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Abstract11

Minimizing the amount of fuel consumed by a moving vehicle can be formulated as an optimal control12

problem that determines the speed profile that the vehicle should follow. The fuel consumption is gener-13

ally a function of speed and acceleration, and is optimized under external parameters (e.g., road grade or14

surrounding traffic conditions) known to affect fuel economy. Uncertainty in the traffic conditions, and15

in particular traffic speed, has seldom been investigated in this context, which may prevent the vehicle16

from following the optimal speed profile and consequently affect the fuel economy and the journey time.17

This paper describes two stochastic optimal speed control models for minimizing the fuel consumption18

of a vehicle traveling over a given stretch of road under a given time limit, where the maximum speed19

that can be achieved by the vehicle over the journey is assumed to be random and follow a certain20

probability distribution. The models include chance constraints that either (i) limit the probability that21

the desired vehicle speed exceeds the traffic speed, or (ii) bound the probability that the journey time22

limit is violated. The models are then extended into distributionally robust formulations to capture any23

uncertainties in the probability distribution of the traffic speed. Computational results are presented on24

the performance of the proposed models and to numerically assess the impact of traffic speed variability25

and journey duration on the desired speed trajectories: The results affirm that uncertainty in traffic26

speeds can significantly increase the amount of fuel consumption and the journey time of the speed27

profiles created by deterministic model. Such increase in journey duration can be mitigated by incorpo-28

rating the stochasticity at the planning stage using the models described in this paper, and more so with29

the distributionally robust formulations particularly with higher levels of uncertainty. The solutions30

themselves generally exhibit low levels of speeds, which ensure the feasibility of the speed profile against31

any variabilities in the traffic speed.32

Keywords: optimal control; fuel consumption; uncertain traffic speed; stochastic programming; distri-33

butional robustness34
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1 Introduction35

Vehicle fuel consumption is significantly affected by the style of driving. Minimizing the36

amount of fuel consumed by a vehicle traveling on a given road, sometimes within a37

limited time period and assuming a terminal speed, is usually referred to as eco-driving,38

trajectory optimization or speed optimization, and can be formulated as an optimal control39

problem. Trajectory optimization problems have been studied in both online and off-40

line applications. The online application is solved en-route, and determines the optimal41

speed and control strategies under actual traffic conditions as the vehicle travels. In42

contrast, the offline application determines the optimal speed profile that the vehicle43

should follow before the journey takes place, and is relevant to the planning problems44

where the decisions are often taken the ‘day-before’ and cannot be easily changed once45

made (Bektaş et al., 2019).46

The most relevant work on trajectory optimization can be traced back to Schwarzkopf and47

Leipnik (1977), who were probably the first to develop an optimal control model of motor48

vehicle throttle settings to minimize fuel consumption under varying road conditions.49

With the increasing amount of research on this topic, particularly due to the emergence50

of autonomous vehicles, most studies require the availability of complete information on51

the traffic conditions when planning the vehicle speeds, and assume that the vehicle will52

be able to drive at their desired speeds as planned. Limited attention however has been53

given to a more practical situation where uncertain traffic conditions, due to the factors54

such as weather-related events or traffic congestion, may limit the maximum achievable55

speeds of the vehicle and render the planned speeds infeasible. Ignoring the uncertainty at56

the planning stage may yield suboptimal solutions and result in higher fuel consumption57

(Nasri et al., 2018).58

Incorporating such uncertainties in the optimal speed control problem can help to ensure59

that the planned speed profile is robust against variations in maximum achievable speeds,60

which is the motivation and the aim of this paper. In particular, the problem we study61

here is to determine the speed profile (trajectory) of a vehicle traveling from an origin62

to a destination under a prescribed time limit so as to minimize the amount of fuel63

consumed. We describe two stochastic optimal speed control models, where the maximum64

achievable speeds dictated by the exogenous traffic conditions are modeled as probabilistic65

variables. The first formulation enforces that the planned speeds should be achievable66

with a certain probability. The second formulation ensures that the vehicle arrives at67

the destination in the given time limit with a certain probability. Our proposed methods68

are extensions of the eco-driving problem by considering the uncertain traffic speed to69

minimize fuel consumption through optimizing the speed profile. The methods proposed70
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here are designed for use at the planning stage, i.e., before the trip commences, and71

prescribe the speed profile before the vehicle starts the journey and before the actual72

traffic speeds are known.73

The rest of our paper is organized as follows. Section 2 briefly reviews the related litera-74

ture on optimal speed control problems. Section 3 introduces the deterministic optimal75

speed control model and the solution methods. The two stochastic optimal speed control76

models are described in Section 4, which are then extended into distributionally robust77

formulations in Section 5. Case study and numerical experiments are presented in Section78

6. The paper concludes in Section 7.79

2 Literature review80

In this section, we first present a detailed review on the deterministic optimal speed81

control problem relevant to vehicle energy minimization, followed by a brief overview of82

the relevant literature on the optimal speed control problem incorporating urban driving83

conditions such as behavior of other vehicles.84

2.1 The deterministic optimal speed control problem85

The deterministic optimal speed control problem optimizes the instantaneous (e.g., second-86

by-second) speed and acceleration of a vehicle traveling along a given stretch of road to87

minimize the amount of energy or fuel consumed. It is an application of optimal control88

on highways, where all data relevant to the journey, such as destination and altitude, are89

assumed to be known beforehand. The two main types of solution methods are analytical90

and numerical.91

Schwarzkop and Leipnik (1977) formulated the optimal speed control problem using a92

nonlinear fuel consumption model, and derived closed-form analytical solutions for con-93

stant road slopes using Pontryagin’s maximum principle (Kopp, 1962). The results sug-94

gested that it is possible to optimize fuel consumption on a level road using a constant95

speed. Chang and Morlok (2005) used methods of calculus to show that the optimal96

speed trajectory is a constant speed and numerically confirmed the theoretical results.97

Fröberg et al. (2006) studied optimal speed profiles for heavy-goods trucks, and found98

that constant speed is optimal for minimizing fuel consumption on level roads and those99

with a small gradient. Passenberg et al. (2009) developed a hybrid optimal control model100

for operating trucks, where the objective function comprises economical income and fuel101

consumption, derived optimality conditions analytically and evaluated them numerically.102

Ozatay et al. (2014) linearized the longitudinal vehicle dynamics around the optimal con-103

stant speed, approximated the fuel consumption with a simplified nonlinear model, and104
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described an analytical method to solve the optimal control problem.105

Dynamic Programming (DP) is a more general technique that has been used to solve106

the optimal speed control problem for a range of fuel consumption models and can yield107

speed profiles for different road conditions. DP solves a discretized version of the problem108

using an iterative process. Hooker et al. (1983) described a DP to solve the optimal109

speed control problem that incorporates time- and location-dependent constraints such110

as speed limits and trip time. Later, Hooker (1988) applied the method to a variety of111

vehicles, and calculated the optimal speed trajectories over different roads. Monastyrsky112

and Golownykh (1993) relaxed the trip duration constraint by incorporating it into the113

objective function, through which they calculated the speed trajectories indirectly by114

adjusting the weights on fuel consumption and trip duration. By doing so, the running115

time of the DP was significantly reduced. Hellström et al. (2006, 2009) formulated the116

optimal speed control problem as being dependent on the vehicle position rather than117

time, so that the road gradient can be easily incorporated into the model. Using the same118

technique, location-dependent speed limits can also be modeled (Maamria et al., 2016a).119

Hellström et al. (2010) showed that using kinetic energy as the independent variable120

in the model formulation can avoid oscillating solutions and reduce linear interpolation121

errors. Luján et al. (2018) investigated the potential reduction in fuel consumption122

and NOx emissions by optimizing the speed trajectory. Liu et al. (2020) integrated the123

vehicle routing problem with the optimal speed control problem by considering the load-124

dependent vehicle dynamics, and developed a simultaneous routing-and-control algorithm125

to solve it. The application of their algorithm on several case studies yielded better126

solutions with respect to fuel consumption and time when compared to a sequential127

approach.128

Whilst the publications reviewed above predominantly concern conventional vehicles,129

similar energy optimal control models have been described in other contexts such as130

electric vehicles (EVs), hybrid-electric vehicles (HEVs), and trains.131

Compared to conventional vehicles, EVs behave differently as regards energy consump-132

tion, leading to different control and state variables, and objective functions (Lim et al.,133

2016). In particular, a unique feature of an EV is the regenerative braking system, which134

provides negative torque to the drive wheels and converts kinetic energy into electricity135

to recharge the battery (Xu et al., 2011). Petit and Sciarretta (2011) studied eco-driving136

for an EV with a DC-type motor, where the electric power demanded by the electric137

machine was represented using an analytical expression. Dib et al. (2014) investigate138

optimal energy management in eco-driving for an EV that is assumed to be powered by a139

permanent-magnet synchronous machine, and the vehicle trajectory itself is constrained140
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by the infrastructure and other vehicles. For an eco-driving optimal control problem,141

Maamria et al. (2016b) used a battery model represented by an equivalent circuit model142

comprising voltage source and electric resistance, both of which are related to the state-143

of-charge of the battery.144

The powertrain of an HEV is more complex due to the two sources of energy for the145

internal combustion engine and the electric motor. Consequently, improving the fuel146

efficiency of an HEV relies on the control strategy used for the energy sources (Heppeler147

et al., 2014). Energy management for hybrid vehicles has been studied by Sciarretta148

and Guzzella (2007), Pisu and Rizzoni (2007) and Bender et al. (2013). Combining149

eco-driving and hybrid powertrains can lead to further efficiencies in fuel economy. Kim150

et al. (2009) proposed a model predictive controller to optimize both the speed profile151

and the torque split. van Keulen et al. (2010) estimated the speed trajectory and the152

corresponding power trajectory to optimize the power split trajectory between the two153

energy sources via Energy Management Systems (EMS). Mensing et al. (2012) used154

the battery state-of-charge in identifying the energy optimal speed trajectory. Later,155

Heppeler et al. (2014) used DP to jointly optimize torque split, gear shift and speed156

trajectory. More recently, Guo et al. (2016) proposed an energy management strategy157

using model predictive control for HEVs, and proposed a bi-level methodology to reduce158

the computational time required to optimize the control variables.159

Optimal speed control has also been extensively studied for trains. In addition to ana-160

lytical methods based on Pontryagain’s maximum principle (e.g., Albrecht et al., 2016 a161

& b), other numerical methods, including dynamic programming (Franke et al., 2000),162

nonlinear programming (Wang et al., 2013; Ye and Liu, 2016, 2017), and mixed integer163

linear programming (MILP) (Wang et al., 2011, 2013), were also widely applied to solve164

the problem. Wang et al. (2011, 2013) proposed a method that uses MILP and showed165

that it is able to solve the optimal speed trajectory problem faster than some DP and166

nonlinear programming methods.167

2.2 Uncertainty in optimal driving168

Vehicles running on open roads are often subject to a wide range of traffic conditions, such169

as those due to the infrastructure (e.g., road signs and signals) (De Nunzio et al., 2016;170

Wu et al., 2015; Yang et al. 2016) or other vehicles. Recent work on speed optimization171

problems has considered traffic signals and vehicle platoons (Gong and Du, 2018; Han172

et al., 2018; Ma et al., 2017; Ojeda et al., 2017; Zhao et al., 2018; Zhou et al., 2017),173

generally assuming that any information on movement of other vehicles in a platoon is174

deterministic and fully known at the time of planning. Such an assumption may not175
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always hold in real driving conditions, because the behavior of drivers in traffic can be176

uncertain or even unpredictable. The exclusion of such uncertainties in determining the177

speed profiles may yield suboptimal or even infeasible trajectories in practice.178

More relevant to our paper is the uncertainty in attainable speeds due to the uncertain179

behavior of other drivers, which can limit the maximum speed of an ego vehicle (i.e., the180

vehicle that is being controlled). For example, when the ego vehicle is moving in a single181

lane following another vehicle, the ego vehicle should always maintain a safety distance182

to the predicting vehicle, and any decision made on the speed of the ego vehicle should183

consider the possible changes in the speed of the preceding vehicle (Wei et al., 2011).184

There has been a broad range of research activity on trajectory optimization, particularly185

for autonomous vehicles, that considers the uncertain movements of surrounding vehicles,186

for which we refer the readers to the comprehensive reviews by Katrakazas et al. (2015)187

and Claussmann et al. (2019). To the best of our knowledge, all such methods require188

real time traffic information in the area surrounding the vehicle. Our models break away189

from this body of work; in particular we are concerned with pre-trip speed planning where190

the ego vehicle does not need to know the actual traffic speeds.191

2.3 Contribution192

As mentioned above, to the best of our knowledge, the approaches described in the exist-193

ing body of research reviewed above are reactive in that they can deal with uncertainties194

that reveal themselves in real time as the ego vehicle travels. There is, therefore, still195

a need for approaches that are able to proactively determine the speed trajectory of a196

vehicle when the uncertainties in traffic conditions are expected to affect the vehicle197

speed. This is particularly relevant to operational- or tactical-level planning problems198

that involve the choice of optimal speed (Bektaş and Laporte, 2011).199

Our study aims to address this aspect and contributes to the existing body of research200

in three ways. First, we represent the uncertainty of traffic speeds in the optimal speed201

control problem in the form of upper bounds on the maximum achievable speeds that202

are modeled by probabilistic parameters. We describe two stochastic optimal speed op-203

timization models that impose bounds on the probability that the planned speeds or the204

maximum allowable journey duration is violated, and further extended these formulations205

to cater for distributional robustness. Second, we present methods to reformulate the op-206

timal control models and linearize their discretized formulations so that the proposed207

optimization problems can be solved using off-the-shelf optimization software. Third, we208

perform extensive computational analyses under different scenarios, to numerically eval-209

uate the performance of the proposed models and to assess the impact of traffic speed210
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variability and journey duration on the desired speed trajectories.211

3 Deterministic optimal speed control model212

In this section, we present the classical optimal speed control model that assumes de-213

terministic input parameters and use discretization to recast the problem as a nonlinear214

program (NLP) and subsequently as a mixed integer program (MIP). The techniques215

described in this section form the basis of the subsequent formulations for the stochastic216

optimal speed control problem that will be presented in Section 4.217

3.1 Problem description218

The deterministic optimal control problem concerns finding the optimal speed trajectory219

for a vehicle on a straight road, starting from an origin at time 0, destined to a location220

at S units distance, and is required to arrive at the destination within T units of time.221

For the problem to be feasible, T should be larger than the amount of time required222

to traverse the road where the vehicle runs at the upper speed limits allowed by road223

conditions and traffic.224

We denote distance s from the origin node as the independent variable, and the nonzero225

vehicle speed v(s) and acceleration a(s) at distance s as the state and control variables,226

respectively. The aim is to minimize the total fuel consumed by the vehicle over the227

journey, calculated using an instantaneous fuel consumption function FR(v(t), a(t)). A228

formulation for the problem is given as follows (Hooker et al., 1983; Monastyrsky and229

Golownykh, 1993; Luján et al., 2018):230

Minimize
a(s)

∫ S

0
FR(v(s), a(s)) 1

v(s)
ds (3.1)

subject to
∫ S

0

1
v(s)

ds ≤ T (3.2)

a(s) = dv(s)
ds

v(s) = dv(s)2

2ds
s ∈ [0, S] (3.3)

amin ≤ a(s) ≤ amax s ∈ [0, S] (3.4)

ϵ ≤ v(s) ≤ vmax(s) s ∈ [0, S] (3.5)

v(0) = v0, v(S) = vS, (3.6)

where amin is the minimum acceleration or maximum deceleration, which can be negative,231

7



amax is the constant maximum acceleration dictated by the maximum engine power, ϵ is232

a sufficiently small positive value, vmax(s) is the maximum speed at which the vehicle is233

allowed to travel at distance s from the origin, and v0 and vS are the initial and terminal234

speeds, respectively.235

The objective (3.1) is to minimize the fuel consumption over the whole journey. Con-236

straint (3.2) enforces the vehicle to arrive at the terminal location within time T . Con-237

straint (3.3) describes the relationship between speed and acceleration. Constraints (3.4)–238

(3.5) set the lower and upper bounds for acceleration and speed, respectively. Constraints239

(3.6) set the fixed initial speed and terminal speed, respectively. Note that the terminal240

speed constraint is optional (Hooker,1988).241

3.2 Solution methods242

In this section, we use discretization to recast the optimal speed control model as a NLP243

formulation, which is then reformulated as a MIP formulation subject to linear constraints244

that allows the use of off-the-shelf software to solve the problem.245

3.2.1 Discretization-based nonlinear programming246

Discretization is a standard method to solve the optimal control formulation of the eco-247

driving problems (Hooker et al., 1983; Monastyrsky and Golownykh, 1993; Hellström et248

al., 2009). It operates on the basis of dividing the total length S of the road into n249

segments of uniform length ∆s = S/n. The fuel consumed in traversing each segment250

is calculated based on the initial speed and the acceleration on the segment, where the251

acceleration is assumed to be constant over each segment. The fuel consumed over the252

entire journey is equal to the sum of fuel consumed over all segments.253

With a little abuse of notation, let 0, 1, ..., n − 1 represent the segment indices, where254

segment k corresponds to the segment of distance [(k − 1)∆s, k∆s] from the origin. For255

each segment k ∈ {0, 1, ..., n−1}, let θ(k) be the average road slope, a(k) be the constant256

acceleration, and v(k) and vmax(k) be the desired speed and maximum allowable speed at257

the beginning of the segment, respectively. The optimal speed control model (3.1)–(3.6)258

is then discretized as the following NLP:259

Minimize
a(k)

n−1∑
k=0

FR(v(k), a(k)) ∆s

v(k)
(3.7)
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subject to

n−1∑
k=0

∆s

v(k)
≤ T (3.8)

a(k) = v(k + 1)2 − v(k)2

2∆s
k ∈ {0, 1, ..., n − 1} (3.9)

amin ≤ a(k) ≤ amax k ∈ {0, 1, ..., n − 1} (3.10)

ϵ ≤ v(k) ≤ vmax(k) k ∈ {1, ..., n − 1} (3.11)

v(0) = v0, v(n) = vS, (3.12)

where v(n) represents the speed at the end of segment n − 1, which is the destination.260

Note that constraints (3.9)–(3.10) are nonconvex. In the following subsection, we will261

reformulate (3.7)–(3.12) into a mixed integer program with linear constraints, so as to262

solve the model more efficiently.263

3.2.2 Mixed integer programming264

We follow the technique and definition introduced by Wang et al. (2013). First, we define265

a new decision variable E(k) = 1
2v(k)2 representing the kinetic energy per unit mass at266

the beginning of each k ∈ {0, 1, ..., n − 1}. Then the nonlinear model (3.7)–(3.12) can be267

reformulated as follows:268

Minimize
a(k)

n−1∑
k=0

FR(
√

2E(k), a(k)) ∆s√
2E(k)

(3.13)

subject to

n−1∑
k=0

∆s√
2E(k)

≤ T (3.14)

a(k) = E(k + 1) − E(k)
∆s

k ∈ {0, 1, ..., n − 1} (3.15)

amin ≤ a(k) ≤ amax k ∈ {0, 1, ..., n − 1} (3.16)
1
2

ϵ2 ≤ E(k) ≤ 1
2

vmax(k)2 k ∈ {1, ..., n − 1} (3.17)

E(0) = 1
2

v2
0, E(n) = 1

2
v2

S, (3.18)

The above model is still nonlinear due to the term 1√
2E(k)

in the objective function and269

constraint (3.15). Following Wang et al. (2013), we approximate f(E(k)) = 1√
2E(k)

using270

a piecewise affine (PWA) function. For the purposes of illustration, we present such a271

PWA function with three linear pieces, given by the following equation and illustrated in272
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Figure 1,273

fPWA(E(k)) =


λ1E(k) + γ1, for Emin ≤ E(k) ≤ E1

λ2E(k) + γ2, for E1 < E(k) ≤ E2

λ3E(k) + γ3, for E2 < E(k) ≤ Emax,

(3.19)

where λ1, λ2, λ3 and γ1, γ2, γ3 are the slopes and intercepts of the linear functions,274

respectively, Emin = 1
2ϵ2, Emax = max{1

2vmax(k)2 , ∀k ∈ {0, 1, 2, ..., n − 1}}, and E1 and275

E2 are the intersections of the adjacent pieces of the PWA function. Note that the values276

of these parameters are the same for all k. Increasing the number of linear pieces in the277

PWA function can improve the accuracy of the approximation, which will be tested later278

in our computational experiments in Section 6.279

Emin E1 E2 Emax

E(k)

0.2

0.4

0.6

0.8

1.0

Fu
nc

tio
n 

Va
lu

e

1
2E(k)

1E(k) + 1

2E(k) + 2

3E(k) + 3

Figure 1: The PWA function

In order to incorporate the piecewise linear functions into the formulation, we introduce280

two new binary variables, namely δ1(k) that is equal to 1 if E(k) ≤ E1, and to 0 otherwise,281

and δ2(k) that is equal to 1 if E(k) ≤ E2, and to 0 otherwise. Then, expression (3.19)282

can be formulated as follows,283

fPWA(E(k)) = δ1(k)δ2(k)(λ1E(k) + γ1) + (1 − δ1(k))δ2(k)(λ2E(k) + γ2)

+(1 − δ1(k))(1 − δ2(k))(λ3E(k) + γ3) (3.20)
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subject to284

E(k) ≤ (Emax − E1)(1 − δ1(k)) + E1 (3.21)

E(k) ≥ E1 + ε + (Emin − E1 − ε)δ1(k) (3.22)

E(k) ≤ (Emax − E2)(1 − δ2(k)) + E2 (3.23)

E(k) ≥ E2 + ε + (Emin − E2 − ε)δ2(k), (3.24)

where ε is a sufficiently small constant due to the “strictly less” conditions in Eq. (3.19).285

To linearize the product δ1(k)δ2(k) in (3.20), we introduce a third binary variable δ3(k)286

to replace δ1(k)δ2(k), along with the following set of constraints:287

−δ1(k) + δ3(k) ≤ 0 (3.25)

−δ2(k) + δ3(k) ≤ 0 (3.26)

δ1(k) + δ2(k) − δ3(k) ≤ 1. (3.27)

Finally, we define new auxiliary variables z1(k) = δ1(k)E(k), z2(k) = δ2(k)E(k), and288

z3(k) = δ3(k)E(k) to replace the nonlinear term in (3.20), subject to the following set of289

linear inequalities:290

zj(k) ≤ Emaxδj(k) j ∈ {1, 2, 3} (3.28)

zj(k) ≥ Eminδj(k) j ∈ {1, 2, 3} (3.29)

zj(k) ≤ E(k) − Emin(1 − δj(k)) j ∈ {1, 2, 3} (3.30)

zj(k) ≥ E(k) − Emax(1 − δj(k)) j ∈ {1, 2, 3}. (3.31)

Substituting z1(k), z2(k), z3(k) and δ3 = δ1δ2 into the piecewise function (3.20) yields291

the following linear expression:292

fPWA(E(k)) = −λ3z1(k) + (λ2 − λ3)z2(k) + (λ1 − λ2 + λ3)z3(k)

−γ3δ1(k) + (γ2 − γ3)δ2(k) + (γ1 − γ2 + γ3)δ3(k)

+λ3E(k) + γ3. (3.32)

Subject to constraints (3.21)–(3.31), where δ1, δ2, δ3 are binary variables. By incorporat-293

ing the reformulation (3.32) and the associated constraints above into the NLP formula-294

tion (3.13)–(3.18), we can obtain the following MIP formulation:295

Minimize
a(k)

n−1∑
k=0

FR(
√

2E(k), a(k)) ∆s√
2E(k)

∆s (3.33)
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subject to296

n−1∑
k=0

∆sfPWA(E(k)) ≤ T (3.34)

(3.15)–(3.18), (3.21)–(3.32).297

At this point, we observe that the constraints of the MIP above are all linear, and298

the nonlinear objective function (3.33) in the MIP above can be linearized if the fuel299

consumption model follows a particular structure. This is, for example, the case with the300

widely-used comprehensive modal emissions model (CMEM) shown below:301

FR(v, a) = C1 + C2 max{Ma + 1
2

CdρAv2 + MgCr cos θ + Mg sin θ, 0}v, (3.35)

where its formulation and the parameters are explained in detail in Appendix A. With302

the CMEM model, the objective (3.33) reads,303

Minimize
a(k)

n−1∑
k=0

{
C1 + C2X(k)

√
2E(k)

} ∆s√
2E(k)

=
n−1∑
k=0

{C1fP W A(E(k)) + C2X(k)} ∆s, (3.36)

subject to the following constraints:304

X(k) ≥ Ma(k) + CdρAE(k) + Mg sin θ(k) + CrMg cos θ(k) k ∈ {0, 1, ..., n}(3.37)

X(k) ≥ 0 k ∈ {0, 1, ..., n − 1}, (3.38)

where X(k) is introduced to linearize the term max{·, 0} in (3.35). This finally results in305

a MILP consisting of (3.15)–(3.18), (3.21)–(3.32), (3.34) and (3.36)–(3.38), which can be306

solved by off-the-shelf optimization packages.307

4 Stochastic optimal speed control308

The optimal control models described in the preceding section set deterministic bounds309

on the speeds that can be chosen along a journey. In practice, however, the maximum310

achievable speeds on a road segment depend on the traffic conditions, which could be311

a result of the behaviour of the preceding vehicle(s) that the ego vehicle may need to312

follow throughout the journey, and thus are not always known with certainty prior to313

commencing the journey. The maximum speed vmax(s) at distance s from the origin will314

therefore have to obey the traffic speed, which is a random variable and can be correlated315
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with the traffic speeds at other locations. We assume that the maximum speeds over the316

whole journey follow a multivariate distribution P . A few previous studies have investi-317

gated the real traffic data and suggested various distributions for the vehicle speeds on318

road, such as normal (Leong, 1968), skew-normal (Zou and Zhang, 2011), and composite319

distributions (Park et al., 2010). In general, the unimodal curve provides a good fit for320

the speed distribution under homogenous traffic conditions, but the distribution of speeds321

becomes more complex when the traffic conditions are heterogeneous (Park et al., 2010).322

In our models, we do not assume any particular distribution for P . Here we differentiate323

between the planned (desired) speeds v(s) that are the output of an optimal control model324

at which the vehicle is planned to be driven, and the actual (realized) speeds at which325

the vehicle is actually driven, and potentially constrained by traffic speeds vmax(s). In326

particular, when the vehicle is en-route, if v(s) ≥ vmax(s), then the actual (realized) speed327

will be equal to vmax(s).328

In this section, we describe two stochastic optimal speed control models to incorporate the329

uncertainty in the traffic speed. The first model uses a chance constraint to ensure that330

the planned speeds can be achieved with a certain probability. The second model also331

uses chance constraints, but impose a bound on the probability of completing the journey332

within the prescribed time T . The latter is particularly relevant, as any uncertainty in333

traffic speeds along the journey is likely to impact the achievable speeds, and therefore334

the journey duration.335

4.1 Chance constraints on the vehicle speed336

The stochastic model presented in this section is similar to the deterministic optimal337

speed control model described in Section 3.1, with the difference being that the speed338

limit vmax(s) is now a random variable representing the uncertainty in the traffic speed.339

The following chance constraint (4.1) is used in place of (3.5),340

Prob {v(s) ≤ vmax(s)} ≥ 1 − α ∀s ∈ [0, S] (4.1)

v(s) ≥ ϵ ∀s ∈ [0, S], (4.2)

which enforces that the desired speeds along the journey are achievable with probability341

1 − α. Then, the stochastic optimal speed control model with speed chance constraints342

is given by (3.1)–(3.4), (3.6), (4.1)–(4.2), which we will refer to as StoVer1.343

The stochastic optimal speed control model can be reformulated as an approximate dis-344

cretized stochastic nonlinear programming model in the same way as was done for the345

deterministic optimal speed control model described in Section 3.2.1. In particular, let346

vmax(k) be the traffic speed over segment k = 0, 1, ..., n − 1, which follows a marginal347
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distribution Pk based on the distribution P . Then, the chance constraint (4.1) can be348

replaced by the following inequalities:349

Prob {v(k) ≤ vmax(k)} ≥ 1 − α k ∈ {1, ..., n − 1}. (4.3)

Using the unit-mass kinetic energy E(k) = 1
2v(k)2 for each segment k as the decision350

variable, the chance constraint (4.3) above is equivalent to351

Prob {v(k) ≤ vmax(k)} ≥ 1 − α, k ∈ {1, 2, ..., n − 1}

⇐⇒ Prob
{
2E(k) ≤ vmax(k)2

}
≥ 1 − α, k ∈ {1, 2, ..., n − 1}, (4.4)

where the underlying probability distribution for the parameter v2
max can be easily com-352

puted by using the distribution P of the traffic speed vmax.353

4.2 Chance constraints on the journey duration354

In this subsection, we model the condition that the vehicle should arrive at the terminal355

location within the given time period T with a certain probability. In particular, the356

stochastic optimal speed control model that we present below includes a chance constraint357

stating that the probability of the duration being greater than T is at most α. In what358

follows, we first present the model in its original form, followed by a NLP formulation359

that uses discretization, and then a reformulation of the NLP as a MIP.360

4.2.1 Stochastic optimal speed control model361

As mentioned before, at a distance s from the origin, if the desired vehicle speed v(s)362

is higher than the maximum allowable speed vmax(s), then the latter will be the actual363

speed to be implemented. The actual speed on the journey can therefore be expressed as364

min{v(s), vmax(s)}. The nonlinearity of this expression introduces further complications365

in the modeling, which we resolve as in the below.366

We first introduce a new variable ar(s) to denote the actual acceleration at distance s,367

which can be used for calculating the fuel consumption. Similar to (3.3), the actual368

acceleration is calculated from the actual speed as follows:369

ar(s) = d min{v(s), vmax(s)}
ds

min{v(s), vmax(s)}, (4.5)

In principle, we should require the actual acceleration to be achievable, i.e., to be bounded370

by the maximum deceleration and maximum acceleration as the following constraints:371

amin ≤ ar(s) ≤ amax. (4.6)
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which is satisfied if the traffic acceleration and planned acceleration are both bounded.372

In practice, the traffic acceleration is bounded as specified by the following Assumption.373

Assumption 4.1. Let at(s) denote the rate of change in the actual traffic speed vmax(s).374

Then,375

amin ≤ at(s) = dvmax(s)
ds

vmax(s) ≤ amax, (4.7)

for all s ∈ [0, S]. In other words, the traffic speed is bounded by the maximum deceleration376

and maximum acceleration.377

Remark 4.1. The practical interpretation of Assumption 4.1 is that the traffic speed378

is assumed not to change too quickly. This is reasonable since the acceleration and379

deceleration of each vehicle in the traffic is bounded due to their powering and braking380

capacities.381

If Assumption 4.1 holds, the planned acceleration is also bounded, i.e., amin ≤ a(s) =382

dv(s)
ds

v(s) ≤ amax, then the actual acceleration will also be bounded by amin and amax,383

which means that constraint (4.6) is satisfied.384

The stochastic optimal control model is then formulated below:385

Minimize
a(s)

EP

∫ S

0
FR

(
min{v(s), vmax(s)}, ar(s)

) 1
min{v(s), vmax(s)}

ds (4.8)

subject to

ar(s) = d min{v(s), vmax(s)}
ds

min{v(s), vmax(s)} s ∈ [0, S] (4.9)

Prob
{∫ S

0

1
min{v(s), vmax(s)}

ds ≤ T

}
≥ 1 − α (4.10)

a(s) = dv(s)
ds

v(s) s ∈ [0, S] (4.11)

amin ≤ a(s) ≤ amax s ∈ [0, S] (4.12)

v(s) ≥ ϵ s ∈ [0, S] (4.13)

v(0) = v0, v(S) = vS. (4.14)

The objective (4.8) minimizes the expected fuel consumption over the journey. Constraint386

(4.9) computes the actual acceleration of the vehicle. The inequality (4.10) is the chance387

constraint that bounds the probability of the vehicle arriving at the terminal location388

within time T to be at least 1 − α. Constraint (4.12) bounds the change rate of the389

desired speed, and therefore limits the actual acceleration as explained earlier.390

15



The main difficulty in solving the optimal control model above is due to the chance con-391

straint (4.10), which requires integration over all random variables on the whole journey.392

To address this difficulty, we first present the following proposition.393

Proposition 4.1. Let ν : [a, b] → R+, and φ : [a, b] → R be two functions. Define the394

set Ω =
{

φ
∣∣∣∣ ∫ b

a dφ(x) = z
}

, where z is a prespecified constant. Then, the following two395

sets I and J are equivalent:396

1. I =
{

ν
∣∣∣∣ ∫ b

a
1

ν(x)dx ≤ z
}

;397

2. J = ⋃
φ∈Ω

{
ν

∣∣∣∣ 1
ν(x) ≤ dφ(x)

dx
∀x ∈ [a, b]

}
.398

Proof. For any x ∈ [a, b], we prove for both sufficiency and necessity.399

1. I ⇒ J . For a ν ∈ I, let c = z −
∫ b

a
1

ν(x)dx ≥ 0. Define φ(x) =
∫ x

a

(
1

ν(x) + c
b−a

)
dx, then400

dφ(x) =
(

1
ν(x) + c

b−a

)
dx, then

∫ b
a dφ(x) =

∫ b
a

(
1

ν(x) + c
b−a

)
dx = z and dφ(x)

dx
= 1

ν(x) + c
b−a

≥401

1
ν(x) . So φ ∈ Ω and thus ν ∈ J .402

2. J ⇒ I. For a ν ∈ J , there must exist a φ ∈ Ω such that 1
ν(x) ≤ dφ(x)

dx
for all x ∈ [a, b].403

Then,
∫ b

a
1

ν(x)dx ≤
∫ b

a dφ(x) = z, implying ν ∈ I.404

Combining 1 and 2 completes the proof. ■405

Proposition 4.1 allows reformulating the chance constraint (4.10) in to the constraints406

(4.15)–(4.16) as follows:407

∫ S

0
dt∗(s) = T (4.15)

Prob
{

1
min{v(s), vmax(s)}

≤ dt∗(s)
ds

, ∀s ∈ [0, S]
}

≥ 1 − α. (4.16)

In (4.15)–(4.16), t∗(s) is a new variable that we call the boundary time, which can be408

interpreted as an upper bound to the point in time that the vehicle reaches distance s409

from the origin. Constraint (4.16) is a joint chance constraint of all the traffic speeds410

along the journey, which introduces further complexities as compared to an individual411

chance constraint (Chen et al. 2010). To overcome this issue, we relax the constraint as412

in the following proposition. We will later show in the numerical case studies in Section413

6.2 that such a relaxation works well.414

Proposition 4.2. The following constraint (4.17) is a relaxation of constraint (4.16),415

Prob
{

1
min{v(s), vmax(s)}

≤ dt∗(s)
ds

}
≥ 1 − α s ∈ [0, S]. (4.17)
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Proof. For any ŝ ∈ [0, S], if v(ŝ) satisfies constraint (4.16), then416

1 − α ≤ Prob
{

1
min{v(s), vmax(s)}

≤ dt∗(s)
ds

, ∀s ∈ [0, S]
}

= Prob
{

1
min{v(ŝ), vmax(ŝ)}

≤ dt∗(ŝ)
ds

; 1
min{v(s), vmax(s)}

≤ dt∗(s)
ds

, ∀s ∈ [0, ŝ)
⋃

(ŝ, S]
}

≤ Prob
{

1
min{v(ŝ), vmax(ŝ)}

≤ dt∗(ŝ)
ds

}

meaning v(ŝ) also satisfies constraint (4.17). ■417

Constraint (4.17) can be further simplified according to the following proposition.418

Proposition 4.3. Constraint (4.17) is equivalent to the two constraints below,419

v(s) ≥ dt∗(s)
ds

, ∀ s ∈ [0, S] (4.18)

Prob
{

vmax(s) ≥ ds

dt∗(s)

}
≥ 1 − α ∀s ∈ [0, S], (4.19)

where t∗(s) satisfies (4.15).420

Proof. For any s ∈ [0, S], constraint (4.17) can be written as421

Prob
{

min{v(s), vmax(s)} ≥ ds

dt∗(s)

}

= Prob
{

v(s) ≥ ds

dt∗(s)
, vmax(s) ≥ ds

dt∗(s)

}
≥ 1 − α.

The proof now follows from the observation that the desired speed v(s) is a deterministic422

variable and is independent of the random variable vmax(s). ■423

Using the three propositions above, the stochastic optimal speed control model with424

chance constraints on the journey duration can now be formulated by the objective func-425

tion (4.8), subject to constraints (4.9), (4.11)–(4.15), (4.18)–(4.19), which we will refer to426

as StoVer2.427

4.2.2 Discretized stochastic nonlinear programming428

Using the same discretization described in Section 3.2.1, we divide the road into n seg-429

ments indexed by k = 0, 1, ..., n − 1. Define ar(k) as the actual (constant) acceleration430

on the segment k, and a new auxiliary variable ∆t∗(k) that corresponds to the boundary431

time dt∗(s) in the original stochastic model for each segment k. A nonlinear program-432
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ming formulation is then given as follows, which is the discretized version of the StoVer2433

(4.8),(4.9), (4.11)–(4.15), (4.18)–(4.19):434

Minimize
a(k)

EP ′

n−1∑
k=0

FR
(

min{v(k), vmax(k)}, ar(k)
) 1

min{v(k), vmax(k)}
∆s (4.20)

subject to

ar(k) =
min{v(k + 1), vmax(k + 1)}2 − min{v(k), vmax(k)}2

2∆s
k ∈ {0, 1, ..., n − 1} (4.21)

a(k) = v(k + 1)2 − v(k)2

2∆s
k ∈ {0, 1, ..., n − 1} (4.22)

amin ≤ a(k) ≤ amax k ∈ {0, 1, ..., n − 1} (4.23)

v(k) ≥ ϵ k ∈ {1, ..., n − 1} (4.24)
n−1∑
k=0

∆t∗(k) = T (4.25)

v(k)∆t∗(k) ≥ ∆s (4.26)

Prob {vmax(k)∆t∗(k) ≥ ∆s} ≥ 1 − α k ∈ {0, 1, ..., n − 1} (4.27)

v(0) = v0, v(n) = vS. (4.28)

where P ′ is the probability distribution of the vector (vmax(0), vmax(1), ..., vmax(n − 1)).435

When the probability distribution of the traffic speed is known, standard stochastic op-436

timization techniques can be used to solve the model above. The chance constraint437

(4.27) can be linearized for some particular distributions such as normal and lognormal,438

or approximated by a convex constraint (Nemirovski and Shapiro 2007). As for the439

objective function (4.20), it is possible to approximate it using sample average approxi-440

mation (SAA) (Shapiro et al., 2009) by generating N random traffic speed samples ξi(k),441

i = 0, 1, ..., N − 1, for each segment k = 0, 1, ..., n − 1 using the Monte Carlo method442

satisfying Assumption 4.1, which results in the following formulation:443

Minimize
a(k)

1
N

N−1∑
i=0

n−1∑
k=0

FR
(

min{v(k), ξi(k)}, ari(k)
) 1

min{v(k), ξi(k)}
∆s (4.29)

subject to444

ari(k) =
1
2 min{v(k + 1), ξi(k + 1)}2 − 1

2 min{v(k), ξi(k)}2

∆s
k ∈ {0, 1, ..., n − 1}, i ∈ {0, 1, ...N − 1} (4.30)
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(4.22)–(4.28).445

The nonlinear expression min{v(k), ξi(k)} in (4.29) can be linearized by using a contin-446

uous variable vr,i(k) and a binary variable yi(k), subject to the following constraints:447

vr,i(k) ≤ ξi(k) (4.31)

vr,i(k) ≤ v(k) (4.32)

ξi(k) − M(1 − yi(k)) ≤ vr,i(k) ≤ ξi(k) + M(1 − yi(k)) (4.33)

v(k) − Myi(k) ≤ vr,i(k) ≤ v(k) + Myi(k) (4.34)

yi(k) ∈ {0, 1}, (4.35)

where M is a big constant. The final form of the discretized stochastic NLP is (4.22)–448

(4.28), (4.29)–(4.35), where min{v(k), ξi(k)} in (4.29) and (4.30) is replaced by vri(k) for449

each i = 0, 1, ..., N − 1 and k = 0, 1, ..., n − 1. Note that this final form is based on the450

formulation using the relaxed chance constraint (4.17).451

4.2.3 Stochastic mixed integer programming452

In this part, we transform the model (4.20)–(4.28) to a stochastic MIP, following the same453

development in Section 3.2.2. By defining new variables Er(k) = min{E(k), 1
2vmax(k)2}454

for each k = 0, 1, ..., n − 1, and denoting P ∗ as the probability distribution of the vector455 (
vmax(0)2, vmax(1)2, ..., vmax(n − 1)2

)
, we have the following formulation:456

Minimize
a(k)

EP ∗

n−1∑
k=0

FR
(√

2Er(k), ar(k)
)

fP W A(Er(k))∆s (4.36)

subject to457
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(3.21)–(3.32)

fPWA(Er(k)) = (λ2 − λ3)z2r(k) + (λ1 − λ2 + λ3)z3r(k)

− γ3δ1r(k) + (γ2 − γ3)δ2r(k) + (γ1 − γ2 + γ3)δ3r(k)

− λ3z1r(k) + λ3Er(k) + γ3 k ∈ {0, 1, ..., n − 1} (4.37)

Er(k) ≤ (Emax − E1)(1 − δ1r(k)) + E1 k ∈ {0, 1, ..., n − 1} (4.38)

Er(k) ≥ E1 + ε + (Emin − E1 − ε)δ1r(k) k ∈ {0, 1, ..., n − 1} (4.39)

Er(k) ≤ (Emax − E2)(1 − δ2r(k)) + E2 k ∈ {0, 1, ..., n − 1} (4.40)

Er(k) ≥ E2 + ε + (Emin − E2 − ε)δ2r(k) k ∈ {0, 1, ..., n − 1} (4.41)

zjr(k) ≤ Emaxδjr(k) j ∈ {1, 2, 3} k ∈ {0, 1, ..., n − 1} (4.42)

zjr(k) ≥ Eminδjr(k) j ∈ {1, 2, 3} k ∈ {0, 1, ..., n − 1} (4.43)

zjr(k) ≤ Ej(k) − Emin(1 − δjr(k)) j ∈ {1, 2, 3} k ∈ {0, 1, ..., n − 1} (4.44)

zjr(k) ≥ Ej(k) − Emax(1 − δjr(k)) j ∈ {1, 2, 3} k ∈ {0, 1, ..., n − 1} (4.45)

−δ1r(k) + δ3r(k) ≤ 0 k ∈ {0, 1, ..., n − 1} (4.46)

−δ2r(k) + δ3r(k) ≤ 0 k ∈ {0, 1, ..., n − 1} (4.47)

δ1r(k) + δ2r(k) − δ3r(k) ≤ 1 k ∈ {0, 1, ..., n − 1} (4.48)

δ1r(k),δ2r(k), δ3r(k) ∈ {0, 1} k ∈ {0, 1, ..., n − 1} (4.49)

ar(k) = Er(k + 1) − Er(k)
∆s

k ∈ {0, 1, ..., n − 1} (4.50)

a(k) = E(k + 1) − E(k)
∆s

k ∈ {0, 1, ..., n − 1} (4.51)

amin ≤ a(k) ≤ amax k ∈ {0, 1, ..., n − 1} (4.52)

E(k) ≥ ϵ k ∈ {1, 2, ..., n − 1} (4.53)

E(0) = 1
2

v2
0, E(n) = 1

2
v2

S (4.54)
n−1∑
k=0

∆t∗(k) = T (4.55)

√
2E(k)∆t∗(k) ≥ ∆s ⇔ fP W A(E(k)) ≤ ∆t∗(k)

∆s
k ∈ {0, 1, ..., n − 1} (4.56)

Prob {vmax(k)∆t∗(k) ≥ ∆s} ≥ 1 − α k ∈ {0, 1, ..., n − 1} (4.57)

The model above is a stochastic MIP that has a nonlinear objective function with ex-458

pectation on random vector
(
vmax(0)2, vmax(1)2, ..., vmax(n − 1)2

)
, and chance constraints459

(4.57). The expectation in the objective function (4.36) can be handled in the same way460

as in Section 4.2.2, and linearized for particular fuel consumption models following the461

same development in Section 3.2.2.462
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5 Distributionally robust stochastic optimal speed control463

The stochastic speed control models presented in the previous section assumed that the464

probability distribution P underlying the traffic speeds is known with certainty. If the true465

distribution is not known, or its parameters are uncertain, then the resulting solutions466

of the stochastic optimization models may be suboptimal. In order to allow for any467

uncertainty in the forms or parameters of the probability distribution, we resort to the468

use of uncertainty sets in the stochastic optimization formulations in Section 4 that will469

provide for distributional robustness (Ben-Tal et al., 2009).470

In formal terms, let Φ be the nominal distribution that is a best estimate of the true (but471

unknown) distribution P of the traffic speeds over the whole journey. The structure of472

Φ can be different to that of P , and it can be obtained via many ways such as Bayesian473

estimation method (Park et al., 2010). We then define an ambiguity set P as follows:474

P = {Φ′ ∈ D : D(Φ′||Φ) ≤ η}, (5.1)

where D denotes the set of probability distributions, D(Φ′||Φ) =
∫

V ϕ(x)log ϕ(x)
ϕ′(x)dx is the475

“distance” between distributions Φ′ and Φ (with V representing the range of variable476

x, and ϕ(x) and ϕ′(x) being the probability mass functions of Φ′ and Φ, respectively),477

and η is a positive constant that controls the size of the ambiguity set P. Note that478

the ambiguity set P covers a wider range of traffic speeds than the nominal distribution479

Φ, where the range depends on the value of η. There are different ways to measure the480

distance between two probability distributions. The expression (5.1) that we use here481

is based on the method proposed by Hu and Hong (2013) where the ambiguity set is482

defined by the Kullback-Leibler (KL) divergence. Next, we show how to incorporate483

distributional robustness into the two stochastic optimal control models with chance484

constraints described in Section 4.485

5.1 Robust chance constraints on the vehicle speed486

We revisit the formulations described in Section 4.1, where the chance constraints (4.1)487

are replaced with the following expression that considers all distributions in the ambiguity488

set P with probability 1 − α:489

ProbΦ′ {v(s) ≤ vmax(s)} ≥ 1 − α ∀Φ′ ∈ P, s ∈ [0, S], (5.2)

which, according to Theorem 8 in Hu and Hong (2013), is equivalent to:

ProbΦ{v(s) ≤ vmax(s)} ≥ 1 − ᾱ ∀s ∈ [0, S], (5.3)
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where

ᾱ = sup
z>0

e−η(z + 1)α − 1
z

. (5.4)

According to Hu and Hong (2013), the new parameter ᾱ can be easily calculated via490

bisection search Algorithm 1.491

Algorithm 1: Calculation of α̃.
Initialization: Set j = 0, αl := 0 and αu := α

Step j: Set α̃ = (αl + αu)/2

• If H(z∗(α̃)) > 0, update αl := α̃. Set j = j + 1.

• If H(z∗(α̃)) < 0, update αu := α̃. Set j = j + 1.

• If H(z∗(α̃)) = 0, stop and return α̃.

492

In Algorithm 1,
H(z) = e−η(z + 1)α − 1 − α̃z

z∗(α̃) = max

0,
(

α̃eη

α

) 1
α−1

− 1

 .

The resulting robust optimal control model with the speed chance constraints (5.3) and493

(5.4) can be solved either as a NLP or as a MIP, in the same way as described in Section494

4.1, to which we will refer as RStoVer1.495

5.2 Robust chance constraints on the journey duration496

Extending the formulation in Section 4.2.1 to account for distributional robustness re-497

quires a change in both the objective function (4.8) and the chance constraint (4.19). In498

the objective function, the distributionally robust control should minimize the worst case499

of the expected fuel consumption along the journey under all possible distributions as500

follows:501

Minimize
a(s)

Maximize
Φ′∈P

EΦ′

∫ S

0
FR(min{v(s), vmax(s)}, ar(s)) 1

min{v(s), vmax(s)}
ds, (5.5)

where the maximum is taken with respect to all distributions in the ambiguity set. In-502

voking Theorem 4 in Hu and Hong (2013), the objective function (5.5) is equivalent to503

the following one:504

Minimize
v(s),u≥0

u logEΦe

[
1
u

∫ S

0 F R(min{v(s),vmax(s)},ar(s)) 1
min{v(s),vmax(s)} ds

]
+ uη. (5.6)
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Similarly, the chance constraint (4.19) is modified so that it is satisfied over all distribu-505

tions in the ambiguity set P, as shown below:506

ProbΦ′ {vmax(s)dt∗(s) ≥ ds} ≥ 1 − α ∀Φ′ ∈ P, s ∈ [0, S], (5.7)

which, resorting once again to Theorem 8 in Hu and Hong (2013), is equivalent to:507

ProbΦ {vmax(s)dt∗(s) ≥ ds} ≥ 1 − ᾱ ∀s ∈ [0, S], (5.8)

where ᾱ is given earlier in Eq. (5.4). The resulting distributionally robust formulation508

can now be stated as (5.6), (5.8), (4.9), (4.11)–(4.15), (4.18), to which we will refer as509

RStoVer2. This formulation can be converted into a MIP and solved with nonlinear510

integer programming software.511

6 Case study512

This section undertakes the computational tests to numerically investigate the models513

developed in the paper. The aim of the experimentation is four-fold. First, we test the514

performance of alternative solution methods on solving the deterministic optimal control515

problem in order to identify the best method to use for the stochastic models. Second,516

we assess the performance of the stochastic models and quantify the value of considering517

the stochasticity in the traffic speed. Third, we evaluate the impact of the traffic speed518

uncertainty on the journey time and fuel consumption. Finally, we investigate the benefits519

of incorporating distributional robustness into the models. The findings are presented in520

Sections 6.1–6.5, corresponding to the four aims, respectively. In all the experiments, we521

use the CMEM to calculate the vehicle fuel consumption, the details of which are given522

in Appendix.A.523

Unless specified otherwise, the numerical experiments are conducted on an instance with524

a road section of 600 meters in length, where the road grade and the deterministic traffic525

speeds along the road are shown in Figures 2 and 3, respectively. The instance assumes 3526

m/s2 as maximum acceleration, 4 m/s2 as maximum deceleration, and 3 m/s as initial and527

terminal speeds. The journey time is limited to 61 seconds, and the whole trip is divided528

into 30 segments, with 20 meters per segment. All models and solution algorithms are529

implemented and run on a MacBook Pro with 2.4 GHz CPU and 8 GB memory.530
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6.1 Comparison of solution methods for deterministic optimal control531

The solution methods tested in this section include DP (explained in Appendix.B and532

coded in Python), and the NLP and MILP models are solved using Gurobi Optimizer533

9.0. The PWA function used to approximate the curve 1√
2E

uses 50 segments, covering534

a speed range from 0 m/s to 20 m/s as shown in Figure 4, with the corresponding unit-535

mass kinetic energy ranging from 0 m2/s2 to 200 m2/s2. All intersections between two536

adjacent pieces are chosen to be the points on the curve 1√
2E

and have evenly distributed537

horizontal coordinates.538
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Figure 4: Piecewise function used in the experiments

The results yielded by the three methods are presented in Table 1. For comparison,539

Figures 5 and 6 show the speed and acceleration profiles calculated by the three methods,540

which are very similar and within the allowable bounds.541

Table 1: Performance of different solution methods
Method Fuel consumption (Gram) Trip duration (Second) Calculation Time (Second)

MILP 113.49 60.97 0.30
NLP 113.48 61.00 1338.82
DP 114.10 60.85 62.10
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Figure 5: Speed trajectories obtained by the three methods
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Figure 6: Acceleration profiles obtained by the three methods

The results in Table 1 show that, the three methods yield to similar fuel consumptions542

and trip durations, but require considerably different computation times. NLP has the543

best objective value as it uses all travel time budget, at the expense of a very long544

computation time. DP consumes shorter computation time but yields the highest fuel545

consumption. MILP has the shortest computation time and performs similar to NLP on546

fuel consumption and trip duration. Based on the comparison, MILP will be used as547

the solution method in the remainder of the experiments. We have also tested different548

discretization levels by using 12, 15 and 20 meters per segment, and found that the549

resulting amounts of fuel consumption differ only slightly, and at most by 2.45% when550

compared against a finer level discretization using a segment length equal to 1 meter.551

6.2 Performance of the stochastic speed optimal control models552

Following Rakha et al. (2006) and Hofleitner et al. (2012) which suggested that the553

lognormal distribution shows a good fit for travel times and is inversely proportional to554

vehicle speeds, we model traffic speed vmax(k) for segment k as a lognormal distribution555

with mean µ(k) and standard deviation σ(k). Then, ln(vmax(k)) is normally distributed556

with the following mean µln(k) and standard deviation σln(k):557

µln(k) = ln

 µ(k)2√
σ(k)2 + µ(k)2

 (6.1)

σln(k) =

√√√√ln
(

1 + σ(k)2

µ(k)2

)
. (6.2)
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In the following experiments, we set µ(k) equal to the traffic speeds shown in Figure 3,558

the relative standard deviation RSD = σ(k)/µ(k) = 0.1, and increase the time limit to 65559

seconds. We test the values of α ∈ {0.02, 0.05, 0.1} in the chance constraints of StoVer1560

and StoVer2.561

In formulation StoVer1, since vmax(k) follows the lognormal distribution, the speed chance562

constraint (4.4) can be converted to an explicit form for each k ∈ {1, 2, ..., n−1} as follows,563

Prob
{
2E(k) ≤ vmax(k)2

}
≥ 1 − α

⇐⇒ Prob
{1

2
ln(2E(k)) ≤ ln(vmax(k))

}
≥ 1 − α

⇐⇒ 1
2

ln(2E(k)) ≤ µln(k) + zασln(k)

⇐⇒ E(k) ≤ 1
2

e2(µln(k)+zασln(k)), (6.3)

where zα is the value of the α quantile of the standard normal distribution.564

Solving StoVer1 yields the speed profiles in Figure 7 for different values of α. The calcu-565

lation time is around 0.30s for each α. As the figure shows, when α is reduced, the desired566

speed is reduced due to the speed chance constraint becoming tighter, except between567

300–400 m where the vehicle needs to travel faster to meet the journey time constraint.568
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Figure 7: StoVer1 speed trajectories under different α

As for StoVer2, we randomly generate 100 traffic speed scenarios. Each scenario consists569

of a series of randomly sampled traffic speeds along the journey, one traffic speed per570

location. While sampling the traffic speeds, we check whether the accelerations between571
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adjacent locations satisfy Assumption 4.1, and continue to resample until they do. Similar572

to StoVer1, the chance constraint (4.57) can be converted for all k ∈ {1, 2, ..., n − 1} as573

follows:574

Prob {vmax(k)∆t∗(k) ≥ ∆s} ≥ 1 − α

⇐⇒ Prob
{

vmax(k) ≥ ∆s

∆t∗(k)

}
≥ 1 − α

⇐⇒ ∆s ≤ ∆t∗(k)e(µln(k)+zασln(k)). (6.4)

The results are shown in Figure 8 for α ∈ {0.02, 0.05, 0.1}, where the dashed lines are575

the boundaries of the sampled traffic speeds in the generated scenarios, and between the576

boundaries each red dot indicates a sampled traffic speed.577
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Figure 8: StoVer2 speed trajectories under varying α

As Figure 8 shows, the desired speed trajectories under different values of α do not578

significantly differ from each other, except between 300–400 m where the desired speed is579

higher when α is smaller. The computation times for α ∈ {0.02, 0.05, 0.1} are 221s, 262s,580

355s, respectively.581

6.2.1 The value of stochastic modeling582

Next, we quantify the benefit of the stochastic modeling, i.e., treating the uncertainty583

in the traffic speeds explicitly with the stochastic models as opposed to running the584

deterministic optimal speed control model using mean traffic speeds. To this end, we585
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simulate the desired speed trajectories obtained by the deterministic model and by the586

StoVer1 and StoVer2 with 1000 traffic speed scenarios (note that these 1000 scenarios587

are different from the 100 scenarios used in Section 6.2.1). Given the desired speed588

trajectories, we then compute the actual trip duration and fuel consumption in each of589

the 1000 scenarios, where the actual speeds are equal to either the desired speeds or the590

traffic speeds, whichever is smaller.591

To evaluate the performance of the solutions with respect to the chance constraints on592

the journey duration (4.10), we first restate the constraints as the following function that593

uses discretization (6.5),594

Prob
{

n−1∑
k=0

∆s

min{v(k), vmax(k)}
≤ T

}
≥ 1 − α, (6.5)

and use it to calculate the violation of journey duration constraints.595

Figure 9 presents the speed trajectories obtained by different methods using α = 0.05.596

The trajectories given by StoVer1 and StoVer2 are similar, and fluctuate less than the597

trajectory given by the deterministic method. Figures 10–12 show the distributions of598

actual fuel consumption and journey durations in the 1000 scenarios. It can be seen that,599

under the random traffic speeds, the deterministic model yields to a much higher degree of600

variability in fuel consumption and journey time, in comparison to the stochastic models.601
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Figure 9: Speed trajectories obtained by the different models for α = 0.05
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Figure 10: Journey time and fuel consumption of trajectories given by the deterministic
model
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Figure 11: Journey time and fuel consumption of trajectories given by StoVer1 (α = 0.05)
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Figure 12: Journey time and fuel consumption of trajectories given by StoVer2 (α = 0.05)

Table 2 shows the average fuel consumption resulting from the solutions of the three602

models under different values of α, indicating that StoVer2 yield lower average fuel con-603

sumption than the deterministic version. For the StoVer1 and StoVer2, the average fuel604

consumption increases as α decreases, due to the solutions becoming more risk-averse.605
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StoVer2 yields the lowest average fuel consumption for all α. StoVer1 leads to lower606

average fuel consumption than the deterministic model when α = 0.05, 0.1, and higher607

when α = 0.02.608

Tables 3 and 4 show the percentage of the 1000 scenarios in which the planned speed609

profiles exceed traffic speeds on at least one segment and when the journey time limit610

is violated, respectively. In Table 3, the trajectories computed by StoVer1 violate the611

traffic speed the least, mainly because it is designed to limit the traffic speed violation.612

The deterministic model yields to a much more frequent violation in traffic speeds than613

the two stochastic models.In Table 4, StoVer2 performs the best in on-time arrival than614

other models: 100% on time when α = 0.02 and α = 0.05, and 98.7% when α = 0.1,615

as the formulation is designed to limit the probability of late arrival at the destination.616

The deterministic model, and StoVer1 with large α, lead to much higher degrees of late617

arrival.618

Table 2: Average fuel consumption (Gram) over 1000 scenarios

α Deterministic StoVer1 StoVer2

0.02 126.01 129.94 125.46
0.05 126.01 120.27 118.88
0.10 126.01 117.88 117.50

Table 3: Percentage of speed violations over 1000 scenarios

α Deterministic StoVer1 StoVer2

0.02 29.88% 1.70% 14.14%
0.05 29.88% 3.50% 11.78%
0.10 29.88% 6.57% 11.65%

Table 4: Percentage of journey time violations over 1000 scenarios

α Deterministic StoVer1 StoVer2

0.02 48.90% 35.00% 0
0.05 48.90% 55.60% 0
0.10 48.90% 78.20% 1.30%

6.2.2 Comparison of the stochastic model and reactive model619

To show the benefits that our stochastic models can bring over reactive methods, we620

modify the look-ahead control method in Hellström et al. (2009) as described below, and621

use as a reactive control mechanism.622

31



Minimize
a(s)

∫ Sk+dl

Sk

FR(v(s), a(s)) 1
v(s)

ds + β
∫ Sk+dl

Sk

1
v(s)

ds (6.6)

subject to

a(s) = dv(s)2

2ds
s ∈ [Sk, Sk + dl] (6.7)

amin ≤ a(s) ≤ amax s ∈ [Sk, Sk + dl] (6.8)

ϵ ≤ v(s) ≤ vmax(s) s ∈ [Sk, Sk + dl] (6.9)

v(Sk) = vSk
, (6.10)

where Sk is the distance from the origin to present location, dl is the distance of look-623

ahead horizon, vSk
is the vehicle speed at the present location, β is a scalar factor which624

can be tuned to balance the trade-off between the fuel consumption and journey time.625

The way that the reactive control machanism operates is illustrated in Figure 13, which626

shows a vehicle moving from segment k to segment k + 1. The whole journey is divided627

into n segments of length ∆s as described in subsection 3.2.1, where the beginning of628

each segment is a point where the reactive control will be executed. As the vehicle is en-629

route towards the destination, it will replan the speed profile over the look-ahead horizon630

[Sk, Sk + dl] at each replanning point Sk using the deterministic model (6.6)–(6.10). The631

traffic speeds from Sk to Sk + dl are assumed to be the realized speeds. When the vehicle632

runs following the replanned speed profile and arrives at the subsequent replanning point633

Sk+1, the traffic speeds in the new look-ahead horizon [Sk+1, Sk+1 + dl] will be known and634

thus the trajectory will be replanned.635
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Figure 13: Illustration of the reactive control

The reactive control model (6.6)–(6.10) uses the realized traffic speeds to guarantee the636

feasibility of its planning speeds, so it is impractical to compare it with StoVer1. To637

compare the reactive control model and StoVer2, we use a different instance with a638
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longer journey (a 5000 meters road, the grade is shown in Figure 14), where the mean639

traffic speeds are shown in Figure 15 with RSD = 0.15, and the journey time is set to640

be limited to 370 seconds.641
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Figure 15: The mean traffic speeds over the journey

For the comparison, we first generate 1000 traffic speed scenarios along the journey, and642

investigate the performance of StoVer2 as in subsection 6.2.1. The results are shown as the643

red scatters in Figure 16, where the five points correspond to α ∈ {0.28, 0.29, 0.30, 0.31, 0.32}.644

Then we run the reactive control model 1000 times, each time under one of the 1000 sce-645

narios. The average fuel consumption and the percentage of time violation given by646

the reactive control model under six different lengths of the look-ahead horizon, namely647

300, 700, 1100, 1900, 2700, 3500 meters, are shown by the lines in Figure 16, where the648

points on each line (from right to left) correspond to β ∈ {0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5}.649

When β increases, the percentage of time violation decreases, which is intuitive because650

increasing the value of β can lead to giving a larger weight to the journey time. In addi-651

tion, the length of the look-ahead horizon can significantly affect the performance of the652
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reactive control model, and it is difficult to decide the optimal length. For illustration,653

we fix the value β = 1 and use different look-ahead horizons, and the calculation results654

are given in Figure 17. It is revealed that a setting of dl = 700m is needed to minimize655

the total fuel consumption, dl = 2300m to minimize time violation, and dl = 1100m to656

balance both performance measures.657
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Figure 16: The fuel consumption and percentage of time violation of StoVer2 and reactive
control model
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Figure 17: The percentage of time violation and fuel consumption of reactive control
model under different look-ahead horizons

As Figure 16 shows, considering the two criteria (fuel consumption and percentage of658

time violation), the solutions of StoVer2 dominate most solutions provided by the reactive659

control model. And the speed profiles yielded by StoVer2 require less fuel consumption660
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as compared to those of the reactive control model implemented here under the same661

percentage of time violation. These results suggest that StoVer2 has an obvious advantage662

over the reactive control as implemented in this paper.663

6.3 The impact of the traffic speed variability664

In this section, we investigate the impact of the variation in traffic speeds on fuel con-665

sumption and solution feasibility, and then on the planned speed profiles, when using666

StoVer1 and StoVer2.667

6.3.1 Fuel consumption and solution feasibility668

For the experiments below, we use a time limit of T = 65 seconds, set α = 0.05, and use669

the mean traffic speeds shown in Figure 3. Different values of RSD ∈ {0.01, 0.04, 0.07, 0.10, 0.15}670

are used to investigate the impact of traffic speed standard deviation on the model per-671

formances. The resulting trajectories are then simulated under the 1000 test scenarios as672

in the previous section.673

The trajectories resulted from StoVer1 for RSD = 0.04, 0.07 and 0.10 are shown in Figure674

18. When RSD increases, the speed chance constraint will get tighter, and lower desired675

speeds are observed over most parts of the journey, except between 300–400 m as in676

previous sections. The average fuel consumption underdifferent values of α and RSD are677

shown in Table 5, where NaN indicates that the model was infeasible due to the chance678

constraint, and the last row shows the results of the deterministic model based on mean679

traffic speed. Similarly, Table 6 shows the percentage of the 1000 scenarios in which680

the planned speed profiles exceed the traffic speeds and when the journey time limit is681

violated. The results collectively indicate that the fuel consumption and percentage of682

speed violation both increase with RSD. Although StoVer1 does not necessarily lead to683

lower fuel consumption, it reduces the infeasible solutions caused by unattainable speeds.684
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Figure 18: StoVer1 speed trajectories under varying RSDs (α = 0.05)

Table 5: Average fuel consumption (Gram) of StoVer1 speed profiles over 1000 scenarios

Relative standard deviation (RSD)
α 0.01 0.04 0.07 0.10 0.15

0.02 113.23 114.56 117.66 129.91 NaN
0.05 113.18 114.20 116.12 120.22 NaN
0.10 113.15 114.03 115.48 117.79 128.90
0.15 113.14 114.04 115.48 117.36 122.86
0.20 113.15 114.13 115.76 117.66 122.22
Deterministic 113.30 115.76 120.14 125.36 135.99

Table 6: Percentage of speed violations in StoVer1 speed profiles over 1000 scenarios

Relative standard deviation (RSD)
α 0.01 0.04 0.07 0.10 0.15

0.02 0.75% 0.98% 1.23% 1.78% NaN
0.05 1.97% 2.51% 2.91% 3.63% NaN
0.10 3.95% 4.98% 5.68% 6.54% 8.66%
0.15 5.85% 7.26% 8.27% 9.50% 11.51%
0.20 7.60% 9.43% 11.04% 12.40% 14.34%
Deterministic 19.49% 23.35% 26.52% 29.71% 33.52%
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Similar results for StoVer2 are shown in Figure 19 and Tables 7 and 8. The trend in the685

speed profiles is similar to StoVer1, but StoVer2 always yields lower fuel consumption in686

comparison to the deterministic model even under small values of α. The journey time687

limit is violated more often as the traffic speed variability (RSD) and α increase. This is688

caused by the relaxed time chance constraint (4.19) and a larger variance in the generated689

scenarios for larger values of RSD.690
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Figure 19: StoVer2 speed trajectories under varying RSDs (α = 0.05)

Table 7: Average fuel consumption (Gram) of StoVer2 speed profiles over 1000 scenarios

Relative standard deviation (RSD)
α 0.01 0.04 0.07 0.10 0.15

0.02 113.04 113.91 116.22 125.39 NaN
0.05 113.04 113.87 115.52 118.83 NaN
0.10 113.04 113.80 115.33 117.48 126.88
0.15 113.03 113.83 115.16 116.99 122.53
0.20 113.04 113.80 115.09 116.92 121.88
Deterministic 113.32 115.81 120.22 125.82 135.70
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Table 8: Percentage of journey time violations in StoVer2 speed profiles over 1000 sce-
narios

Relative standard deviation (RSD)
α 0.01 0.04 0.07 0.10 0.15

0.02 0 0 0 0 NaN
0.05 0 0 0 0 NaN
0.10 0 0 0.3% 1.5% 1.0%
0.15 0 0.1% 2.3% 12.2% 34.9%
0.20 0 2.3% 13.3% 58.1% 76.9%
Deterministic 0 0 4.80% 46.8% 89.9%

6.3.2 Variability in the planned speed profiles691

A potential user of the results may wonder how the planned speed profiles change as traffic692

conditions vary. To answer this question, we use a simplified instance that assumes a flat693

terrain, a road length of 600 m, and a mean traffic speed equal to 15.5 m/s over the694

entire journey. For a fixed journey duration equal to T = 65 seconds and assuming zero695

acceleration, the function that represents the CMEM model used to calculate the total696

fuel consumption (Appendix A) is minimized when the (constant) vehicle speed is around697

15.28 m/s (Demir et al., 2014), to which the initial and terminal speeds are set equal.698

This speed results in a journey duration of 38 seconds which is well within the time limit.699

We then run both StoVer1 and StoVer2 using the values {0.01, 0.04, 0.07, 0.10, 0.15} for700

RSD and {0.01, 0.10, 0.15, 0.20} for α.701

The results for StoVer1 for α = 0.05 are shown in Figure 20 where the resulting planned702

speed profiles are all very stable regardless of the RSD, although larger RSD values lead703

to lower desired speed. The same phenomenon can be observed for other values of α (not704

shown here). As for StoVer2, the results are shown in Figures 21 and 22 for α = 0.05. In705

Figure 21, the planned speeds are reduced as RSD increases, and the speed profiles show706

a larger variability. The actual standard deviation of the speeds observed in the speed707

profile are shown in Table 9. The results suggest that a larger variability in the traffic708

speeds yields more fluctuations in the desired speed profiles, which is likely caused by709

the variability of the scenarios used in SAA while solving the StoVer2. This phenomenon710

is also observed in Figure 22, where larger values of RSD imply an increased variation711

in the traffic speeds. Similar observations are made for other values of α (not shown712

here). Generally speaking, planned speeds are significantly impacted by variability in713

traffic speeds, particularly for larger values of RSD, but not so much by α.714
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Figure 20: StoVer1 speed trajectories under varying RSDs (α = 0.05)
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Figure 21: StoVer2 speed trajectories under varying RSDs (α = 0.05)

Table 9: Standard deviations of StoVer2 speed profiles
Relative standard deviation (RSD)

α 0.01 0.04 0.07 0.10 0.15

0.02 0.05 0.33 0.61 0.72 0.91
0.05 0.02 0.36 0.57 0.73 0.93
0.10 0.03 0.33 0.63 0.73 0.89
0.15 0.03 0.28 0.52 0.74 0.97
0.20 0.03 0.31 0.52 0.77 0.94
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(b) RSD = 0.07
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Figure 22: The scenarios used for different RSDs
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6.4 The impact of the journey time limit715

To assess the impact of varying the journey time limit, we solve StoVer1 and StoVer2 un-716

der 1000 scenarios using values T ∈ {60, 62.5, 65, 70, 75} seconds. The results of StoVer1717

under α = 0.05 and RSD = 0.1 are shown in Figure 23 and in Tables 10 and 11. The718

results suggest that, as the journey duration increases, the time chance constraint is re-719

laxed, which in turn reduces the desired speeds over several segments. The tables show720

reduced amounts of fuel consumed and a lower percentage of traffic speed violations as721

the trip duration increases. When the time period is long enough (70 s or longer), both722

fuel consumption and percentage of speed violations remain the same, indicating that the723

desired speed trajectories do not change.724

0 100 200 300 400 500 600
Distance(m)

0

2

4

6

8

10

12

14

16

Sp
ee

d(
m

/s
)

Mean Traffic Speed
Terrain

T = 62.5
T = 65.0

T = 70.0

Figure 23: StoVer1 speed trajectories under different journey time limits

Table 10: Average fuel consumption (Gram) of StoVer1 speed profiles over 1000 scenarios
(α = 0.05)

Time Period (T )
α 60 62.5 65 70 75

0.02 NaN NaN 129.92 117.93 117.54
0.05 NaN 134.17 120.27 116.78 116.79
0.10 NaN 122.19 117.92 116.64 116.64
0.15 128.88 120.03 117.57 117.01 117.01
0.20 125.10 119.66 117.96 117.69 117.69
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Table 11: Percentage of speed violations over 1000 scenarios

Time Period (T )
α 60 62.5 65 70 75

0.02 NaN NaN 1.83% 1.41% 1.36%
0.05 NaN 4.77% 3.65% 3.22% 3.18%
0.10 NaN 7.46% 6.83% 6.40% 6.40%
0.15 12.16% 10.44% 9.84% 9.26% 9.26%
0.20 14.75% 13.40% 12.66% 12.19% 12.19%

As for StoVer2, the results for α = 0.05 are shown in Figure 24, and in Tables 12 and725

13. Here, the result suggests that a looser trip time constraint leads to lower desired726

speed, but the speed trajectories themselves deviate over a larger part of the journey727

as compared to those in Figure 24. Tables 12 and 13 indicate similar findings as in728

StoVer1. In particular, as the time period is increased, the amount of fuel consumed and729

the probability of violating the time limit both decrease. When the time period is long730

enough (70s or more), the fuel consumption and probability of speed violation do not731

change, indicating that the desired speed trajectories are also unchanged.732
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Figure 24: StoVer2 speed trajectories under different journey time limits (α = 0.05)
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Table 12: Average fuel consumption (Gram) of StoVer2 speed profiles over 1000 Scenarios

Time Period (s)
α 60 62.5 65 70 75

0.02 NaN NaN 125.57 116.36 116.21
0.05 NaN 129.62 118.94 116.21 116.22
0.10 NaN 121.29 117.56 116.22 116.25
0.15 127.57 119.78 117.15 116.22 116.22
0.20 124.72 119.24 117.02 116.24 116.22

Table 13: Percentage of journey duration violations of StoVer2 speed profiles over 1000
scenarios

Time Period (s)
α 60 62.5 65 70 75

0.02 NaN NaN 0 0 0
0.05 NaN 0 0 0 0
0.10 NaN 0.1% 0.2% 0 0
0.15 6.9% 11.7% 14.9% 0 0
0.20 39.1% 39.0% 38.1% 0 0

6.5 Performance of robust stochastic speed optimal control model733

The final set of experiments are conducted to assess the performance of the model734

RStoVer1 presented in Section 5.1 tested using values η ∈ {0.01, 0.05, 0.10, 0.20} rep-735

resenting different uncertainty sets. We use the same instance as in the Section 6.2 and736

set T = 65 seconds, α ∈ {0.05, 0.10, 0.15, 0.20} and RSD = 0.07. The nominal distribu-737

tion P is assumed to be lognormal, with the mean values in Figure 3.738

To simplify the calculations, for each η, we assume that the true distribution is a new739

lognormal distribution with the same mean as the nominal distribution but a larger RSD,740

and use it to generate 1000 test scenarios. We then calculate the fuel consumption and741

the percentage of speed violations for StoVer1 and RStoVer1, respectively. RStoVer1742

increases the computational burden and leads to a more conservative solution when com-743

pared to StoVer1. The results are given in Table 14 and Figure 25.744

According to Table 14, RStoVer1 is infeasible when η = 0.20 and α = 0.05; in other cases,745

the fuel consumption output by StoVer1 and RStoVer1 increases as η increases. As for746

the frequency of the planned speeds exceeding the traffic speeds, the solutions obtained747

by StoVer1 violate the α value when η = 0.10 or larger, while those obtained by RStoVer1748
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are always below the α value. These results suggest that RStoVer1 avoids speed violation749

for large η (i.e., large uncertainty set), even for small values of α.750

Comparing the results of different α, we find that as η increases, the uncertainty set is751

larger and thus ᾱ is smaller, which reduces the desired speed in the most parts of the752

journey except on some segments due to the trip time constraint, as shown in Figure 25.753

Finally, for larger values of α, the speed trajectories are less impacted by η.754

Table 14: The performance of robust StoVer1
Fuel Consumption (Gram) Percentage of Speed Violation

α η ᾱ Robust StoVer1 Robust StoVer1

0.05 0.01 0.025 117.41 116.40 2.61% 4.58%
0.05 0.05 0.008 120.19 116.79 1.98% 6.04%
0.05 0.10 0.003 125.27 117.11 1.50% 7.11%
0.05 0.20 0.000 NaN 117.73 NaN 8.82%
0.10 0.01 0.063 116.26 116.09 5.20% 7.51%
0.10 0.05 0.031 117.20 116.45 4.12% 9.10%
0.10 0.10 0.017 118.51 117.07 3.74% 10.72%
0.10 0.20 0.006 121.92 118.07 3.19% 12.31%
0.15 0.01 0.104 116.01 116.19 7.54% 9.89%
0.15 0.05 0.061 116.59 116.94 6.65% 11.96%
0.15 0.10 0.038 117.32 117.69 5.93% 13.15%
0.15 0.20 0.017 118.74 118.85 5.34% 15.03%
0.20 0.01 0.104 116.18 116.67 10.24% 13.05%
0.20 0.05 0.061 116.51 117.54 8.93% 14.53%
0.20 0.10 0.038 116.83 118.16 8.13% 16.18%
0.20 0.20 0.017 117.81 119.44 7.33% 17.49%
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Figure 25: Speed trajectories obtained by RStoVer1
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7 Conclusions755

In this paper, we proposed several ways to incorporate the uncertainties in surround-756

ing traffic speeds into the optimal speed control problem. Specially, we described two757

stochastic optimal speed control models, one limiting the speed violations and the other758

trip durations. Based on these models, we further described their distributionally robust759

versions. To solve the proposed models, we proposed techniques to represent the models760

as nonlinear and mixed-integer programming formulations, using which we conducted761

numerical experiments to investigate the impact of the said uncertainties on the fuel762

economy and journey duration. The main findings are summarized as follows:763

• Traffic speed uncertainty can significantly hinder the implementation of the planned764

speeds (given by the deterministic optimal control model) in a vehicle journey. This,765

in turn, increases the amount of fuel consumption and journey duration, but can766

be mitigated by incorporating the traffic speed uncertainty at the planning stage.767

• The impact of traffic speed uncertainty is reduced as the time limit on the journey768

is increased.769

• The planned speed profiles tend to exhibit lower speeds with larger traffic speed770

uncertainty sets, which ensures robustness against variability.771

Extensions of our study may warrant further consideration for future research. First,772

as shown in the case studies, the computation time for StoVer2 is long, suggesting the773

need to improve the computational efficiency of the solution method. Second, where774

the traffic is oversaturated in parts of the journey, the traffic speed will be zero, which775

could lead to the infeasibility of our proposed methods as the journey time will be infinite.776

Incorporating oversaturation into the stochastic models would be another potential future777

research direction. Third, besides improving the models, we may integrate the stochastic778

optimal control with vehicle routing and scheduling, so as to further reduce the fuel779

consumption of a journey. Such an integration can be found in Liu et al. (2020) where the780

objective is to minimize the travel time and energy consumption of the vehicles without781

uncertainties in the traffic speed. Fourth, although our models are primarily intended for782

use in highways which do not usually have signalized intersections, they can be extended783

to account for uncertainties resulting from signals by using scenarios that represent the784

possible cases that arise as a vehicle approaches a signalized intersection (Bakibillah et785

al., 2019). Finally, the uncertainty in the vehicle system dynamics (i.e., perception errors786

of sensors) is likely to affect the implementation of planned speed profiles. Incorporating787

such uncertainty in the model would improve the applicability and performance of our788

proposed methods.789
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Appendix A. Introduction to the comprehensive modal emissions model990

In this part, we briefly introduce the comprehensive modal emissions model (CMEM)991

described by Barth et al. (2005), Scora and Barth (2006), and Barth and Boriboonsomsin992

(2008), which is an instantaneous model estimating fuel consumption rate of heavy-goods993

vehicles. The core of the model is the total tractive power requirement Ptract (kilowatt)994

placed at the wheels, expressed as follows,995

Ptract = (Mτ + 1/2CdρAv2 + MgCr cos θ + Mg sin θ)v/1000, (A.1)

where M is the total vehicle weight (kilogram), τ is the acceleration (meter/second2), Cd996

and Cr are the coefficients of the aerodynamic drag and rolling resistance, respectively, ρ997

is the air density (kilogram/meter3), A is the frontal surface area of the vehicle (meter2), v998

is the vehicle speed (meter/second), θ is the road angle (degree), and g is the gravitational999

constant (meter/second2).1000

To avoid the total tractive power requirement (A.1) being negative under deceleration1001

and road slope, the emissions framework described in Akcelik and Besley (2003) is further1002

used, which leads to:1003

Ptract = max
{
(Ma + 1

2
CdρAv2 + MgCr cos θ + Mg sin θ)v/1000, 0

}
, (A.2)

where a represents the rate of change in the speed, which is positive for acceleration and1004

negative for deceleration.1005

Using Ptract, the fuel consumption rate FR (gram/second) is given by1006

FR = (κQΛ + Ptract

γtfγ
+ Pacc

γ
) ζ

κ
, (A.3)

where γtf is the vehicle drivetrain efficiency, Pacc (kilowatt) is the constant engine power1007

demand associated with running losses of the engine and the operation of vehicle acces-1008

sories, ζ is the fuel-to-air mass ratio, κ is the engine friction factor (kilojoule/revolution/liter),1009

Q is the engine speed (revolution/second), Λ is the engine displacement (Liter), γ is the1010

efficiency parameter for diesel engines, and κ is the heating value of a typical diesel fuel1011

(kilojoule/gram).1012

Integrating the functions (A.2)–(A.3) above yields:1013

FR(v, a) = C1 + C2 max
{

Ma + 1
2

CdρAv2 + Mg sin θ + MgCr cos θ, 0
}

v, (A.4)
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where C1 = ζκQΛ/κ + Paccζ/κγ and C2 = ζ/1000κγγtf .1014

Typical values of the model parameters used in this case study are from Demir et al.1015

(2014) and shown in Table A.1.1016

Table A.1: Parameters used in the computational tests
Notation Description Typical values

w Curb-weight(kilogram) 6350
ζ Fuel-to-air mass ratio 1
κ Engine friction factor(kilojoule/revolution/liter) 0.2
Q Engine speed(revolution/second) 33
Λ Engine displacement (liter) 5
g Gravitational constant (meter/second2) 9.81
Cd Coefficient of aerodynamic drag 0.7
ρ Air density (kilogram/meter2) 1.2041
A Frontal surface area (meter2) 3.912
Cr Coefficient of rolling resistance 0.01
γtf Vehicle drive train efficiency 0.4
γ Efficiency parameter for diesel engines 0.9
κ Heating value of a typical diesel fuel (kilojoule/gram) 44

Appendix B. Dynamic programming for deterministic optimal control model1017

For the dynamic programming (DP) used to solve the deterministic optimal control model1018

(3.1)–(3.6), we use the method provided by Monastyrsky and Golownykh (1993). First,1019

we modify the objective function (3.1) to the following function,1020

J =
∫ S

0
FR(v(s), a(s)) 1

v(s)
ds + β

∫ S

0

1
v(s)

ds, (A.1)

where β is a constant and can be tuned to satisfy the journey time constraint (3.2)1021

(Maamria et al., 2016a) .1022

We discretize the road as in Section 3.2.1, and then use the forward DP to solve the1023

problem. Let the segment indices 0, 1, ..., n − 1 be the stages, Jk(v(k)) be the minimum1024

value of objective function (A.1) from stages 0 to k, given that the vehicle’s speed is v(k)1025

at stage k. Then the optimal control for each stage is calculated by the recursive formula,1026
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Jk+1(v(k + 1)) = Minimize
a(k)

{
FR(v(k), a(k)) ∆s

v(k)
+ Jk(v(k))

}
, (A.2)

where a(k) = v(k+1)2−v(k)2

2∆s
, amin ≤ a(k) ≤ amax and ϵ ≤ v(k + 1) ≤ vmax(k + 1). The1027

boundary condition is given as v(0) = v0, v(n) = vS.1028

It is worth mentioning that the value of β should be calculated by search, so the cal-1029

culation time is the combination of searching β and DP. The algorithm we use for the1030

numerical study is explained below,1031

Algorithm 2: Calculation of speed trajectory.
Initialization: Set β = 0

Step j: Set β = β + ∆β

• Dynamic programming

• If journey time ∑k=n−1
k=0

∆s
v(k) ≥ T , set j = j + 1.

• If journey time ∑k=n−1
k=0

∆s
v(k) ≤ T, stop and return {v(0), v(1), ..., v(n − 1), v(n)}.

1032

where ∆β is a constant value.1033

For the case study in Section 6.1, we discretize the whole journey to 30 segments, which1034

is same as other solution methods, and thus the number of stages is also 30. As for the1035

solution algorithm for DP, we use the label correcting method (Bertsekas, 1995), where1036

the speed is discretized by 0.1m/s. Then we set ∆β = 0.02 for Algorithm 2.1037

Appendix C. The impact of the traffic speed correlation1038

The uncertain traffic speeds may be spatially dependent with each other. Therefore, in1039

this appendix, we investigate the applicability of our proposed stochastic models in the1040

case of correlated traffic speeds.1041

We use multi-lognormal distribution with the same mean and standard deviation as1042

Section 6.2.1, but with three different correlation matrices, which we refer to as low,1043

moderately and highly correlated matrix, respectively. Table A.2 shows the low corre-1044

lated matrix, where the indices indicate the road segments. The correlation between the1045

adjacent segments is set to be the biggest, and the correlation decreases with the increas-1046

ing distance between segments; the value of correlation is set to be from 0 to 0.30. The1047

ranges of the correlation values in the moderately correlated matrix and highly correlated1048

matrix range from 0 to 0.60 and from 0 to 0.90, respectively.1049
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Table A.2: The correlation matrix of low correlated traffic speeds
Index 1 2 3 4 5 6 7 8 ... 30

1 1.00 0.30 0.25 0.20 0.15 0.10 0.05 0 ... 0
2 0.30 1.00 0.30 0.25 0.20 0.15 0.10 0.05 ... 0
3 0.25 0.30 1.00 0.30 0.25 0.20 0.15 0.10 ... 0
4 0.20 0.25 0.30 1.00 0.30 0.25 0.20 0.15 ... 0
... ... ... ... ... ... ... ... ... ... ...
30 0 0 0 0 0 0 0 0 ... 1.00

The chance constraint of StoVer1 is based on the marginal distribution, so the planned1050

speed profiles are not impacted by the correlation. Fig A.1 shows the speed trajectories1051

obtained by StoVer2 under different correlation matrixes. The difference between the1052

speed profiles is caused by the scenarios generated under different correlation matrixes.1053
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Figure A.1: Speed trajectories obtained by StoVer2 under different correlations (α = 0.05)

To evaluate the performance of our proposed stochastic models under different correlated1054

traffic speeds, the obtained speed profiles are evaluated in the same way as in Section1055

6.2.1. Table A.3 shows the statistics.1056

According to Table A.3, the fuel consumption of all models decreases with higher correla-1057

tion, because the scenarios generated with higher correlation become more concentrated.1058
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We can also see that the fuel consumption of the deterministic model is the most sensitive1059

to the correlation.1060

For the speed violation (Table A.4), StoVer1 can guarantee that the percentage of speed1061

violation satisfies the requirement under all correlation matrixes, while the deterministic1062

model and StoVer2 cannot. Similar phenomena can be observed on the journey time1063

duration (Table A.5).1064

Table A.3: Average fuel consumption (Gram) over 1000 correlated scenarios

Low correlated Moderately correlated Highly correlated
α Deter StoVer1 StoVer2 Deter StoVer1 StoVer2 Deter StoVer1 StoVer2

0.02 123.55 129.89 125.47 120.81 129.88 124.87 117.07 129.86 123.74
0.05 123.55 120.20 118.87 120.81 120.14 118.42 117.07 120.06 117.41
0.10 123.55 117.76 117.51 120.81 117.50 116.81 117.07 117.27 115.96

Table A.4: Percentage of speed violations over 1000 correlated scenarios

Low correlated Moderately correlated Highly correlated
α Deter StoVer1 StoVer2 Deter StoVer1 StoVer2 Deter StoVer1 StoVer2

0.02 29.66% 1.67% 18.33% 30.49% 1.58% 20.88% 29.73% 1.59% 41.94%
0.05 29.66% 3.42% 14.60% 30.49% 3.49% 18.22% 29.73% 4.01% 35.30%
0.10 29.66% 6.54% 15.17% 30.49% 6.36% 16.55% 29.73% 6.90% 32.58%

Table A.5: Percentage of journey time violations over 1000 correlated scenarios

Low correlated Moderately correlated Highly correlated
α Deter StoVer1 StoVer2 Deter StoVer1 StoVer2 Deter StoVer1 StoVer2

0.02 43.60% 27.10% 0 45.10% 20.80% 0 38.40% 12.80% 0
0.05 43.60% 48.80% 0 45.10% 35.70% 0.40% 38.40% 23.20% 1.40%
0.10 43.60% 72.60% 0.80% 45.10% 54.90% 3.60% 38.40% 35.60% 5.80%
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