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Abstract. Dynamic Time Warping (DTW) coupled with k Nearest
Neighbour classification, where k = 1, is the most common classifica-
tion algorithm in time series analysis. The fact that the complexity of
DTW is quadratic, and therefore computationally expensive, is a dis-
advantage; although DTW has been shown to be more accurate than
other distance measures such as Euclidean distance. This paper presents
a hybrid, Euclidean and DTW time series analysis similarity metric ap-
proach to improve the performance of DTW coupled with a candidate
reduction mechanism. The proposed approach results in better perfor-
mance than alternative enhanced Sub-Sequence-Based DTW approaches,
and the standard DTW algorithm, in terms of runtime, accuracy and F1
score.
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1 Introduction

A time series is a collection of sequentially recorded numeric values. Exam-
ple application domains include stock market analysis [8] and meteorological
forecasting [12]. A typical category of application is time series classification.
Many techniques have been used for time series classification, examples include:
Decision Trees [6], Support Vector Machines (SVM) [10] and Artificial Neural
Networks [7]. However, the most frequently used classification mechanism is the
k Nearest Neighbour (kNN) mechanism [11, 16, 17]. The most frequently used
value for k is k = 1 because it has been shown to work well [14], and because it
avoids the need for a conflict resolution mechanism (required when k > 1).

Whatever classification mechanism ends up being used, both the building
of the classification model and the eventual utilisation of the model entail a
significant amount of time series similarity checking. This is especially the case
given long time series. Selection of an appropriate similarity checking mechanism
is, therefore, an important part of the classification process [14]. Frequently sited



2 Mohammed Alshehri, Frans Coenen, and Keith Dures

similarity checking mechanisms include: Euclidean Distance (ED) and Dynamic
Time Warping (DTW). DTW, it can be argued, is more accurate and does not
require time series to be of the same length. ED, in turn, tends to be faster; this
is particularly the case given very long time series. A hybrid approach, therefore,
seems like a credible alternative.

In [2] the Sub-Sequence-Based DTW mechanism was proposed, a mechanism
designed to speed up the DTW process without adversely affecting effectiveness.
The fundamental idea was to divide the time series to be compared into sets
of equal-sized subsequences of length `, and then to first compute DTW values
for corresponding individual subsequences in a pair of given time series, before
deriving an overall DTW similarity measure. This produced some good results,
outperforming standard DTW. In [1] it was hypothesised that the equal-sized
approach advocated in [2] was not the most appropriate approach and that
a certain amount of “fuzziness” should be introduced into the process. More
specifically it was proposed that the “cut point” should be wherever the two
time series converged, although limited to a range of points defined by a tail
parameter t measured backwards from `. However, in [2], the values for ` and t
were predefined. Building on the work presented in [2] and [1], this paper pro-
poses a variation of the Sub-Sequence-Based DTW mechanism that includes: (i)
a novel mechanism for reducing the KNN search space by first applying the com-
putationally less expensive ED measure and then applying DTW to Ô retained
time series (in other words a hybrid ED-DTW approach), and (ii) optimisation
of the parameter t, ` and Ô. The proposed mechanism is fully described and eval-
uated using 15 time series datasets taken from the UEA and UCR (University
of East Anglia and University of California Riverside) Time Series Classification
Repository [4].

The remainder of this paper is organised as follows. Some background and a
review of related work are presented in Section 2. The operation of the proposed
hybrid Sub-Sequence-Based DTW mechanism is then presented in Section 3. The
theoretical computational complexity of the proposed approach is presented in
Section 4. The evaluation of the proposed mechanism is then presented in Section
5, together with a discussion of the results obtained. The paper is concluded in
Section 6. For convenience, a symbol table is given in Table 1 listing the symbols
frequently used throughout this paper.

2 Background and Previous Work

As noted in the introduction to this paper, the most common similarity mea-
sures used in time series analysis are Euclidean Distance (ED) and Dynamic
Time Warping (DTW). Euclidean distance has been widely used in time series
analysis applications to measure the similarity between time series in terms of
the distance between corresponding points within pairs of time series. Given two
time series S = [p1, p2, . . . , px] and S = [q1, q2, . . . px], both of length x, ED
similarity dE is measured as shown in Equation 1, the square root of the sum
of the squares of the differences between corresponding points in the two time
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Table 1: Symbol Table

Symbol Description

p or q A point in a time series described by a single value.
S A time series such that S = [p1, p2, . . .] (S = [q1, q2, . . .]), S ∈ D.
x or y The length of a given time series.
M A distance matrix measuring x× y.
mi,j The distance value at location i, j in M .
WP A warping path [w1, w2, . . .] where wi ∈M .
wd A warping distance derived from WP .
` The number of points in a subsequence.
s A number of sub-sequences into which a given time series is to be split.
C A set of class labels C = {c1, c2, . . .}.
D A collection of time series {S1, S2, . . . , Sr}
r The number of time series in in a dataset D.
t The tail measured backwards from ` within which the cut is to be applied;

thus given S = [p0, . . . , p`] the cut will fall between p` and p`−t.
w A time series subsequence {pi, pi+1, . . .}, such that w ∈ S
W A set of s time series subsequences, {w1, w2, . . . ws} contained in a given

time series S
Ô The number of candidates selected from a dataset.
ú A new previously unseen time series.

series [11]. ED similarity calculation offers the advantage, over DTW, that it is
fast; its weakness is in terms of classification accuracy. Moreover, it only works
with time series of the same length [14].

dE =

√√√√ n∑
i=1

(xi − yi)
2

(1)

DTW was originally directed at speech recognition applications [15]. The
idea was to find the minimum warping distance (wd) between two time series in
non-linear alignment. The process of DTW can be described as follows. Given
two time series S1 = [p1, p2, . . . , px] and S2 = [q1, q2, . . . , qy] a distance matrix
M of size x× y will be constructed such that the value held at each cell mi,j is
the distance calculated using Equation 1, between the corresponding points [1].
In other words, the distance value assigned to mi,j is the summation of di,j and
the minimum cumulative distance value held at one of the three “previous” cells
to mi,j [13]. At the end of the process, the minimum warping distance (wd) will
be held at mx,y. Even though DTW has quadratic time complexity, it tends to
perform better than ED in term of accuracy; and offers the additional advantage
that it works with time series of different length. Figure 1 gives examples of both
similarity measurements (taken from [14]).

mi,j = di,j + min{mi−1,j ,mi,j−1,mi−1,j−1} (2)
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Fig. 1: Example of Euclidean Distance (left) and Dynamic Time Warping (right) [14].

Given the time complexity of DTW, a number of mechanisms have been
proposed to address this complexity. This work can be categorised as either
being directed at limiting the number of values to be calculated to construct the
matrix M , or at limiting the number of comparisons to be considered. Examples
of the first can be found in [9, 13, 15, 16], examples of the second can be found
in [5, 14, 18]. In [11] an investigation was reported that considered a number of
different distance measures (Euclidean distance, Normalised Euclidean distance,
Manhatten distance and Canberra distance) for calculating the values to be held
in M . Experiments were done for each distance measure using ten datasets and
k-Nearest Neighbour Classification. The results demonstrated that Euclidean
distance was the most appropriate distance measure to be used to build DTW
distance matrices.

The Sub-Sequence-Based DTW idea, first proposed in [2], took a different
approach that did not fit well with the above categorisation. As noted in the
introduction to this paper, the main idea was to segment each time series into a
predefined set of s sub-sequence and apply the DTW process to corresponding
pairs of sub-sequences before deriving an overall DTW similarity value. Thus,
given two time series S1 and S2, these would be divided into s sub-sequences so
that we have S1 = [U11 , U12 , . . . U1s ] and S1 = [U21 , U22 , . . . U2s ]. DTW is then
applied to each sub-sequence paring U1i , U2j where i = j. The final minimum
warping distance arrived at will then be the accumulated warping distance for
each sub-sequence of s applications of DTW. This mechanism was shown to
improve the DTW calculation runtime significantly compared to alternative ap-
proaches, especially given very long time series. However, the fixed sub-sequence
size advocated in [2] was conjectured to be a disadvantage with respect to the
accuracy of the approach. An enhanced Sub-Sequence-Based DTW mechanism
was therefore proposed in [1]. The fundamental idea of the improved mecha-
nism was to find the most appropriate size for s by utilising two parameters: the
maximum length of a sub-sequences ` and a tail t, measured backwards from `,
within which the cut was to be applied. Thus given S = [p0, . . . , p`] the cut will
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fall between p` and p`−t. Consideration was also given to whether the split point
should be included in the first sub-sequence only, in both subsequences or the
second subsequences only, Split Point Allocation Options (SPAO) A, B and C
respectively as illustrated in Fig 2. Option C provided the best performance and
was therefore used with respect to the evaluation presented later in this paper.

Fig. 2: Segmentation examples given two time series S1 and S2, and SPAO options A,
B or C [1].

3 Enhanced Sub-Sequence-Based DTW

A block-diagram outlining the proposed Sub-Sequence-Based DTW process is
presented in Figure 3. The process commences with a Database D of r time
series D = {S1, S2, . . . , Sr}. The first stage is to identify the most appropriate
values for the parameters `, t and Ô; rather than adopting the parameter pre-
specification approach advocated in [2] and [1]. We thus have a three-dimensional
search space |I| × |T | × |R| where I = {`1, . . . , `|I|}, T = {t1, . . . , t|T |} and
R = { Ô1, . . . ,Ô|R|}. Preliminary experiments indicated that, typically, there was
no global “peak” in this space, but instead many local maxima with, again
typically, one that was better than the rest. This precluded any form of “hill-
climbing” strategy. An exhaustive search strategy was therefore adopted. For the
evaluation discussed in the following section, F1 score was used as the parameter
to be maximised.

Once the most appropriate parameters settings have been identified, given a
particular application domain as represented by the time series in the database,
these can be used to translate the time series in the database so that each Si ∈ D
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Fig. 3: Proposed Sub-Sequence-Based DTW Process with parameter optimisation and
a hybrid ED-DTW similarity mechanism

is represented as a set Wi of s time series subsequences Wi = {w1, w2, . . . ws}.
The sub-sequence represented time series then form a kNN “bank”, each asso-
ciated with a class label, with which to label a previously unseen time series ú.
Note that ú is first recast, using the learnt parameter values ` and t, so that
it also comprises a set of subsequences. However, instead of comparing ú to ev-
ery set of subsequences in the kNN bank the idea is to first reduce the search
space by applying a “candidate reduction” process founded on ED similarity
measurement. The motivation here is that ED outperforms DTW in terms of
runtime. Using this approach Ô candidates were retained to which DTW was
applied, because it had been shown to be more accurate than ED.

4 Time Complexity

In this section, the time complexity of the proposed mechanism is presented.
In time series classification, when using standard DTW, the complexity of the
comparison between two time series, S1 and S2 is dependent on the size of the
distance matrix M . The time complex thus is given by O(x × y) where x and
y are the lengths of S1 and S2 respectively [1]. For the experiments reported in
the evaluation section below, each evaluation data set featured time series of the
same length, the calculation of standard DTW complexity, DTWcompStand, thus
simplifies to:

DTWcompStand = O
(
x2
)

(3)

When using ED the complexity, in terms of the number of similarity calculations,
will be:
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EDcompStand = O (x) (4)

When using the Enhanced Sub-Sequence-Based DTW, proposed in this paper,
the DTW time complexity reduces to:

DTWcompSplit = O

(
x2

x÷ `

)
(5)

As note earlier, kNN classification was used with respect to the evaluation
reported below, with k = 1 because this is the most commonly used value for
k for time series classification [2, 3], the new unseen time series úneeds to be
compared with all records r in the dataset D in order to be classified. The time
complexity for comparing a single record using 1NN will be:

O (r × complexity) (6)

where complexity can be measured using either: (i) DTWcompStand, (ii) EDcompStand

or (iii) DTWcompSplit.
If there are |ú| new time series to be classified (|ú| > 1) the complexity will

become:

O (r × complexity × |ú|) (7)

When using the proposed, Candidate Reduction, the time complexity is given
by:

O (|ú| × ((Ô×DTWcompSplit) + ((r − Ô)× EDcompStand))) (8)

where Ô is the number of time series retained after candidate reduction.

5 Evaluation

In this section, the evaluation of the proposed mechanism is presented. Experi-
ments were conducted using: (i) Standard DTW (the benchmark), (ii) Enhanced
Sub-Sequence-Based DTW as described in [1] and using ` = 40 and t = 2 and
Option C (the parameters that produced the best results), (iii) Enhanced Sub-
Sequence-Based DTW with parameter learning but without candidate reduction
and (iv) Enhanced Sub-sequence-Based DTW with parameter learning and can-
didate reduction (the proposed mechanism). As noted earlier, the evaluation
was performed using the kNN classification algorithm. Fifteen datasets from the
UEA and UCR Time Series Classification repository [4] were used. Further detail
regarding the datasets used is given in Sub-section 5.1. The evaluation objectives
were:

1. To review the operation of the proposed Enhanced Sub-sequence-Based DTW
with parameter learning and candidate reduction in terms of the parameters
used
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2. To evaluate the run-time of the proposed approach in comparison with the
other approaches considered.

3. To evaluate the accuracy of the proposed approach in comparison with the
other approaches considered.

Each is considered in turn in the following three sub-sections, Sub-section 5.1 to
Sub-section 5.3.

For the experiments, a desktop computer with a 3.5 GHz Intel Core i5 pro-
cessor and 16 GB, 2400 MHz, DDR4 of primary memory was used. The reported
values are Ten Cross Validation (TCV) average values.

5.1 Parameter Settings

This section presents an overview of the data sets used and the learnt parameter
settings. A total of fifteen datasets were taken form the UEA and UCR repository
[4]. The datasets were chosen so that a range of datasets of different sizes, in
terms of the number of records and time series lengths, were considered and
different numbers of classes. The lengths varied between 8 and 2000 points;
the number of records varied between 60 to 10992. An overview of the fifteen
datasets, ordered according to ascending order of time series length (x), is given
in Table 2. Column 3, x, gives the time series length (number of points) for each
dataset. The number of records r for each dataset is given in Column 4, and the
number of classes in Column 5. The parameter values learnt using the proposed
Sub-Sequence-Based DTW approach, for `, t and Ô, are given in Columns 6,
7 and 8 respectively. The runtime to learn the parameters is given in Column
9. From the table, it can be seen that each dataset has its own values for the
parameters; although it should be noted that ` = 40 is the best length for almost
50% of the datasets used in the experiments. For runtime, as expected, the size
of the dataset (x× r) plays an important role to determine the required time for
learning the parameters.

5.2 Run Time performance

In this sub-section, the runtime performance with respect to the labelling of a
single previously unseen time series is presented. The runtime results are pre-
sented in Table 3; again, the data sets are ordered according to ascending order
of time series length. The columns equate to the four alternatives considered in
the evaluation as listed earlier. From the table, it can be seen that using the pro-
posed approach, with parameter learning and candidate reduction, significant
efficiency gains are earned. The runtimes recorded using the proposed approach
are almost the same. The same results are plotted in Figure 4, where the x-axis
represents the dataset names, see Table 2, and the y-axis represents the runtime
in seconds. From the figure, it can again be seen that the runtime using the
proposed mechanism (red line) is almost constant regardless of the nature of the
data set used. Also, the runtime for the Enhanced Sub-Sequence-Based DTW
and Enhance parameter Learning are almost identical.
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Table 2: Evaluation Time Series Datasets Used and Learnt Parameters `, t and Ô.
ID Dataset Length Num. Num. Parameters Runtime
No. Name (x) records (r) Classes ` t Ô (sec)

1. PenDigits 8 10992 10 5 2 1 8867

2. SmoothSubspace 15 300 3 7 3 20 236

3. ItalyPowerDemand 24 1096 2 10 4 5 1131

4. Libras 45 360 15 10 2 5 886

5. SyntheticControl 60 600 10 30 2 32 2187

6. GunPoint 150 200 2 40 2 8 1630

7. OliveOil 570 60 4 40 9 4 1854

8. Trace 275 200 4 80 2 10 2449

9. ToeSegment2 343 166 2 40 9 20 2558

10. Car 577 120 4 60 6 13 3018

11. Lightning2 637 121 2 80 4 10 3564

12. ShapeletSim 500 200 2 40 2 22 6032

13. DiatomSizeRed 345 322 4 40 2 1 6198

14. Adiac 176 781 37 40 8 13 9213

15. HouseTwenty 2000 159 2 40 5 12 11098

Table 3: Runtime (sec) Results for a Single Record.

Standard Enhanced Enhanced Enhanced
ID Data DTW Sub-Seq. Param. Param. Learn
No. set (B’mark) Based DTW Learning Cand. Reduct.

1. PenDigits 19.00 4.40 4.50 0.27

2. SmoothSubspace 1.33 0.45 0.45 0.26

3. ItalyPowerDemand 2.20 0.70 0.75 0.26

4. Libras 1.40 0.45 0.50 0.26

5. SyntheticControl 1.65 0.60 0.55 0.25

6. GunPoint 1.20 0.40 0.35 0.25

7. OliveOil 1.30 0.36 0.40 0.25

8. Trace 1.40 0.52 0.52 0.26

9. ToeSegment2 1.55 0.54 0.60 0.25

10. Car 1.90 0.51 0.52 0.26

11. Lightning2 1.85 0.50 0.55 0.26

12. ShapeletSim 2.11 0.65 0.72 0.28

13. DiatomSizeRed 2.39 0.79 0.85 0.26

14. Adiac 2.30 1.10 1.22 0.25

15. HouseTwenty 17.01 1. 43 1.70 0.28

5.3 Accuracy of performance

In term of the effectiveness of the proposed technique comparisons were con-
ducted using accuracy and F1 score. The results are presented in Table 4, stan-
dard deviation values are given in parenthesis. The presented are average val-
ues derived using Ten Cross Validation (TCV). From the table, it can be seen
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that the accuracy and F1 score are either improved or remain unchanged us-
ing the proposed mechanism (and with runtime gains). In some datasets, such
as SmoothSubspace, Libras, GunPoint, Car, and ShapeletSim have improved
significantly in comparison with the fundamental DTW. Whilst the Enhanced
Sub-Sequence-Based DTW and Enhanced Parameters Learning has similar per-
formance in term of accuracy and F1 score.

Fig. 4: Average TCV runtime results (seconds) to classify a single record.

6 Conclusion

In this paper, an enhanced Sub-Sequence-Based DTW approach, the Enhanced
Sub-sequence-Based DTW with parameter learning and candidate reduction
mechanism, has been presented. The operation of the proposed approach was
compared with Standard DTW, Enhanced Sub-Sequence-Based DTW and En-
hanced Sub-Sequence-Based DTW with parameter learning but no candidate
reduction. For the experiments the k-Nearest Neighbour classification algorithm,
with k = 1, was used, coupled with the Ten Cross Validation (TCV) technique,
with respect to 15 datasets taken from the UEA and UCR (University of East
Anglia and University of California Riverside) Time Series Classification Repos-
itory [4]. A comparison was conducted in terms of runtime, and accuracy and
F1 score. The runtimes recorded for the four mechanisms were presented, these
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Table 4: Best accuracy and F1 results, overall best accuracies and F1 values high-
lighted in bold font.

Bencmark
Standard
DTW

Enhanced
Sub-Sequenc
Based DTW

Enhanced
Param.
Learning

Sub-Sequence
B0.98ased DTW

and Cand.
Reduct.

ID
#

Data
set Acc F1 Acc F1 Acc F1 Acc F1

1 PenDigits
85.50
(0.01)

0.85
(0.01)

88.48
(0.01)

0.88
(0.01)

88.48
(0.01)

0.88
(0.01)

89.28
(0.01)

0.89
(0.01)

2
Smooth
Subspace

91.00
(0.04)

0.91
(0.04)

98.33
(0.03)

0.99
(0.03)

98.33
(0.03)

0.99
(0.03)

98.67
(0.01)

0.99
(0.01)

3
ItalyPower
Demand

95.70
(0.02)

0.96
(0.02)

96.34
(0.01)

0.96
(0.01)

96.34
(0.02)

0.96
(0.02)

96.62
(0.01)

0.96
(0.01)

4 Libras
62.59
(0.10)

0.60
(0.11)

66.51
(0.14)

0.64
(0.15)

67.22
(0.12)

0.65
(0.12)

68.00
(0.11)

0.66
(0.11)

5
Synthetic
Control

98.00
(0.01)

0.98
(0.01)

98.33
(0.01)

0.98
(0.01)

98.33
(0.01)

0.98
(0.01)

98.50
(0.01)

0.98
(0.01)

6 GunPoint
93.97
(0.04)

0.94
(0.05)

99.00
(0.02)

0.99
(0.02)

99.00
(0.02)

0.99
(0.02)

99.50
(0.01)

0.99
(0.01)

7 OilveOil
89.52
(0.15)

0.88
(0.16)

90.12
(0.10)

0.89
(0.12)

90.12
(0.10)

0.89
(0.12)

91.54
(0.11)

0.91
(0.11)

8 Trace
99.00
(0.03)

0.99
(0.03)

96.50
(0.04)

0.97
(0.04)

99.00
(0.03)

0.99
(0.03)

99.50
(0.01)

0.99
(0.01)

9
Toe

Segmentation2
89.07
(0.09)

0.88
(0.10)

92.26
(0.03)

0.92
(0.04)

90.56
(0.06)

0.90
(0.07)

92.30
(0.04)

0.92
(0.04)

10 Car
80.83
(0.07)

0.80
(0.09)

82.50
(0.10)

0.81
(0.11)

81.67
(0.11)

0.80
(0.12)

88.33
(0.08)

0.88
(0.09)

11 Lightin2
87.74
(0.09)

0.87
(0.08)

87.40
(0.08)

0.87
(0.09)

89.26
(0.06)

0.89
(0.07)

91.00
(0.09)

0.91
(0.09)

12
DiatomSize
Reduction

99.36
(0.01)

0.99
(0.01)

100.00
(0.00)

1.00
(0.00)

100.00
(0.00)

1.00
(0.00)

100.00
(0.00)

1.00
(0.00)

13 ShapleletSim
82.37
(0.09)

0.81
(0.11)

93.00
(0.04)

0.93
(0.04)

92.00
(0.06)

0.92
(0.06)

93.00
(0.04)

0.93
(0.04)

14 Adiac
64.63
(0.03)

0.62
(0.04)

64.98
(0.03)

0.62
(0.04)

65.43
(0.02)

0.63
(0.03)

66.70
(0.02)

0.66
(0.03)

15 HouseTwenty
93.75
(0.04)

0.94
(0.04)

91.17
(0.07)

0.91
(0.07)

91.17
(0.07)

0.91
(0.07)

93.75
(0.04)

0.94
(0.04)

demonstrated that the proposed approach outperformed the other models signifi-
cantly. In addition, as the number of records, or time series length, was increased,
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the runtime advantage becomes more evident. With respect to the recored ac-
curacy and F1 scores, the results demonstrated that the proposed mechanism,
incorporating candidate reduction, produced better performance compared to
other mechanisms considered.
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