , π(i) |= ψ and Mf , π(n) |= χ. This of course means Mf , [x] |= ψP χ.486

Conversely, assume Mf , [x] |= ψP χ. Then there is a path π : [0, 1] → Xf such that487

π(0) = [x], for all i with 0 < i < n we have Mf , π(i) |= ψ and Mf , π(n) |= χ. Let488
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π(i) = [xi], then we get by the induction hypothesis that M, xi |= ψ for all i with 0 < i < n489

and M, xn |= χ. By property 4 we get M, x0 |= ψP χ and by x ≏ x0, we get M, x |= ψP χ.490

The case for φ = ψRχ is immediate by Lemma 17 and the previous case. ◀491

The main part left in this section is to show that filtrations exist. This is more complicated492

than in the purely quasi-discrete case, due to the different behaviour of topological paths.493

However, if we restrict ourselves to finite sets Σ, then we can normalise the paths on the494

filtration according to Lemma 28, and use these simpler paths to establish satisfaction of the495

path modalities on the original model. Since we are only interested in filtrations through the496

set of subformulas induced by a single formula, this suffices for our purpose.497

▶ Lemma 32. Let Σ be a finite subformula closed set of formulas and M a quasi-discrete498

model over topological paths. Furthermore, let XΣ be the set of equivalence classes of ≏Σ, νΣ499

be defined as in Def. 30 (5), and ηs([x]) = ⟨{[y] | ∃y′, x′ : y′ ∈ [y] ∧ x′ ∈ [x] ∧ y ∈ Nmin(x)}⟩500

for each [x] ∈ XΣ. Then the model MΣ = ((XΣ, ηs), IR, νΣ) is a filtration of M over501

topological paths through Σ.502

Proof. First observe that MΣ is indeed a quasi-discrete neighbourhood model over topological503

paths, since the underlying space of MΣ is finite, and any finite neighbourhood space is504

quasi-discrete. We focus only on proving property 4 as all the others are already proved in505

Lemma 24.506

Let π : [0, 1] → Xf be a path as required. If n = 0 so that M, xn |= ψ, this means507

M, x0 |= ψ, and so trivially M, x0 |= φP ψ. So, without loss of generality, we assume508

n = 1. With π(i) = [xi], we have M, xi |= φ for 0 < i < 1 and M, x1 |= ψ. Since the set509

of equivalence classes is finite, we can use Lemma 28 to get a path σ : [0, 1] → Xf , with510

x0 ∈ σ(0) and x1 ∈ σ(1). Furthermore, the properties of σ in Lemma 28 ensure that for all511

0 < i < 1, if σ(i) = [x′
i], then M, x′

i |= φ.512

Now, let S = {[z] | ∃i : σ(i) = [z]} be the image of σ. Since S is finite, we define an513

order on S by setting [zi] < [zj ] iff there exist s and t with s < t such that σ(s) = [zi]514

and σ(t) = [zj ]. By Lemma 28 and since the index space is totally ordered, this order is515

well-defined. So, in the following we will denote S by the sequence [z0], [z1], . . . , [zr].516

We proceed to prove that M, x0 |= φP ψ by induction on then length r of this sequence.517

If r = 0, then [z0] = [x1]. Since z0 ≏ x0 ≏ x1 and M, x1 |= ψ, we get M, x0 |= ψ, and thus518

M, x0 |= φP ψ.519

Assume that the property holds for all such sequences for a length up to r, and con-520

sider [z0], [z1], [z2], . . . , [zr], [zr+1]. First, we can see that since σ is a path, the sequence521

[z1], [z2], . . . , [zr], [zr+1] also induces a path that satisfies the precondition of the property.522

So, we get by the induction hypothesis M, z1 |= φP ψ. We now need to examine the523

relation between [z0] and [z1]. To that end, we first consider the preimages of both classes:524

I0 = {i | σ(i) = [z0]} and I1 = {i | σ(i) = [z1]}. Furthermore, let j be the supremum of I0.525

Recall that by Lemma 28, we have a sequence of indices i0, i1, . . . that partitions the interval526

[0, 1] according to the values of σ. Now there are two possibilities for the relation between527

[z0] and [z1] according to σ.528

1. If i ∈ I0, then either i = i0 = 0, or i = i1. In the first case, [z0] = σ(i0) ̸= σ[i0, i1] = [z1],529

and so [z1] ∈ Nmin([z0]) by Lemma 28 (5). In the other case, we have [z1] = σ[i1, i2], and530

so [z0] = σ(i1) ̸= σ[i1, i2] = [z1]. Again, by Lemma 28 (5), we have [z1] ∈ Nmin([z0]).531

By construction of Mf there are y0, y1 ∈ M such that y1 ∈ Nmin(y0) and y0 ∈ [z0]532

and y1 ∈ [z1]. By assumption, we have M, x0 |= φ as well, so by x0 ≏ z0 ≏ y0, we get533

M, y0 |= φ and M, y1 |= φP ψ. Then we have M, y0 |= φP ψ from Lemma 29 (1) and534

thus M, x0 |= φP ψ.535
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2. Otherwise, we have i ̸∈ I0, and thus i ∈ I1. Then certainly i = i1, and so [z1] = σ(i1) ̸=536

σ[i0, i1] = [z0]. By Lemma 28 (4), we get [z0] ∈ Nmin([z1]). By construction of Mf there537

are y0, y1 ∈ M such that y0 ∈ Nmin(y1) and y0 ∈ [z0] and y1 ∈ [z1].538

However, in this case we also have that i1 > 0, since otherwise [z0] = [z1], which539

contradicts Property 3 of Lemma 28. So there is an x ∈ [z0], such that M, x |= φ by540

the properties of σ. Since x ≏ y0, this means M, y0 |= φ. By assumption on σ, we have541

M, y1 |= φ and since y1 ≏ z1, we also have M, y1 |= φP ψ. So, Lemma 29 (2) gives us542

M, y0 |= φP ψ, and with x0 ≏ z0 ≏ y0 we can conclude the proof. ◀543

The definition of filtrations together with Lemmas 31 and 32 yield the finite model544

property. Note that we can apply Lemma 32, as the set of subformulas of a formula is finite.545

▶ Theorem 33. If φ is a SLCS formula that is satisfiable on a quasi-discrete neighbourhood546

model over topological paths, then φ is satisifiable on a finite quasi-discrete neighbourhood547

model over topological paths.548

6 Conclusion549

We have shown that SLCS does not have the finite model property over arbitrary neighbour-550

hood models. Furthermore, we have proven that even when restricting to only quasi-discrete551

paths, there are still formulas that can only be satisfied on infinite models. Finally, we have552

shown that SLCS has the finite model property over models with underlying quasi-discrete553

neighbourhood spaces and quasi-discrete or topological paths. These results highlight that554

the types of spaces allowed have a much stronger impact on the existence of finite models555

than the types of paths allowed.556

Our results are specific to the two types of paths we analysed. While these are the557

most common ones, it is possible to consider other definitions. Bubenik and Milićević [5]558

introduced other types of paths over neighbourhood spaces and analysed their properties.559

For example, they defined an index space based on a finite set J = {1, . . . ,m}, which is close560

to the idea of a quasi-discrete space. However, the neighbourhood system on this index space561

is very different from our setting, since it includes both the predecessor and the successor in562

the minimal neighbourhood of a point. Several of their other index spaces are even more563

different. An interesting research direction for future work is to study how these types of564

paths interact with the operators of SLCS.565

A more applied strand of research is to analyse some of the extensions of SLCS. A natural566

first step would be to consider the temporal extension of SLCS with operators from CTL [10]567

and prove whether it has the finite model property. This would build upon previous results568

stating that CTL has the finite model property [15] and the combinations of logics that569

admit finite models typically also admit finite models [13]. Similarly, interesting future work570

would be to analyse the extension of SLCS with set-based operators introduced by Ciancia571

et al. [11], and the metric extensions by Bartocci et al. [1]. Finally, a model-theoretic study572

of a variant of SLCS presented by Bezhanishvili et al. would be interesting [3]. This variant573

is defined with a semantics based on polyhedra in continuous spaces, which is in some sense574

“in between” the class of quasi-discrete, graph-like models, and the class of general, arbitrary575

neighbourhood spaces.576

Our results are a further step towards a comprehensive model theory for SLCS. Under-577

standing how the models of SLCS behave can guide how and where we may apply this logic,578

as well as its extensions.579
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