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Graph-based Region and Boundary Aggregation
for Biomedical Image Segmentation

Yanda Meng, Hongrun Zhang, Yitian Zhao, Xiaoyun Yang, Yihong Qiao, lan J. C. MacCormick,
Xiaowei Huang, and Yalin Zheng

Abstract— Segmentation is a fundamental task in
biomedical image analysis. Unlike the existing region-
based dense pixel classification methods or boundary-
based polygon regression methods, we build a novel graph
neural network (GNN) based deep learning framework with
multiple graph reasoning modules to explicitly leverage
both region and boundary features in an end-to-end man-
ner. The mechanism extracts discriminative region and
boundary features, referred to as initialized region and
boundary node embeddings, using a proposed Attention
Enhancement Module (AEM). The weighted links between
cross-domain nodes (region and boundary feature do-
mains) in each graph are defined in a data-dependent way,
which retains both global and local cross-node relation-
ships. The iterative message aggregation and node up-
date mechanism can enhance the interaction between each
graph reasoning module’s global semantic information and
local spatial characteristics. Our model, in particular, is ca-
pable of concurrently addressing region and boundary fea-
ture reasoning and aggregation at several different feature
levels due to the proposed multi-level feature node embed-
dings in different parallel graph reasoning modules. Exper-
iments on two types of challenging datasets demonstrate
that our method outperforms state-of-the-art approaches
for segmentation of polyps in colonoscopy images and
of the optic disc and optic cup in colour fundus images.
The trained models will be made available at: https://
github.com/smallmax00/Graph_Region_Boudnary

Index Terms— Region-Boundary, Graph Neural Network,
Segmentation

[. INTRODUCTION

CCURATE assessment of anatomical structures in medi-
cal images is critical in the management of a wide variety
of medical conditions and diseases. For instance, glaucoma is
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a chronic neurodegenerative condition, and a leading cause
of irreversible but preventable blindness worldwide [1]. The
relative size of the optic disc (OD) and optic cup (OC) in
colour fundus images is often used to assess glaucomatous
damage to the optic nerve head [2], [3]. Similarly, colorectal
polyps are positively associated with colorectal cancer, the
third most common cancer worldwide [4]. Segmenting polyps
provides essential information about the location and morphol-
ogy of colorectal polyps for diagnosis and surgery. Manual
annotation of these structures by clinicians is impractical
because it is time-consuming, labour-intensive, and vulnerable
to human error. Solving this problem depends on automated
and precise biomedical image segmentation methods. To this
end, we propose a graph-based deep learning framework to
solve segmentation tasks, with the critical novelty of aggre-
gating information about an object’s region and boundary. We
demonstrate the framework’s effectiveness for segmentation of
polyps in colonoscopy images and OD & OC in colour fundus
images.

Previous deep learning based segmentation methods focused
on learning the intensity features of the input image. They are
either region-based methods performing dense pixel classifi-
cation or boundary-based methods that regress the boundary’s
location. However, both neglect the intrinsic region-boundary
relationship, which is critical for enhancing segmentation
performance [5], [6]. For example, region features emphasise
global homogeneity of pixel-wise semantics and object-level
contextual information. On the other hand, boundary features
describe the local edge characteristics and spatial variations
on both sides of the boundary contour. Intuitively, combining
information about region and boundary features ought to
improve segmentation. Additionally, the subjective experience
of clinicians who annotate biomedical images often involves
assessing details of the relevant area as well as the boundary
defining its margin. This may be especially true of regions with
low contrast edges such as the OC, and clinicians typically
traverse the cupped area to determine the OC boundary [7].

This paper demonstrates how to rationally combine region
and boundary features using a single graph-structure model.
This takes advantage of the proposed Graph Neural Network
(GNN) model’s long-range information propagation and cross-
domain feature update capabilities. The summary pipeline
of our work is depicted in Fig. [T} please refer to Fig. [2]
for more details. The term ‘cross-domain features’ refers
to the region features (containing semantic information) and
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boundary features (containing spatial information).

This paper explicitly considers information from both the
region and boundary domains of objects of interest in medi-
cal images. Specifically, we construct multiple graphs, each
contributing to tackling specific-level cross-domain feature
updating and reasoning. Every graph contains region nodes
with global semantic information and boundary nodes with
local spatial characteristics. Weighted links between nodes
exchange and aggregate semantic and spatial information.
Additionally, we introduce an attention enhancement module
(AEM) in conjunction with two sequential attention mecha-
nisms through the channel and the spatial inter-dependencies.
The AEM is built between the multi-level backbone features
and the corresponding constructed graph nodes to extract
discriminative feature embeddings for the region and boundary
nodes, respectively. Further, we derive a spatial gradient from
the predicted region mask as the derived boundary probability
map to exploit the underlying consistency between the region
and the boundary segmentation predictions. The discrepan-
cies between the derived boundary probability map and the
boundary ground-truth are formulated as one of the loss
terms, dubbed boundary agreement loss, to enforce boundary
consistency in region mask prediction during model training.
Our experimental results show that the proposed GNN-based
framework makes a significant improvement over the state-of-
the-art methods.

In summary, this work makes the following contributions:

o The underlying relationship between the region and
boundary characteristics is usually overlooked by ap-
proaches to segmenting biomedical images, despite hu-
man graders’ instinctive use of both domains. We propose
a novel end-to-end trainable segmentation model that
integrates region and boundary features as graph nodes
and updates and propagates cross-domain features.

o Cross-domain features are challenging to optimize con-
currently; in particular, the inevitable prediction perturba-
tion will impair joint cross-domain feature learning and
updating. Here we introduce a boundary agreement loss
function, ensuring that the predicted region and boundary
mask have consistent boundaries.

« Extensive experiments demonstrate that our proposed
model outperforms the state-of-the-art approaches on two
segmentation tasks. Instead of conducting experiments
on a small number of datasets, we combine five differ-
ent OD & OC segmentation datasets and five different
colonoscopy polyp segmentation datasets, respectively.
In terms of varying dataset sources, they may contain
different annotation standards for ground truths by var-
ious clinicians. Nevertheless, our model achieves good
segmentation performance, demonstrating its robustness
and generalizability.

[I. RELATED WORKS
A. Region-based Segmentation

Convolutional Neural Networks (CNN) have found
widespread applications in medical image segmentation.
Existing CNN-based methods [8]-[16] have considered

segmentation as a dense pixel classification task. For
example, the classic U-net [12] employs a skip-connection
between the encoder and decoder to alleviate information loss;
and it has served as a baseline model for segmentation tasks
in recent years. Another classic region-based segmentation
method, U-Net++ [9], uses an aggregated mechanism to
fuse multi-level features. However, it may result in excessive
information flow because some low-level features are
unnecessarily over-extracted while object boundaries are
simultaneously under-sampled. Recently, Gu et al. proposed
CE-Net [13] to capture high-level information and preserve
spatial information based on U-Net [12]. However, due to
the limited receptive field of standard CNN, dense atrous
convolutions were incorporated [17], [18] to enlarge the
receptive regions for long-range context reasoning. M-Net
[8] represented the fundus image in polar coordinates, and
achieved high accuracy in segmenting OD & OC. However,
it needed additional processes, such as multi-scale input and
side-output mechanisms with deep supervision, to achieve
multi-level receptive field fusion for long-range relationship
aggregation. Similarly, Fan et al. proposed a Inf-Net [14]
to tackle COVID-19 lung infection segmentation. A reverse
attention module is included to work with deep supervision
in terms of multiple side-outputs. The aforementioned
methods have achieved promising results in segmentation
tasks with the help of boosted long-range relationship
reasoning abilities. However, they are not efficient since
stacking local cues cannot always precisely handle long-range
context relationships. Especially for pixel-level classification
problems, such as segmentation, performing long-range
interactions is important for reasoning in complex scenarios
[18]. To address this challenge, recent self-attention [19]
based methods [15], [16] have demonstrated a superior ability
to capture long-range relationships. For example, Segtran
[16] proposed a squeezed attention block, which regularized
the self-attention of Transformers [20], and an expansion
attention block learned diversified representations. In this way,
Segtran can calculate the pairwise interactions (self-attention)
between all input units, combine their features and generate
contextualized features. It has achieved promising results in
the OD & OC and polyp segmentation tasks. On the other
hand, in order to comprehend scenes or global contexts, these
approaches must learn the object’s position, boundary, and
category from high-level semantic awareness and regional
location information [21]. However, they tend to focus on
learning image intensity features and suffer from a lack of
regional position information at the pixel level [22]. This has
resulted in inaccurate object boundary predictions.

B. Boundary-based Segmentation

Polygon-based boundary regression methods have drawn
much recent attention. Polygon-based methods [23]-[27]
regress the predefined vertex positions along the object bound-
aries and connect the predicted vertices to form a polygon,
which is then converted into a mask. For example, Cheng et
al. combined Active Contour Models (ACMs) [28] and CNN,
to create a Deep Active Ray Network [23], which utilizes polar
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The pipeline of the proposed network, with the example of a colonoscopy polyp image as the input. The extracted region and boundary

features from the CNN backbone are treated as the initialized graph nodes and then go through the graph-level feature aggregation and reasoning
process. A requirement for consistency between the boundary and the region outputs forces the GNN to learn coherent features.

coordinates (rays) to represent active contours. Along the same
lines, Xie et al. proposed PolarMask [24] to interpret the object
boundary in a polar coordinate system and proposed a CNN to
regress the length of rays, which implicitly estimates the object
boundary. Similarly, Meng et al. proposed CABNet [27], which
represents the object boundary as vertices, then explicitly
estimates the vertex locations. It achieved promising results on
OD & OC segmentation tasks. Other boundary-based methods
[6], [29]-[31] integrate the boundary geometry constraint into
the loss function or evaluation measurement. For example,
Kervadec et al. proposed boundary loss [31] which takes the
distance metric on contours’ space to mitigate the difficulties
of highly unbalanced foreground and background. Cheng et
al. proposed a Boundary Intersection-over-Union (BloU) [6]
evaluation measurement, which quantifies boundary quality in
region segmentation tasks.

These methods are applicable to segment the whole re-
gion of the objects by regressing the position of vertices
along boundary contours. However, they overlook the intrinsic
region-boundary relationship, which we suggest is crucial for
enhancing segmentation performance.

C. Region and Boundary for Segmentation

Recent methods, such as [5], [14], [32]-[37], explicitly or
implicitly considered the dependency between the regions and
boundaries of an object of interest in OD & OC or polyp seg-
mentation. Specifically, Zhang et al. proposed ET-Net [32] for
OD & OC segmentation, where an edge attention mechanism
is proposed to explicitly emphasise the object boundary. On
the other hand, Fan et al. [5], [14] and Zhang et al. [37]
shared a similar boundary attention idea, where the object
boundary is implicitly extracted from region predictions with
a foreground erasing mechanism. In general these approaches
treat segmentation as a multi-task learning problem, by using

a shared backbone and two independent sub-networks to
extract features of the regions and the boundaries, respectively.
Then, the extracted features of regions and boundaries are
directly fused with basic fusion operations such as element-
wise addition or multiplication [5], [34], [37], or channel-wise
concatenation [32], [36] with or without a fusion operation
[33], [35].

We suggest that the correlations between region and bound-
ary features cannot be adequately captured and exploited
by two independent sub-networks that rely on these types
of primary fusion operations. An intuitive solution would
be to aggregate region and boundary features during the
whole learning process. Unfortunately, the extracted region
and boundary features are necessarily from two different
domains and so contain varying semantic and spatial details.
For example, region features focus on global homogeneity in
pixel-wise semantics and object-level contextual information;
while boundary features describe local edge characteristics
and spatial variations on both sides of the boundary contours.
It is well known that concurrently optimizing cross-domain
features are difficult. Our experimental results also support
this, and readers are directed to Ablation Study (Section [V-A)
for detailed information. In contrast, our method studies the
cross-domain relationship of the region and boundary features
throughout the whole training process with the help of the
proposed GNN module. In other words, our model benefits
from complementary cross-domain feature exchange and self-
domain information propagation of region and boundary fea-
tures along the entire training pipeline through the proposed
graph structure model. Our experimental results prove that
the proposed GNN reasoning module can tackle cross-domain
feature optimization and achieved promising results on two
segmentation tasks.
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D. GNN in Segmentation

Graph-structure models have recently been adopted for
segmentation tasks because of their natural aptitude for long-
range information propagation and feature updates. Dong et
al. [38] and Shen et al. [39] exploited the traditional random
walk algorithm on a graph to tackle image segmentation
tasks. However, the energy formulations for describing the
images are complicated and higher-order energy function
based methods [40], [41] may be needed to solve the problem.
Recently, Yao et al. proposed a GNN network [42] to study
the 3D geometrical relationship between vertices through mesh
representation in an organ segmentation task. With the nature
of GNN, long-range shape information can be updated and
passed among vertices to maintain a consistency constraint.
Along the same lines, Voxel2mesh [43] learned a deformable
mesh representation through GNN to propagate the voxel
features along the edges of the built graph model. Another
paper [44] by Shin et al. used GNN to learn the global
structure of the vessel’s shape, which mirrored the connectivity
of neighbouring vertices. Similarly, Meng et al. proposed RBA-
Net [45] to regress the OD & OC boundaries by aggregated
CNN and GCN, which learns the long-range features and
directly regresses vertex coordinates in a Cartesian system.

The methods mentioned above used GNN to address the
problem of intra-domain long-range feature propagation, as
messages passing between graph nodes share similar semantic
and spatial characteristics. In contrast, our method considers
extracted region and boundary features as distinct graph nodes
and employs GNN to learn their inter-domain relationship.
Additionally, methods such as [42], [43], [45] represented each
graph node with a predefined vertex and the corresponding
coordinate under the form of mesh [42], [43] or triangle [45].
In that kind of framework, each graph node can only represent
a single location. In contrast, our method represents each graph
node with a set of pixels (locations) in the region area or
boundary area (shown in Fig. [I).

1. METHODS

Fig. 2] shows the model architecture of the proposed method.
Given an input image, we extract the multi-level features
through a backbone network. Following PraNet [5], we adopt
the truncated Res2Net [46] as the backbone due to its superior
ability to extract features in the segmentation task. We propose
to use several GNN modules to reason and aggregate the
extracted multi-level region and boundary features, which are
elaborated as follows.

A. Attention Enhancement Module

Inspired by [47], we applied an attention enhancement mod-
ule (AEM) upon each of the extracted multi-level backbone
features. Specifically, the AEM is designed as a sequential
operation consisting of channel attention Cg () and spa-
tial attention Sy (-). The AEM is defined as: Fapn(f) =
Satt (Catt(f))7 where C(Ltt(f) = f ® MLP(POOIC(f)),
MLP(-) is a multi-layer perceptron with two layers and
sigmoid as the activation function; f is the input feature;
Pool..(-) denotes the global max pooling for each feature map;

® represents the multiplication by the dimension broadcast.
In addition, S, (f) = f ® Conv(Pools(f)), where Conv(-)
is a 3 x 3 convolution layer with padding=1, followed by a
sigmoid activation function; Pool,(-) denotes the global max
pooling operation for each position in the feature map along
the channel axis. In contrast to [47], we omitted the additional
feature merging operations, such as the average pooling layer,
in order to retain the most critical extracted characteristics.

As shown in Fig. |2 for each resolution’s backbone feature
map, we applied two AEMs, resulting in attention-enhanced
region and boundary feature maps, respectively, which is
referred to as the initialised nodes (region nodes V, and
boundary nodes V). Fig. [T] demonstrates the boundary node
and region node representations. Each node represents a set of
relative features (pixels), such as region pixels and boundary
pixels. The subsequent graph reasoning module treats each re-
gion and boundary nodes independently; afterwards, the output
nodes of region and boundary are fused separately, resulting
in region output R, and boundary output B,. The whole
network is end-to-end trainable; the supervision gradients of
the region and boundary ground truth will back-propagate
to the corresponding AEM, respectively. Thus, the two AEM
will excavate the discriminative feature embeddings for the
region and boundary features from each resolution’s backbone
feature.

B. Graph Based Reasoning

Fig. [2] illustrates several graphs in parallel that address the
cross-domain, cross-level reasoning with varying numbers of
region nodes V, and boundary nodes V. In this manner, the
deep-level semantics of a region of interest, and the shallow-
level spatial characteristics of the associated boundary can
be interpreted as a whole. In the Ablation Study section, we
perform detailed studies to evaluate the effectiveness of the
number of graphs and the number of node updating times in
each graph.

1) Graph Node Initialization: In our graph-based reasoning
module, we construct multiple graphs in parallel, in which
various levels of the attention-enhanced features are referred to
as the initialized region node embeddings V,. = {v,1,...,0pn }
and boundary node embeddings V, = {1, ..., vpn }. In other
words, we treat the extracted region and boundary output
features of the AEM module as the corresponding region
and boundary nodes in the proposed graph. The underlying
motivations are twofold: (1) As mentioned before, the region
and boundary output features from AEM contain different
levels (shallow and deep) and domains (region and boundary)
of information. In order to obtain complementary information
from those features we treated them as graph nodes and used
the message passing and information exchange mechanism
of GNN. (2) In general, a GNN model propagates messages
through a graph, with each node’s representation conditioned
on its relationships with surrounding nodes as well as its own
information. Thus, through passing messages among different
nodes, relevant information and relations may be gradually
distilled for learning feature embeddings, where the region
and boundary segmentation can be derived.
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Fig. 2. Overview of the proposed GNN model (best viewed in color). The initialized nodes from the AEM output are interpolated into the same
scale (32 x 32) through the bi-linear interpolation layer. For simplicity, we present only two graph reasoning modules in the middle, with the top one
containing two region nodes and two boundary nodes from relatively deep feature level and the bottom one containing four region nodes and four
boundary nodes from both shallow and deep feature levels. In this figure, we demonstrate how to segment polyps. As for OD & OC segmentation,
the only difference is that the output probability map has a channel size of 2.

2) Single Graph Reasoning Module: In this section, we
demonstrate the structure and components of a single graph,
such as the one on the top middle in Fig.[2] in which there are
four nodes with low-resolution (8 X 8 and 16 x 16); the one
on the bottom middle has eight nodes of both low- and high-
resolutions (from 8 x 8 to 64 x 64). Please note that, rather
than being chosen at random, the nodes in each graph are fixed
during training. Thus, each graph will address specific levels
of the region and boundary feature aggregation process.
Node Embeddings. Given the initialized region nodes V,. =
{v;1,...,v,n} and boundary nodes V, = {vp,...,upn}, we
interpolate them to have the same size through the bi-linear
interpolation layer. Then, we construct the graph G = {V,E},
where V = V,.UYV,, are the combination of region and
boundary nodes.

Edge Embeddings. For information propagation, nodes are
linked with each other by weighted edges E = {e1,...,e,2_,},
where the weighted edges can reflect the different correlations
among various nodes. Rather than randomly initialising the
edges, we define the edges in a data-dependent way. Inspired
by [48], [49], for two linked nodes v;,v; from V, the edge

e; ; from v; to v; is defined as:
e; ; = Conv(Cat(v; — vj,v;)), )]

where Cat(-) is channel-wise concatenation, Conu(-) rep-

resents a 1 X 1 convolution layer to learn the relationships
and minimise the channel size into 1. Thus, data-dependent
local information v; — v; and global information v; are both
considered in the edge e; ;. Note that, e; ; has the same size
as v; and v;. In contrast, the edge e; ; from v; to v; is defined
as:

e;; = Conv(Cat( 2)

vj — v, 0;)).

In this way, the weighted edge embeddings contain the self-
information of the starting node and the cross-information
(cross domains or cross levels) of the connected node. Thus,
both types of information can be aggregated to other connected
nodes during the messaging passing process. The edge is
defined as directional so as to distinguish the directional
information passing and message aggregation among different
nodes.

Message Aggregation & Nodes Update. In our GNN model,
nodes connect with each other; as a result, each node ag-
gregates the cross-level (deep and shallow) and cross-domain
(region and boundary) messages from all its neighbouring
nodes, then the node embeddings will be updated. At T-th
update step, for the node vT_l and all its neighbour nodes
T—1 T—1 4,

T
v; , the message aggregation function mj from v;
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v}t is defined as:
n—1
m;‘FZ = Z ReLU(e}?;l) ® va717 3)
J

where © is element-wise multiplication; ReLU(-) as the
non-linear function to convert the edge embeddings to link
weight. Then we update the node embeddings with a residual
connection:

n—1
of = ml)+ol 7, 4)
J

~! is maintained for

where the last step node embeddings viT
the subsequent graph reasoning process.

After T times message aggregations and node updates, we
fuse the region nodes V2! = {¢T 1 4T} and bound-
ary nodes V} ™' = vl£+17...,vg:f 11 respectively through
channel-wise concatenation, following by 1 x 1 convolution
to generate the output region nodes and boundary nodes. T is
3 in our work.

3) Multi-level Graph Reasoning Modules: As observed by
others [5], [9], the deep- and shallow- layer features from
different levels complement one another, with the deep-layer
features containing extensive semantic region information and
the shallow-layer features retaining adequate spatial boundary
information. To this end, we expand the proposed GNN by
running several graph reasoning modules concurrently (2 in
our work). Each graph includes region and boundary nodes
from different shallow and deep feature levels of the backbone
network. Thus, each graph reasoning module will address
specific levels of aggregation and reasoning about region and
boundary features. For example in Fig. [2 the top reasoning
graph tackles the deep-level feature aggregation (8 x 8, 16
x 16), and the bottom reasoning graph tackles the shallow-
and deep-level feature aggregation (8 x 8, 16 x 16, 32 x
32, 64 x 64). Finally, we fuse the output region (VZUFI) and
boundary nodes (Vg“) of each parallel graph respectively by
channel-wise concatenation, followed by a 1 x 1 convolution
with sigmoid activation function, then up-sample to obtain
the region and boundary segmentation predictions (R, and
B,, with the same size of 256 x 256 as the input images).
Please note, the parallel graphs are not connected during the
reasoning process but have connections (fusion) on the output
nodes. This is because each graph is designed to concentrate
exclusively on a particular set of levels (resolutions) of nodal
reasoning. We found that adding connections between graphs
did not improve segmentation, but did increase training time.

C. Loss Function

The total loss function is defined as:
Liotat =Lr+ B - (L +Lp), )

where Dice Loss [50] (Lp) is used for the region segmenta-
tion predictions to penalize the mismatch regions against the
corresponding ground truth. We defined Ly as:

QRPGTR +1

L Yp)=1— —— 1~ ——
R(va R) Rp-i-GTR—'-l’

(6)

where R, and GTr denote the region segmentation predictions
and the ground truth. Here, 1 is added to avoid divide by zero
errors, such as when R, = G1'r = 0. We also adopt the signed
distance map loss (Lsgm,) [31] as the boundary loss (Lp)
on boundary segmentation predictions due to the challenge
of highly imbalanced foreground and background [51]. In
detail, [31] used an integral approach for computing boundary
variations with a signed distance transformation map, which
can avoid complex local differential computations. Formally,
the signed distance function (SDF) of segmentation ground
truth (GT) can be defined as:

—infllz —yll2, x€GTy
yeEAG

GTSDF = 0, xz € AG
inf ||33*y|\2, € GTout
yeEAG

where ||z — y||2 represent the Euclidean distance between
pixel x and y. Besides, GT,y:, GT;, and AG, denote the
outside, inside and boundary of the object, respectively. Given
the signed distance maps of ground truth (G7Tspr) and the
sigmoid outputs of the model Predy (6 is the parameters),
the signed distance map loss (Lgg4,,) is represented as:

Lsgm(Preds, GTspr) = Preds © GIspr, @)

where © denotes Hadamard product. In this way, we can
represent the boundary loss Lp in this work as:

LB = Lsdm(Bpa GTB)7 (8)

where GT'5 represents the signed distance map of the bound-
ary segmentation ground truth. 8 is empirically set as 0.5 to
balance the losses between Dice loss, region and boundary
predictions.

Boundary Agreement Loss (Lp). Firstly, we derive the
spatial gradient from the predicted region mask (R,), as
the derived boundary probability map (D,). In detail, we
empirically adopt the Laplacian filter as a 3 x 3 kernel
[[1,1,1],[1,—8,1],[1,1,1]] convolution layer to compute the
spatial gradient in an end-to-end manner. The Laplacian filter
is the direct result of a finite-difference approximation of
the spatial derivative [52], highlighting the rapid intensity
change regions. However, this will lead to thin and coarse de-
rived boundaries, which results in extremely unlabeled classes
(Shown in Fig. [2). To address this issue, we then empirically
applied an approximated 3 X 3 Gaussian kernel convolution
layer (sigma equals to 3 for two directions), followed by a 1 x1
convolution layer to increase the boundary width and address
the unbalanced issues [6]. The derived boundary probability
map (D)) is defined as:

D, = Convix1 (Gaussiangxg(Laplaciangxg(Rp))). 9)

Furthermore, the signed distance map loss [31] is applied to it
against the boundary ground truth due to address the challenge
of unbalanced classes.

The boundary agreement loss (Lp) is defined as:

Lp = Lsdm(-D;mGTB)- (10)
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With boundary agreement loss, region segmentation can
benefit from additional boundary constraints, resulting in more
reliable region segmentation predictions with more accurate
boundary details. The boundary ground truth was generated
by applying the same Laplacian filter and Gaussian kernel
convolution to the corresponding segmentation ground truth
mask. We then converted it into a binary map with threshold
0 as the final ground truth.

Furthermore, we empirically found that incorporating the
derived boundary (D,) into the boundary output (B,) can
enhance both the region and boundary segmentation perfor-
mance. Thus, to augment the segmentation accuracy, we fuse
the derived boundary probability map D, with the boundary
segmentation map B, in terms of element-wise addition.
The resulting concatenated feature map is then fed into a
1 x 1 convolution layer with a sigmoid activation function to
produce the final boundary segmentation prediction. In this
way, the boundary segmentation prediction Bj,, can benefit
from the feature supplement provided by the derived boundary
maps D,

IV. EXPERIMENTS
A. Datasets

We evaluate our approach with two distinct yet challenging
medical image segmentation tasks: segmentation of OD & OC
from retinal images, segmentation of polyps from colonoscopy
images. Accurate segmentation of the OC in colour fundus
images is often difficult because of poor contrast between
the cup and the surrounding rim [7]. The boundary between
a polyp and its surrounding mucosa is typically blurred in
colonoscopy images and lacks the intense contrast required
for segmentation approaches [53].

Fundus images of OD and OC: We pooled 2068 images from
five datasets (Refuge [7], Drishti-GS [54], ORIGA [55], RIGA
[56], RIM-ONE [57]). 613 fundus images were randomly
selected as the test dataset, leaving the other 1455 images for
training and validation. Following [45], we located the disc
center from each image and then cropped a subimage of 256
x 256 pixels centered on the disc for the subsequent analysis.
Colonoscopy polyp images: We retrieved 2085 colonoscopy
images from five datasets (ETIS [4], CVC-ClinicDB [58],
CVC-ColonDB [59], EndoScene-CVC300 [60], and Kvasir
[53]). We used the same data split settings as [5], namely 1450
colonoscopy images from Kvasir [53] and CVC-ClinicDB [58]
comprised the training and validation datasets. The remaining
635 colonoscopy images from [4], [59], [60] were used for
testing. All of the images are uniformly resized to 256 x 256.

B. Experimental Setting and Evaluation Metrics

To augment the dataset, we randomly rotated and horizon-
tally flipped the training dataset with a probability of 0.3. The
rotation ranges from —30 to 30 degree. We use stochastic
gradient descent with a momentum of 0.9 to optimize the
overall parameters. We trained the model around 300 epochs
for all the experiments, with a learning rate of le-2 and a decay
rate of 0.5 every 100 epochs. The batch size was set as 48.
The network was trained end-to-end; all the training processes

U-Net++ Psi-Net PraNet RBA-Net Ours

Fig. 3. Qualitative results of OD & OC segmentation and colonoscopy
polyp segmentation. We compare our model with U-Net [12], U-Net++
[9], M-Net [8], PolarMask [24], PraNet [5], Psi-Net [35], RBA-Net [45].
Our method can produce more accurate segmentation results when
compared with ground truth (GT). Note that we plot the boundary
(spatial gradient through Laplacian filter) of the region mask on the
input image to better visualise the OD & OC segmentation comparison.
Along the same lines, we highlight the region in the input image for
colonoscopy polyp segmentation comparison.

Input GT Region Boundary Input GT Region Boundary

Fig. 4. Figure shows the binary mask comparison between our model’'s
prediction and the ground truth. Our model produces consistent region

(Region) and boundary (Boundary) predictions compared with the
ground truth (GT).

were performed on a server with 4 TESLA V100, and all the
test experiments were conducted on a local workstation with
Intel(R) Xeon(R) W-2104 CPU and Geforce RTX 2080Ti GPU
with 11GB memory. Five-fold cross-validation was used for
fair comparison and hyper-parameters tuning in all settings.
We randomly selected 10% of the training dataset for internal
validation.

We report Dice similarity score (Dice) and balanced accu-
racy (B-Acc) as the region segmentation accuracy metrics; and
Boundary Intersection-over-Union (BloU) [6] as the boundary
segmentation metric. 95% confidence intervals were generated
by using 2000 sample bootstrapping. As for BloU [6], com-
pared with other boundary-based evaluation metrics such as
Trimap IoU [18], [61] or Boundary FI-measure [62], [63],
BIoU is more sensitive to show boundary errors on small
objects (e.g. polyps) [6]. BloU is defined as:

|(Bp mYB) N (Rp mYR)l
|(BmeB) U (Rp mYR)|’

where Y5 and YR are the boundary segmentation ground truth

BIoU = (11)
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TABLE |
QUANTITATIVE SEGMENTATION RESULTS OF OD & OC AND POLYPS ON RESPECTIVE TESTING DATASETS. THE PERFORMANCE IS REPORTED AS
Dice (%) AND B-Acc (%) AND BloU (%). 95% CONFIDENCE INTERVALS ARE PRESENTED IN THE BRACKETS, RESPECTIVELY. WE COMPARE OUR
MODEL WITH PREVIOUS STATE-OF-THE-ART METHODS BY RUNNING THEIR OPEN-SOURCE CODE. NOTABLY, WE SAMPLED 120 VERTICES FOR
PolarMask [24], CABNet [27] AND RBA-Net [45] TO CONSTRUCT A SMOOTH BOUNDARY.

Tasks oC OD Polyps

Methods Dice (%)  B-Acc (%)T  BloU(%)T Dice (%)  B-Acc (%)1  BloU(%)T Dice (%)  B-Acc (%)T  BloU(%)T

U-Net [12] 85.3 87.1 80.1 95.0 97.0 86.2 66.7 73.7 60.0
(82.1, 86.8) (85.9, 88.8) (77.6, 82.4) (93.1, 97.1) (95.3, 98.6) (84.1, 88.3) (63.6, 68.1) (72.1, 75.1) (57.6, 62.2)

U-Net++ [9] 86.0 87.6 81.4 95.0 97.9 88.0 65.6 72.6 58.8
(83.8, 88.5) (85.3, 89.1) (79.5, 83.8) (93.9, 96.1) (97.0, 98.5) (86.4, 89.8) (63.1, 67.7) (70.1, 74.4) (55.6, 61.3)

M-Net [8] 86.9 89.7 82.9 96.8 96.7 88.1 ) ) )
(85.0, 88.0) (88.3, 90.9) (79.5, 84.7) (95.5, 97.6) (95.9, 97.9) (87.0, 89.3)

PolarMask [24] 87.2 90.9 83.2 96.5 97.8 87.0 69.3 83.6 60.3
(85.3, 89.1) (88.7, 91.6) (81.0, 85.1) (95.8, 97.2) (96.9, 98.5) (86.0, 88.3) (67.2,71.4) (81.2, 85.7) (58.4, 61.9)

Praet 5] ) ) ) ) ) ) 740 85.6 66.0
(72.6, 75.7) (84.1, 86.9) (63.3, 68.9)

Psi-Net [35] 85.7 87.1 82.1 95.8 97.7 87.9 63.8 75.5 57.1
(83.0,882) (85.5,89.0) (80.3, 84.0) || (94.5,97.1) (965,984) (85.4,89.2) || (59.7,659) (73.1,772) (557, 58.6)

RBA-Net [45] 87.8 89.5 83.8 96.1 97.5 88.9 73.5 85.1 66.2
(85.2, 89.7) (87.1, 91.6) (81.6, 85.9) (95.5, 96.7) (96.4, 98.1) (88.0, 89.2) (71.2, 75.6) (83.0, 87.3) (64.8, 67.9)

70.1 82.6 63.3
ACSNet [37] - - - - - - (67.8,723) (80.8, 844)  (60.1, 65.7)

CABNet [27] 87.1 88.8 83.0 95.5 96.4 88.2 73.0 84.2 65.5
(84.9, 88.8) (87.1, 90.2) (81.1, 85.4) (94.6, 96.7) (95.5, 97.2) (87.1, 89.6) (70.7, 75.4) (82.0, 86.3) (63.2, 67.7)

Segtran [16] 88.8 91.0 83.9 97.3 97.5 90.0 75.3 86.5 67.9
(86.5, 90.3) (88.6, 93.2) (81.3, 85.8) (96.1, 98.2) (96.6, 98.8) (89.1, 91.2) (73.5,77.1) (84.4, 88.3) (65.5, 69.2)

Ours 89.4 91.7 85.1 97.7 98.1 91.1 75.7 87.0 69.3
(87.6, 90.8) 91.1, 92.5) (83.3, 86.8) (97.0, 98.7) (97.8, 98.5) (90.2, 92.0) (73.1, 77.6) (86.1, 88.3) (67.9, 70.5)
TABLE Il RBA-Net [45], CABNet [27] by 1.8% and 2.5%. Note that

ABLATION STUDY ON DIFFERENT FEATURE FUSION METHODS. THE
PERFORMANCE IS REPORTED AS Dice (%), BloU (%), ON THE TWO
SEGMENTATION TEST DATASETS.

Tasks oC OD Polyps
m Dice BloU Dice BloU Dice BloU
()T (P)T | (P)T (%)T | (P)T (%)T
w/o Fusion 86.6 79.1 94.7 86.7 71.2 64.6
w/ Addition 87.0 81.7 96.0 86.6 70.9 63.0
w/ Concatenation 85.7 80.1 94.8 87.5 71.1 65.3
w/ Non-local [19] 87.2 83.4 95.2 89.6 74.9 69.1
w/ GloRe [64] 88.1 84.3 96.1 89.9 73.7 67.5
Ours 89.4 85.1 97.7 91.1 75.7 69.3

and the region segmentation ground truth, respectively; 12, and
B,, are the region and boundary predictions.

C. Performance Comparison and Analysis

In this section, we show qualitative (Fig. [3] Fig. @) and
quantitative (TABLE [[) results of the OD & OC and polyp
segmentation tasks. The best result in each category is high-
lighted in bold.

OD & OC Segmentation Fig. 3| and 4] show qualitative
results. TABLE [[| provides the quantitative results of Ours
and other methods. We obtain an average 89.4% and 97.7%
Dice on OC and OD segmentation, respectively, outperforming
approaches based on region segmentation such as U-Net++ [9]
and M-Net [8] by an average of 3.4% and 1.9% respectively;
outperforming polygon-based boundary regression approaches
such as PolarMask [24] by 1.9%; outperforming boundary-
region based methods such as Psi-Net [35] by 3.2%; and
outperforming GNN based segmentation methods such as

PraNet [5] and ACSNet [37] are specially designed for binary
segmentation of colorectal polyps with respect to the implicit
region-boundary reverse attention module. We cannot extend
it to OD & OC segmentation directly since this is a multi-
segmentation task. On the other hand, training two models, one
for OD segmentation and another for OC segmentation, would
be unfair to the other models under comparison. As a result,
this model was not tested on the OD & OC segmentation tasks.
Polyp Segmentation TABLE [[| and Fig. [3] Fig. ] show the
quantitative and qualitative results. Our model achieves 75.7%
Dice, which outperforms the cutting-edge ACSNet [37] and
PraNet [5] by 8.0% and 2.2% respectively. As for bound-
ary segmentation accuracy, our model achieves 69.3% BloU,
which is 5.0% better than PraNet [5] and 8.0% better than
ACSNet [37]. Our model size (~ 38.69 million parameters) is
larger than PraNet [5] (~ 30.49 million parameters) when
our framework has 2 graph reasoning modules (shown in
TABLE . However, our model can gain more accurate
segmentation performance (74.3% Dice; 68.1% BloU) with
a comparable model size (~ 30.57 million parameters) with
PraNet [5] when the number of graph reasoning modules is 1
(N =1 in TABLE [[V). Segtran [16] is a very recent region-
based approach for polyp segmentation. It benefits from the
long-range feature reasoning ability of Transformer [20], and
achieves comparable performance with ours. However, it has
a larger model size (93.0 million parameters) than ours (38.69
million parameters), and due to the complexity of the model
structure it has a relatively lower inference speed (8.7 fps)
compared with ours (21.6 fps) on our local machine).

V. DISCUSSION AND CONCLUSION
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A. Ablation Study

We conducted detailed ablation studies, and all the results
demonstrate our model’s effectiveness. As an illustration, the
ablation results for different feature fusion methods, network
components, attributes of the graph reason modules, and loss
functions are shown in TABLE [, TABLE TABLE
and TABLE [Vl
Feature Fusion. In this section, we evaluated the effectiveness
of the proposed GNN reasoning module. Firstly, we replaced
the GNN module with two feed-forward CNN blocks for the
region and boundary features, respectively, to minimise the
model size gap and retain a comparable number of parameters
(e.g., ~ 38.69 million for our model). In each CNN block, we
built several standard convolution layers with kernel size 3
x 3, padding 1, followed by a Batch Normalization layer.
Then, the boundary and region features are fused in three
ways (similar to previous methods [5], [32]-[36]), including
element-wise addition [5], [34], channel-wise concatenation
[32], [36] or without fusion operation [33], [35]. Finally,
two 1 x1 convolution layers were added to generate the
region and boundary predictions. Additionally, we adopted two
more potent fusion mechanisms to show our proposed GNN
reasoning module’s superiority. In detail, we applied the Non-
local module [19], and GloRe module [64] respectively, where
the Non-local module exploits a self-attention mechanism [20]
and GloRe utilizes graph convolution [65] to tackle the long-
range relations among features. TABLE [lI] shows that our
model with the GNN reasoning module achieves much more
accurate and reliable results than simple fusion operations and
outperforms the Non-local and GloRe modules by 2.2% and
2.0% in terms of Dice (%); and 1.4% and 1.7% in terms of
BloU (%) on two segmentation tasks respectively.

TABLE IlI
ABLATION STUDY ON DIFFERENT MODEL STRUCTURE COMPONENTS.
THE PERFORMANCE IS REPORTED AS Dice (%), BloU (%), ON THE
TWO SEGMENTATION TEST DATASETS. THE BEST RESULTS ARE
HIGHLIGHTED IN BOLD.

Tasks oC OD Polyps
m Dice  BloU | Dice BloU | Dice BloU
()T (P)T | ()T ()T | (%)f  (%)T
w/o AEM 87.1 83.6 96.7 89.2 74.0 68.0
w/o Gaussian 88.3 84.7 97.1 90.2 74.6 68.1
w/o Boundary nodes 86.3 82.0 94.8 88.7 72.9 66.0
w/o Region nodes 83.6 80.2 91.2 87.5 64.1 57.9
Ours 89.4 85.1 97.7 91.1 75.7 69.3

Network Components. This section presents the results of
our ablation study on network structure components. We eval-
uated the effectiveness of the attention enhancement module
(AEM), Gaussian kernel convolution layer, boundary nodes,
and region nodes, respectively. We did this by removing each
of those components in turn while retaining the rest of the
structure. Notably, we overlooked the model size difference
for the ablation study of the AEM and the Gaussian kernel
convolution layer because there is no significant difference
in the number of model parameters. To retain a comparable
model size for the boundary nodes and region nodes ablation

studies, we added feed-forward CNN blocks (same as the one
in the Feature Fusion ablation study) after the GNN reasoning
module. (1). The AEM is designed to extract the discriminating
features for boundary and region nodes through the back-
propagation mechanism in the proposed end-to-end trainable
network. TABLE demonstrates that our model (Ours)
improves average 2.1% Dice and 2.0% BloU, respectively,
using AEM upon two segmentation test datasets.

(2). The Gaussian kernel convolution layer (Gaussian) is
critical to increasing the boundary width in the generation of
boundary ground truth and the derived boundary prediction
(Dp). As discussed previously, we use it to increase the
boundary width of the boundary output (5,) and of the
boundary ground truth. Our model (Ours) gains 1.1% Dice
and 1.6% BloU improvement upon two segmentation tasks.

(3). We performed extensive experiments to evaluate the
significance of boundary nodes and region nodes by removing
every element associated with the boundary nodes, including
the corresponding AEM, V;,, D,,, By, Lp, Lp, etc.. In this way,
the network is devoid of boundary information supervision and
produces only region prediction. Furthermore, the proposed
GNN module can only serve as a cross-level (shallow and
deep) feature refinement module for the region segmentation
task. It shows that our model (Ours) gains 3.5% Dice and 3.1%
BloU improvement from boundary information supervision
on two segmentation tasks. On the other hand, we remove
region information related elements in the network such as the
corresponding AEM, V,., D, R,,, Lp, Lg, etc., and construct
a boundary segmentation network. TABLE |lII| shows that the
model cannot achieve comparatively promising segmentation
results due to the lack of supervision over region details. This
further demonstrates the importance of boundary and region
information in biomedical image segmentation tasks.
Attributes of the graph reason modules. In this section, we
present the results of the ablation study on the attributes of the
graph reason modules. Here we evaluated the effectiveness of
the number of graph reasoning modules (V) and the number of
update times (7') in each graph reasoning module. TABLE
shows that our model achieves the best performance on two
segmentation test datasets with two graph reasoning modules
(N = 2), and each module updates three times (7" = 3). In
detail, the two graph reasoning model tackles (8§ x 8, 16 x
16) and (8 x 8, 16 x 16, 32 x 32, 64 x 64) levels’ features,
respectively.

Furthermore, the number of graph reasoning modules (V)
impacts the model size; the number of update times in each
graph can influence inference time. To present a comprehen-
sive analysis, we show the inference time and model size with
different attributes of the graph reason module in TABLE
As shown, with N = 2 and T = 1, our model can run at a
real-time speed of ~ 38.1 fps and ~ 44.0 fps for a 256 x 256
input of fundus image and colonoscopy image, respectively.
Loss Function. In general, the losses employed in this work
serve a variety of purposes. Dice loss [50] (L) is a commonly
used region-based loss for segmentation task. While Dice loss
outperforms other losses (i.e. Cross-Entropy loss) in address-
ing the unbalanced issues [31], we discover that by using
Dice loss for boundary segmentation, the predicted boundary
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TABLE IV
ABLATION STUDY ON THE ATTRIBUTES OF THE GRAPH REASON MODULES. THE SEGMENTATION PERFORMANCE IS REPORTED AS Dice (%), BloU
(%); THE INFERENCE SPEED IS REPORTED AS FRAME PER SECOND (fps) ON THE TWO TESTING DATASETS. ADDITIONALLY, WE PRESENT THE
MODEL SIZE IN MILLIONS OF PARAMETERS. THE BEST RESULT IN EACH CATEGORY IS HIGHLIGHTED IN BOLD.

OD & OC Polyps ;
N Inference  Dice  BloU | Inference  Dice  BloU Model Size
(fps) 1 %)t ()T (fes) T R)t ()1 (# of parameters in millions))
N=1,T=3 ~21.6 92.1 86.6 ~29.3 74.3 68.1 ~30.57
N=2T-=3 ~21.6 93.6 88.1 ~29.3 75.7 69.3 ~38.69
N=3T=3 ~21.6 91.8 86.1 ~29.3 72.1 66.0 ~46.56
N=2,T=1 ~38.1 92.0 87.4 ~44.0 74.8 68.3 ~38.69
N=2T-=3 ~21.6 93.6 88.1 ~29.3 75.7 69.3 ~38.69
N=2,T=5 ~3.7 91.9 87.3 ~13.8 73.4 68.1 ~38.69
TABLE V

ABLATION STUDY ON THE LOSS FUNCTION. THE PERFORMANGE IS
REPORTED AS Dice (%), BloU (%) ON TWO SEGMENTATION TEST
DATASETS. THE BEST RESULT IN EACH CATEGORY IS HIGHLIGHTED IN

BOLD.
Tasks oC OD Polyps
Methods Dice  BloU | Dice BloU | Dice BloU
(%) (P)T | (R)T ()T | (B)f  (%)T
w/ Dice Loss 87.0 83.2 95.2 89.0 73.3 67.0
w/o Agreement Loss 88.1 84.1 96.2 90.0 74.2 67.9
Ours 89.4 85.1 97.7 91.1 75.7 69.3

segmentation masks appear to be incomplete, leading to almost
black masks (most zero pixel values) due to the unbalanced
foreground and background. We addressed this challenge by
applying boundary loss [31] (L) to the boundary segmenta-
tion predictions (B,). Boundary agreement loss (Lp) adopts
[31] as well. However, it is applied on the derived boundary
(Dp), which aims for the consistent boundary upon the region
predictions (RR,) and boundary predictions (B,). Lp brings
two essential advantages. Firstly, since D), and B, are under
the supervision of the same boundary ground truth, L can
be considered as the consistency loss between the D), and B,;
at the same time, it can force the model to learn consistent
boundary features for region nodes V,. and boundary nodes
V4. Secondly, the Lp serves as a boundary focus on the R,
with additional boundary ground truth supervision. This aids
the model to produce more precise boundary predictions.

To analyse the effectiveness of the Lp and Lp, we applied
Dice loss [50] to Lp (w/ Dice Loss), which is inevitably
vulnerable to unbalanced foreground and background. TABLE
[V] shows that our model improves by 2.9% Dice and 2.7%
BloU with boundary loss [31] on two segmentation tasks.
Additionally, we excluded boundary agreement loss (Lp)
while maintaining the remaining components to verify its
importance (w/o Boundary Agreement Loss). As shown, Lp
can deliver a 1.7% Dice improvement in region segmentation
and 1.5% BloU improvement in boundary segmentation.

Fig. 5.

A comparison of our segmentation (green) and the ground
truth (red) in some ‘failed’ cases. The ground truth has inaccurate OC
boundaries for most of the cases. According to an ophthalmologist
(IJCM), our model generally produces more precise boundaries than
the ground truth.

B. Clinical Evaluation and ‘Failure’ Analysis

Clinical Evaluation.

As well as assessing computer vision evaluation metrics,
we also evaluated the clinical output of our method. The
vertical Cup to Disc Ratio (vCDR) is an important indicator
for screening and diagnosis of glaucoma. The vCDR value
is calculated by the ratio of vertical cup diameter to vertical
disc diameter. A larger vCDR indicates a higher possibility
of glaucoma and vice versa. Following previous methods [8],
[45], we provided the Mean Absolute Error of vCDR (6,cpR)
between the predictions and the ground truth. Our method
(Ours) achieved 0.056 §,cpr on the OC & OD segmentation
test set, which outperformed classic methods U-Net [12]
(0.089 6,cpr) and U-Net++ [9] (0.077 6y,cpr) by 37.1 and
27.3% respectively, outperformed cutting-edge methods M-Net
[8] (0.064 6,cpRr), RBA-Net [45] (0.062 6,cpRr), Segtran [16]
(0.060 é,cpr) and CABNet [27] (0.067 0,cpr) by 12.5%,
9.7%, 6.7% and 16.4%. Ours provides more accurate VCDR
estimation than these other methods, and this is consistent with
superior segmentation.

‘Failure’ Analysis. We studied the reasons for poor segmen-
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tation by our method, and found that in some cases this could
be attributed to imprecise ground truth in public OD & OC
segmentation datasets. In detail, for each retinal image in the
OD & OC test dataset, we considered segmentation to have
‘failed’ when the Dice (%) of OC segmentation was below
80.0% or OD segmentation was below 90.0%. According
to these criteria, segmentation failed on 28 out of 613 test
images. We made a montage of each case, comprising the
original image, our segmentation, and ground truth. We present
some of the failed segmentations by using our model (Ours)
and the ground truth (GT) in Fig. }] The ophthalmologist
(IJCM) reviewed these 28 montages in a masked manner and
indicated which of the two segmentations was more accurate
for OC and OD, respectively. A McNemar-Bowker test [66]
confirmed that Our segmentation was regarded as clinically
accurate significantly more often than the GT (p=0.029 for
OC and p=0.001 for OD). Further subjective clinical review
of some GT imagesets suggested variable GT accuracy. This
highlights the robustness of our model, but also points to
important limitations in the ground truth manual annotations.
The quality of manual annotations is of utmost importance
for developing and validating segmentation models as well as
translating automation tools into clinical practice. We advise
investigators to apply extra caution when using public datasets.
Quality assurance of manual annotations of public datasets is
a strategic vulnerability in the field and requires further work.

C. Limitation and Future Work

Limitations

Our method achieves promising results for segmenting OC
& OD and colonoscopy polyps. However, it may not work as
well for highly complex objects, such as curvilinear structures
like retinal vessels [30], [67], [68]. The primary reason for
this is that retinal vessels’ region and boundary areas can
be challenging to distinguish due to their complex topology
and tortuosity. In particular, the derived boundary map (D))
we propose may have a significant overlap with the region
map ([2,) in these situations. Thus, an inevitable perturbation
will be included in the information propagation and message
passing process between the region and boundary nodes,
harming the segmentation performance.

Future Work.

Our method can be extended to tackle video-based segmen-
tation tasks, especially for polyp segmentation. In brief, video-
based polyp segmentation methods require high accuracy and
speed at the same time. In addition, polyps are of varying
size, and their appearance depends on the movement of the
camera past the lesion. Thus, dynamic and rapid updates to
the receptive field of the network are essential. An extension
from our proposed multi-level graph reasoning modules, where
each graph is responsible for tackling a specific level of the
receptive field, a dynamic attention module (similar to [15])
could be applied on the fusion of different graphs. In this way,
our model could automatically adopt the weight contributions
between different graphs for inference predictions. As for the
inference speed required by video-based tasks, a trade-off
between accuracy and speed can be achieved by a different

number of graphs and iteration numbers for message passing.
Besides this, our proposed model could also be extended to
tackle 3D image-based segmentation tasks. In 3D settings, we
can regard the boundary as a surface mesh (vertices) and the
region as voxels. Thus, the proposed boundary nodes in our
method could represent the extracted surface mesh (vertices)
features, and the region nodes could represent the extracted
voxel-wise features. In this case information exchange and
message passing between the surface and volume of 3D
objects could be achieved with the same network, simply by
redefining the identity of the nodes.

D. Conclusion

We propose a novel graph-based aggregation module that
takes advantage of intuitive associations between the re-
gion and boundary features in biomedical images, in or-
der to produce more accurate segmentation. Our experi-
ments have demonstrated that the proposed model can ef-
fectively aggregate and explain the semantic region features
and spatial boundary features for segmentation of polyps from
colonoscopy images, and the optic disc & optic cup from
retinal images. We believe the proposed GNN model can also
tackle other cross-domain feature reasoning challenges, such
as regions, boundaries, and landmark reasoning segmentation
tasks.
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