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Abstract 

Novel strategies to assess sparse data in human reliability analysis 

Caroline (Pinheiro Maurieli de) Morais 

 

Major industrial accidents are usually attributed to problems in the interaction of human, 

technological and organisational factors. Although many of these accidents arealmost 

impossible to predict, some can be predicted and prevented by techniques dealing with human 

error assessment. This is the reason why it is expected that comprehensive risk analyses use a 

technique known as human reliability analysis. It usually relies on data elicited from experts 

with operational knowledge, or empirically collected from simulated scenarios, records of near-

misses, and major accident reports. The present research proposes the use of MATA-D (Multi-

attribute Technological Accidents Dataset), which is based on major accident investigation 

reports, thus potentially capturing a more realistic relationship between human erroneous 

actions and technological and organizational factors that shape human performance. 

Currently, the most recommended probabilistic tool to model human reliability data is the 

Bayesian network. However, the assessment of its conditional probability tables (CPTs) 

requires enough data to describe all possible conditions dictated by the model. However, despite 

increasing collection efforts of empirical human reliability data, the available databases are still 

insufficient to fulfil conditional probability tables, especially for models where each variable is 

conditioned on many others. In these cases, the most common solution relies on the adoption 

of expert elicitation to fill in the missing combinations. 

This research has been focused on developing strategies to enable empirical data-driven human 

reliability analysis, such as precise and imprecise probability tools to tackle epistemic 

uncertainty inherent to such databases. The used probabilistic tools are Bayesian and credal 

network, the latter to tackle missing data in conditional probability tables. Using credal 

networks the prediction analysis depicts results with interval probabilities rather than point 

values measuring the effect of missing-data variables. As taking decisions is more difficult 

when comparing intervals then point-values, a decision-making strategy is suggested to unveil 

the most relevant variables for risk reduction in presence of imprecision. The results support 

the hypothesis that realistic uncertainty depiction implies less conservative human reliability 

analysis and improves risk communication between assessors and decision-makers. 

Finally, a natural language processing technique based on machine-learning has been developed 

to extract and classify new accident reports in order to collect new data for MATA-D. This aims 

to decrease the number of missing combinations in CPTs. A constant collection of new data for 

this dataset aims not only to decrease epistemic uncertainty in human reliability data but also 

to timely update models, reflecting changes in human behaviour due to evolving technology 

and organisational arrangements. The automated approach, called the virtual human factors 

classifier, is able to classify a new report more than one thousand times faster than a human 

being. 

Future developments are discussed, such as the strategy to compute reliability analysis with 

confidence, by using credal networks and c-boxes to tackle different and sometimes very small 

sample sizes in a database.  
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1. Chapter I: Introduction  
 

In February 2015, an explosion at an offshore oil & gas installation in Brazil killed 9 

workers and left 26 seriously injured. Since the beginning of the investigation into the accident, 

two human errors had been evident among the causes: one from the operator controlling the 

system who had started the emergency scenario that would last for one hour before the 

explosion, and one from the installation manager, who as an emergency commander had not 

been able to correctly mitigate the situation and permitted people to access an area where the 

gas sensors and alarms had already shown the potential to cause an explosion (ANP, 2015). If 

the investigation had stopped at the most immediate causes, the conclusion could be that human 

errors alone had led to the accident. However, the accident investigation report has shown that 

the human errors were rooted in causes more related to technological and organizational factors, 

such as flaws in the commission (i.e. implementation) of the human-machine interface of the 

control room, as well as flaws in the emergency card instructions that the manager had followed 

(ANP, 2015, Morais et al., 2016, Moura et al., 2017c). This confirms what Trevor Kletz said 

about major accident investigation practice: if an accident could be compared to an onion, a 

human error would be its outer layer. To understand why those human errors have occurred the 

investigators have to peel the onion down to its deepest layers, which will very often end up 

unveiling organizational and technological failures (Kletz, 2001). This affirmation has been 

empirically demonstrated by a recent study that, based on an analysis of major accident reports, 

has revealed that less than 1% reportedly have human errors and person-related factors alone 

(Moura et al., 2016), and that 48% are a combination of human-technology-organization 

factors. 

After acknowledging that problems in this interaction are the cause of a large part of 

major industrial accidents, it is important for society to understand in which extension they are 

predictable, to make decisions such as choosing a factory location (e.g. Seveso Directive 

2012/18/EU).  Some risks are usually not desired by society due to their potential to cause the 

loss of life of workers and nearby communities (e.g. the aftermath of the Bhopal accident) 

(Broughton, 2005), the environmental impact (e.g. the blowout at the Macondo well, leading to 

approximately 5 million barrels of oil spilt into the Gulf of Mexico in 2010) (CSB, 2014), the 

loss of assets and sustainability of local economies (e.g. the above-mentioned explosion at the 

offshore installation in Brazil which also damaged the installation thereby impairing the 

production continuity and impacting the natural gas supply in the region)  (Morais et al., 2016). 
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Predictions are always difficult and affected by huge uncertainty. However, techniques dealing 

with human error assessment can be used to improve our knowledge and prediction (Kirwan, 

1994). Acknowledged techniques that improve the interaction of humans with technology are 

known as human factors engineering (HFE), and techniques that predict and prevent human 

error risks are known as human reliability analysis (HRA). 

Although human-machine interactions started to be studied during the second world war 

to decrease plane crashes (Wickens et al., 2015), the interaction between workers, tools, 

technologies and techniques started to be systematically studied in 1951 in the coal mining 

industry, when it was defined as a sociotechnical system (Trist and Bamforth, 1951) – a project 

initiated by the Human Factors Panel of the Committee on Industrial Productivity in the United 

Kingdom (UK). Since then, Human factors (HF) have been more often acknowledged as the 

study of systems’ design to ensure that the demands to humans do not exceed their natural 

capabilities (both sensory-motor capabilities, and cognitive functions such as decision making 

and problem solving) (Hollnagel, 1998). The UK Chartered Institute of Ergonomics and Human 

Factors (CIEHF) states that human factors can be used interchangeably with the term 

ergonomics, although this is more often used for physical aspects of the workplace while human 

factors often encompass the wider system such as organisational factors. Human factors 

engineering (HFE) is the application of human factors knowledge to the design and construction 

of socio-technical systems (EI and IOGP, 2020). It is composed of prescriptive guidelines of 

recommended practices in the industry to fulfil such objectives, e.g. placement of valves to 

facilitate safe and efficient access, and analysis and review of human-machine interface (HMI), 

control rooms and alarms (EI and IOGP, 2020). However, although human factors engineering 

gives guidance on improvements in such systems, it does not assess their risks. 

To assess a system’s’ overall risk, a human reliability analysis (HRA) is necessary. The 

technique consists of a systematic process of analysing the risks arising from the human-

technology-organization interactions and has started to be more seriously studied after the 

incident at the Three Mile Island nuclear power plant in 1979 (Kirwan, 1994). Human reliability 

analysis methods (some of them described in Chapter 2) rely on models of how human 

performance depends on the conditions in which the tasks are carried out – these conditions 

usually referred to as performance shaping factors (PSFs, Hollnagel, 1998). HRA can be used 

as a stand-alone analysis or combined with a component reliability analysis into a risk analysis 

(Hollnagel, 1998, Kirwan, 1994), as depicted in Figure 1-1. 
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Figure 1-1. Human reliability analysis within risk analysis 

From the available literature regarding existing HRA methods, it could be noticed that 

human reliability analysis use depends on the industry sector, e.g. there are more methods and 

described applications in nuclear power plant industries than in oil & gas exploration and 

production (Bell and Holroyd, 2009). On the other hand, human factors engineering has been 

growing at a large pace in the oil & gas industry (EI and IOGP, 2020).  

It has been argued that human factors and human reliability analysis communities are 

artificially separated and could be contributing more to each other. One contribution would be 

to share empirical data collection efforts. Their different historical origins have resulted in 

different research approaches: although human factors studies need to collect data to generate 

design recommendations, HRA has been relying heavily on expert estimation and HRA 

methods to make probabilistic predictions (Boring and Bye, 2008). In industry practice, HRA 

relies on empirical data only to validate methods and studies. 

One previous study has investigated a method to adjust HRA data using human factors 

data. The study has compared error probabilities in test and control conditions, and the resulting 

probability ratios have been suggested to inform the selection of performance shaping factors 

multipliers in HRA methods (Griffith and Mahadevan, 2015). However, it is not an easy task 

to fully convert human factors data into HRA data: although the HF community is concerned 

with the existence of a phenomenon (qualitative), HRA is concerned with its frequency, 

translated on the human error probability (quantitative). Therefore, human factor data usually 

misses the denominator number of opportunities for error that is essential for HRA (see 

Equation 1-1). 



4 
 

Equation 1-1 

ℎ𝑢𝑚𝑎𝑛 𝑒𝑟𝑟𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑒𝑟𝑟𝑜𝑟𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑖𝑒𝑠 𝑓𝑜𝑟 𝑒𝑟𝑟𝑜𝑟
 

 

The use of empirical data to directly inform a human reliability analysis is still a research 

topic (Groth et al., 2014), as industry practice mostly relies on empirical databases to validate 

expert elicitation results (Kirwan, 1997a). Some attempts of empirical data collection efforts 

had been found lacking due to the users’ perception that they are unacceptably variable 

compared to components reliability (Kirwan, 1994), and that the observation of some human 

errors is so small that is not “statistically significant”  (Kim, 2020). At the same time, there are 

complaints that the HRA traditional approaches are very time-consuming processes (Kirwan, 

1994), and provide overly conservative results (French et al., 2011). The cost of conservatism 

might ultimately lead to over-designed plants (Kirwan, 1997a), consequently to inadequate 

plans of resource allocation. Over-conservative results might be due to the lack of knowledge 

on realistic performance shaping factors and on how those factors actually impact human 

performance (Liu and Liu, 2020). The majority of HRA methods consider that performance 

shaping factors degrade human performance, when human factors research shows that some of 

them indeed improve (CA Authority, 2016). Also, it is difficult to elicit the combined effect of 

more than three performance shaping factors in human performance (Liu and Liu, 2020), due 

to the inability of experts to reason under more than three conditions (Evans et al., 2003). 

These issues might be preventing new industry sectors to adopt HRA as the primary 

approach to systematically account for the interactions between humans, technological and 

organisational factors in risk assessments (Zio, 2018). Therefore, this research attempts to find 

solutions to these issues unlocking three gaps in the HRA niche: the lack of experiments that 

use empirical data that better depict the influence of realistic performance shaping factors, the 

lack of use of probabilistic methods that embrace and depict variation, and lack of 

methodologies that avoid the use of expert judgements or strong assumptions in the 

quantification step in cases of missing empirical data. 

From the assumption that major accident reports have the potential to provide realistic 

data about the interactions of performance shaping factors and human performance, this 

research has experimented using the Multi-Attribute Technological Accidents Dataset (MATA-

D), a dataset derived from a collection of major accident reports classified into a human 

reliability classification scheme (Moura et al., 2020, Moura et al., 2016). Before this research, 
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MATA-D has never been used on human reliability analysis. Previous analysis of this dataset 

has suggested that the human-technological-organisation interactions do have a pattern (Moura 

et al., 2017a), and the dependency between variables makes it suitable to feed not only classic 

probabilistic models such as Fault Trees but also Bayesian networks. 

Choosing the right method to model might be also impeding the use of empirical data. 

Although research has recognised that Bayesian networks better describes socio-technical 

systems (Mkrtchyan et al., 2015), HRA industrial practice heavily relies on Fault Trees 

(Kirwan, 1994). The problem of using classic fault trees is that they might be missing 

combinations that are very rare – as they provide only an approximate method, called cut sets, 

that drops the smallest term (Fenton and Neil, 2012). On the other hand, discrete Bayesian 

networks are exact, as they account for every combination. 

However, accounting for every combination also has a cost: it needs more data to describe 

the combinations (Mkrtchyan et al., 2016). This generates a problem that can be even worse 

than the inaccuracy of fault trees: by assessing expert judgements to inform the missing 

combinations in Bayesian networks, a full HRA might be exposed to expert’s bias (Mosleh et 

al., 1988) and will be more time consuming (Wisse et al.). In other words, by relying solely on 

Bayesian networks, there is a chance that the HRA field might always consider the HRA data-

sparse - even with so many new collection efforts being conducted. For this reason, this research 

investigates other causal probabilistic tools as well as other methods that can describe some 

missing combinations without requiring expert’s probability judgments or any other strong 

assumptions. 

1. Aims and objectives of this research 

The present research aims to help make human reliability analysis more acceptable to 

the engineering community by: making it faster, less conservative and more transparent.  

(1) making the quantitative step faster by using empirical data;  

(2) making it less conservative by using a probabilistic tool, and by using a dataset that 

provides the relations between performance shaping factors and human errors that have led to 

incidents;  

(3) making it more transparent to decision-makers by showing how missing data on 

interactions of individual, organisational and technological factors impact the results. 
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To achieve this aim, two objectives have been defined: (i) to model human reliability 

with a probabilistic tool and existing dataset; (ii) to propose solutions to tackle sparse data on 

conditional probability distributions without eliciting experts. 

Figure 1-2 summarises the research aims and objectives, followed by the respective research 

solutions and the conference and journal papers where they have been discussed and published. 

 

 

Figure 1-2. Aims, objectives and original contribution 

2. Original contribution  

The thesis argues that the human reliability community might have enough data to rely 

on data-driven analysis if the right imprecise probability tools are used. The main original 

contributions of this study are represented in Figure 1-2 as research solutions.  

The original contributions are the developed models, tools and techniques for 

addressing the problem of lack of data in human reliability, all able to depict the uncertainty of 

empirical data. In summary, the developed models have been based on: 

Research solution 1) The use of empirical data from major accidents (MATA-D). 

Modelling tool: Bayesian networks. Tackle missing data by adding a not applicable state in 

some BN nodes. 

In this research, a model of human behaviour has been developed, and a novel 

methodology to estimate human error probabilities (HEPs) using data from major accident 

investigation reports. The approach is based on Bayesian Networks used to model the 
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relationship between performance shaping factors and human errors. The proposed 

methodology allows minimizing the expert judgment of HEPs, by using a pragmatic strategy 

that is able to accommodate the possibility of having no information to represent some 

conditional dependencies within some variables. Therefore, the approach increases the 

transparency about the uncertainties of the human error probability estimations. The approach 

also allows to identify the most influential performance shaping factors, supporting assessors 

to recommend improvements or extra controls in risk assessments. Formal verification and 

validation processes are also presented. 

Research solution 2) Tackle missing data in conditional probabilities. Modelling tool: 

credal networks (an extension of Bayesian networks that deals with imprecise probability) 

A human reliability model of a real operation in the oil & gas industry has been 

developed, after carefully selecting an operation that is safety-critical and that comprises 

interactions between humans (from different teams), technological and organizational factors. 

The manuscript describes all the qualitative and quantitative steps taken to translate textual and 

numerical data from documents such as operational procedures, hazard analysis and description 

of previous related incidents. A methodology has been developed to admit (and depict) missing 

data without strong assumptions. However, to use this methodology, it has been necessary to 

shift from Bayesian to the credal network as the probabilistic tool. In order to increase the 

acceptance of the credal network in the oil & gas community, a methodology known as bow-

tie assessment is explored to shape the model, as its structure is well accepted in this industry 

sector. 

Research solution 3) To tackle sparse data and sample size by collecting more data 

from accident reports (expand MATA-D). Tool: machine-learning strategy instead of experts 

(bag-of-words to extract and SVM to train against MATA-D and classify new reports). 

A novel strategy to extend and update the empirical dataset has been proposed: the use 

of natural language processing with machine-learning to extract and classify information from 

new major accident reports. The strategy is proposed not only to reduce epistemic uncertainty 

but also to continuously update the dataset with information from the impacts of newly 

developed technology on humans. Besides training a model with MATA-D, and showing the 

model prediction metrics for a test set of major accident reports, the results from two case 

studies of new reports from the aviation and oil & gas industries have been comprehensively 

analysed. The analysis is useful to understand how the model works for the false negatives and 
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false positives, together with a discussion of which of them might have the most impact on 

human reliability analysis.  

Research solution 4) Strategy under development: calculating the reliability with 

confidence, to tackle differences in sample size in the reliability result (some combinations have 

more observations than others). Tool: confidence boxes (c-boxes) with credal networks. 

Most of the attempts aimed at substituting expert-driven human reliability assessment 

methods with empirical data-driven techniques have failed due to the high uncertainty of human 

reliability databases and limitations of traditional probabilistic tools to deal with it. Although 

the previously proposed models show that Bayesian and credal networks could be a more 

suitable approach to model human reliability data, such analyses usually apply some modelling 

procedures such as normalisation, which have the potential to implicitly affect the degree of 

information regarding the unevenness of sample sizes. In this last research solution, we propose 

to tackle these limitations by using confidence boxes (c-boxes) with credal networks, aiming at 

providing risk assessors with a rigorous framework for data uncertainty leading towards more 

efficient and robust modelling solutions.  

The small icons on the bottom of each research solution in Figure 1.2 correspond to the 

related publications which describe the models and methodologies developed during the PhD. 

The dashed line icons represent the papers under peer review (on the date of the thesis 

submission), and the solid line icons are the publications already issued. 

 

3. Thesis structure 

This thesis is structured as a collection of papers, a compilation of research manuscripts 

written during the PhD. The research solutions have been presented in three manuscripts 

submitted to peer-reviewed academic journals. All of them have been preceded by conference 

papers and discussed in conference presentations with peers, which have proved to be a good 

way of testing their usefulness and originality within the research community.  

The second chapter is based on the first journal paper, where the first research solution 

presented in Figure 1-2 has been applied. This research paper is published in the Special Issue 

of Human Performance and Decision Making in Complex Industrial Environments (SI034B) 

ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems – Part B: Mechanical 

Engineering. Besides me as the leading author, it has three co-authors, all my PhD supervisors 

who have contributed to the conceptualization and mainly with reviewing and suggesting 

improvements to my first manuscript. 

https://asmedigitalcollection.asme.org/risk/issue/6/1
https://asmedigitalcollection.asme.org/risk/issue/6/1
https://asmedigitalcollection.asme.org/risk/issue/6/1
https://asmedigitalcollection.asme.org/risk/issue/6/1
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The third chapter starts with an overview of the challenges and shortcomings of the first 

journal paper, along with the motivations for the second research solution presented in Figure 

1-2. The chapter continues by presenting the second article, in its version accepted for 

publication in the Reliability Engineering & System Safety Journal. Besides me as the leading 

author, this paper has three other co-authors in addition to my supervisors: two colleagues from 

my research group that have mainly contributed with software code and part of the 

methodology, and a colleague from my teamwork in Brazil who has contributed with the case 

study selection and data. 

The fourth chapter describes additional challenges and motivations for the research 

solution presented in Figure 1-2. The chapter is based on the third article in its version accepted 

for publication in the Safety Science Journal. Besides me as the leading author, this paper has 

two other co-authors in addition to my supervisors, who have mainly contributed to software 

code and part of the methodology. 

The fifth chapter describes the final challenges faced when dealing with sparse data in 

a human reliability database. This chapter focuses on the research question and a summary of 

the fourth research solution presented in Figure 1-2, instead of a full description of the 

methodology. It has been decided not to include the preliminary analysis of this piece of 

research in this thesis, as it has been submitted to a conference rather than an academic journal. 

It is the intention that in the near future it will lead to a fourth manuscript. 

The sixth and last chapter wraps up the main conclusions of the thesis and presents 

possible future research directions. 

Other conference papers and posters have been produced during the PhD, as presented 

by the publication icons on Figure 1-2. The dotted icons are the papers still under peer review. 

Other contributions during PhD are white papers, a co-creation of a new research project, 

reviews in journals, publications and a book revision. They are listed in the List of publications 

on page 142, that also presents details on the submission dates of the above-mentioned 

manuscripts. 

Finally, the appendices contain some of the developed models coded in MATLAB, as 

well as more detailed input and output data (e.g. conditional probability tables, precise and 

imprecise probability results).  

https://www.journals.elsevier.com/reliability-engineering-and-system-safety
https://www.journals.elsevier.com/safety-science
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2. Chapter II: Using a dataset of accident reports to model human behaviour 

– the first contact with sparse data issues 
 

Overview 

The objective of the first part of the research has been to assess an existing empirical 

dataset to model how human performance is impacted by performance shaping factors. Due to 

the importance of learning from previous major accidents, the dataset chosen has been MATA-

D (Moura et al., 2020). This importance can be explained by using again the example of the 

Brazil offshore installation accident case cited in the Chapter 1 Introduction. Comparing it with 

previous major accidents, it can be noticed that root causes are similar not only to accident 

reports from the oil and gas industry but also to other industry sectors with a similar level of 

complexity regarding human-technology-organisation interactions. Nonetheless, few practical 

risk assessments do consider databases from different industries in their risk quantifications. 

To embed the learning from the accidents process in human reliability analysis this 

research proposes to use a human reliability dataset based on major accidents from different 

industry sectors: the MATA-D (Moura et al., 2020). In the past, other work has been done to 

use accident database data for HRA models. Although this work also investigated events in 

different industry sectors (nuclear, aviation, maritime and occupational safety), it had not 

differentiated between near miss or accidents but focus on the psychological mechanisms 

behind each event (Sträter, 2000). From a preliminary study to understand MATA-D’s potential 

use, a comparison between the Brazil offshore installation accident in 2015 with the other 

accidents in this dataset has been made, and it has been observed that the combination of the 

human erroneous action and the organizational factors are exactly the same as the Bayer 

CropScience Pesticide Waste Tank Explosion in 2008 (CSB, 2011). Furthermore, those human 

errors and performance shaping factors are similar to a set of previous accidents that occurred 

in many industry sectors (Moura et al., 2017c). Plus, previous study has shown that some 

combinations are recurrent and do have a pattern (Moura et al., 2017a), being possible to 

conclude that the combinations are not governed by aleatory uncertainty alone (true random or 

uncontrollable processes), but also by epistemic uncertainty (which can be reduced, at least 

theoretically by collecting new data or using more detailed models) (Patelli et al., 2016). 

Moura et al.’s study to obtain MATA-D has focused on retrospective HRA (i.e. 

assessing the risk of accidents that have already happened), while the present study objectives 

are to use their data on prospective HRA (i.e. assessing the risk of something that hasn’t actually 

happened, such as the alignment of irregular working hours with design failures) (Hollnagel, 
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1998, Boring and Bye, 2008). In fact, this was one of the strongest reasons which have led 

Moura et al. to use the human reliability classification scheme from the Cognitive Reliability 

and Error Analysis Method (CREAM) (Hollnagel, 1998) – for its capability of being applied in 

both ways (Moura et al., 2016). 

To use it in a prospective analysis, a probabilistic tool able to model causality had to be 

chosen among many other data analysis tools. The way the MATA-D has preserved the 

dependency between all variables (human errors and performance shaping factors) for each 

event made it possible to be used in methods that rely on conditional probability tables, such as 

Bayesian networks. Besides that, the literature review has pointed to Bayesian networks as the 

strongest candidate to HRA, e.g. for its capability of accounting for the dependency between 

performance shaping factors (Mkrtchyan et al., 2015), and for the possibility of having its 

results explainable and traceable (Arrieta et al., 2020).  

The biggest challenge of this research has been unveiled at the moment the variables of 

the network – especially those with many dependencies – started to be assessed: when the 

MATA-D frequencies are translated to conditional probability tables, many of the combinations 

are empty for all states of a variable. The feeling that it could be a barrier to this study has 

turned into its most important research question when it has been realised, through the literature 

review, that this was one of the most important practical issues in quantifying HRA (Mkrtchyan 

et al., 2016): the issue of sparse data. 

It might sound strange to mention the sparse data problem, given that the human 

reliability and human factors communities have been generating more empirical data than ever 

(see session 2.1 Data ). However, sparse data will continue to be an issue for those modelling 

with Bayesian networks or any other method that accounts for the conditional dependencies 

among variables. The use of Bayesian networks requires much more data than, for example, 

fault trees. 

In summary, the following section of this thesis proposes a realistic and innovative 

approach for estimating human error probabilities using data from major accident investigation 

reports. The approach is based on Bayesian Networks used to model the relationship between 

performance shaping factors and human errors. The proposed methodology allows to minimize 

the expert judgment of human error probabilities, by using a strategy that is able to 

accommodate the possibility of having no information to represent some conditional 

dependencies within some variables. Therefore, the approach increases the transparency about 

the uncertainties of the human error probability estimations. The approach also allows to 
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identify the most influential performance shaping factors, supporting assessors to recommend 

improvements or extra controls in risk assessments. Formal verification and validation 

processes are also presented. 

The next pages of this chapter are based on the first manuscript originated from this first 

phase of the research. I have been the leading author, and responsible for the conceptualization, 

data analysis, methodology and writing the first draft. The article has been co-authored by Dr 

Raphael Moura1, Prof Michael Beer2, and Prof Edoardo Patelli3. 

                                                                 
1 National Agency for Petroleum, Natural Gas and Biofuels (ANP), Av. Rio Branco, 65, CEP 20090-004, Centro, Rio 
de Janeiro, RJ, Brazil, and Institute for Risk and Uncertainty, University of Liverpool, Chadwick Building, Peach 
Street, Liverpool L69 7ZF, United Kingdom 
2 Institute for Risk and Reliability, Leibniz Universität Hannover, Callinstr. 34, 30167 Hannover, Germany, to 
Tongji University, Shangai, China, and to the Institute for Risk and Uncertainty at University of Liverpool 
3 Centre for Intelligent Infrastructure, University of Strathclyde, James Weir Building, 75 Montrose St, Glasgow 
G1 1XJ, United Kingdom, and to the Institute for Risk and Uncertainty at University of Liverpool 
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Analysis and estimation of human hrrors from major accident investigation 
reports4 

 

1 Introduction 

Despite the increasing level of automation and the advent of artificial intelligence 

(Ramos et al., 2018), realistic risk assessments of high-hazard industries should ideally be 

performed through the analysis of the complex interaction between human, machine, and 

organizational systems (Zio, 2018). 

Human reliability analysis defines a collection of qualitative and quantitative methods 

used to account for human factors in social-complex industries in a systematic way (Henderson 

and Embrey, 2012). Their main aims are to identify the possible human errors in a task (i.e., 

task analysis) (Kirwan and Ainsworth, 1992), to quantify them (when needed), and to propose 

solutions to prevent or mitigate human errors (Kirwan, 1997a). The analysis uses the 

assumption that human errors are triggered by the interaction among individual, technological, 

and organizational factors, the so-called performance-shaping factors. 

Qualitative methods for human reliability provide only the identification of human 

errors and possible preventive or mitigation solutions. Quantitative human reliability methods 

provide the same functions as the qualitative methods, plus an estimation (or an adjustment) of 

the human error probabilities (HEPs) according to the defined performance shaping factors in 

a specific scenario. Different quantitative human reliability methods exist, including technique 

for human error rate prediction (THERP) (Swain and Guttmann, 1983), standardized plant 

analysis risk-human reliability analysis (SPAR-H) (Gertman et al., 2005), human error 

assessment and reduction technique (HEART) (Williams, 1988), cognitive reliability and error 

analysis method (CREAM) (Hollnagel, 1998) and a technique for human event analysis 

(ATHEANA) (Cooper et al., 1996). These quantitative methods allow to find or adjust human 

error probabilities according to the performance shaping factors in the specific industrial 

context being assessed (organizational, technological, and individual factors). However, human 

error probabilities obtained with quantitative methods are often affected by imprecision, sparse, 

and/or incomplete human error data (Bye, 2018, Kirwan, 1997b) leading to under-estimated or 

over-estimated probabilities (Kirwan, 1997a). This uncertainty may be one of the causes that 

are preventing industries from adopting risk assessments that account for human errors (Zio, 

2009). Although some safety regulators do accept qualitative analysis on human errors (e.g., 

                                                                 
4 https://doi.org/10.1115/1.4044796 

https://doi.org/10.1115/1.4044796
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see Ref. (Bell and Holroyd, 2009)), human error probabilities are required by probabilistic 

safety (risk) assessments. 

Ideally, a human error probability should be obtained by observing operators 

performing specific tasks and quantifying the frequency of their errors  

 

Equation 2-1 

ℎ𝑢𝑚𝑎𝑛 𝑒𝑟𝑟𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑒𝑟𝑟𝑜𝑟𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑖𝑒𝑠 𝑓𝑜𝑟 𝑒𝑟𝑟𝑜𝑟
 

 

However, this is often an impractical task due to the variability of human behaviour, 

industrial installations, and tasks performed. The current research presents a novel methodology 

to estimate human error probabilities by collecting data from major accident reports. Bayesian 

networks are proposed to estimate human error probabilities to exploit information about the 

conditional dependencies among human errors and performance shaping factors. The present 

methodology also addresses the problem of working with sparse data, which eventually leads 

to incomplete conditional probability distributions for some nodes of the Bayesian networks. 

The approach consists of creating an additional state for those variables, in order to 

accommodate and account for the lack of information. It is believed that this strategy increases 

the transparency about the uncertainties of the human error probability estimation without the 

need of additional assumptions. This approach has the potential to better capture the interaction 

between human, machine, and organizational systems, providing additional contexts and 

scenarios not fully achieved by simulators, near-miss reports, and expert elicitation. 

 

2 Methodology background 

 

This section presents the proposed approach and theoretical background for the 

estimation of human error probabilities, including data collection, data analysis, verification, 

and validation. 

 

2.1 Data collection 

 

Data collected from real operations are considered the most credible human error data, 

followed by data derived from real operations (i.e., incidents, near-misses, and accidents), 

simulators and expert judgment (Figure 1-2) (Kirwan, 1997a). 
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A summarized description of the strengths and pitfalls of each type of data are described 

in the following. 

Expert judgment: Experts are individuals with recognized knowledge or skill in a 

specific domain. Sometimes expert elicitation is the only available data source (Mosleh et al., 

1988); thus, their opinions are aggregated by adopting methods to reduce expert elicitation 

variability (Mkrtchyan et al., 2016, Shirazi, 2009). However, expert elicitation is considered 

the least credible source of data. This is because experts can be oriented by different sources of 

bias (Mosleh et al., 1988), be systematically overconfident about the accuracy of their 

judgments (Lin and Bier, 2008) and be experienced in the taxonomy used (Kirwan, 1997a). 

Ultimately, it is improbable to have a human reliability analysis that does not rely on expert 

judgment to some extent, as all methods start with a qualitative analysis of possible scenarios 

(Laumann et al., 2018). 

Simulators: Data from simulators are collected at mimicked control rooms or other 

workspaces where real operators perform specific tasks under normal or emergency scenarios. 

Data collected from simulators is often restricted to human-machine interfaces in control rooms. 

Often collected data needs to be calibrated by expert judgment adopting well known 

approaches, e.g., scenario authoring, characterization, and debriefing application (SACADA) 

(Chang et al., 2014), Halden Man–Machine Laboratory (HAMMLab) (Gertman et al., 2005, 

Lois, 2009), human reliability data extraction (HuREX) (Kim et al., 2017), and operator 

performance and reliability analysis (OPERA) (Park and Jung, 2007). This approach is strong 

on detecting human errors, but weak on detecting all the performance shaping factors. This is 

due to the decontextualization of the studied tasks (Gertman et al., 2005), for instance, operators 

know that their actions will not have any consequence and often know that their actions are 

being observed (Kirwan, 1997a). 

Derived data from real operation: Data from real operations come from direct task 

monitoring, near-miss events, and major accidents. 

 

 

Figure 2-1. Data credibility for human error probability assessment (adapted from Ref. (Kirwan, 1997a)) 
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The direct task monitoring is the method where a real operational task is observed at the 

moment it is performed by an assessor or recorded and analysed after the event. It is considered 

one of the best data sources but it lacks data for tasks rarely performed. For instance, the 

database computerized operator reliability and error database (CORE-DATA) has been 

partially generated with data derived from real operations (Gibson and Megaw, 1999). 

Data from near-miss events are those that collect human errors and performance shaping 

factors from events that had the potential to cause considerable damage to assets and people but 

they had no relevant consequence (Park et al., 2017, Preischl and Hellmich, 2013, Preischl and 

Hellmich, 2016). This kind of data has the benefit of describing more errors related to hardware 

(such as manually operated valves) and relating human errors to performance shaping factors. 

However, near-miss reports are generally restricted to what needs to be communicated to the 

regulator (Preischl and Hellmich, 2013, Preischl and Hellmich, 2016); thus, relevant factors 

may not always be reported (Kletz, 2011). 

Data from major accident reports have the potential to deliver stronger relation between 

performance shaping factors and human errors (Moura et al., 2016, Kyriakidis et al., 2015). 

This is because detailed analyses of the causes that led to the accidents are required and 

performed (API, 2010). Despite the potential benefits, the strategy of using major accident data 

to estimate performance shaping factors and human error probabilities is not yet fully explored. 

 

2.2 Bayesian networks 

 

Bayesian network (BN) is a powerful graphical tool that has received an increasing 

interest due to their capability of providing efficient factorization of joint probability 

distributions, exploiting information about the conditional dependencies among variables (Tolo 

et al., 2018). Bayesian networks have also been used for the estimation of Human Error 

Probability on different industrial sectors, as described by the thorough review of (Mkrtchyan 

et al., 2015). 

Let consider a simplified Bayesian network for modelling human error as shown in 

Figure 2-2. Each ellipse called “node” represents variables such as “organizational factors,” 

“technological factors,” “person-related factors,” “cognitive errors,” and “execution errors.” 

The arrows represent the direction of the causal relationship between variables. In the model 

presented, the organizational factors are defined as the parent node of cognitive errors and, 

likewise, cognitive errors as the child node of organizational factors. The organizational factors 

are denoted a root node of the network, as it does not have parents. The causal relationships 



17 
 

between variables are defined by conditional probability distributions. These distributions are 

usually represented by crisp values numerically coded in conditional probability tables (CPTs) 

(Tolo et al., 2015). 

 

Figure 2-2. Simplified Bayesian network for human error probability 

The main advantages of using Bayesian networks for human reliability analysis are as 

follows (Mkrtchyan et al., 2015): 

o Deal with lack or incomplete data of human errors in complex industries by integrating 

expert judgment and other different sources of information in the model. 

o Allow to consider dependencies among factors by using joint probabilities, to combat 

the frequent (and possibly mistaken) assumption of independencies between 

performance shaping factors and human errors. 

o The acyclic graphs are easy to understand and potentially facilitate the communication 

between engineers, psychologists, and social scientists in multidisciplinary risk 

analysis. 

o The possibility to update the marginal probabilities of the variables, when new 

information becomes available. 

o Provide reasons for the results by allowing to identify which performance shaping 

factors are affecting individual human errors (Chen and Pollino, 2012). 

o The capability of performing “what if” scenarios analysis by fixing the state of variables, 

as well as to propagate the information in the direction of interest (Tolo et al., 2017). 

 

2.3 Identifying conditional dependencies from sparse data 

 

Data for human error are usually sparse or missing. Although data can be collected from 

an increasing number and variability of accident reports (e.g., collecting reports from different 

safety regulators or from different industry sectors), some conditional dependencies might 
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continuously fail to appear in the available data. Therefore, inferences of the human error 

probabilities are generally performed based on expert elicitation. Experts can contribute by 

providing direct probability values (direct elicitation) or give their opinion through qualitative 

scales, questionnaires, relative judgments (indirect elicitation) (Mkrtchyan et al., 2015). 

Alternative approaches are based on data derived from underling method relationships (Groth 

and Mosleh, 2012, Yang et al., 2013), or from specifically designed simulators (Groth and 

Mosleh, 2012, Sundaramurthi and Smidts, 2013). The discussion of the mathematical theory 

behind these approaches is beyond the scope of the present paper; however, the interested reader 

can refer to Refs. (Tolo et al., 2017, Nielsen and Jensen, 2009, Fenton and Neil, 2012). Some 

basic background about conditional probability distributions is provided in the Appendix A. 

 

2.4 Verification and validation 

 

Once the human error probabilities are obtained, they should be verified to test if the 

model works as it is supposed to work (Mkrtchyan et al., 2015). If the correct inputs are given, 

the appropriate outputs are seen (Kirwan, 1997a). In Jentsch words, we should ask ourselves: 

“Did we build the system right?” (Jentsch, 1993). Verification can also be referred as “internal 

validation,” when used as a test to measure the variation between assessors, so the result can be 

repeated no matter the team or the day when the analysis is conducted (Kirwan, 1997a). 

Few published researches based on Bayesian network to infer human error probabilities 

have presented a verification process (Mkrtchyan et al., 2015). Truco et al. have presented their 

verification results, after creating a set of hypothetical profiles at the extreme points, varying 

from the highest to the lowest level of each factor (Trucco et al., 2008). Yang et al. have 

conducted a sensitivity analysis focused on the “context control modes” of the method CREAM, 

using expert judgment (Yang et al., 2013). They have suggested that in a successful model a 

slight change toward the negative effects of a context control mode would result in the 

increment of the human error probability. 

The literature suggests that higher levels of performance shaping factors would result 

in higher levels of human error probability and that combinations of performance shaping 

factors would result on greater adverse impact on human error probability (Henderson and 

Embrey, 2012). That means that human reliability should reflect the features of a coherent 

system with multistate components, where the performance of a system improves whenever 
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any component or subset of component improves, and vice-versa (Samaniego, 1985, Barlow 

and Wu, 1978). 

To validate a model, one should test if the system does what is supposed to do in the 

real world: if the outputs have a good correlation to “real world data” (Kirwan, 1997a). In 

Jentsch words, we should ask ourselves: “Did we built the right system?” (Jentsch, 1993). 

A common method to validate a model is to conduct cross validation, splitting available 

data sets into training and test sets. However, this approach is adopted in data-rich applications, 

which are not the case presented in rare events such as human errors in major accidents 

(Mkrtchyan et al., 2015). For these events, Kirwan suggests the comparison of the new results 

with existing human error data of better or similar credibility level (Kirwan, 1997a). The 

measurable criteria used are correlation, accuracy, the degree of optimism/pessimism, and 

precision (Kirwan, 1997a). 

2.4.1 Correlation 

 

  The degree of the predictive relationship is usually presented via a scatterplot of 

predicted versus actual human error probability. Although validations usually try to express 

parametric correlation (with the square of the correlation coefficient), the majority of validation 

research conducted by the human reliability community have been expressed via nonparametric 

correlation (Kirwan, 1997a, Williams, 1988, Kirwan et al., 1997), assuming that human 

behaviour does not rely on any assumption of the distribution function or the joint distribution 

of performance shaping factors. 

The nonparametric correlation tests are Spearman’s rank correlation coefficient (Pirie, 

2004) and Kendal’s coefficient of concordance (Kendal’s s) (Abdi, 2007). Although both tests 

are different, the interpretation of both coefficients is similar: the correlation between the two 

variables will be high when observations have a similar (or equal) correlation of one. Likewise, 

if the coefficient value is next to zero, the correlation between the results from the model and 

the reference is small. 

2.4.2 Accuracy 

  In risk assessment, an ideal accuracy level is when estimates lie within a factor of three 

of the “true” values, but it is acceptable if falls within a factor of ten (Kirwan, 1997a). Model 

accuracies are often represented graphically in a scatterplot of the results against reference data 

using logarithms scale. 
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2.4.3 Precision 

An aspect of precision is the degree to which the estimate or technique, when not 

accurate, is pessimistic rather than optimistic (Kirwan, 1997a). A pessimistic estimate is a 

prediction whose bias makes the value worse (riskier, costlier, etc.) which makes the 

estimatemore conservative. Conservative estimates lead to safer but at the same time more 

expensive designs. Therefore, it is important to find strategies that provide more realistic HEPs 

for the industry. Histograms are also plotted to present how human error estimates were 

distributed into accuracy bands within pessimistic and optimistic factors of 3, 10, and 100. 

 

3 Proposed approach: using datasets of major accidents reports 

 

3.1 Bayesian network definition 

All the steps required to build a Bayesian network from major accident reports are 

described in the following:  

Definition of the nodes: Bayesian network nodes represent the variables obtained from 

any taxonomy able to classify performance shaping factors and human errors. The chosen 

taxonomy must be able to classify the performance shaping factors and human errors at a level 

that is common for all the sectors. 

States of the nodes: Root nodes have only two states: the state “0” and state “1” 

representing the logical entries of the accident dataset during data collection, i.e., 0 when a 

variable (e.g., performance shaping factor or human error) is absent or not observed on the 

accident by the investigator, and 1 when the variable has been observed. 

Child nodes have been augmented with an additional state called “no data.” This state 

is used to handle cases where specific combinations of events (i.e., the conditional probabilities) 

are not observed in the dataset. This strategy not only permits the assessment of the conditional 

probability tables without expert judgment but also increases the transparency on the 

uncertainties of the result (i.e., human error probability). 

Definition of the structure: The Bayesian network structure (Figure 2-3) has the 

objective of capturing the dependencies between performance shaping factors and human errors 

but also among performance shaping factors and human errors, and explicitly modelling their 

multilevel, hierarchical influences on each other. Experts with psychology and sociology 

knowledge might be elicited to obtain this type of structure (e.g., to identify the causal 

relationships of cognitive errors and organizational factors). Although one of the aims of this 
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research was to avoid expert biases, it is acknowledgeable that at some level of the assessment 

the experts are essential – if not for eliciting the prior probabilities, they will be for the model 

structure or for the taxonomy used. 

 

Figure 2-3. Example of a structure reflecting the causal relationships within variables 

 

3.2 Assessment of the conditional probability tables  

 

In order to avoid experts’ biases on eliciting probabilities, the present work uses solely 

the information from dataset in order to obtain the conditional probability distributions. Let 

consider a dataset from accident reports able to classify human errors and corresponding 

performance shaping factors (PSFs) as shown in Table 2-1. Conditional probability tables for 

root nodes are defined as the frequencies for each performance shaping factor obtained in the 

data collection and presented in  

Table 2-2 and Table 2-3. 

Table 2-1. Example of a dataset with human errors and PSFs identified for each accident 

Accident 
Human 

error 1 

Human 

error 2 
PSF 1 PSF 2 PSF 3 PSF 4 PSF 5 

Accident #1 1 0 0 1 1 1 0 

Accident #2 0 1 0 0 0 0 0 

Accident #3 0 0 0 0 0 0 0 

Accident #4 1 0 0 0 0 0 0 

Accident #5 1 0 0 1 1 1 0 

Accident #6 1 1 0 0 0 0 0 

Accident #7 1 0 0 1 0 1 0 

Accident #8 1 0 0 0 0 0 0 

Accident #9 1 0 0 0 0 1 1 
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Table 2-2. Example of prior probabilities of root node PSF 1 

PSF 1  

State 0 1 

State 1 0 

 

Table 2-3. Example of prior probabilities of root node PSF 2 

PSF 2  

State 0 6/9 = 0.7 

State 1 3/9 = 0.3 

 

The conditional probabilities for child nodes depend on the structure defined on the 

network and are obtained by counting the frequency of all the possible combinations of the 

parent node’s states in the dataset. The frequency is the number of accidents that present a 

specific combination divided by the number of accidents in the dataset. The frequencies 

obtained (Table 2-4) are then normalized, as the prior probabilities of the set of states of the 

child node must sum to one (Table 2-5). The same process is repeated for each combination of 

the conditional probability table. When this process is complete it is possible to compute the 

posterior probabilities for each node. The posterior probabilities of the state 1 of the child nodes 

designated to human errors will be the human error probabilities. 

Table 2-4. Example of the CPT for node 'human error 1' 

PSF 1  State 0 (…) 
PSF 2  State 0 (…) 
PSF 3  State 0 (…) 
PSF 4   State 0 State 1 (…) 
PSF 5  State 0 State 1 State 0 State 1 (…) 

Human 

error 1 

State 0 2/9 = 0.2 0 0 0 (…) 

State 1 3/9 = 0.3 0 0 1/9 = 0.1 (…) 

No data 0 1 1 0 (…) 

The boldface value ‘1’ is added by the analyst when there is no information about certain 

combination from the data. 

Table 2-5. Normalized CPT 

PSF 1  State 0 (…) 
PSF 2  State 0 (…) 
PSF 3  State 0 (…) 
PSF 4   State 0 State 1 (…) 
PSF 5  State 0 State 1 State 0 State 1 (…) 

Human 

error 1 

State 0 0.4 0 0 0 (…) 
State 1 0.6 0 0 1 (…) 
No data 0 1 1 0 (…) 
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When the dataset used does not provide information for defining conditional 

distributions within certain variables states, the variable state no data is set to 1. If this strategy 

were not used, the prior probabilities of states 0 and state 1 of the child node for that given 

combination would have both probabilities set equal to zero, making it impossible to compute 

the conditional probability table. In Ref. (Fenton and Neil, 2012), it is suggested to assigning 

equal probability to all the unknown combination of events. However, using the latter strategy, 

a researcher loses the information of what combinations do not lead to human errors according 

to the dataset, which can be potentially used in the future. 

 

3.3 Validation and verification 

 

The verification of the models is performed through what-if analysis, to test how the 

model behaved when analysing well-known scenarios (Tolo et al., 2017). To achieve that, some 

hypothetical scenarios have been created by fixing each state of each performance shaping 

factor node of the Bayesian network, and observing how the changes affected the human error 

probabilities.  

Results from the what-if analysis are used to verify the model but also to obtain the 

maximum and minimum bounds of human error probabilities after varying each performance 

shaping factor to its maximum and minimum values. The validation process is performed by 

comparing the results obtained by the constructed model against data provided by references 

using the same taxonomy. 

 

4 Case study 

 

4.1 MATA-D dataset 

 

For the present research, the multi-attribute technological accidents dataset (MATA-D) 

is adopted (Moura et al., 2016). The dataset contains 238 major accident reports classified under 

the CREAM taxonomy (Hollnagel, 1998). A single taxonomy is used to describe both human 

errors and performance shaping factors for a variety of industrial sectors. Only trusted 

investigation boards have been used to build the dataset. Logical values, i.e., binary code of 1 

s or 0 s, are used to designate whether or not a human error or factor was observed. This resulted 

in a matrix of zeros and ones with 238 rows (the number of accidents) by 53 columns formed 

by 39 performance shaping factors (Table 2-6) and 14 different types of human errors (Table 

2-7). 
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Table 2-6. Performance shaping factors used in MATA-D dataset 

Organisational Factors Technological Factors  Person related factors 

Communication failure Equipment failure Permanent related 

Missing information  Software fault Functional impairment 

Maintenance failure Inadequate procedure  Cognitive style  

Inadequate quality control Access limitations Cognitive bias 

Management problem Ambiguous information Temporary 

Design failure Incomplete information Temporary related 

Inadequate task allocation Access problems Memory failure 

Social pressure  Mislabelling Fear  

Insufficient skills  Distraction 

Insufficient knowledge   Fatigue 

Adverse ambient conditions   Performance Variability 

Excessive demand  Inattention 

Inadequate work place layout  Physiological stress 

Irregular working hours  Psychological stress 

 

Table 2-7. Human erroneous actions and cognitive functions used in the MATA-D dataset 

Cognitive function failures5 Execution Errors 

Observation errors Interpretation errors Planning errors Wrong time  

Observation missed  Faulty diagnosis  Inadequate plan  Wrong type  

False Observation  Wrong reasoning  Priority error  Wrong Object  

Wrong Identification  Decision error   Wrong place 

 Delayed interpretation   

 Incorrect prediction   

 

4.2 Bayesian network 
 

The methodology presented in Section 3 has been used to construct a Bayesian Network 

model from the MATA-D dataset and summarized in Table 2-8. The resulting structure of the 

Bayesian network is shown in Figure 2-4.  

 

                                                                 
5 In the original research article, table 2.7 has been named as Human errors used in the MATA-D dataset 



25 
 

Table 2-8. Summary of the methodology to build the Bayesian Network model 

Nodes and states Structure Conditional probability table 
Verification and 

Validation 

The nodes are 

variables defined 

in CREAM 

taxonomy 

(Hollnagel, 1998). 

 

From 39 possible 

performance 

shaping factors 

and 14 possible 

human errors, 

only six were not 

used, due to their 

absence on the 

accident reports.  

 

The root nodes 

have two states: 

‘0’ and ‘1’ 

(following the 

logical entries of 

the MATA-D 

dataset) and child 

nodes have ‘0, ‘1’ 

and ‘no data’.  

 

The root nodes 

have two states: 

‘0’ and ‘1’, to 

designate whether 

or not an evidence 

was encountered 

on an accident 

report. 

 

The child nodes 

have the states ‘0, 

‘1’ and ‘no data’. 

The latter state is 

used when the 

dataset does not 

provide a specific 

combination 

between the 

parent nodes. 

 

 

The connections 

between the nodes 

were defined according 

to relations based on 

expert judgement, from 

the same author of the 

taxonomy used to 

define the nodes 

(Hollnagel, 1998). He 

has named it the 

‘antecedent-

consequence relation’. 

A different structure 

less reliant on expert 

judgement was 

proposed at (Morais et 

al., 2018), by using 

common patterns of 

PSFs and human errors 

identified on (Moura et 

al., 2017b). 

 

The structure depicts 

the influence between 

performance shaping 

factors, which means 

that some performance 

shaping factors are also 

child nodes. 

 

The structure 

represents the influence 

that performance 

shaping factors have 

upon each other. 

Eventually, this means 

that some performance 

shaping factors are also 

child nodes. 

 

All human errors are 

child nodes of the 

performance shaping 

factors. 

The conditional probability tables 

for the root nodes were obtained 

directly from the frequencies of 

each performance shaping factor 

according to (Moura et al., 2016), 

e.g. design failure is equal to 

66%, so at the conditional 

probability table the state ‘1’ of 

the root node ‘design failure’ is 

0.66 and the state ‘0’ is the 

complement to one: 0.34. 

 

The frequency for combinations 

between factors and errors for the 

child nodes have been extracted 

from the dataset entries. 

 

Due to the high number of 

combinations between the states 

of the parent nodes that a child 

node has reached, obtaining the 

frequencies per combination from 

the dataset was not a trivial task. 

A code was used to read the table 

and extract the probability for 

each combination. For more 

information on the code and on 

how to use it, please contact the 

authors. 

 

The conditional probability tables 

for the root nodes are obtained 

directly from the frequencies of 

each performance shaping factor 

according to the dataset. 

 

The frequency for combinations 

between factors and errors are 

obtained also from the dataset 

inputs for each accident. 

To verify any 

incoherence in the 

model, a what-if 

analysis was conducted 

by fixing the states of 

the variables. 

 

To validate the model, 

the estimates were 

tested against reference 

data published on 

(Hollnagel, 1998) 

according to 

correlation, accuracy 

and precision. 

 

To verify any 

incoherence in the 

model, a what-if 

analysis is conducted 

by fixing the states of 

the variables. 

 

To validate the model, 

the estimates are tested 

against reference data 

according to 

correlation, accuracy 

and precision. If 

possible, the reference 

data should be obtained 

from operational 

experience. 
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Figure 2-4. Model for predicting human error probabilities adapted from Ref. (Hollnagel, 1998) 

 

4.3 Human error probabilities 

 

The HEP obtained analysing the MATA-D dataset are presented in Table 2-9 and 

graphically represented in a scatter plot in Figure 2-5. The state 0 indicates the probability of a 

specific human error not being triggered by a specific combination of performance shaping 

factors. The state no data indicates the number of times a combination of those factors has not 

occurred in the dataset. 
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Table 2-9. HEPs from model compared with data reference (Hollnagel, 1998) 

Human cognitive 

and execution errors 

Lower bound 

from reference 

Basic value 

from reference 

Upper bound 

from reference 

Human error 

probability 

O
b

se
rv

a
ti

o
n

 Observation missed 2.00 x 10-2 7.00 x 10-2 *1.70 x 10-1 1.57 x 10-1 

False Observation 3.00 x 10-4 1.00 x 10-3 3.00 x 10-3 3.54 x 10-2 

Wrong Identification 2.00 x 10-2 7.00 x 10-2 *1.70 x 10-1 1.54 x 10-2 

In
te

r
p

r
et

a
ti

o
n

 

Faulty diagnosis 9.00 x 10-2 2.00 x 10-1 6.00 x 10-1 1.30 x 10-1 

Wrong reasoning Not provided Not provided Not provided 1.13 x 10-1 

Decision error 1.00 x 10-3 1.00 x 10-2 1.00 x 10-1 9.14 x 10-2 

Delayed interpretation 1.00 x 10-3 1.00 x 10-2 1.00 x 10-1 5.19 x 10-2 

Incorrect prediction Not provided Not provided Not provided 3.90 x 10-2 

P
la

n
n

in
g
 

Inadequate plan 1.00 x 10-3 1.00 x 10-2 1.00 x 10-1 9.89 x 10-2 

Priority error 1.00 x 10-3 1.00 x 10-2 1.00 x 10-1 6.55 x 10-2 

E
x

e
cu

ti
o
n

 

Action at wrong time 1.00 x 10-3 3.00 x 10-3 9.00 x 10-3 1.24 x 10-1 

Action of wrong type 1.00 x 10-3 3.00 x 10-3 9.00 x 10-3 1.02 x 10-1 

Action on wrong 

object 

5.00 x 10-5 5.00 x 10-4 5.00 x 10-3 2.34 x 10-2 

Action of wrong place 1.00 x 10-3 3.00 x 10-3 9.00 x 10-3 3.01 x 10-1 

* The literature provides 1.7 x 10-2. However, this value is lower than the lower bound. In this paper, the authors 

decided to replace this value to 1.7 x 10-1. 

 

For the purpose of verification, the obtained probabilities have been compared against 

data from Ref. (Hollnagel, 1998). The interval of the reference is described by the lower and 

upper bounds for each human error.  

Figure 2-5 shows higher human error probabilities than the reference data. A possible 

interpretation of this trend might be attributed to the methods used to collect reference data 

(Hollnagel, 1998), where all human errors were accounted for, including those that have not 

produced an accident. Thus, more opportunities of errors were accounted on the denominator 

of Equation 2-1, making the resulting probabilities lower than those obtained with the present 

approach. The human error estimates are the values obtained for the probabilities of the state 1 

of each child node. The results of state 0 and the state no data are presented in Table 2-10. A 

comparison of the results obtained for each state is also presented in Figure 2-6. 
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Figure 2-5. Human error probabilities from the proposed approach and from Ref. (Hollnagel, 1998) plotted in a 

logarithmic scale 

 

Table 2-10. Results of all states of human error probability nodes on the proposed model 

Cognitive and execution errors State ‘0’ State ‘1’ (HEP) State ‘no data’ 

Observation missed 8.22  x  10-1 1.57  x  10-1 2.07  x  10-2 

Wrong Identification 9.58  x  10-1 3.54  x  10-2 6.62  x  10-3 

False Observation 9.71  x  10-1 1.54  x  10-2 1.38  x  10-2 

Faulty diagnosis 8.70  x  10-1 1.30  x  10-1 0.00   

Wrong reasoning 8.87  x  10-1 1.13  x  10-1 0.00   

Decision error  8.96  x  10-1 9.14  x  10-2 1.24  x  10-2 

Delayed interpretation 9.45  x  10-1 5.19  x  10-2 2.71  x  10-3 

Incorrect prediction 9.61  x  10-1 3.90  x  10-2 0.00   

Inadequate plan 8.85  x  10-1 9.89  x  10-2 1.65  x  10-2 

Priority error  9.31  x  10-1 6.55  x  10-2 3.92  x  10-3 

Action at wrong time 8.27  x  10-1 1.24  x  10-1 4.89  x  10-2 

Action of  wrong type 7.68  x  10-1 1.02  x  10-1 1.30  x  10-1 

Action on wrong object 9.05  x  10-1 2.34  x  10-2 7.16  x  10-2 

Action of wrong place 6.49  x  10-1 3.01  x  10-1 5.06  x  10-2 
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Figure 2-6. States estimates for the proposed model 

 

To test if the model outputs work as they were supposed to work, a what-if analysis was 

conducted, by fixing the states of sets of performance shaping factors one-at-the-time. In Figure 

2-7, the black bars represent the values estimated for the model; the green and red bars can be 

interpreted as a spectrum of human error probabilities after varying all performance shaping 

factors to their best and worst-case scenarios. The green bars represent the expected results for 

a specific variation, whereas the red bars represent the unexpected results. The expected results 

represent those values that are expected from a coherent system according to the formal 

definition used for reliability technological systems. For instance, in a coherent system, the 

probability of having a human error decreases if a set of performance shaping factors are set to 

zero (best-case scenario) and increases in case of performance shaping factors increased to 

100% (worst-case scenario). The obtained figures show that in the scenario of having all the 

organizational factors failing to work, the cognitive error of missing an observation (i.e., 

“observation missed”) would in fact decrease. This is possibly be explained by an increase in 

performance that humans might be using to compensate organizational errors. This reinforces 

the theory that humans are not only probable initiators of an event but also the last chance to 

recover a problem initiated by organizational and technological factors (Hollnagel, 1998). 
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Figure 2-7. (a)–(n) Human error probabilities estimated by fixing the performance shaping factors one-at-the-

time 



31 
 

 

Figure 2.7 (continued) 
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Figure 2.7 (continued) 
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Figure 2.7 (continued) 



34 
 

 

 

Figure 2.7 (continued) 

 

Variations of some sets of performance shaping factors also resulted in zero probability 

human errors, as presented in Table 2-11. This shows that some human errors are impossible to 

occur under the specific conditions of performance shaping factors present in the MATA-D 

database. 
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Table 2-11. Sets of performance shaping factors variations producing zero human errors probability 

Human error Probability 

= 0 

Simulated Scenarios (sets of PSFs at their worst-case 

scenarios) 

Observation missed When All Temporary Person Related Factors = 1  

False Observation All organisational factors = 1 

Wrong Identification Functional impairment (a permanent person related factor) = 1 

All organisational factors = 1 

Missing information (an organisational factor) = 1 

Faulty diagnosis --  

Wrong reasoning --  

Decision error All organisational factors = 1                                   

 Social pressure (an organisational factor) = 1 

 

Delayed interpretation All organisational factors = 1 

Incorrect prediction All Permanent Person Related Factors = 1 

Cognitive bias (a permanent person related factor) = 1 

All technological factors = 1 

Ambiguous information (a technological factor) = 1 

 

Inadequate plan ALL Temporary Person Related Factors = 1 

Memory failure (a Temporary Person Related Factor) = 1 

Priority error --  

Wrong time ALL Temporary Person Related Factors = 1 

Wrong type ALL Temporary Person Related Factors = 1 

Performance Variability (a Temporary Person Related Factor)= 1 

ALL Permanent Person Related Factors = 1 

Functional impairment (a Permanent Person Related Factor) = 1  

Wrong Object ALL Temporary Person Related Factors = 1 

Inattention (a Temporary Person Related Factor) = 1 

ALL Permanent Person Related Factors = 1 

Functional impairment (a Permanent Person Related Factor) = 1 

All technological factors = 1 

Access problems (a technological factor) = 1 

 

Wrong place ALL Temporary Person Related Factors = 1 

ALL Permanent Person Related Factors = 1 

 



36 
 

To validate the model, its outputs had been tested on the correlation, accuracy and 

precision to existing data obtained at (Hollnagel, 1998). The reference data were collected from 

simulators, expert judgment, laboratory controlled cognitive experiments, and simulation 

studies of inspection tasks (from simulated process plant and training schools). According to 

Hollnagel (Hollnagel, 1998), data sources for human errors such as observation and execution 

were relatively well established at the time they were collected (approximately 1998). On the 

other hand, the author declared that interpretation and planning behaviours were mostly based 

on expert judgments. In addition, Ref. (Hollnagel, 1998) does not provide probabilities for 

“wrong reasoning” and “incorrect prediction.” To validate the model only the basic values 

provided in Ref. (Hollnagel, 1998) are used. Figure 2-8 shows a scatter plot of human error 

probability predicted from the model versus human error probability from the Ref. (Hollnagel, 

1998).  

 

Figure 2-8. Human error probabilities (HEPs) from model versus HEPs from the reference in a logarithmic 

scale 

 

The present research has also tested nonparametric correlation, as human behaviour 

does not rely on any assumptions on the distribution function. The nonparametric correlation 

tests of Spearman’s correlation coefficient and Kendal’s coefficient of concordance are both 

presented in Table 2-12. Both correlation coefficients are very small and not statistically 

significant. As shown on the scatterplot in Figure 2-8, seven of the human error probabilities 

estimated lied within a factor of 10 and five within a factor of 100 of the reference. 

Table 2-12. Nonparametric correlation results 

Spearman’s correlation coefficient (ρs)= 0.20115 
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Correlation between 

model outputs and 

values in the reference 

Kendal's coefficient of concordance (Kendal's τ) = 0.3333 

 

To evaluate their accuracy within a factor of 3, the results were also plotted in a 

histogram (Figure 2-9). When not accurate, the histograms also illustrate if the estimates are 

pessimistic or optimistic if compared to the reference. The model outputs had presented more 

pessimistic estimates rather than optimistic ones, meaning that the majority of HEPs estimated 

through both models tend to be higher than the reference. The histogram provided in Figure 2-9 

shows how spread the results are.  

 

Figure 2-9. Histogram with accuracy bands 

 

Table 2-13 presents the lower and upper bounds of human error probabilities after 

varying all performance shaping factors to their minimum and maximum values. 

 

Table 2-13. Human error probability uncertainty after varying performance shaping factors 

Cognitive and execution 

errors 

Lower 

bound 

Human error 

probability 

Upper bound 

Observation missed 5.30 x 10-3 1.57 x 10-1 7.75 x 10-1 

False Observation 1.00 x 10-3 3.54 x 10-2 3.27 x 10-1 

Wrong Identification 5.00 x 10-4 1.54 x 10-2 1.98 x 10-1 

Faulty diagnosis 9.15 x 10-2 1.30 x 10-1 4.69 x 10-1 

Wrong reasoning 9.95 x 10-2 1.13 x 10-1 2.94 x 10-1 

Decision error  1.40 x 10-3 9.14 x 10-2 2.72 x 10-1 

Delayed interpretation 2.10 x 10-2 5.19 x 10-2 7.10 x 10-1 
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Incorrect prediction 2.30 x 10-3 3.90 x 10-2 8.49 x 10-2 

Inadequate plan 2.20 x 10-3 9.89 x 10-2 3.88 x 10-1 

Priority error  2.03 x 10-3 6.55 x 10-2 1.02 x 10-1 

Action at wrong time 3.20 x 10-3 1.24 x 10-1 3.52 x 10-1 

Action of wrong type 1.00 x 10-4 1.02 x 10-1 1.91 x 10-1 

Wrong Object 7.10 x 10-3 2.34 x 10-2 7.65 x 10-2 

Action of wrong place 1.30 x 10-6 3.01 x 10-1 4.73 x 10-1 

 

4.4 Discussion 

 

The case study shows the applicability of the approach for the available datasets of 

major accidents. These databases are capable to describe the interaction between human, 

machine and organizational systems and that the human error probabilities obtained have a 

similar order of magnitude of those used by industry to feed real risk assessments. However, 

some aspects brought by the verification and validation steps have to be better understood 

before considering the probabilities ready to be used to feed risk assessments. 

The verification applied to the case study shows some human errors increasing if one or 

a set of performance shaping factor are decreased (and vice-versa). This may suggest and 

inadequacy of the used model or may also indicate that complex socio-technical systems do not 

necessarily behave as a coherent system. If right, the results of the case study suggest that some 

degraded performance shaping factors (or the combination of them) may cause also positive 

effects on human behaviour. Similar behaviour has been described by psychology research, 

which described that vigilance (the ability to maintain concentrated attention over prolonged 

periods of time) can actually decrease due to low levels of workload, an organizational shaping 

factor (CA Authority, 2016). The verification step also has demonstrated that some human 

errors are unlikely to happen for specific states of performance shaping factors, as can be 

observed from some null human error probabilities. 

The validation step has exposed a low correlation between the results obtained with the 

Bayesian network and the reference, as the model do not provide a predictive relationship with 

data from the reference used (Hollnagel, 1998). However, a new validation process must be 

conducted with data with similar source quality as the dataset (i.e., operational experience), as 

the data used as reference was partially obtained from simulators and expert elicitation. The 

human error probabilities obtained from the model tend to be higher than the reference, meaning 

that if they are used to feed risk assessments they will lead to a safer design. The majority of 
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results falls within a factor of 3 and 10 than within a factor of 100, which is normally acceptable 

to feed risk assessments. This validation aspect is important to develop because although higher 

than the real probabilities lead to safer design, they are not desirable as it can direct resources 

to the wrong risks. 

The what-if analysis undergone in the verification and validation steps has also provided 

a spectrum of human error probability variations that can be seen as the uncertainty of estimates 

from different scenarios. In other words, varying the performance shaping factors in the 

Bayesian networks provides a distribution of human error probabilities, where uncertainty 

boundaries can be obtained. To better capture the uncertainty associated with the dataset, two 

aspects of the data collection are suggested for future research. First, the data collection should 

be conducted by at least three experts, to improve the quality of the measure (Shirazi, 2009). 

Second, the number of publicly available reports should be increased, allowing more experts to 

improve and test the dataset. 

 

5 Conclusions 

 

This research has presented a robust approach based on Bayesian network to obtain 

human error probabilities by using data from major accident reports. As major accidents attract 

the attention of the media, society, governments and regulators – generating prosecutions that 

demand more investigation time and larger teams of skilled and (ideally) independent and 

dedicated investigators. The proposed approach allows to:  

o Provide human error probabilities with a deeper understanding of the performance 

shaping factors involved. 

o Use data from different tasks (e.g., inspection and maintenance), rather than focusing 

on control room operations’ tasks. 

o Use data from all human-machine interfaces, including hardware (e.g., manually 

operated valves) and not only focused on control-room screens. 

o Analyse human errors and performance shaping factors in different sectors of complex 

social-technical industries, if the same taxonomy is used. 

 

The probabilistic method proposed allows not only to deal with scarce data but also to 

quickly update the values when a specific set of performance shaping factors is observed during 

the operational phase (e.g., through safety audits or equipment inspection). By introducing an 

additional state in the node of the Bayesian Network, the proposed approach allows to address 
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the problem of lack of information about specific conditional probability thus increasing the 

transparency about the uncertainties of the human error probability estimation. Verification and 

validation steps are provided to assess the accuracy of the estimated human error probabilities 

and the uncertainty related to the model or dataset used. The approach presented in this paper 

have the potential to minimize the use of human reliability analysis methods to quantify and 

calibrate human error probabilities, thus minimizing the need of expert elicitation – leaving for 

them the important mission of identifying critical tasks and the possible types of human errors 

associated, discussing possible controls and developing mitigation actions. 
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3. Chapter III: Using credal networks to assess sparse empirical data 
 

Overview 

This chapter’s introductory overview presents a discussion on the challenges and 

limitations of the results obtained on the first objective of the research (concatenated in the 

research paper presented in Chapter 2), and motivation for starting the second objective 

(concatenated in the manuscript in this chapter).  

A limitation of the first paper is relative to the qualitative model used, which has been 

an attempt to make a generic model of human behaviour in a complex industry, that could be 

adapted according to specific cases (see Figure 2-4  ). However, for the second manuscript, it 

has been comprehended that in industry practice it is more useful to model the operation which 

is conducted by humans (see Figure 3.11). For this reason, the oil & gas regulator safety auditors 

in Brazil (ANP) have been contacted to help to select a case study: any real operation of their 

interest, which contains the interaction of humans, technology and organisational factors, and 

which they have enough data to understand its frequency and consequence. A simple model 

that could demonstrate whether (and how) imprecise probabilities could help missing data 

problems in such models. The ANP safety advisor who has gratefully helped with the case 

selection and data has been included as a co-author of the manuscript. 

Also, comparing CREAM human error probability (HEP) data (Hollnagel, 1998) to the 

HEPs generated by the developed Bayesian network, as suggested by Figures 2.5 and 2.8, might 

not be valid, as some of the CREAM HEP data might not have been conditioned on PSFs. Thus, 

the validation step was not conducted for the case study of the second manuscript – although 

future validation is advised if human error data is collected from the selected operation.A 

challenge faced in the first research paper, which has motivated the second phase of the 

research, has been to develop a better strategy to tackle the missing data problem. The issue 

arises when attempting to quantify the human reliability in the case study model using the 

MATA-Dataset: many of the conditional dependencies between human errors and performance 

shaping factors are not found in the database. For these cases, the conditional probability tables 

(CPT) presented some missing combinations, with both states being null. Although this 

incomplete information could suggest that certain human errors are impossible under certain 

organisational and technological conditions, it is more reasonable to interpret them as uncertain 

information about an event rather than considering it an impossible event (Fenton and Neil, 

2012). Although the first paper has proposed a practical way of dealing with this problem 
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without needing experts’ judgements on the probability estimate of such events, the strategy is 

simplistic and carries hard assumptions (such as explained in the approach labelled as ‘not 

applicable’ state in Section 2.2.4. Common approaches to deal with missing data in HRA). 

A more appropriate strategy has been proposed in the second manuscript: the use of credal 

networks to model also the lack of information without making strong assumptions (Cozman, 

2000). According to Cozman, the credal network allows the representation of incomplete 

beliefs through a set of measures. 

For this reason, this chapter investigates a novel methodology for dealing with missing 

data using intervals comprising the lowest and highest possible probability values, shifting the 

probabilistic tool from Bayesian to credal networks.  

The first attempt and idea have been presented at the ESREL conference, receiving 

relevant feedback from the human reliability community (Morais et al., 2019a). The Figure 3A 

depicts the difference on applying the ‘not applicable’ state and the credal network approach 

in a simpler model used in (Morais et al., 2019a), where the nodes observation missed, 

inadequate plan, wrong time, wrong place and wrong type had missing data combinations on 

their conditional probability tables.  

 

Figure 3A. Difference on applying the‘not applicable’ state and the credal network approach 

Figure 3A shows that for the majority of these nodes the probabilities obtained with the 

‘not applicable’ states are equal to the lower bound of results obtained by the credal network. 

These results indicate that the ‘not applicable’ state strategy might miss worse scenarios for 

human error probabilities – which is not desirable for risk assessments.  
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The credal network combined with the novel methodology has been applied in this 

chapter to quantify the risks associated with a critical task in offshore oil & gas installations. 

The last challenge has been deciding which is the most relevant variable in the presence of 

imprecision – the reason why a novel decision-making strategy for diagnostic analysis has also 

been suggested. 

This research aims to provide less conservative human reliability analysis by providing 

realistic uncertainty depiction, ultimately improving risk communication between risk assessors 

and decision-makers. 

The next pages of this chapter are based on the second manuscript aligned with the 

second objective of the research. I have been the leading author, and responsible for the 

conceptualization, data analysis, methodology and writing the first draft. The article has been 

co-authored by Mr Hector Diego Estrada-Lugo6, Dr Silvia Tolo7, Mr Tiago Jacques8,  Dr 

Raphael Moura, Prof Michael Beer, and Prof Edoardo Patelli.  

                                                                 
6 Institute for Risk and Uncertainty, University of Liverpool, United Kingdom 
7 University of Nottingham, United Kingdom 
8 National Agency for Petroleum, Natural Gas and Biofuels (ANP), Av. Rio Branco, 65, CEP 20090-004, Centro, Rio 
de Janeiro, RJ, Brazil 
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Robust data-driven human reliability analysis using credal networks 
 

1. Introduction 

The risks arising from the interaction of workers, tools, technologies and techniques can 

be assessed in industry through a systematic process known as human reliability analysis (HRA) 

(Kirwan, 1994). HRA aims to identify the possible types of human errors for each task, to 

understand which factors might trigger them, and to propose solutions to reduce human errors. 

In the early stages of human reliability practice, engineers have started to collect data on human 

errors using the same concepts of component reliability – focusing on errors occurred in 

function of tasks and time. More recently, engineers have started to work together with 

psychologists and sociologists, moving the empirical focus to measure errors under certain 

context (i.e. performance shaping factors, also known as performance influencing factors and 

human factors, which includes organisational and technological factors) (Kirwan, 1994, 

Hollnagel, 1998). Unfortunately, many of those databases had been discredited due to their 

large variability, especially if compared against the components reliability estimates (Kirwan, 

1994). Overall, many data collection projects have been mostly used to validate methods based 

on expert judgement rather than serving a data-driven human reliability analysis (Kirwan, 

1997a). This might be one of the reasons why some authors consider the state of the art in 

quantitative human reliability analysis too poor to make the summative assessments of risk and 

reliability required by regulators (French et al., 2011). This highlights the urgent need for novel 

tools and methodology able to tackle such limitations (French et al., 2011). 

The starting point of this work is the research question whetherimprecise probability 

theory might help to capture and adequately uncertainty about model human, ensuring its 

credibility. This could potentially translate in numbers the soft barriers concept already used in 

safety analysis. Soft barriers (or soft defences) consist of risk reduction measures that rely on 

human decisions or actions (i.e. administrative systems or procedures), acknowledged to be 

more variable than hard barriers which rely on hardware such as physical or technical 

components (Reason, 2016, Sklet, 2006). Thus, soft barriers are already recognised as carrying 

a higher degree of variability, and safety analysts would potentially benefit from the depiction 

of soft barriers variability. 

As the very name suggests, the reliability of soft barriers is considered more uncertain 

than that associated with hard barriers. Variability is inherent to human behaviour. (Kirwan, 

1994)Recent research suggests that Bayesian network, a graphical probabilistic tool developed 
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in the late 1980s, could be a more suitable solution to model the uncertainty associated with 

human reliability analysis (Mkrtchyan et al., 2015). However, its use implies the need to 

characterise the conditional probability distribution associated with each model variable, 

requiring a larger amount of data than is usually required by other traditional tools, such as fault 

and event trees (Mkrtchyan et al., 2016). This implies that despite increasing empirical data 

collection efforts, the problem of missing human reliability data would persist, as many of the 

conditional dependencies between human errors and performance shaping factors are not found 

in the available databases. Although in theory this would suggest the impossibility of certain 

human errors under certain organisational and technological conditions, it is more reasonable 

to interpret such information as the result of a lack of knowledge rather than a reliable depiction 

of reality, as uncertain information rather than impossible events (Fenton and Neil, 2012). 

Hence, many of the human error probabilities proposed in existing human reliability methods 

are based on experts’ opinions rather than on the incomplete available information (Mkrtchyan 

et al., 2016, Cozman, 2000). 

This paper proposes an alternative strategy that captures the inherent imprecision of 

human behaviour within soft safety barriers and accounts for typical missing data in conditional 

probability tables, bypassing the need for strong and often unjustified assumptions (see 

examples in section 2.2.4). The strategy relies on the use of credal networks, an extension of 

Bayesian networks characterised by the capability of representing imprecision (Cozman, 2000). 

The approach proposed in this study expands on strategies developed by some of the authors in 

a former study (Morais et al., 2019a). 

The current paper is organised as follows: the theoretical background in section 2 

focuses on the nature of empirical data and the qualitative and quantitative tools to model them, 

including the approaches used so far to tackle missing human reliability data. Section 3 

describes the proposed alternative approach based on credal networks to tackle the problem of 

sparse data, and their mathematical background. The developed methodology is then applied to 

a case study in section 4, where the human reliability of depressurising oil tanks in an offshore 

oil & gas installation has been evaluated. Finally, the advantages, possible applications and 

limitations of the approach are discussed in section 5. 

2. Theoretical background 

2.1 Human reliability empirical data 

Empirical data are obtained by observation and experimentation. The definition of 

human reliability data entail information able to provide a human error probability (HEP) for 
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each operational task in function of time or context (performance shaping factors), i.e. number 

of observed errors by number of opportunities for error (Kirwan, 1994, Hollnagel, 1998). It is 

common practice in human reliability analysis to fill gaps within the data with expert opinions: 

the provision of probability measures by experts is known as expert elicitation. Although 

largely adopted in practice, it is widely recognised that expert elicitation is affected by bias 

(Mosleh et al., 1988) and overconfidence (Lin and Bier, 2008). It might also be unfeasible if 

experts need to elicit a variable under many simultaneous conditions (Evans et al., 2003). 

Therefore, research efforts have been directed at collecting empirical human reliability data. 

The latter may be essentially divided into four major categories: laboratory-based studies 

(Griffith and Mahadevan, 2015, Di Flumeri et al., 2019), simulators (e.g. HuREX, SACADA, 

HAMMLab, and ongoing efforts to develop a data framework to quantify the IDHEAS method) 

(NRC, 2014, Jung et al., 2020, Chang et al., 2014, Xing et al., 2016), derived from near-misses, 

i.e., incident events that could have resulted in severe consequences (Park et al., 2017, Reason, 

2016,Preischl and Hellmich, 2013), and finally analysis derived from major accidents (Moura 

et al., 2016, Kyriakidis et al., 2015). They all have their strengths and pitfalls in relation to 

volume of generated data, insights of cognitive mechanisms, correlation with performance 

shaping factors, and availability to the public (Morais et al., 2020). Previous studies have 

offered suggestions on how to generate meaningful HRA empirical data, regarding preparation, 

collection, analysis, and application (Kim, 2020). 

In the human reliability field, data collection and classification are usually done by other 

humans (experts), but further research is addressing the need for computer support. For 

example, simulators data can be observed and debriefed by experts as in the worksheets 

described by (Groth and Mosleh, 2012), but also can be recorded by specifically designed 

simulators (Sundaramurthi and Smidts, 2013). In incidents databases, the data might be 

collected through extensive reading of investigation reports (Moura et al., 2016) or by using a 

machine-learning strategy of text recognition and classification (Morais et al., 2019b). 

However, collecting more data is usually expensive and is not an assurance of decreasing the 

uncertainty but on the contrary, it may result in an increase of uncertainty due to poor sample 

quality (Siegrist, 2011). 

The characteristics of the generated database can impact the choice of the quantification 

tool used (e.g. if each variable is recorded per event and is clear about variables dependencies, 

or if overall results are aggregated). Sometimes, the results from data collection efforts are 

aggregated for the purpose of publishing an article, but the authors maintain a copy of the full 

database in a public data repository. For example, the study in (Moura et al., 2016) provides 
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human errors and influencing factors as aggregated results, serving well the purpose of fault 

and event tree analysis. Nevertheless, the complete database behind the study allows to identify 

whether a variable (factor) have occurred or not for each event (Moura et al., 2020). This allows 

the use of tools that require explicit relationships between all variables, such as Bayesian and 

credal networks. 

2.2 Tools to model human reliability data 

For risk-informed decision making, causal or explanatory models are widely regarded 

as preferable to traditional statistical approaches (Fenton and Neil, 2012). This makes graphical 

probabilistic tools particular appealing for the task, since they are able not only to provide a 

good and intuitive representation of operation but also to quantify the associated risk and 

uncertainty (Kirwan, 1994). In HRA, the most reportedly used tools are fault trees (FT), event 

trees (ET) and, more recently and mainly in research, Bayesian networks (BN) and credal 

networks (CN) (Morais et al., 2019a). For all graphical probabilistic tools, the model structure 

(also known as topology) plays an important role on the numerical outputs. Thus, most human 

reliability methods suggest a qualitative analysis that result in a graphical structure of an 

operational task before the quantification of its human error probabilities. An exception to this 

practice would happen if the model structure were also driven by data, as investigated by (Groth 

and Mosleh, 2012). However, the application of such tools to real-world operations would 

imply the need for (very) large amount of data, a need not met by current human reliability 

databases for most industries and operations (Mkrtchyan et al., 2016). 

 

2.2.1. Qualitative analysis: model structure 

Critical tasks, potential human errors and performance shaping factors are identified by 

qualitative analysis, resulting in a structure for the model and preferably establishing causality. 

Meticulous conduction and clear description of the qualitative analysis improves the 

consistency of quantification results (Kirwan, 1997a, NRC, 2014). For this reason, critical task 

analysis is used here to identify the relevant model variables and bow-tie diagrams to define 

the relationships between variables. 

Critical task analysis entails the identification and examination of tasks performed by 

humans as they interact with systems. For assessing human reliability, only the critical tasks 

need to be selected, i.e., the key tasks that prevent (or recover from) an incident event. One of 

the most popular methods is the hierarchical task analysis (HTA) (Smith et al., 2011), which 

starts by describing the work as imagined (e.g., written information such as operational 
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procedures, equipment’s manuals and risk analysis) and, if possible, comparing it with the work 

as done (e.g. using interviews and walking through the task at site with workers involved in the 

operation). The basic steps to a HTA are: identification of main hazards, which tasks contribute 

to hazards, who performs each task, when and in what sequence; the representation of tasks in 

tables or diagrams in sufficient detail, and finally the identification of potential human errors 

and performance shaping factors (Smith et al., 2011). A risk or hazard identification analysis is 

an important aid to identify which tasks are critical (Hollnagel, 1998, Smith et al., 2011). For 

the identification of potential types of human errors and performance shaping factors, it is 

recommended that assessors follow guidelines of an existing human reliability method (e.g. 

HEART, THERP, CREAM), as each has a different set of taxonomies and cognitive models. 

An example of HTA is provided in the case-study analysed in the following sections. The 

structure resulting from the hierarchical task analysis can be converted into graphical 

probabilistic models (e.g. fault tree, Bayesian network), where the operation chronological-

sequence would determine the direction of links between human actions, according to some 

traditional human reliability approaches (Hollnagel, 1998). However, results of such sequential 

model could fail to deliver meaningful results, making it difficult for the assessors to diagnose 

the actions and PSFs that are more relevant to the overall risk. To overcome this, the outputs 

provided by HTA can be structured as a causal analysis, by selecting which tasks correspond 

to the risk event, and its trigger, control, mitigation and consequent events. This modelling 

approach, proposed as the causal taxonomy of risk by (Fenton and Neil, 2012), resembles the 

bow-tie approach, a popular qualitative risk analysis in Oil & Gas industry. 

(CGE, 2017).(Reason, 2016, Trbojevic, 2008) This can be seen in Figure 3-1 where the 

nodes in the Bayesian Network represent the main component of the Bow-tie diagram.  The risk 

event node in the ‘causal taxonomy’ diagram represents the hazard (top event) in the middle of 

the ‘bow-tie diagram’, which is triggered by the events on the left and produces the consequence 

on the right. The blocks between triggers and hazard are the measures to prevent hazards 

(control node), while the blocks between hazard and consequence are the mitigation barriers 

(mitigation nodes) (CGE, 2017, Salvi and Debray, 2006). Bow-tie diagrams have been already 

used to model and quantify human factors by using a combination of fault and event trees (Salvi 

and Debray, 2006, Targoutzidis, 2010) and Bayesian networks (Léger et al., 2009). 
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Figure 3-1. Similarity of the ‘causal taxonomy of risk’ between a Bayesian network and a ‘bow-tie diagram’ 

2.2.2. Quantitative analysis with Bayesian networks: data inputs and outputs 

The quantitative analysis aims at finding the probability of human errors initiating an 

accident event under different scenarios of performance shaping factors, ideally based on the 

model resulted from the qualitative part. For many years, fault and event trees have been the 

most used tools in human reliability quantification techniques (Kirwan, 1994). Previous studies 

have been demonstrating that Bayesian networks (BNs) might be a better choice than more 

traditional probabilistic tools (such as fault and event trees) to model and extract all information 

from human reliability data, many of them explored in a comprehensive review in (Mkrtchyan 

et al., 2015). Indeed, Bayesian networks are potentially more intuitive than fault trees, as 

modellers do not need to understand logical gates, just the existence of relations between 

variables. Variables are represented by nodes in the network, and their instantiation is defined 

by at least two states independent from each other (e.g. Boolean states: true or false, success or 

failure). Variables are known as parent nodes if they influence others, the children nodes. Root 

nodes are variables without parents. This relationship is represented as directed edges or arrows, 

whose direction defines the influence of parents on their child node, thus a link cannot point in 

both directions. 

For instance, in the example in Figure 3-2, nodes PSF1, PSF2 and PSF3 represent 

different performance shaping factors (PSF) that trigger human error (HE) – as it is often 

assumed in HRA. PSF1 represents the organisational factor, PSF2 the technological factor and 

PSF3 the individual factor and they are parents of the node HE. PSF2 is a parent node of PSF3 

while only PSF1 and PSF2 are root nodes.  
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Figure 3-2. Example of a simple Bayesian network used for modelling human error. 

 

The conditional probability tables (CPTs) specify the strength of the relationships 

represented by the network links. Root nodes require the estimation of unconditional 

probabilities as they are not conditioned by other nodes. Children nodes require the estimation 

of conditional probabilities as they are conditioned on the state of the parent nodes. The size of 

the resulting CPT dictates the amount of data needed. For instance, considering 2 states per 

node (e.g., True, False), a child with one parent requires the estimation of 4 conditional 

probabilities  in a 2x2 table; if a child node has 2 parents, the CPT contains 8 conditional 

probabilities (a 2x4 table) and so on by following the rule 𝑠(𝑛𝑝+1) where s represents the number 

of states and np the number of parent nodes (Nielsen and Jensen, 2009).  

The structure of a Bayesian network for a set of n random variables (X1,…,Xn) induces 

a unique joint probability density that can be written as a product of the individual density 

functions, conditional on their parent variables 𝝅𝒊: 

Equation 3-1 

𝑃(𝑋1 = 𝑥1, … , 𝑋𝑛 = 𝑥𝑛) = ∏ 𝑃(𝑋𝑖 = 𝑥𝑖|𝝅𝒊)

𝑛

𝑖=1

 

 

 

where, 𝑥𝑖 represents the status of random variable 𝑋𝑖, 𝝅𝒊 represent the status of all variables 

that are parents of the variable 𝑋𝑖 .  

For the case of HE shown in Figure 2, we use P(HE=T) to indicate the probability of HE to be 

true and P(HE=F) the probability that HE is false. We might also be interested in calculating 

the probability of the HE when all the PSFs are true. Then, the Equation 3-1 becomes: 

 

Equation 3-2 

𝑃(𝐻𝐸 = 𝑇, 𝑃𝑆𝐹1 = 𝑇, 𝑃𝑆𝐹2 = 𝑇, 𝑃𝑆𝐹3 = 𝑇) =

𝑃(𝐻𝐸 = 𝑇|𝑃𝑆𝐹1 = 𝑇, 𝑃𝑆𝐹2 = 𝑇, 𝑃𝑆𝐹3 = 𝑇)𝑃(𝑃𝑆𝐹3 = 𝑇|𝑃𝑆𝐹2 = 𝑇)  
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Instead, the overall probability that the Human Error is true (HE=True) is obtained via 

marginalisation. This means that all the 8 combinations of conditional probabilities involved in 

the states of PSF producing the desired state of the node HE need to be added as follows: 

 

Equation 3-3 

𝑃(𝐻𝐸 = 𝑇) = 𝑃(𝐻𝐸 = 𝑇| 𝑃𝑆𝐹1 = 𝑇, 𝑃𝑆𝐹2 = 𝑇, 𝑃𝑆𝐹3 = 𝑇)𝑃(𝑃𝑆𝐹3 = 𝑇|𝑃𝑆𝐹2 = 𝑇) +  

𝑃(𝐻𝐸 = 𝑇| 𝑃𝑆𝐹1 = 𝑇, 𝑃𝑆𝐹2 = 𝑇, 𝑃𝑆𝐹3 = 𝐹)𝑃(𝑃𝑆𝐹3 = 𝐹|𝑃𝑆𝐹2 = 𝑇) + 

𝑃(𝐻𝐸 = 𝑇| 𝑃𝑆𝐹1 = 𝑇, 𝑃𝑆𝐹2 = 𝐹, 𝑃𝑆𝐹3 = 𝑇)𝑃(𝑃𝑆𝐹3 = 𝑇|𝑃𝑆𝐹2 = 𝐹) + 

𝑃(𝐻𝐸 = 𝑇| 𝑃𝑆𝐹1 = 𝑇, 𝑃𝑆𝐹2 = 𝐹, 𝑃𝑆𝐹3 = 𝐹)𝑃(𝑃𝑆𝐹3 = 𝐹|𝑃𝑆𝐹2 = 𝐹) + 

𝑃(𝐻𝐸 = 𝑇| 𝑃𝑆𝐹1 = 𝐹, 𝑃𝑆𝐹2 = 𝑇, 𝑃𝑆𝐹3 = 𝑇)𝑃(𝑃𝑆𝐹3 = 𝑇|𝑃𝑆𝐹2 = 𝑇) + 

𝑃(𝐻𝐸 = 𝑇| 𝑃𝑆𝐹1 = 𝐹, 𝑃𝑆𝐹2 = 𝑇, 𝑃𝑆𝐹3 = 𝐹)𝑃(𝑃𝑆𝐹3 = 𝐹|𝑃𝑆𝐹2 = 𝑇) + 

𝑃(𝐻𝐸 = 𝑇| 𝑃𝑆𝐹1 = 𝐹, 𝑃𝑆𝐹2 = 𝐹, 𝑃𝑆𝐹3 = 𝑇)𝑃(𝑃𝑆𝐹3 = 𝑇|𝑃𝑆𝐹2 = 𝐹) + 

𝑃(𝐻𝐸 = 𝑇| 𝑃𝑆𝐹1 = 𝐹, 𝑃𝑆𝐹2 = 𝐹, 𝑃𝑆𝐹3 = 𝐹)𝑃(𝑃𝑆𝐹3 = 𝐹|𝑃𝑆𝐹2 = 𝐹). 

 

 

The calculation of the joint probability of a Bayesian network becomes an impossible 

task to be carried on manually since the number of combinations quickly explodes with the 

number of nodes present in the network. For instance, with binary discrete variables and 10 

nodes, it requires the calculation of 2(10+1) = 2048 combinations. The computation of the 

posterior probabilities of the queried nodes, from prior probabilities and evidence can be carried 

out adopting different inference methods. Exact inference algorithms based on analytical 

approaches provide the value of the interval probability such as by computation tree (Nielsen 

and Jensen, 2009), while approximation algorithms provide probabilities near the true value 

(Tolo et al., 2018). Usually, end users do not need to fully understand the applied inference 

algorithm, however they must have in mind that the complexity of the model and their need for 

reproducibility of results might impact their choice. Although exact inferences result in the 

computation of exact probability interval, they are computationally expensive and unfeasible 

for large sized systems. Consequently, for large networks approximation algorithms are 

necessary, although usually associated to unknown rate of convergence which can compromise 

the robustness and reproducibility of the analysis (Estrada-Lugo et al., 2019b, Tolo et al., 2018). 

Bayesian networks are also used for diagnosis. They allow to identify the input with the 

higher impact on the output. For instance, an analyst would like to identify which PSF is the 

most likely trigger for the HE. Using the Bayes’ rule the conditional probability of PSF1 

knowing that HE has occurred (that represents the evidence)cab be computed: 

Equation 3-4 

𝑃(𝑃𝑆𝐹1 = 𝑇|𝐻𝐸 = 𝑇) =
𝑃(𝐻𝐸 = 𝑇|𝑃𝑆𝐹1 = 𝑇) × 𝑃(𝑃𝑆𝐹1 = 𝑇)

𝑃(𝐻𝐸 = 𝑇)
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Similarly, the conditional probability for PSF2 and PSF3 can be computed. The above 

Equation can also be used to calculate the probability of PSF1 knowing that HE has not 

occurred, i.e., 𝑃(𝑃𝑆𝐹1 = 𝑇|𝐻𝐸 = 𝐹) and any other combination of events. This method is 

known as Bayesian inference. Diagnosis is particularly useful in HRA to investigate which 

factors affect human error the most, which helps risk analysts in proposing risk reduction 

measures. Additional benefits of using Bayesian networks for HRA are that different sources 

of information can be combined, and parent nodes can be dependent on each other – important 

features considering the mutual influence of performance shaping factors. There are different 

strategies to define the Bayesian networks graphical structure. Domain knowledge engineers 

usually prefer to follow a library of patterns, known as idioms. Each idiom represents a type of 

uncertain reasoning, being the four more common the cause-consequence idiom, measurement 

idiom, definitional/synthesis idiom and induction idiom (Fenton and Neil, 2012). It is also 

possible to learn Bayesian network structure from data (Groth and Mosleh, 2012, Groth et al., 

2019), although this feature is considered more useful for data-rich applications. Usually this is 

not the case for human reliability data (Mkrtchyan et al., 2016). Instead of choosing between 

Bayesian networks or fault trees to model human reliability data, one can opt to transform Fault 

Trees into Bayesian networks (Bobbio et al., 2001) or even to combine both, as demonstrated 

by previous studies that have integrated human reliability Bayesian networks into systems’ 

Fault Tree analysis (Martins and Maturana, 2013, Trucco et al., 2008, Ramos et al., 2020). 

Besides supporting the evaluation of reduction measures at the organisational level (Trucco et 

al., 2008), or to complement an existing system reliability analysis with human reliability 

elements, the Bayesian network - Fault Tree integration might provide a better acceptance of 

Bayesian networks in sectors already familiar with Fault Trees. 

 

2.2.3. Missing data in Bayesian networks’ conditional probability tables (a recurrent problem 

in HRA 

 

Missing data is a main problem for the application of Bayesian networks to model and 

quantify human reliability analysis Describing all possible combinations within variables 

comes at a cost: a huge amount of data needed. For instance, with respect to the conditional 

probability table in Table 3-1 representing the model in Figure 3-2, all states of a combination 

must sum to one, as defined by a probability axiom (Fenton and Neil, 2012, Nielsen and Jensen, 

2009). 
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Table 3-1. Conditional Probability Distribution of node 'Human Error' (HE). 

PSF1: Organisational factor TRUE FALSE 

PSF2: Technological factor TRUE FALSE TRUE FALSE 

PSF3: Person related factor TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE 

HE: Human error = FALSE 0 0.1 0.0 0 0.1 0.7 0.5 0.4 

HE: Human error = TRUE 1 0.9 0.0 1 0.9 0.3 0.5 0.6 

  

However, note Table 3-1 has a column which both states have zero probability (showed 

with bold font), because that combination of factors has never being recorded (i.e. there is no 

available data). This results into a computational (the missing combination does not comply 

with a probability axiom and preventing the use of the inference algorithms) as well as 

conceptual problem preventing the use of Bayesian networks. The conceptual problem is that, 

although this particular missing data set has been previously defined as impossible path (Fenton 

and Neil, 2012), treating it as an impossible event is equal of assuming that this combination of 

states is impossible to occur. However, there is no evidence to corroborate such hypothesis. It 

seems more reasonable to assume that the lack of data is an indication of an uncertain event, 

due to past events with incomplete information (Fenton and Neil, 2012). For this reason, it is 

assumed that missing data in HRA may be due to lack of observations rather than due to the 

impossibility of the associated event. This is tantamount to acknowledging that a combination 

of events that have not been observed in past events and collected into a database might actually 

occur. This concept is present in almost all human reliability data collection efforts: for 

simulators, debriefing does not always clarify which PSFs have triggered a human error (Kim, 

2020); for near-miss reports, events might be underreported to regulators (Preischl and 

Hellmich, 2013); for accident reports (Moura et al., 2020), even after scrutinised investigations 

(Moura et al., 2016), some factors might not be observed or reported due to investigators’ time, 

knowledge and bias constraints (Kletz, 2011). On the basis of such observations, the next 

paragraphs review how previous studies have dealt with the uncertainty caused by missing data, 

especially when using Bayesian networks. 

2.2.4. Common approaches to deal with missing data in HRA 

When observations are not available to fully define conditional probability distributions 

(CPDs), a standard approach adopted in practice is to assign equal probability for both states 

(Fenton and Neil, 2012). This is also the standard approach used by some Bayesian networks 

software (Bencomo and Blair). However, such strategy implicitly relies an extremely strong 

assumption and it might introduce significant bias in favour of a state that is actually rare. 
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Linear interpolation algorithms have been also used to fill data gaps in CPTs, by 

extracting information on the factor effects from known CPDs using anchors, i.e. positions in 

CPTs which the filling method will be based on, and extrapolate for the unknown CPDs. An 

ordinary linear interpolation procedure is then adopted to generate data searches for the 

maximum and minimum parameters (known prior probabilities) and interpolate the values in-

between (Martins and Maturana, 2013). The functional interpolation (Podofillini et al., 2014) 

and the Cain calculator (Cain, 2001) are methods to build CPTs from limited expert judgement, 

and they seem to be adaptable to work solely based on empirical data – provided that the 

database fulfils the anchors, instead of prompting them from experts. The functional 

interpolation method consists of approximating CPD anchors with functions, interpolating 

among available CPDs to obtain full set of approximating functions, and discretizing them back 

to obtain the full set of CPTs (Mkrtchyan et al., 2016, Podofillini et al., 2014). Cain calculator 

differs not only on the position of anchors, but also on further calculating interpolation factors 

for parent nodes, and missing relationships in CPDs by using interpolation factors (Mkrtchyan 

et al., 2016, Cain, 2001). The method directly exploits monotonicity, as interpolation factors to 

determine the proportion of change in the child states probabilities from parent nodes and 

missing relationships in CPTs (Mkrtchyan et al., 2016, Cain, 2001). Monotonicity might be an 

unjustified assumption as it implies that parents’ effect on children state has a constant 

direction, with monotonic and positive influence. However, contextual factors effects on human 

could be also affected by the model structure (Martins and Maturana, 2013), or by socio-

technical systems not necessarily behaving as coherent systems with multistate components 

(Morais et al., 2020). Indeed, this has been also pointed by a validation study of HRA methods 

with empirical data, which has concluded that significant improvement in the treatment of 

dependence is needed for all methods assessed (NRC, 2014). 

Expert elicitation is the most common strategy for filling gaps on data(Lin and Bier, 

2008). Using expert judgement to elicit data means asking one or more experts in a field what 

probability they would assume for a specific set of conditions. Many approaches exist in HRA 

to tackle issues related to expert opinions, e.g., bias (Mosleh et al., 1988), disagreement 

(Mkrtchyan et al., 2015) and overconfidence (Lin and Bier, 2008). Experts can contribute with 

direct probability values (i.e., direct elicitation) or via relative judgements (i.e., indirect 

elicitation), e.g., give their opinion through qualitative scales, questionnaires (Ramos et al., 

2020). There are approaches to aggregate human error probabilities estimated by multiple 

experts, and some are able to distinguish the variability of HEPs from the variability between 

the experts (Podofillini and Dang, 2013). Expert elicitation are limited to the estimation of small 
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CPTs due to humans’ inability to estimate the influence of more than three factors 

simultaneously (Evans et al., 2003) or the impracticable large number of combinations leading 

to excessive elicitation burden (Wisse et al.). 

Noisy-OR method is the most used model to populate CPTs from partial information, 

supporting both expert elicitation and empirical data mining (Mkrtchyan et al., 2016, Xiang 

and Jia, 2007). The approach assumes that parents are independent, and each parent node 

combination of binary states produces an effect on a child node. Finally, their interaction is 

expressed by a logic OR gate. For HRA these are undesired assumptions (Mkrtchyan et al., 

2016). To tackle these impediments, extensions have been proposed. The noisy-MAX model 

enabling multi-states nodes (Henrion); the recursive noisy-OR (RNOR) model allows multiple 

causes as input (Lemmer and Gossink, 2004) and inhibition when multiple causes are present 

to allow the impact of each factor (Kuter et al.). The non-impeding noisy-AND tree allow both 

reinforcement and undermining effects (Xiang and Jia, 2007). However, these Noisy-OR 

extensions generally address either dependent influences or multi-state nodes rather than both 

issues simultaneously (Mkrtchyan et al., 2016). 

A pragmatical solution consists of adding an extra state to child node with missing 

combination in its CPT. This extra state is often labelled ‘not applicable’ state: the states 

without data remain with zero probability and the ‘not applicable’ state is assigned with the 

number one (Fenton and Neil, 2012). If the new state propagates to other children nodes, all 

new combinations generated from this state have to be also assigned to ‘not applicable’ states. 

In HRA field, it has been observed that this strategy strongly assumes that the missing 

combinations are impossible to occur, although its use increases the transparency about 

uncertainties, and helps to maintain track of missing combinations in CPTs (Morais et al., 

2020). 

Artificial data implies the generation of data with known properties by an algorithm 

rather than expert opinion. The maximum likelihood estimator (MLE) identify the missing 

values as the probability that makes observed data the most likely to occur (Myung, 2003). 

MLE was used in human reliability research to test a modelling approach where performance 

shaping factors have a joint effect on human error probability (Stempfel and Dang, 2012). The 

study was not aimed at filling missing data, but to test the boundaries of Bayesian networks for 

HRA by using artificial data, e.g. testing the effect of different sample sizes. Although the 

approach seems promising to estimate missing data in an unbiased manner, there are two 

potential weaknesses to address. Firstly, the assumption underlying the randomly generated 

data is an inherent limitation of the approach (Stempfel and Dang, 2012). Secondly, while 
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interpreting an MLE-based analysis the user should not jump to conclusions if one model fits 

the data better than another. This is because achieving a superior fit might be unrelated to the 

model’s fidelity to the underlying process, but merely because the more parameters a model 

have the higher the chance of fitting all data – sometimes performing even better than the real 

models that generated the data (Myung, 2003). 

The approach of deriving data from underlying method relationships is based on the 

principle that the model structure is what ultimately defines the conditional probability 

distributions. If the empirical database does not provide information for a certain combination, 

the assessors can go back to the qualitative analysis and merge some factors until the full CPT 

can be assessed. This assumption is based on causal information that can be learned from 

theories underlying HRA methods, patterns in the data or expert judgement (Groth and Mosleh, 

2012, Groth et al., 2019). The approach is also known as synthesis idiom (determining synthetic 

nodes from parents by using a combination rule) (Fenton and Neil, 2012). Merging data from 

factors communication failure and missing information in CREAM methodology, as they both 

relate to communication, is a good example of synthesis idiom (Hollnagel, 1998). In a marine 

engineering application, CREAM (Hollnagel, 1998) has been synthesised by incorporating 

fuzzy evidential reasoning and Bayesian inference logic to model dependency among common 

performance conditions (Yang et al., 2013). In (Groth and Mosleh, 2012), a structure 

simplification has been conducted by identifying error contexts, after a preliminary analysis of 

data using correlation and factor analysis. Error contexts can be also obtained with self-

organising maps to analyse patterns from major accident reports (Moura et al., 2017a). Deriving 

data from underlying method relationships reaffirms the importance of the qualitative 

assessment as changing the structure also changes the amount of information needed (NRC, 

2014). 

Although data generated in simulators has been traditionally used to validate 

probabilities obtained by experts (Kirwan, 1997a, NRC, 2014), recent research investigates its 

use to fill missing data. In (Groth and Mosleh, 2012), recorded events from multiple simulator 

data collection efforts have been merged by a structured set of performance shaping factors 

guided by a theoretical model that aggregates their information from over a dozen HRA 

methods. In (Groth et al., 2014), a Bayesian updating process was conducted on HEPs generated 

by simulator data – the prior distribution being based on an HRA method, and the likelihood 

function specified to match simulator data. Yet, simulators have their limitations. A summary 

of important changes in simulators code to account for the human performance uncertainty has 

been listed after reviewing HRA methods, options of probabilistic models, and interface 
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(Sundaramurthi and Smidts, 2013). A summary of lessons learned from challenges in data 

collection from simulators has been suggested by (Kim, 2020), which considerations might 

assist on the use of simulator as a unique data source to HRA models or to complete missing 

information. 

All approaches described here make assumptions, some more than others. The issue 

underlying the adoption of unjustified assumptions is that they can lead to significant deviations 

from reality, resulting in risk underestimation or wrong resource allocation. Furthermore, no 

characterization of uncertainty is provided by the presented approaches making impossible for 

the decision-makers to associate output uncertainties with missing data. 

 

3. Proposed methodology 
 

3.1 Credal networks  

This paper proposes a methodology of replacing missing combinations in CPTs with 

probability intervals. This requires a shift from Bayesian network to credal networks. There are 

a few examples of applications of credal nets in literature, e.g. elicitation of experts with 

different opinions in military field (Antonucci et al., 2009), risk of fire in residential buildings 

(Estrada-Lugo et al., 2019a) and railway (Estrada-Lugo et al., 2019b). To the best of the authors 

knowledge,  credal network has not been previously adopted in the context of HRA with the 

exception of a preliminary research on a conference proceedings by some of the authors of this 

work (Morais et al., 2019a).  

Credal networks are a generalisation of Bayesian networks sharing an identical 

graphical structure but being characterised by different probability values Figure 3-3. Credal 

networks rely on imprecise probability theory to deal with the lack of data and to avoid the use 

of expert judgement or unjustified assumptions. Thus, a credal network is a directed acyclic 

graph with random variables described in terms of sets of probabilities (credal sets) instead of 

crisp values as in a Bayesian network (Estrada-Lugo et al., 2020). This results in higher 

flexibility, allowing probabilities to be expressed also in the form of inequalities (Cozman, 

2000). Figure 3-3 provides a graphical representation of a credal network, where each Bayesian 

network represents a local combination of the network, i.e. a set of probability values complying 

with theoretical constraints. 
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Figure 3-3. Credal network - a set of Bayesian networks characterised by different probability values. 

 

A credal set, K(Xi), consists of a group with a finite number of probability distributions 

P(Xi). More rigorously, according to the theory of imprecise probability, the credal set is a 

closed and convex set of probability mass functions (Walley, 1991). Likewise, the conditional 

credal set, K(xi|πi), represents the set of conditional probability distributions P(xi|πi) where 

similarly to the case of Bayesian network 𝜋𝑖 represent the status of all the parents’ nodes of the 

variable 𝑋𝑖. When defining the probability of each state P(Xi = xi) of a variable Xi, the credal 

set can be expressed as an interval probability with the bounds defined by the extreme of the 

set of probability:  𝑃(𝑋𝑖 = 𝑥𝑖) = min
𝐾(𝑋𝑖=𝑥𝑖)

(𝑃(𝑋𝑖 = 𝑥𝑖)) and a upper bound  𝑃(𝑋𝑖 =

𝑥𝑖)= max
𝐾(𝑋𝑖=𝑥𝑖)

(𝑃(𝑋𝑖 = 𝑥𝑖)). 

There are several sets of probability measures that can be used to represent a credal 

network depending on the notion of independence for imprecise probability. The present study 

uses the strong extension of a credal network that allows having extreme points represented by 

standard Bayesian networks (Cozman, 2000). In other words, the smallest set of local Bayesian 

networks that contain combinations of extreme points (i.e., the convex hull, CH) corresponds 

to the definition of a credal network: 

 
Equation 3-5 

𝐾(𝑋1 = 𝑥1, … , 𝑋𝑛 = 𝑥𝑛) ∶= 𝐶𝐻 {𝑃(𝑋𝑖)|𝑃(𝑋1 = 𝑥1, … , 𝑋𝑛 = 𝑥𝑛) = ∏ 𝑃(𝑋𝑖 = 𝑥𝑖|𝜋𝑖)

𝑛

𝑖=1

} 

 

 

When working with credal networks, the posterior probabilities are expressed in the 

form of intervals. The lower and upper bounds must be real numbers and they must be 

complementary, as shown in the equations below: 
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Equation 3-6 

𝑃(𝑋𝑖 = 𝑥𝑖) + ∑ 𝑃

𝑗≠𝑖

(𝑋𝑖 = 𝑥𝑗) ≤ 1 

 

and Equation 3-7 

𝑃(𝑋𝑖 = 𝑥𝑖) + ∑ 𝑃

𝑗≠𝑖

(𝑋𝑖 = 𝑥𝑗) ≥ 1    

where the summation in Equation 3-5 and Equation 3-6 is over all the states of the variable x 

different than x_j.   

3.2. Inference methods for credal networks 

A credal network, like a Bayesian network, can be computed for predictive as well as 

diagnostic purposes when imprecise data sets are present. To compute the inference of strong 

extension of credal networks, the lower and upper bounds of an event of interest referred to a 

query node (xq)  are given as the marginalised probability (Estrada-Lugo et al., 2019b): 

 
Equation 3-8 

 

𝑃(𝑋𝑞 = 𝑥𝑞) = min
𝑃(𝑥𝑞)∈𝐾(𝑥)

𝑃(𝑋𝑞 = 𝑥𝑞) = min
𝑃(𝑥𝑞)∈𝐾(𝑥)

∑ ∏ 𝑃

𝑛

𝑖=1

(𝑋𝑖 = 𝑥𝑖|𝜋𝑖)

𝑥1,…,xn\𝑥𝑞

 

 
Equation 3-9 

𝑃(𝑋𝑞 = 𝑥𝑞) = max
𝑃(𝑥𝑞)∈𝐾(𝑥)

𝑃(𝑋𝑞 = 𝑥𝑞) = max
𝑃(𝑥𝑞)∈𝐾(𝑥)

∑ ∏ 𝑃

𝑛

𝑖=1

(𝑋𝑖 = 𝑥𝑖|𝜋𝑖)

𝑥1,…,xn\𝑥𝑞

 

 

 

The model outputs are obtained by computing the lower and upper bounds of the 

posterior probability of the queried variable P(xq), when we insert the evidence (xe): 

 

Equation 3-10 

𝑃(𝑋𝑞 = 𝑥𝑞|𝑋𝑒 = 𝑥𝑒) =  min
𝑃(𝑥𝑞)∈𝐾(𝑥)

∑ ∏ 𝑃𝑛
𝑖=1 (𝑋𝑖 = 𝑥𝑖|𝜋𝑖)𝑥1,…,𝑥𝑛,𝑥𝑞

∑ ∏ 𝑃𝑛
𝑖=1 (𝑋𝑖 = 𝑥𝑖|𝜋𝑖)𝑥1,…,𝑥𝑛\𝑥𝑞

 

 
 
 
Equation 3-11 

P(Xq = xq|Xe = xe) =  max
P(xq)∈K(x)

∑ ∏ Pn
i=1 (Xi = xi|πi)x1,…,xn,xq

∑ ∏ Pn
i=1 (Xi = xi|πi)x1,…,xn\xq
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In the above equations, the summation operator in the nominator acts over all the 

variables, including the queried variable in state xq (x1,…, xn, xq), while in the denominator, the 

summation is done only on the variables that are different from the queried variable (x1,…, 

xn\xq).  

In credal networks the computation of the posterior probabilities of the queried nodes 

requires dedicated inference methods and often the approximate approaches are inevitable if 

using continuous variables (Estrada-Lugo et al., 2019b, Tolo et al., 2018). (Cozman, 2000)The 

approximation algorithms used in credal networks can be divided in inner approximation (e.g. 

linear programming, Hill-climbing (Cano et al., 2007)) and outer approximation (e.g., branch 

and bound (Cano et al., 2007), pseudo-network (Estrada-Lugo et al., 2019b)). The inner and the 

outer approximations provide probability bounds which enclose the exact probability interval 

(see Figure 3-4). 

 

Figure 3-4. Inference methods for credal networks 

An approximate inference algorithm combined with an exact method is used here. It 

adopts linear programming as an optimization method to find the extreme points of the credal 

set and then the variable elimination method is used to obtain the posterior of each local 

combination. The combination providing the minimum value is considered as an approximation 

to the lower bound. The upper bound is obtained from the combination yielding the maximum 

value. More details on mathematical background and inference methods applied to credal 

networks can be found in (Cozman, 2000, Estrada-Lugo et al., 2019b). Freely available 

packages that implement algorithms to compute credal networks can be found in (Cozman, 

2000, Tolo et al., 2018, Antonucci et al.). 

3.3. Defining the intervals to replace missing data combinations 

Credal networks are used for handling imprecise and incomplete beliefs of standard 

Bayesian models where the missing CPT combinations are replaced by intervals comprising 

the lowest and highest possible probabilities, i.e., zero and one [0,1]. Therefore following the 

examplein Error! Reference source not found. the replace missing CPT combinations 
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become: P(HE=T|PSF1=T,PSF2=F,PSF3=T)=[0,1] and  

P(HE=F|PSF1=T,PSF2=F,PSF3=T)=[0,1].  

Due to strong extension properties, it was possible to replace missing CPT combinations 

(e.as in Table 6) with probability intervals comprising the lowest and highest possible 

probabilities, i.e. zero and one [0,1].  It is possible to use intervals with upper bounds less than 

1 (e.g., [0, 0.5]), and the impact is a reduction on the widths of the posterior probabilities’ 

intervals. However, as both states have to sum up to one, assuming 0.5 of one state is assuming 

0.5 for the complementary state – and that would mean observations on both conditions. As the 

missing combinations in MATA-D mean the total lack of observations for both states, the 

present methodology considers that the probability interval [0,1] would be the option that best 

indicate the total lack of data: the number zero expresses the minimum and the number one the 

maximum probability of occurrence of the associated event.  

Credal networks can model non-monotonic behaviour (thus more realistic human 

factors effects on human performance might be captured) and allows more than two states per 

node (enabling its application to HRA methods describing many states of human performance). 

Replacing missing combinations in CPTs with [0,1] intervals is a straightforward process if the 

table contains only one missing combination. However, in CPTs with more than two missing 

combinations (e.g.  

Table 3-6 describes the CPT of subtask 3.3.A, where the assessors defined incorrect 

prediction as the potential cognition failure for the task, in a context where the main PSFs were 

cognitive bias, management problem, insufficient knowledge, and adverse ambient conditions. 

Table 3-6 shows the frequency this same context occurred in accidents recorded in MATA-D. 

Differently from CPTs shown in Table 3-4 and Table 3-5, some combinations of states of these 

variables do not have any reported event within all 238 accidents in the dataset (e.g. 

combinations #8, #10, #12 , #14 and #16). Therefore, as the lack of possible combinations 

events in MATA-D is interpreted as missing data rather than impossible events, the incomplete 

combinations were replaced by zero-to-one intervals [0,1]. As this node contains intervals, it 

was defined as a credal node. For this model, the majority of children nodes with more than 

four parent nodes had to be defined as credal nodes. 

Table 3-6), the process is cumbersome, since the introduction of probability intervals in 

a CPT implies the review of all other probability values in order to verify the strong extension 

condition expressed in Equation 3-8 and Equation 3-9 (i.e. the summation of the lower/upper 

bound of one of variable state and the upper/lower bounds of the other states must equal to one). 



62 
 

The process of replacing missing data with intervals has been automatized and available in the 

developed tools. 

3.3. Overview of how the proposed methodology works 
 

The methodology is composed by four main modules and summarised in Figure 3-5. 

Part A converts MATA-D to prior probabilities in conditional probability tables (detailed 

procedure is described in a previous study (Morais et al., 2020), but also in the case study 

section 4.3). Part B adds intervals [0,1] to combinations with no data in the conditional 

probability tables, transforming the nodes into credal nodes. The theory is detailed in section 

3.3, and the algorithm is named switch to upper extreme in OpenCossan (Patelli et al., 2018). 

Part C performs the inference of the credal network with both discrete and credal nodes (theory 

detailed in section 3.2). Part D uses variable elimination to obtain the outputs of the model, 

where the posterior probabilities are expressed as intervals for credal nodes. 
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Figure 3-5. Flowchart of methodology highlighting how the mechanisms of credal network algorithm 

works 
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3.5. Decision making and criteria selection with imprecise results  

In the case all the CPT combinations of a specific node are unknown, [0,1] intervals 

represent the complete ignorance about that specific event. As a consequence, the results as also 

become intervals, and wider intervals are often associated to more data missing. Therefore, 

credal networks with imprecise probability support the decision-makers to take more informed 

decisions by presenting the results with their associate accuracy (Patelli et al.). In addition, the 

diagnostic analysis provides the sensitivity analysis for HRA models, helping to allocate 

resources to the most influencing factors of a specific human error. Despite previous attempts 

to rank the variables in presence of imprecision (see e.g. (Antonucci et al., Troffaes, 2007)), 

challenges remain and the comparison of two of more variables affected by imprecision is not 

straightforward. 

Let consider the simple example shown in Figure 3-2. If decision-makers want to reduce 

P(HE=T), then they might ask if P(PSF1=T) has to be reduced or P(PSF2=T). This is different 

than reducing the imprecision of the conditional probability of the event, e.g. 

P(HE=T|PSF1=T). In human reliability analysis, a decision-maker can interpret the lower 

bound of the HE probability as the best-case scenario and the upper bound as the worst-case 

scenario. Following this reasoning the upper bound will contain information about the highest 

possible probability of error under the conditions defined in the model. Criteria might vary 

between decision-makers, i.e. risk-prone versus risk averse. Thus, a general strategy is 

suggested: 

o [0,1] interval for the posterior probability cannot support decisions, thus more data should 

be collected, or a penalty should be applied; 

o Wider intervals suggest insufficient of data to support the importance of a factor (and more 

evidence is needed to answer the question with confidence); 

o Small intervals suggest that there is enough evidence to support a statement; 

o Collecting more data is not an assurance that wide intervals would decrease, as it might 

represent state combinations that are indeed rare to happen – for these cases, it would be 

interesting to measure the confidence in the analysis before taking decisions, by computing 

the reliability with a tool such as confidence-boxes (Ferson et al., 2014). 

o Different factors might have overlapping intervals and the most impacting factor might also 

be the most uncertain one. The interval dominance criteria (Troffaes, 2007) is used in this 

study for selecting the most important factor. Interval dominance criteria is a method for 

classification accuracy usually taken as heuristic, where an interval is called dominant if 
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might have a higher probability than a probability of the variable valued on another node 

(Troffaes, 2007). 

The suggested criteria are summarised in the workflow shown in Figure 3-6.  

. To explain the identified criteria, the pairwise comparison of hypothetical factors 

shown in Figure 3-7 is performed. The factors represent conditional probabilities, i.e. 

probability that a PSF is true knowing that a HE has occurred. In the first case the interval for 

the factor A is contained in the interval of the factor B, thus B is selected as the most impacting 

factor due to interval dominance as B has a highest upper bound. In the second case, the two 

factors C and D have the same lower bounds, but D has a larger interval. Therefore, it seems 

logic to select D because it might be possible that the factor D has a larger influence but 

certainly has at least the same influence of the factor C. In the third case, the factor E has the 

lower bound larger than the upper bound of the factor F. Hence, we have the guarantee that the 

factor E is more important than F. The fourth case G has the lowest lower bound, but H has the 

highest upper bound. Again, we select H exactly based on its highest upper bound probability 

– as in this case, both intervals have the same width. The fifth case shows the two factors I and 

J with the same upper bounds but with J having a higher lower bound. Therefore, it is logic to 

select J. 
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Figure 3-6. Suggested criteria for decision-making in sensitivity analysis of HRA 

A more rigorous criteria could be developed if there are dependencies between parent 

nodes as for PSF2 and PSF3 in Figure 3-2. For instance, reducing P(PSF2=T) might also reduce 

P(PSF3=T). Therefore, a dependency analysis is required (e.g. including evidence in node 

PSF2 and PSF3 to calculate P(HE) and then including evidence in P(PSF3) and P(HE) to 

calculate P(PSF2). For instance, the imprecision of PSF3 could derive entirely from the 

imprecision of PSF2.  
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A = [0.1, 0.15] 

B = [0.05, 0.25] 

 

C = [0.2, 0.25] 

D = [0.2, 0.35] 

 

E = [0.5, 0.6] 

F = [0.1, 0.4] 

 

G = [0.1, 0.3] 

H = [0.5, 0.7] 

 

I = [0.1, 0.7] 

J = [0.5, 0.7] 

 

 

 

Figure 3-7. Pairwise comparison of hypothetical factors – highlighted by dashed lines are the results that could 

depend on the decision-making style; by solid lines: results where there is no doubt. 

Results highlighted by dashed lines in Figure 3-7 are those that could have easily led to 

a different interpretation if the suggested criteria were not strictly followed, as they might 

depend on the decision-making style (many people would rather prefer allocating resources in 

more certain probabilities). Results highlighted by solid lines are those where there is no doubt 

(both lower and upper bound are higher). 

3.6. Software 

The credal networks methodology and the associated inference and diagnostic 

algorithms are implemented in the OpenCossan Bayesian network toolbox (Tolo et al., 2018), 

part of the OpenCossan software (Patelli et al., 2018, Patelli et al., 2016). OpenCossan is an 

open-source and object-oriented software for uncertainty quantification purposes based on 

Matlab. 
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The Bayesian network toolbox is used for reduction, inference computation and 

sensitivity analysis of credal networks (Patelli et al., 2016, Tolo et al., 2018). The object-

oriented code of the toolbox allows flexibility. It automatically selects the required algorithms 

according to the type of node defined in the network. For instance, if the CPTs are complete 

and include only crisp probability values, discrete nodes are used. Otherwise, if the CPTs have 

missing combinations, credal nodes are used. 

The toolbox allows to automatically substitute missing data with intervals and 

calculating the corresponding bounds. 

 

4. Case study 

This case study aims to quantify the human reliability of operator during the storage 

tank depressurisation on static offshore oil & gas installations known as FPSO (floating 

production storage and offloading system) and FSO (floating and offloading system – also 

known as FSUs, floating storage units). The operation is necessary for safety reasons, to avoid 

explosion of storage tanks due to overpressure (Vinnem, 2001). However, under certain wind 

conditions the vapours released might reach a source of ignition (e.g. other equipment, 

operations and maintenance works) with the potential to cause fire, explosion or financial loss 

due to emergency production shutdown (de Vos et al., 2006, Alan Keith et al., 2012). The 

operators are the main barriers to prevent an incident event, with little or no support from 

automatic systems/technology. The human reliability analysis provides a risk-informed support 

tool for engineers/project managers to evaluate the eventual need for design changes. 

 
4.1. Description of the case study: FPSO’s and FSO’s storage tank venting  

FPSOs are offshore installations that process oil & gas and store oil. Their system has 

production facilities on deck and storage tanks in the hull (Figure 3-8). In a generic design, a 

FPSO receives crude oil from an undersea reservoir via flexible risers. The incoming flow is 

then separated into oil, gas, and water (and sometimes salt) by process equipment on deck. The 

separated oil is stored in the vessel’s tanks for periodic offloading to a shuttle tanker (Figure 

3-10) using a floating hose, or to an FSO via fixed pipelines (Shimamura, 2002). Thus, FSOs 

do not have the production and process facilities (Figure 3-9). 
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Figure 3-8. FPSO 9 

 

 Figure 3-9. FSO 2 

 

Figure 3-10. Shuttle tanker 10 

 

During FPSO/FSO operations, inert gas (nitrogen) is usually injected in the storage 

tanks, to blanket their ullage spaces and avoid an explosive mixture of oxygen and hydrocarbon 

vapours. In a safe design concept, when tanks are over-pressured their vents are opened 

(automatically or manually) to allow inert gas to escape (Figure 3.11) and avoid overpressure 

(Vinnem, 2001). This depressurisation of oil cargo tanks is known as cargo venting operation 

(HSE, 2010). During the operation, a small amount of hydrocarbons vapours, associated with 

the inert gas, escapes. This adds some risk of flammable vapours meeting a spark at the deck, 

resulting in a fire and/or explosion (Alan Keith et al., 2012, HSE, 2010). 

 

Figure 3-11. Scheme of a tank with its vent outlet and a photo of a vent outlet on a FPSO 11 

FPSOs/FSOs and shuttle tankers have similar storage tanks venting systems, but the risk 

is higher for FPSOs/FSOs because they do not navigate during operation, as they are moored. 

Therefore, the vapours are not easily dispersed by wind as in shuttle tankers (HSE, 2010). In 

addition, FPSOs/FSOs have their deck space more packed with equipment than tankers (as can 

be noted by comparing Figure 3-8 to Figure 3-10), impeding flammable vapour to dissipate. 

The operational risk increases in case of low wind speed prevents vapours to dissipate, and in 

case of wind blowing vapor towards the process plant increases the chance of encountering 

                                                                 
9 FPSO and FSO figure source: https://www.modec.com/fps/fpso_fso/lineup/index.html  
10 Shuttle tanker figure source: https://www.hellenicshippingnews.com/oil-tanker-demand-solid-but-trade-

tensions-could-change-that/ 
11 Cargo vent outlet figure and scheme source: 

http://www.anp.gov.br/images/EXPLORACAO_E_PRODUCAO_DE_OLEO_E_GAS/Seguranca_Operacional/

Relat_incidentes/Sao_Mateus/anp-final-report-fpso-cdsm-accident.pdf 

https://www.modec.com/fps/fpso_fso/lineup/index.html
https://www.hellenicshippingnews.com/oil-tanker-demand-solid-but-trade-tensions-could-change-that/
https://www.hellenicshippingnews.com/oil-tanker-demand-solid-but-trade-tensions-could-change-that/
http://www.anp.gov.br/images/EXPLORACAO_E_PRODUCAO_DE_OLEO_E_GAS/Seguranca_Operacional/Relat_incidentes/Sao_Mateus/anp-final-report-fpso-cdsm-accident.pdf
http://www.anp.gov.br/images/EXPLORACAO_E_PRODUCAO_DE_OLEO_E_GAS/Seguranca_Operacional/Relat_incidentes/Sao_Mateus/anp-final-report-fpso-cdsm-accident.pdf
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ignition sources – generated by maintenance tasks, nearby support vessels and helicopters, 

droplets falling from flare, and equipment. Even explosion proof equipment (i.e. Ex equipment) 

can be a source of hazard if their electrical installations are not correctly maintained (Rangel 

and Sanguedo, 2018). 

Accidents related to venting operation have the potentiality to create significant 

financial losses due to the loss or delay of production (de Vos et al., 2006). For instance, in 

Brazil, whilst duty holders are increasing their production of lighter crude oil (ANP, 2020b), 

they have been challenged with increasing number of cases of emergency shutdowns (ESD) 

triggered by gas detectors been activated by flammable vapours originated during cargo venting 

operation (ANP, 2020a). Past related incidents have been investigated on relation to the vapour 

content (Alan Keith et al., 2012) and possible sources of ignition (Pursel et al., 2016a, Pursel et 

al., 2016b), triggering the UK safety regulator to require duty holders to take appropriate 

measures to prevent fire and explosion (HSE, 2010). 

After the risk assessment, it comes the decision on what is the more appropriate 

safeguard to implement: a design modification of the system or operational measures performed 

by workers (de Vos et al., 2006, HSE, 2010). Even in installations where this operation is 

partially automatized, human decisions are still part of the process as imposed by weather 

conditions and concomitant operations with other nearby installations. The human reliability 

analysis proposed in this work attempts to support this decision. The risk evaluated is the chance 

of a human error triggered by different performance shaping factors of initiating an incident 

event. 

 

4.2. Qualitative analysis: Model qualitative part: defining the structure  

The qualitative part of the study defines the model structure. It was based on the 

operation’s hierarchical task analysis: a structured way of condensing large amount of written 

information into a sequence of critical actions, screening potential human errors modes, 

performance shaping factors, and flagging tasks performed by different teams. The definition 

and criticality of individual tasks were based on information from: a safety bulletin from the 

UK health and safety regulator (HSE, 2010), related incidents (Alan Keith et al., 2012, Pursel 

et al., 2016a, Pursel et al., 2016b), different design and operational measures (de Vos et al., 

2006) and written operational procedures and risk analysis (including computational fluid 

dynamics model) from two different duty holders operating in Brazil (not referenced here for 
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confidentiality reasons). All the evaluated documents had not yet considered human reliability 

analysis. 

Figure 3-12 presents the identified hierarchical task analysis where ‘A’ refers to tasks 

performed by team A cargo/marine team, ‘B’ to radio-operator, ‘C’ to production team, and ‘D’ 

to maintenance team. Starting at the top, the first box specifies the overall task, i.e. cargo 

venting operation. The next layer of boxes describes the complete tasks in eight steps. Some 

steps consist of straightforward tasks such as taking a reading from a control panel; other steps 

are complex and described in more detail in the next layer of boxes. Each layer provides a 

complete description of the task, but each level provides more detail in a hierarchy way. After 

critical tasks were selected, their potential human errors and respective performance shaping 

factors were identified using the authors’ expertise and knowledge. The antecedent-consequent 

model (i.e. a CREAM human reliability methodology) was used as a supporting tool as it 

provides the correlation between human errors and performance shaping factors. Appendix B 

provides a detailed description of tasks, their potential human errors and PSFs and the full 

correlation table adapted from (Hollnagel, 1998). Note that a more realistic model would have 

required the use of interviews and walking through the task at site with workers involved in the 

operation. 

 
Figure 3-12. Diagram of critical tasks analysis (using methodology of hierarchical task analysis) 

After defining the nodes with critical task analysis, the links between nodes were 

defined (the model structure). Instead of having a model based merely on the chronological task 

sequence, the cause-consequence idiom (Fenton and Neil, 2012) was used, which resembles 

Cargo tank 
venting

1. Verify 
pressure in the 
cargo tanks (A)

2. Check if  
conditions are 

favourable (A,B)

2.1 Check wind 
direction and 

speed (A)

2.2. Check 
lightning in 
vicinity (A)

2.3 Check boat 
operation (A)

2.4 Check boat 
and helicopter 

(A, B) 

3. Make 
decision to 

suspend or carry 
on operation (A)

4. Inform  team 
B and C about 
the operation 
and affected 

area (A)

5. Suspend 
works that migh 
generate spark 

near vent or 
affected areas 

(C,E)

5.1.  Request 
PTW to team C 

(A)

5.2. Receive 
Permission to 

Work (A,C)

5.2.1 Conduct a 
PTW meeting 

(A,C)

5.2.2. Issue the 
PTW to start the 

cargo venting, 
after all Hot 

PTWs and other 
relevant jobs are 

stopped (C)

5.3. Announce 
operation on PA 
to clear off area 

(B)

6.Start the 
Cargo tank 
venting (A)

6.1 Open the 
vent riser valve 

in the range 
specified in 

procedure (A)

7. Remain 
standby during 

operation 
(A,B,C)

7.1. Remain 
standby in cargo 

CCR until 
completion of 

venting (A). 

7.1.1. Stay on 
watch by the 

radio (A)

7.1.2.  
Continuously 
monitor wind 

speed and 
direction (A)

7.2. Inform 
team A if any 
level of gas is 
detected on 

F&G detectors 
(C) 

7.2.1 Monitor 
the F&G panel 

during the 
ventilation. Stay 
on watch by the 

radio (C)

7.2.2 Stay on 
watch by the 

radio (C)

7.3 Inform team 
A about any 

incoming boats 
and helicopter 

(B)

8. Close vent 
valve when the 

pressure in 
tanks drop 
below the 
required 

pressure (A)

8.1. Inform 
teams B and C 
that venting 

operation has 
finished and the 

vent valve is 
fully closed. (A) 
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the logic of a bow-tie diagram. Using this idiom, each node receives a function in the model: 

risk or consequence event, risk trigger, risk control, or consequence mitigation. The task of 

actually opening the cargo tank valve (or failing to close it if the conditions change) was 

selected as the risk event node. The tasks and PSFs that would trigger the risk event are the 

trigger nodes. The tasks and PSFs that would prevent human error in the risk event or prevent 

the gas spreading to undesired directions were defined as the control nodes (regarding the task 

analysis sequence, the tasks that would finish just before the valve is opened). The consequence 

node is not a task nor a PSF, but the representation of possible outcomes in case the risk event 

actually happens, such as emergency shutdown or fire. The mitigation nodes are tasks and PSFs 

that would help to prevent or mitigate the consequence (e.g. tasks that would prevent spark, and 

tasks or systems conditions that have to be working concomitantly with the venting, from the 

moment the valve is opened until it is closed). The resulting model structure (model #1) is 

presented in  Figure 3-13 where discrete nodes are represented by rectangles (child nodes in 

green, root nodes in blue), and credal nodes by grey ellipses.  

 

Figure 3-13. Proposed human reliability model structure for the tank venting operation (model #1) 

An alternative model #2 has been created and shown in Figure 3-14. It differs from 

model #1 in the classification given for subtasks of tasks 3, 6 and 7, and consequently their 

PSFs. This is because each node of model #1 corresponds to a task in the hierarchical task 
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analysis, while in model #2 some nodes have been merged by using underlying CREAM 

method relationships.  

 

Figure 3-14. Model #2, some nodes were merged by using underlying CREAM method relationships 

 

The decision to create a second model has been made to compare the impact of the 

structure simplification in the quantification results, and to measure the impact of a potential 

limitation of the database used, which did not account for recurrent error modes in the same 

event. In model #1 there are some combinations of parents and children nodes with the same 

error mode classification – which results in many missing combinations in the quantification 

phase. In contrast, due to the merged nodes, model #2 does not contain children nodes with the 

same classification as their parents (e.g. if child and parent nodes had the same human error, 

the parent was replaced by the next performance shaping factor in the structure, provided that 

the logic of the HRA method was maintained). Although model #2 resulted in less uncertain 

model (due to the less number of missing combinations), the simplification is not required for 

the use of the methodology proposed – thus model #2 and its results are found on Appendix C, 

while a brief comparison of both models are presented in results session. 

Table 3-2 presents a summarised description of nodes and links of model #1, while 

model #2 description is presented at Table 3-3. 

In Model #2, the model simplification strategy of synthetizing or collapsing nodes by 

applying ‘underlying method relationships’ has been used to avoid the same human error mode 

in consecutive nodes (as a strategy to minimise incomplete paths in the conditional probability 

tables).  

The performance shaping factors of CREAM classification scheme, and their links to 

different tasks reflect the overarching influence of organisational and technological factors on 

performance of different teams (e.g. the root node inadequate procedure is the parent of six 
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children nodes in model #1: task 3.A, task 4.A, subtask 6.3B, inadequate plan of team C in task 

6, subtask 7.1.C, and faulty diagnosis of team B in task 7). Finally, cognitive functions have 

been modelled separately if they were underlying tasks performed by different teams (e.g. in 

model #1, faulty diagnosis of team A in task 6 and faulty diagnosis of team B task 7 have been 

kept separated in two different nodes). 

 

Table 3-2. Nodes’ details in model #1  

 Trigger nodes 

Node (task 

number and their 

classification in 

CREAM 

taxonomy) 

Task 

description 

Team 

performing 

the task 

Parent nodes (subtasks 

or PSFs, and their 

classification in CREAM 

taxonomy) 

States Node type Data 

source  

PSF 1 (Design 

failure, an 

organisational 

factor) 

 

Tank vent 

outlet 

incorrectly 

designed and 

in unsafe 

location. 

Not 

applicable 

(in 

operational 

phase) 

None two 

(true/ 

false) 

 

Discrete MATA-D  

(Moura et 

al., 2020, 

Moura et 

al., 2016) 

Task 2A 

(Observation 

missed, cognitive 

function failure) 

Verify 

pressure in 

cargo tanks 

 

Cargo team 

(A) 

 

PSFs: maintenance failure, 

incomplete information, 

inadequate quality control, 

insufficient knowledge. 

two 

(true/ 

false) 

 

Credal MATA-D 

 Control nodes 

Task 3A 

(Inadequate plan, a 

cognitive function 

failure)) 

 

Decide 

between 

suspending or 

continuing 

operation  

 

Cargo team 

(A) 

 

Subtask 3.1.A; subtask 

3.2.A; subtask 3.3.A. 

PSFs: inadequate 

procedure; inadequate task 

allocation; insufficient 

knowledge 

two 

(true/ 

false) 

 

 

Credal MATA-D 

Subtask 3.1A 

(Observation 

missed) 

 

Note (1) 

Check wind 

speed and 

direction  

 

Cargo team 

(A) 

 

PSFs: incomplete 

information; inadequate 

task allocation; 

insufficient skills 

 

two 

(true/ 

false) 

 

Discrete MATA-D 

 

Subtask 3.2.A 

(Observation 

missed) 

 

Note (1) 

Check boats 

and helicopter   

 

Cargo team 

(A) 

 

PSFs: inadequate task 

allocation, insufficient 

skills, missing 

information, adverse 

ambient conditions 

two 

(true/ 

false) 

 

Credal MATA-D 

Subtask 3.3.A 

(Incorrect 

prediction, a 

cognitive function 

failure) 

 

Check 

lightning  

 

Cargo team 

(A) 

 

PSFs: adverse ambient 

conditions, cognitive bias, 

insufficient knowledge, 

management problem  

 

two 

(true/ 

false) 

 

Credal MATA-D 
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Task 4A (Action in 

wrong place,  also 

known as action 

out of sequence, 

execution error) 

 

Inform other 

teams of 

upcoming 

operation  

 

Cargo team 

(A) 

 

PSFs: inadequate 

procedure, inadequate 

quality control, 

insufficient knowledge, 

missing information, 

faulty diagnosis 

 

two 

(true/ 

false) 

 

Credal MATA-D 

 Risk event node 

Task 5A 

(Execution of 

wrong type 

performed, 

execution error, 

e.g. action 

performed too fast, 

too slow or in 

wrong direction 

(Hollnagel, 1998)) 

 

Start tank 

venting by 

opening a 

valve (or 

failing to stop 

the venting 

operation by 

closing a 

valve) 

Cargo team 

(A) 

 

PSF 1 (design failure); 

task 2A; task 3A, task 4A, 

PSF equipment failure 

two 

(true/ 

false) 

 

Credal MATA-D 

 Mitigation nodes 

Task 6ABCD 

(Action in wrong 

place) 

Suspend 

operations 

that generate 

spark  

 

Cargo team 

(A), radio-

operator (B), 

production 

team (C), 

maintenance 

team (D) 

Subtask 6.1A, subtask 

6.2.C, subtask 6.3.B, 

cognitive bias, missing 

information 

 

two 

(true/ 

false) 

 

Credal MATA-D 

Subtask 6.1.A 

(Action in wrong 

place) 

 

Note (2) 

Request 

permission to 

work (PTW) 

to suspend 

operations 

that generate 

spark 

 

Cargo team 

(A) 

 

Faulty diagnosis of team 

A 

 

Parent nodes of faulty 

diagnosis of team A: PSFs 

inadequate task allocation, 

communication failure, 

insufficient knowledge 

two 

(true/ 

false) 

 

Discrete MATA-D 

 

Subtask 6.2.C 

(Action in wrong 

place) 

 

Note (2) 

Analyse 

affected area 

and issue 

permission to 

work (PTW)  

 

Production 

team (C) 

 

Subtask 6.1.A, inadequate 

plan of team C 

 

Parent nodes of 

inadequate plan of team 

C: faulty diagnosis of 

team A, inadequate task 

allocation, insufficient 

knowledge, inadequate 

quality control, inadequate 

procedure  

two 

(true/ 

false) 

 

Discrete MATA-D 

Subtask 6.3.B 

(Action in wrong 

place) 

 

Note (2)  

Announce 

tank venting 

will start on 

public address 

system (PA, 

i.e. speakers)  

Radio-

operator 

(team B) 

 

PSFs: distraction (of team 

B), maintenance failure, 

inadequate procedure 

 

two 

(true/ 

false) 

 

Discrete MATA-D 
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Parent node of distraction 

of team B: communication 

failure 

Task 7A (Action 

performed at wrong 

time (execution 

error) 

 

Remain 

standby in 

marine control 

room until 

venting 

completion  

Cargo team 

(A) 

 

Subtask 7.2.C, subtask 

7.3.B, PSFs: priority error, 

distraction, 

communication failure) 

two 

(true/ 

false) 

 

Credal MATA-D 

Subtask 7.1.C 

(Observation 

missed) 

 

Monitor level 

of gas 

detection  

 

Production 

team (C) 

 

PSFs: cognitive bias, 

inadequate procedure, 

inadequate quality control, 

inadequate task allocation, 

insufficient knowledge 

two 

(true/ 

false) 

 

Credal MATA-D 

Subtask 7.2.C 

(Action performed 

at wrong time) 

 

Note (3) 

Inform 

changes of 

system state to 

team A  

(if flammable 

gas is detected 

by sensors in 

production 

modules) 

Production 

team (C) 

 

Subtask 7.1.C , PSFs: 

communication failure, 

inadequate task allocation, 

insufficient skills, missing 

information 

 two 

(true/ 

false) 

 

Credal MATA-D 

Subtask 7.3.B 

(Action performed 

at wrong time)  

 

Note (3)  

Inform 

changes of 

system state to 

team A 

(unplanned 

helicopter or 

boat 

approaching) 

Radio-

operator 

(team B) 

 

Faulty diagnosis of team 

B 

 

Parent nodes of faulty 

diagnosis of team B: PSFs 

inadequate procedure, 

inadequate quality control, 

inadequate task allocation, 

insufficient knowledge 

two 

(true/ 

false) 

 

Discrete MATA-D 

PSF 8.D 

(Equipment failure, 

a technological 

factor) 

 

Failure of 

explosion 

proof 

equipment 

(i.e. Ex 

equipment), 

generating 

spark 

Maintenance 

team (D) 

PSFs: maintenance failure, 

inadequate quality control 

 

two 

(true/ 

false) 

 

Discrete MATA-D 

PSF 9 (Design 

failure) 

 

Droplets from 

flare  

Not 

applicable 

None 

 

two 

(true/ 

false) 

 

Discrete UK 

offshore 

hydrocarb

on releases 

database 

(HSE, 

2020b) 

 Consequence node 

10 (consequence, 

not classified in 

CREAM 

taxonomy) 

 

Fire or 

emergency 

shutdown due 

to tank 

vapours 

   

Not 

applicable 

Task 5A, task 6.ABCD , 

task 7.A , PSF 8.D 

(equipment failure), PSF 9 

(droplets from flare) 

Three 

(No 

conseq

uence; 

ESD; 

Fire) 

Credal Brazilian 

incident 

system and 

regulator 

reports 

(ANP, 

2020a); 



77 
 

 

 

UK FPSOs 

(Pursel et 

al., 2016a, 

Pursel et 

al., 

2016b); 

UK 

offshore 

hydrocarb

on releases 

database 

(HSE, 

2020b) 

Note (1): In this model#1, tasks 3.1.A and 3.2.A have been represented separately. In the alternative model#2 these 

nodes have been merged (as they have same cognitive function and are in the same team). 

Note (2): In model #1, task 6.ABCD and subtasks 6.1.A, 6.2.C and 6.3.B have the same human error mode. In 

model #2, using the underlying HRA method relationships, human error of subtasks 6.1.A, 6.2.C and 6.3.C was 

replaced by the next cognition function described in the model structure. 

Note (3): In model #1, tasks 7.A, and subtasks 7.2.C and 7.3.B have the same human error mode. In model #2, the 

subtasks 7.2.C and 7.3.C were merged and the human error was replaced by the next cognition function described 

in the model. 

 
Table 3-3. Nodes’ details in model #2 (only nodes that differ from model #1 are shown) 

Node (task or 

PSF, and their 

classification in 

CREAM 

taxonomy) 

Description  Team 

performing 

the task 

Parent nodes (task or PSF, 

and their classification in 

CREAM taxonomy) 

States  Source 

Control nodes 

Task 3A 

(Inadequate plan) 

 

(different from 

Model #1, due to 

subtasks) 

Decide between 

suspending or 

carrying on 

operation  

Cargo team 

(A) 

 

Subtask 3.1.A & 3.2.A merged 

(observation missed), subtask 

3.3.A (incorrect prediction), 

PSFs inadequate procedure, 

inadequate task allocation, 

insufficient knowledge 

 

two 

(true/ 

false)    

 

 

MATA-D 

Subtask 3.1.2A 

(Observation 

missed)  

 

(different from 

Model #1)  

Check wind speed 

and direction  

and 

Check boats and 

helicopter 

Cargo team 

(A) 

 

PSFs: incomplete information, 

inadequate task allocation, 

insufficient skills, missing 

information, adverse ambient 

conditions 

 

 

two 

(true/ 

false) 

 

MATA-D 

 

Note: In model #2, nodes 3.1.A and 3.2.A have been merged, as they represent the same cognitive failure and are 

potentially performed by the same person in the same team) 

 

Mitigation nodes 

subtask 6.1.A 

(faulty diagnosis, 

cognitive function 

failure)  

 

Request 

permission to work 

(PTW) to suspend 

operations that 

generate spark 

Cargo team 

(A) 

 

PSFs: inadequate task 

allocation, communication 

failure, insufficient knowledge 

two 

(true/ 
false) 

 

MATA-D 

 



78 
 

(different from 

Model #1)  

Note: In this model, instead of repeating ‘action in wrong place’ as the human error mode in 6.1.A it has been used 

the cognitive function pointed by the risk assessor as underlying that specific action (in this case, ‘faulty diagnosis’). 

 

subtask 6.2.C 

(inadequate 

plan,cognitive 

function failure) 

 

(different from 

Model #1) 

Analyse affected 

area and issue 

permission to work 

(PTW)  

Production 

team (C) 

 

Subtask 6.1.A (faulty 

diagnosis), PSFs inadequate 

procedure, inadequate quality 

control, inadequate task 

allocation, insufficient 

knowledge 

two 

(true/ 

false) 

 

MATA-D 

Note: In this model, instead of repeating ‘action in wrong place’ as the human error mode in 6.2.C it has been used 

the cognitive function pointed by the risk assessor as underlying that specific action (in this case, ‘inadequate plan’). 

 

Node subtask 

6.3.B 

(Distraction, a 

temporary 

individual factor) 

 

(different from 

Model #1)  

Announce tank 

venting will start 

on public address 

system (PA, i.e. 

speakers) 

Radio-

operator (team 

B) 

PSFs: communication failure, 

maintenance failure, 

inadequate procedure 

two 

(true/ 

false) 

 

MATA-D 

 

Note: In this model, instead of repeating ‘action in wrong place’ as the human error mode in 6.3.B it has been used the 

cognitive function pointed by the risk assessor as underlying that specific action (in this case, ‘distraction’). 

 

Node task 7A 

(Action 

performed at 

wrong time, 

execution error) 

 

(different from 

model #1, due to 

some different 

PSFs) 

Remain standby in 

marine control 

room until venting 

completion  

 

Cargo team 

(A) 

 

Subtask 7.1.C (observation 

missed), subtask 7.2.BC 

(faulty diagnosis), PSFs 

priority error, distraction, 

communication failure 

two 

(true/ 

false) 

 

MATA-D 

Node subtasks 

7.2.BC (faulty 

diagnosis, 

cognitive function 

failure) 

 

(different from 

model #1)  

Inform changes of 

system state to 

team A 

(flammable gas is 

detected by 

sensors in 

production 

modules) 

Radio-

operator 

(Team B), 

production 

(Team C) 

 

Node 7.1.C (observation 

missed), PSFs inadequate 

procedure, inadequate quality 

control, inadequate task 

allocation, insufficient 

knowledge 

 two 

(true/ 

false) 

 

MATA-D 

Note: merged subtasks 7.2C and 7.3B 

 

 

4.3. Quantitative analysis part: feeding data to the probabilistic tool 
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The strategy to quantify and predict human performance used in this study diverges 

from the original CREAM method (Hollnagel, 1998), which suggests the evaluation of worker 

control level on performing an operation (i.e. scrambled, opportunistic, tactical, strategic) by 

adjusting the human error probabilities according to  common performance conditions. In this 

study, the control level and common performance conditions werenot evaluated: instead, the 

assessors selected the PSFs for each task but the HEP was solely adjusted by empirical data. 

This was possible as the model of the task was made with the same taxonomy (i.e., classification 

scheme) described in CREAM and used in MATA-D: a set of 53 variables including 

performance shaping factors, cognitive functions and human execution errors. 

Therefore, the quantitative analysis required the definition of the CPT for the network 

structure defined in Section 4.2. The conditional probability tables of children nodes were 

computed as relative frequencies gathered from empirical data found from the MATA-D 

(Multi-Attribute Technological Accidents Dataset (MATA-D) (Moura et al., 2020, Moura et 

al., 2016). This relies on the interpretation that the relationship between human errors and their 

influencing factors in FPSO/FSOs operations are equivalent to those observed in the industrial 

accidents included in the dataset. MATA-D was selected as the main empirical source of data 

for three main reasons: 

1. it provides dependency between human errors and performance shaping factors; 

2. it contains data from industries with equivalent level of socio-technical complexity 

as FPSOs/FSOs; 

3. it allows to incorporate lessons from different industries rather than waiting for the 

reoccurrence of similar accident patterns (Morais et al., 2020). 

Two nodes had different data sources. Node 9 (droplets from flare) relates to a specific 

design failure that leads to droplets falling from flare (a potential ignition source). Although 

design failure data from MATA-D could have been used, it was decided to use more specific 

information regarding flares from the UK offshore hydrocarbon releases database (HSE, 

2020b). Node 10 (consequence node), which represents the possible consequences of having 

flammable gas above safe limits in installations have variable states (fire, emergency shut-down 

and no-consequence) that cannot be related to any variable available in the MATA-D. Thus, 

specific data from similar offshore installations was used. The data for emergency shut-downs 

due to gas detectors activation during tank venting in FPSOs was obtained from near-misses 

investigations (obtained during safety audits) and incident reported to the Brazilian regulator 

(ANP, 2020a). The information about frequency of droplets from flare in FPSOs was obtained 
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from (HSE, 2020b), and ignition followed by fire in FPSO during tank venting was obtained 

from conference papers describing investigations of similar occurrences in UK North Sea 

FPSOs (Alan Keith et al., 2012, Pursel et al., 2016a, Pursel et al., 2016b). 

Root nodes prior probabilities are obtained straightforward from the MATA-D, as they 

are not conditioned by any other nodes. However, the calculation of conditional probability 

tables for children nodes is more complex and nodes with many parents require an impracticable 

time to be assessed manually. Thus, a dedicated script code was developed to automatize the 

procedure of collecting the combination of events from the database (see data collection code 

in Appendix D).  

The procedure of how the data in MATA-D translates into number in conditional 

probability tables is based on the fact that prior probabilities are expressed in terms of K events 

out of N trials. For example, in Table 3-4, the PSF design failure was observed (i.e., true) in 

157 events out of 238 accidents, thus the resulting relative frequency of 0.66 was translated into 

prior probability distribution of design failure being true (0.66) and false (1 – 0.66). As the 

distribution of this root node does not lack data, it is defined in the model as a discrete node. 

 

Table 3-4. Prior probabilities of nodes PSF 1, 8D and 9, all discrete root nodes 

Design failure  

 from MATA-D 

FALSE 0.34 

 TRUE 0.66 

Node PSF 8D (equipment 

failure) from MATA-D 

(Moura et al., 2020) 

 

FALSE 0.44 

TRUE 

0.56 

Node PSF 9  

(Droplets from flare) from 

(HSE, 2020b) 

FALSE 9.97x 10-1 

TRUE 
3.0 x 10-3 

 

Table 3-5 shows the conditional probability table of subtask 3.1.A – where the assessors 

of the qualitative analysis identified that the operator could miss an observation, triggered by 

the PSFs incomplete information, inadequate task allocation, and insufficient skills. For 

instance, the combination #1 in the CPT represents the events in MATA-D where none of the 

PSFs was observed (i.e., false). According to MATA-D this context combined with the 

cognition failure observation missed occurred in only 8 out of 238 accidents, while the same 

context without observation missed occurred in 59 out of 238 accidents. The respective relative 

frequencies in MATA-D are 0.03 and 0.25, but in terms of prior probabilities these numbers 

are expressed as 0.12 and 0.88 as probabilities range from 0 to 1 (in other words the numbers 
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0.03 and 0.25 were normalised within the range 0 to 1, thus the probability of combination #1 

when observation missed is false is equal to 0.88 and the probability of combination #1 when 

observation missed is true is equal to 0.12). As all the combinations are complete for this 

specific CPT, this node is defined as a discrete node in the model. 

Table 3-5. Prior probabilities in CPT for subtask 3.1.A (variable: observation missed), a discrete child node 
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Incomplete information false false false false true true true True 

Inadequate task allocation false false true true false false true True 

Insufficient skills false true false true false true false True 

Observation Missed - FALSE 0.88 0.84 0.91 0.87 0.60 0.50 0.73 0.67 

Observation Missed - TRUE 0.12 0.16 0.092 0.13 0.40 0.50 0.28 0.33 

 

Table 3-6 describes the CPT of subtask 3.3.A, where the assessors defined incorrect 

prediction as the potential cognition failure for the task, in a context where the main PSFs were 

cognitive bias, management problem, insufficient knowledge, and adverse ambient conditions. 

Table 3-6 shows the frequency this same context occurred in accidents recorded in MATA-D. 

Differently from CPTs shown in Table 3-4 and Table 3-5, some combinations of states of these 

variables do not have any reported event within all 238 accidents in the dataset (e.g. 

combinations #8, #10, #12 , #14 and #16). Therefore, as the lack of possible combinations 

events in MATA-D is interpreted as missing data rather than impossible events, the incomplete 

combinations were replaced by zero-to-one intervals [0,1]. As this node contains intervals, it 

was defined as a credal node. For this model, the majority of children nodes with more than 

four parent nodes had to be defined as credal nodes. 

Table 3-6. Prior probabilities in CPT for subtask 3.3A (variable: incorrect prediction), a credal child node 
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false false false false false false false false true true true true true true true true 

Managemen

t problem 
false false false false true true true true false false false false true true true true 



82 
 

Insufficient 

knowledge 
false false true true false false true true false false true true false false true true 

Adverse 

ambient 

conditions 

false true false true false True false true false true false true false true false true 

Incorrect 

prediction 

FALSE 

0.99 0.93 0.91 1.0 1.0 1.0 0.88 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 

Incorrect 

prediction  

TRUE 

0.01 0.07 0.09 0.0 0.0 0.0 0.12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

The complete CPTs for all nodes can be found on the Appendix E. More details on how 

to convert the relative frequencies from MATA-D to the CPTs can be accessed on (Morais et 

al., 2020).  OpenCossan software was used to evaluate the models. The analyses were 

performed on a machine with x16 Intel Xeon CPU ES-2679 v2 @2.50GHz and 252.4Gb RAM. 

For model #1, the computational time for the predictive analysis was in average 3.2 hours/node. 

The diagnostic analysis required 2.5 hours per queried node. For model #2, the computational 

time for predictive analysis and diagnostic analysis was in average 0.74 hours/node and 0.64 

hours/node, respectively. If the same analysis is performed on a middle-range laptop it requires 

20 and 11 hours/node to run predictive analysis of model #1 and for model #2, respectively. 

Diagnostic analysis would have required 9 and 5 hours per query of model#1 and for model #2, 

respectively. The algorithm of variable elimination has been used in all the analysis. 

 

4.4. Results 

4.4.1. Predictive analysis 

The results of the predictive analysis are presented in Table 3-7 for model #1, Figure 

3-15 and Figure 3-16 for the model #1 and Figure 3-17 and Figure 3-18 for model #2, while 

some possible diagnostic analysis are presented from Table 3-8 and from Figure 3-19. In Table 

3-7 the posterior probabilities are presented for all variables’ states, which are TRUE and 

FALSE for the nodes related to tasks and performance shaping factors, and states no 

consequence, emergency shutdown and fire for the node related to the consequence event. The 

posterior probabilities of discrete nodes are point values and those of credal nodes are intervals. 

For instance, the probability that subtask 3.1.A (check wind speed and direction) is true is a 

point value (a crisp probability), as the lower and upper bounds are the same. For the subtask 

3.3.A (check lightning) the result in state true is represented by an interval. Another aspect about 

the binary credal nodes, is that the lower bound of the false state and the upper bound of the 
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true state sum up to one (as well as the lower bound of the true state and the upper bound of 

false state). In the credal node ‘consequence’, with three states, the unity is achieved if summing 

up two lowest states of the lower bound with the highest state of the upper bound, as well as 

summing up the two lowest states of the upper bound with the highest state of the lower bound. 

The state TRUE of each binary node represents the probability of an error has been 

observed, and the state FALSE probability that an error has not been observed. Thus, for the 

subtask 3.1A probabilities can be interpreted as follows: for every thousand times operators 

read an instrument to check wind speed and direction, chances are that in 159 times they 

misread it. Similarly, for the subtask 3.3A: for every thousand times operators check the 

weather to predict if lightning is going to occur, between 34 and 42 times they incorrectly 

predict it. The distinction between results for discrete and credal nodes can be better visualised 

in Figure 3-15, which depicts the true states of trigger, control, mitigation and risk event nodes 

and Figure 3-16 which depicts all the three states of consequence node. 

Comparing the results obtained from models #1 and #2 reveals smaller intervals in 

model #2 (especially tasks 3A, 6ABCD and 7A). The majority of model #2 results lie inside 

the intervals of model #1 (except for the subtasks assigned with different human error modes, 

such as subtasks 6.1A, 6.3B and 6.2C). Furthermore, it was noticed that the majority of 

probability intervals comprises the frequencies obtained directly from MATA-D (Moura et al., 

2016). For instance, the ‘wrong type’ error mode has the relative frequency of 11.80% in 

MATA-D, while the posterior probability of task 5A (assigned with the same error mode) 

presents a probability interval between 10.08% to 17.82%. The predicted results might 

represent the interaction effect between human errors and PSFs, depicting the uncertainty of a 

certain type of human error occurring under a specific context (e.g. wrong type has a relative 

frequency of 11.80% in all 238 accident events in MATA-D, however, 10.08% – 17.82% would 

be the imprecise probability for it happening under the context of the PSFs equipment failure, 

design failure, observation missed, inadequate plan and action in wrong place occurring 

altogether). When inference is performed, the interval of posterior probabilities depicts the 

inputs you do not have enough data. 

Table 3-7. Prediction of posterior probabilities in all variable states (model #1) 

Event State Lower bound Upper bound 

TRIGGERS     

Task 2A  

(observation missed) 

FALSE 0.83 0.84 

TRUE 0.16 0.17 

CONTROL BARRIERS   
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Task 3A  

(inadequate plan)  

FALSE 0.66 0.92 

TRUE 0.08 0.34 

Subtask 3.1A  

(observation missed)  

FALSE 0.84 0.84 

TRUE 0.16 0.16 

Subtask 3.2A  

(observation missed)  

FALSE 0.82 0.83 

TRUE 0.17 0.18 

Subtask 3.3A  

(incorrect prediction)  

FALSE 0.96 0.97 

TRUE 0.034 0.04 

Task 4A  

(action in wrong place)  

FALSE 0.60 0.71 

TRUE 0.29 0.40 

RISK EVENT   

Task 5A  

(execution of wrong type)  

FALSE 0.82 0.90 

TRUE 0.10 0.18 

MITIGATION BARRIERS   

Task 6 ABCD  

(action in wrong place)  

FALSE 0.37 0.84 

TRUE 0.16 0.63 

Subtask 6.1A  

(action in wrong place)  

FALSE 0.62 0.62 

TRUE 0.38 0.38 

Subtask 6.2C  

(action in wrong place)  

FALSE 0.62 0.62 

TRUE 0.38 0.38 

Subtask 6.3B  

(action in wrong place)   

FALSE 0.58 0.58 

TRUE 0.42 0.42 

Task 7A (action performed at 

wrong time)  

FALSE 0.49 0.94 

TRUE 0.06 0.51 

Task 7.1C (observation 

missed)  

FALSE 0.83 0.86 

TRUE 0.14 0.17 

Task 7.2C (action performed at 

wrong time)  

FALSE 0.85 0.86 

TRUE 0.14 0.15 

Task 7.3B (action performed at 

wrong time)  

FALSE 0.58 0.58 

TRUE 0.42 0.42 

CONSEQUENCE   

Node 10 (consequence of 

hazard event)  

No consequence 0.8658 0.9999 

Emergency shut-down (ESD) 6.211 x 10-5 0.1342 

Fire  7.908 x 10-8 5.669 x 10-7 
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Figure 3-15. Point and interval posterior probabilities for the cargo venting human reliability model #1 

 

Figure 3-16. Posterior probabilities for the three states of the consequence node of model #1 
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Figure 3-17. Point and interval posterior probabilities for the cargo venting human reliability model #2 

 

 
 

Figure 3-18. Posterior probabilities of three states of consequence node in model #2 

  

4.4.2. Diagnostic analysis 

The ability to provide diagnostic analysis is one of the key features of Credal Network 

allowing the simulation of many scenarios. This allows to track and quantify the most important 

relations for each node and assisting in the identification of efficient risk reduction measures. 

The diagnostic analysis – also known as sensitivity analysis – is performed by introducing 

evidence into a node (i.e. observation) and querying another node of interest. For briefly, only 

the results directed to the risk and consequence events of the human reliability model, and to 

other findings that help explaining the methodology are presented. The diagnostic analysis for 

all tasks can be assessed in Appendix G (model #1) and Appendix H (model #2). 
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The objective here is to assess which tasks and PSFs are more relevant in triggering an 

operator error in the critical task of opening the cargo venting valve (task 5A). Figure 3-19 

shows the sensitivity analysis for task 5A of model #1 to preceding tasks while Figure 3-20 

presents the sensitivity analysis with respect to the PSFs. The probability values of the 

sensitivity analysis of task 5A are reported in Table 3-8. Using the criteria proposed in the 

methodology section, the most impacting task is task 2A (verify pressure) and the most 

impacting PSF is incomplete information (technology factor). 

 

 

Figure 3-19.Task 5A|true - sensitivity to tasks 

(model #1) 

 

Figure 3-20. Task 5A|true - sensitivity to PSFs (model #1) 

 

Table 3-8. Sensitivity analysis of task 5A to other tasks and PSFs in model #1.  

 Task 5A|true (query) 

Evidence added to: Lower bound Upper bound 

Tasks 

Task 2A|true 0.1859 0.4322 

Task 3A|true 0.1182 0.3621 

Subtask 31A|true 0.1009 0.3092 

Subtask 32A|true 0.1006 0.2936 

Subtask 33A|true 0.1136 0.2264 

Task 4A|true 0.0090 0.1040 

Performance shaping factors 

Node1(Design)|True 0.1190 0.1649 

Bias| true 0.1005 0.1775 

Distraction| true 0.1008 0.1782 

Maintenance| True 0.0782 0.2506 

Quality| True 0.0921 0.1667 

Management| True 0.1010 0.1826 

Task| True 0.1003 0.1836 

Knowledge| True 0.0972 0.1871 

Ambient| True 0.0996 0.1962 

Procedure| True 0.0880 0.1769 
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Incomp Info (tec)| True 0.1147 0.2677 

Communication| True 0.1009 0.1779 

Missing Info (org)| True 0.0871 0.1945 

Priority| True 0.1008 0.1782 

Diagnosis| True 0.0570 0.1754 

Skills| True 0.1009 0.1875 

 

An interesting finding to showcase the impact of missing data and the choice of criteria 

to interpret the diagnostic analysis is presented in Figure 3-21, the sensitivity of subtask 3.2A 

to PSFs in model #1. The wider interval in PSF ambient conditions shows its high uncertainty 

due to incomplete data regarding its interactions with the human error mode of subtask 3.2A. 

The result suggests that if poor ambient conditions occur, it has the potential to be the most 

impacting factor to trigger human error. On the other hand, if other criteria were used to benefit 

more certain intervals, a possible candidate of most impacting PSF could be insufficient skills, 

as this factor has the highest lower bounds. 

 
Figure 3-21. Node 3.2A|true - sensitivity to PSFs 

Figure 3-22 to Figure 3-27 show diagnostic analysis for tasks 3A, 6ABCD and 7A, which 

are linked to subtasks, respectively. Their subtasks are the main difference between both models 

(i.e. assignment of different human error modes). What stands out in these figures is the 

difference in uncertainty between results from model #1 and #2. 
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Figure 3-22. Node 3A|true - sensitivity to PSFs and 

subtasks 3.1A, 3.2A & 3A3 (model #1) 

 

Figure 3-23.  Task 3A|true sensitivity to PSFs and 

subtasks 3.1.2A and 3.3A (model #2) 
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Figure 3-24. Task 6ABCD|true sensitivity to PSFs and 

subtasks 6.1A, 6.2C, 6.3B (model #1) 

 

 

Figure 3-25. Task 6ABCD|true - sensitivity to PSFs 

and subtasks 6.1A, 6.2C & 6.3B (model #2) 

 

Figure 3-26. Task 7A|true sensitivity to PSFs and 

subtasks 7.1C, 7.2C and 7.3B (model #1) 

 

 

Figure 3-27. Task 7A|true - sensitivity to PSFs and 

subtasks 7.1C & 7.2BC (model #2) 

 

Table 3-9 presents diagnostic analysis of the impact of tasks and PSFs in the consequence 

events of emergency shutdown (ESD) and fire during cargo venting operation in FPSOs/FSOs. 
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Figure 3-28 is the graphical representation of intervals for ESD sensitivity, represented in 

logarithmic scale to facilitate the analysis of lower bounds. Figure 3-29 shows the fire 

sensitivity to tasks and PSFs in log scale By pairwise comparison of the two most impacting 

factors for fire to happen, task 5A (wrong action of opening the valve) and PSF 9 (‘droplets 

from flare’), it is clear that ‘droplets from flare’ is the most impacting factor as, according to 

the criteria, the intervals do not overlap and ‘droplets from flare’ has the highest lower bound. 

Table 3-9. Sensitivity analysis to tasks and PSFs of ESD and fire occurring as a consequence  

Evidence on node 

Node 10|ESD queried 

P(event/days) 

Node 10 | fire queried 

P(event/days) 

Lower 

bound 

Upper 

bound 

Lower bound Upper bound 

Performance Shaping Factors 

Node PSF 1 (design failure) 6.97x10-5 0.13 8.67 x 10 -8 5.50 x 10 -7 

Node PSF 9 (droplets from flare) 9.47x10-6 0.13 2.89 x 10-5 2.07 x 10-4 

Node PSF 8D (equipment failure) 0 0.19 0 0 

Cognitive bias 1.37x10-4 0.14 6.20 x 10-8 5.71 x 10-7 

Distraction 9.56x10-5 0.13 7.00 x 10-8 5.75 x 10-7 

Maintenance failure 5.63x10-5 0.19 4.37 x 10-8 6.20 x 10-7 

Inadequate quality control 5.75x10-5 0.13 6.74 x 10-8 4.93 x 10-7 

Management problem 6.77x10-5 0.14 7.77 x 10-8 5.78 x 10-7 

Inadequate task allocation 5.64x10-5 0.15 7.41 x 10-8 5.70 x 10-7 

Insufficient knowledge 6.02x10-5 0.14 7.67 x 10-8 5.95 x 10-7 

Adverse ambient conditions 6.60x10-5 0.14 7.95 x 10-8 6.17 x 10-7 

Inadequate procedure 6.08x10-5 0.13 5.48 x 10-8 5.24 x 10-7 

Incomplete information (technology) 8.68x10-5 0.20 8.58 x 10-8 9.43 x 10-7 

Communication failure 1.40x10-4 0.14 4.15 x 10-8 4.80 x 10-7 

Missing information (organisation) 8.96x10-5 0.14 6.27 x 10-8 6.83 x 10-7 

Priority error 7.45x10-5 0.13 7.43 x 10-8 5.78 x 10-7 

Faulty diagnosis 4.80x10-5 0.12 5.18 x 10-8 5.47 x 10-7 

Insufficient skills 7.40x10-5 0.14 7.57 x 10-8 5.92 x 10-7 

Distraction of team B  5.17x10-5 0.14 5.69 x 10-8 5.24 x 10-7 

Faulty diagnosis of team A 3.69x10-5 0.15 3.65 x 10-8 4.88 x 10-7 

Faulty diagnosis of team B 1.01x10-4 0.14 2.73 x 10-8 4.94 x 10-7 

Inadequate plan of team C 6.29x10-5 0.14 7.18 x 10-8 5.60 x 10-7 

Tasks and subtasks 
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Task 2A|true 1.34x10-4 0.31 1.19 x 10-7 1.60 x 10-6 

Task 3A|true 1.26x10-4 0.27 1.06 x 10-7 1.38 x 10-6 

Subtask 31A|true 8.79x10-5 0.20 7.86 x 10-8 1.1178 x 10-6 

Subtask 32A|true 7.02x10-5 0.20 7.44 x 10-8 9.95 x 10-7 

Subtask 33A|true 1.14x10-4 0.16 8.14 x 10-8 7.55 x 10-7 

Task 4A|true 1.61x10-5 0.07 6.89 x 10-9 2.65 x 10-7 

Task 5A|true 5.10x10-4 0.84 3.90 x 10-7 1.98 x 10-5 

Task 6ABCD|true 0 0.17 0 0 

Subtask 6.1A|true 0 0.16 0 4.31 x 10-7 

Subtask 6.2C|true 0 0.16 0 4.31 x 10-7 

Subtask 6.3B|true 0 0.16 0 4.31 x 10-7 

Task 7A|true 6.72x10-4 0.14 0 0 

Subtask 7.1C|true 1.92x10-4 0.14 4.66 x 10-8 4.91 x 10 -7 

Subtask 7.2C|true 3.79x10-4 0.14 0 3.70 x 10 -7 

Subtask 7.3B|true 1.32x10-4 0.14 0 5.17 x 10 -7 

 

 

 
Figure 3-28. Sensitivity Node 10|ESD (in log scale).  
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Figure 3-29. Node 10|Fire - sensitivity to tasks and PSFs (log scale) 

Table 3-10 presents a summary of the most impacting factors for each task and subtask 

in model #1, where the factors in bold are those that are also the most impacting factors in 

model #2. The used criteria to select the most critical factors for each task, in order to either 

control the effect on a specific node or to reduce its uncertainty was presented in the 

methodology section. 

 

Table 3-10. Summary of most influencing factors in tasks of model #1 and #2 (in bold where both 

models agree) 

Node Most influencing tasks or performance 

shaping factors for model #1 

Most influencing tasks or performance 

shaping factors for model #2 

Task 2A|true 
PSF incomplete information (tech 

factor)  

PSF incomplete information (tech 

factor)  

Task 3A|true Subtask 3.1A  Subtask 3.3A  

Subtask 3.1A 

(equals to 3.1.2A 

in model #2) 

PSF incomplete information (tech 

factor)  

PSF ambient conditions, followed by 

incomplete information (tech factor) 

Subtask 3.2A 

(equals to 3.1.2A 

in model #2) 

PSF adverse ambient conditions (org 

factor) 

Subtask 3.3A PSF adverse ambient conditions  PSF adverse ambient conditions 
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Task 4A PSF faulty diagnosis PSF faulty diagnosis 

Task 5A|true 

Task 2A (verifying pressure, cognitive 

failure of missing an observation), 

followed by PSF of incomplete 

information (technological factor) 

Task 2A 

Task 6ABCD 

 Subtask 6.1A (request PTW, tied up with 

subtask 6.2C, analyse area to issue PTW). 

Both are actions out of sequence, but in 

different teams. 

Subtask 6.1A 

Subtask 6.1A Faulty diagnosis of team A  Communication failure 

Subtask 6.2C 
Subtask 6.1A, followed by the PSF of 

faulty diagnosis of team A 

Subtask 6.1A 

Subtask 6.3B 
Distraction of team B, closely followed by 

the PSF inadequate procedure  

Communication failure 

Task 7A 
Subtask 7.2C (inform changes in gas 

detection to team A) 

Distraction 

Subtask 7.1C Cognitive bias of team C  Cognitive bias 

Subtask 7.2C 

(=subtask 7.2BC 

in model#2) 

Communication failure   

 

Cognitive bias 

 
Subtask 7.3B 

(=subtask 7.2BC 

in model#2) 

Faulty diagnosis of team B  

PSF 8D Maintenance failure  Maintenance failure 

PSF 9 N.B. no impact from other PSFs of CREAM taxonomy  

Node 10|ESD 
Task 5A (opening or closing the cargo 

venting valve, wrong type execution error)  

Task 5A 

Node 10|fire PSF 9 (droplets from flare)  PSF 9 (droplets from flare) 

 

4.6. Discussion 
 

The case study has shown the applicability of credal networks to analyse the human 

reliability by performing predictive and diagnostic studies in presence of missing data. It was 

noted that besides the fact that the cargo venting task occurs in an error prone context, the model 

also shows that even if the human failure events occur the risk to safety and financial loss is 

very low (see Figure 3-16). 

It has been observed that, the majority of relative frequencies from MATA-D (Moura 

et al., 2016) lies inside the posterior probabilities’ intervals obtained using credal networks. 

This can be interpreted as nominal HEPs being adjusted by their empirical relations with the 

selected PSFs, in a different methodology than proposed by previous studies (Kim et al., 2018). 
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Nominal HEPs would be the relative frequencies in MATA-D and empirical relations with PSFs 

provided by credal network. In practice, this would mean that while an expert is still needed for 

the qualitative task of selecting the PSFs, the proposed methodology has the potential to replace 

or at least complement the contribution from experts on the quantitative analysis of traditional 

HRA methods, as they would no more be needed to define the strength of PSF influence. The 

proposed methodology also provides the adjustment of upper and lower bound empirically. 

A possible explanation for the quantified human error probabilities (HEP) associated to 

the model#1 tasks 4A, 6ABCD, 7A, and subtasks 6A1, 6B3, 6C2, and 7B3 being higher than 

typical HRA method’s numbers (e.g. 10-4 to 10-2) is because these HEPs do not refer to nominal 

HEPs. In traditional HRA methods such as THERP, all of the estimated HEPs in the data tables 

provided are nominal HEPs, which are usually modified upward after being adjusted by the 

effects of PSFs (Swain and Guttmann, 1983). Conversely, the results of this study refer to HEPs 

already adjusted by the PSFs solely driven by empirical data (i.e., the relations between PSFs 

and human errors in MATA-D). Another possible explanation for higher HEP is that this model 

have accounted for the PSFs directly related in the context, without further propagating the 

antecedent-consequent model proposed by Hollnagel in CREAM (see the antecedent-

consequents’ table provided in the supplementary material). For example, according to the 

antecedent-consequent model, the PSF Incomplete Information has inadequate procedure and 

design failure as its antecedents. If the full antecedent-consequent links between PSFs are 

added, the HEPs decrease, as the more parent nodes we have connected to a child, the smaller 

its probability (this had happened on a previous model used, with standard Bayesian network 

and MATA-D (Morais et al., 2020).   

It was noted that the confidence in our results is often to the second digit, while the 

nominal HEPs of traditional HRA methods (e.g. HEART, THERP) provide estimates with 

larger error bounds (e.g., one order of magnitude between the 5th and the 95th percentiles in 

some cases). This fact might be explained for two main reasons. Firstly, because the results 

obtained in this study are related to the final HEP estimates after task-specific PSFs have been 

considered, while traditional HRA methods estimates are nominal HEPs where the uncertainty 

bounds include not only  the random variability of individuals but also  the presumed 

uncertainty of the analyst in the HRA process (Swain and Guttmann, 1983). In our study we 

are proposing a methodology that does not need to account for the uncertainty of the analyst, 

which is one of the reasons why the estimates have skinner uncertainty bounds. Secondly, the 

uncertainty bounds of the nominal HEPs in the other methods were designed to predict many 
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different contexts, while in this study few specific PSFs were selected as the modellers knew 

the context from the documents used in task analysis. 

This study has also shown how credal networks can be used to identify risk reduction 

measures of the human reliability model, by investigating the effect of each factor over each 

task. This may support reduction measures to decrease the risk of human error, fire and 

emergency shutdown during the cargo venting operation. 

The proposed criteria for selecting the most impacting factors aims to support 

comparison between different interval probabilities, identifying which variable is most 

important. For instance, to decrease the chances of having a human error of ‘wrong type’ during 

the event of opening the cargo venting valve (task 5A), reduction measures should focus mainly 

on the verification of cargo tank pressure (task 2A). The most important technological factor is 

incomplete information (i.e. temporary interface failure where the information provided by the 

interface is incomplete, e.g. error messages, directions, warnings (Hollnagel, 1998)). The most 

important organisational factors is maintenance failure (i.e. missing or inappropriate 

management of maintenance leading to equipment not operational or indicators not working 

(Hollnagel, 1998)), although this factor would clearly benefit of further data collection to 

minimise its uncertainty. To decrease the chances of emergency shutdown due to cargo venting, 

the critical task to be improved is task 5A (opening or closing the cargo venting valve, execution 

error of wrong type). To reduce the chances of having fire as a consequence, the most important 

organisational factor to tackle according to this model are ‘droplets falling from flare’, possibly 

caused by design failure. The dependencies among variables should also be considered. For 

instance, in Figure 3-26 and Figure 3-27, it is possible that the imprecision of 7.2C derives 

entirely from the imprecision of 7.1C. Thus, further analysis would be required to fully 

understand the effect of both subtasks in task 7A. 

Although it was clear that the criteria can be refined to reflect other decision-making 

style (for instance, some decision-makers might feel more comfortable to give higher value to 

more precise intervals), it is also recommended that a unique criterion is used by all decision-

makers of the same organisation. 

  Consistent with the literature, this research found that different model structures – 

obtained in the qualitative part of the analysis – impact the quantification. The significant 

decrease of uncertainty in model #2 nodes is evidenced by the smaller intervals obtained. This 

is a consequence of the reduced number of unknown combinations in CPTs following the 

adoption of the synthetic idiom strategy, avoiding children nodes with the same CREAM 

taxonomy as their parent nodes. Furthermore, the analysis of the most impacting factors in 
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Table 3-10 have identified 63% of agreement between both models. Although model #1 can be 

used without such simplification, using underlying method relationship provides a strategy to 

reduce the uncertainty and computational time of the model without significantly impairing the 

accuracy of the results. 

A final reminder about the model is that the probabilities of occurrence refer to the type 

of error mode and not directly to the task – for instance, task 2A results relates to the statistics 

of the variable ‘observation missed’ in MATA-D, and not to specific statistics of cargo 

operators failing to verify the cargo tanks pressure. This seems to be the main source of 

difference in models #1 and #2 (due to subtasks assigned with different human error modes). 

More importantly it means that the assessor’s opinion during the safety critical task analysis 

directly influences the results (as they assign human error and PSFs to tasks), and that it is 

possible to validate or update the model if human performance data is collected from cargo 

venting operation in FPSOs and FSOs. 

 

4.6. Further developments 

 

This paper used human reliability analysis as an aid to investigate the risks between 

operational change and design change options. However, further studies could be undertaken, 

such as further comparing the risk result to the company’s risk matrix, or estimating the societal 

risk by projecting the risk found on the model on a F-N curve (fatal events frequency x number 

of fatalities per year). 

Although the approach of modelling empirical data with credal network is a much-

needed shift from conservative to realistic modelling, it is important to note that the 

methodology presented only considers interval probabilities for the nodes with missing data. 

However, input data with intervals can be used for all nodes if data are imprecise due to other 

reasons rather than sparse data, such as human subjects’ variability. Thus, it is suggested that 

credal networks and the methodology suggested in this paper is further applied to other types 

of HRA datasets, such as those obtained in a laboratory-based study or in a simulated control-

room.  The code is available in Open Cossan website, therefore other research groups can test 

their own data. 
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5. Conclusions 
 

A novel methodology for assessing human reliability under uncertainty and lack of data 

has been presented. The proposed methodology accepts and embraces the variability of human 

reliability databases – including their missing data – as an intrinsic aspect of any science that 

relies on human behaviour. Credal networks as an extension of Bayesian networks have been 

proposed to characterise the available data without making unjustified assumptions. It is a 

necessary tool for data-driven human reliability methods and avoid expert opinion to fill 

incomplete information. This is not a statement to stop using methods that rely on expert 

judgement. Experts should still be needed to structure the qualitative part of the human 

reliability analysis, such as modelling the tasks and establishing a framework to classify human 

errors and performance shaping factors for each task. 

Traditional human error reliability methods usually suggest human error nominal 

probabilities that are adjusted according to the selected performance shaping factors. Thus, 

depending on these factors and the strength of their influence defined by experts’ judgement, 

the estimated human error probabilities have large variability (and as credible as the expert 

selected). The methodology proposed removes the need of experts’ judgment for this 

quantification step of the human reliability analysis and therefore reducing the associated bias 

and variability. The methodology might be of interest to both risk assessors and decision-

makers. To risk assessors because credal networks provide a rigorous framework to deal with 

sparse data and imprecision avoiding strong assumptions, resulting in a much-needed shift from 

conservative to realistic modelling. To decision-makers (e.g. manager, regulator) because it 

provides a more accurate and realistic decision-making tool (e.g. bounds of the estimations can 

be interpreted as the best and worst-case scenarios), and because they can decide if the quality 

of the results (given by the intervals) is satisfactory or more resources in collecting additional 

data are needed. In summary, the risk communication between risk assessors and managers has 

the potential to be improved by the transparency provided by using imprecise probability, being 

fairer to compare the risks between components and human reliability analysis and to allocate 

resources accordingly. The proposed approach allows to describe a variable with more than two 

states allowing the adaptation to other existing HRA methods with multiple states. In addition, 

model reduction using intuitive application of underlying relations based on the human 

reliability method such as CREAM is an effective approach for reducing the uncertain in the 

results and the computational costs. 
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The approach has been successfully applied to a real case from oil & gas offshore 

industry, where a human reliability model could provide support to decision-makers and depict 

the uncertainties inherent to human behaviour. The credal network model has been created by 

translating the critical task analysis sequential structure into a cause-consequence structure that 

depicts also control and mitigation barriers, well known in the oil & gas industry as a bow-tie 

structure. The methodology permits to analyse non-monotonic behaviour, allowing to capture 

more realistic performance shaping factors effects on human performance and detecting the 

features of the scenario most likely to contribute to initiate (or fail to recover from) an incident 

event. This study also demonstrates that human reliability analysis is able to support design and 

operational decisions. Oil & gas operations can be assessed through scientific methodologies – 

with the possibility to borrow empirical evidence from industries with similar task complexity. 

Continued efforts are needed to make reliable tools more accessible to the human 

reliability community and accepted by industrial partners and regulators. This study has shown 

the importance of using probabilistic tools that accept and depict uncertainty and imprecision 

supporting the fully data-driven human reliability analysis.  
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4. Chapter IV: Minimising epistemic uncertainty by collecting new data 
 

Overview 

In this chapter, the problem of missing data is tackled by complementing the existing 

dataset, the MATA-D. As stated in Figure 3-6. Suggested criteria for decision-making in 

sensitivity analysis of HRA and at the Conclusions of Chapter 3, although imprecise 

probabilities might help decision-makers make decisions without all the necessary data, they 

might prefer to invest in collecting more data. The process of collecting new data for this dataset 

should be constant not only to decrease epistemic uncertainty in human reliability data but also 

to update models and reflect changes in human behaviour due to evolving technology and 

organisational arrangements.  

Obtaining new accident reports to expand MATA-D is quite an easy task, as a large 

portion of major accidents are publicly available on the internet. However, the difficulty resides 

in finding trained experts available to read and classify the reports against the CREAM 

taxonomy. Reading and classifying one whole accident report is a time-consuming process, 

which delays the learning-from-accident process.  

For this reason, the third part of this research proposes an automated approach as a new 

collection methodology. The machine-learning approach developed is able to train the 

computer on a predefined classification scheme (taxonomy), which will be called the virtual 

human factors classifier. The machine is trained according to previously labelled accident 

reports by human experts.  

The natural language processing (NLP) approach used has been tested as soon as the 

first preliminary report from the accident with the Boeing airplane model 737 MAX accident 

has been issued, and preliminary results have been presented in a conference (Morais et al., 

2019b). After the conference, discussion with peers and supervisors have led to improvements 

and an extension to the machine-learning approach. This extension is presented in the present 

chapter, which also includes two case studies – used to demonstrate how data from different 

sectors can be used to train the machine, providing an efficient cross-discipline knowledge 

transfer. Accuracy, precision, recall and F1 score metrics have been used to measure the 

performance of the machine-learning model by comparing it to the classifications provided by 

the same human experts of MATA-D.  

It is worth reinforcing that the focus of this study was to expand the dataset to decrease 

epistemic uncertainty in human reliability analysis. Therefore, this work has focused on testing 
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largely accepted and validated machine-learning techniques. In the future, other NLP 

approaches might be investigated such as (Ribeiro et al., 2020).  

The next pages of this chapter are based on the third manuscript aligned, also aligned 

with the second objective of the research – to tackle sparse data. I have been the leading author, 

and responsible for the conceptualization, data analysis, methodology and writing the first draft. 

The article has been co-authored by Ka Lai Yung12, Karl Johnson13, Dr Raphael Moura, Prof 

Michael Beer, and Prof Edoardo Patelli.  

 

  

                                                                 
12 Faculty of Applied Science & Engineering, University of Toronto 35 St. George Street, Room 157, Toronto, ON 
M5S 1A4, Canada 
13 Centre for Intelligent Infrastructure, University of Strathclyde, James Weir Building, 75 Montrose St, Glasgow 
G1 1XJ, United Kingdom 
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Identification of human errors and influencing factors: a machine learning 

approach 
 

1. Introduction 
 

One of the most acknowledged ways to prevent design errors in complex industries is 

to conduct risk assessment, where multi-disciplinary teams revise a design according to 

information from past accidents, components and human reliability. There are industrial 

recommended practices on how companies should use lessons learnt from past accidents 

(CCPS, 2010), research on how they are actually using it (Drupsteen et al., 2013) or how it 

could be used (Moura et al., 2017b, Moura et al., 2017a). The lessons learnt encompass not only 

hazards but also their frequency of occurrence, which are used to quantify risks in probabilistic 

risk analysis, or to estimate order of magnitude in semi-quantitative analysis (e.g. LOPA) and 

qualitative analysis when risk ranking is required (Baybutt, 2016). 

Regarding frequency, component failure databases play a central role in quantitative 

risk analysis, where data is majorly provided by components manufacturers and sometimes 

shared within groups of industry operators, such as the Maintenance Steering Group (MSG-3) 

in aviation (EASA, Gonçalves and Trabasso, 2018) and the Offshore and Onshore Reliability 

Data (OREDA) in upstream oil & gas (OREDA, Lima et al., 2019). However, there is still 

plenty of space for the development of databases to support system safety, which should be able 

to include systems and installations rather than only components’ parts, as well as the 

interaction between human, organizational and technological factors (Leveson).  

To fill this information gap, a human reliability database has been created comprising 

major accidents from different industry sectors (with the same level of complexity), all 

classified with an established human reliability taxonomy (Moura et al., 2016). The database, 

known as MATA-D, has currently 238 accident events classified into 53 variables, including 

human erroneous actions and their influencing factors (Moura et al., 2020). Although it is 

already possible to use it for human reliability analysis (Morais et al., 2020, Morais et al., 2021 

(in press)), it would be desirable to reduce its uncertainty, leading to more precise risk estimates. 

To understand how to decrease its uncertainty, it is important to understand the different 

representation of the uncertainties within the dataset: aleatoric to model uncontrollable events, 

e.g. impairments and cognitive bias,  or epistemic/reducible uncertainty due to missing data and 

theoretically reducible (Patelli et al., 2016). It is acknowledged in the human reliability field 

that human behaviour is dependent on the context, varying according to organizational and 
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technological factors (Hollnagel, 1998). The lack of information on these factors’ interactions 

(seldomly observed and reported) is the major contribution to the epistemic uncertainty. Thus, 

to reduce epistemic uncertainty it would be desirable to expand the database, by collecting more 

accident reports and classifying them in order to increase the chance of describing more human-

machine-organisation interactions. 

However, collecting empirical data is time-consuming and expensive, especially in 

human reliability field, where data collection and classification are usually done by other 

humans (experts in their fields). MATA-D database have been constructed through extensive 

reading and classifying 238 accident investigation reports (Moura et al., 2016), a task that have 

taken around one year to be completed. The classification also required specialised knowledge, 

as the assessors had to be minimally trained on the taxonomy used to pursue the classification.  

The present study proposes to enlarge a human reliability dataset by replacing (or 

supporting) human coding by automated classification of accident reports from any industrial 

sector using a pre-defined human factor’s taxonomy. In order to absorb lessons learnt from 

different industry sectors – , the objective is to continually add to the dataset reports only from 

industries with the same level of complexity regarding the interaction of organisational 

structure, technology and humans (Moura et al., 2016). The work hereby presented is a 

substantial improvement and extension of the strategy proposed by some of the authors of this 

paper in a conference (Morais et al., 2019b). Therefore, the aim of the present research is not 

only to expand MATA-D, but to do it faster and timely. The use of a machine-learning strategy 

for text recognition and classification is herein proposed because an experienced expert takes 

around 3 days to read and classify one accident report, which contains about two hundred pages. 

A machine-learning algorithm takes less than one minute. Thus, it would be interesting to 

develop a computer support, that could support risk specialists, or directly collect and update 

the database for every new accident report of interest. Caution would be needed on the 

acceptance criteria of this new data, as depending on the sample quality the uncertainty might 

increase (Siegrist, 2011). Therefore, a central research question of this study is whether a 

machine learning approach is capable of both accelerating the expansion of a human reliability 

database and maintaining the same data quality offered by human experts. 

 The approach, here called as virtual human factors classifier might be useful in other 

ways. For instance, it may be used to improve human reliability Bayesian and credal networks 

(Morais et al., 2020, Morais et al., 2021 (in press)), or to support cross-learning from different 

industry sectors. It can also support incident investigators in an unbiased fashion to consider 

possible performance shaping factors, which might have triggered human errors (instead of 
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focusing only on human errors). On the original aim of expanding MATA-D, risk assessors 

should benefit for the provision of more data thus more possible combinations between 

performance shaping factors and human errors, minimising missing data problem in the use of 

data for probabilistic approaches. 

This paper has been divided into four parts. The first part gives a brief overview of the 

recent history of major accident data. The second section of this paper will examine the options 

of machine-learning strategies and performance metrics. The third section is concerned with 

the dataset, taxonomy and the methodology used for this study. The fourth section presents the 

findings of the research, focusing on the case study of including the analysis of two accident 

reports from aviation (Boeing 737 MAX) and oil & gas industry (FPSO CDSM, Cidade de Sao 

Mateus floating production storage and offloading unit). 

2. Theoretical background 

This section explores the literature regarding previous similar research regarding the 

investigation of accidents in different industry sectors, the selection of the most used machine-

learning algorithms, and most appropriate performance metrics. 

 

2.1. Related work in similar industry sectors 

The present research has focused on previous studies that have used machine-learning 

strategies to classify textual narratives into safety and risk features. The sample also focused in 

industries with similar level of organisational and technological complexity as found in MATA-

D, as well as those that have investigated at least one human factor as one of the features, such 

as  aviation (Robinson et al., 2015), railway (Hughes et al., Heidarysafa et al.), oil & gas 

(Ribeiro et al., 2020), civil construction (Goh and Ubeynarayana, 2017) and maritime industries 

(Grech et al.). A comprehensive review of the application of machine-learning techniques in 

occupational accident analysis, however, mixing many industries with lower level of 

complexity is provided in (Sarkar and Maiti, 2020). 

Despite large research and application of machine-learning approaches, gaps and needs 

for risk and reliability analysis remains. Previous studies have not classified full accident reports 

into a human reliability taxonomy – nor any attempts have been identified to expand databases 

of human reliability with the support of machine-learning, or within multiple industry sectors. 

For instance, only one specific human factor (situation awareness) has been analysed in 

maritime accident reports (Grech et al., 2002) while often the aim was to analyse near-miss or 

close call reports (daily basis reports that consist of small narratives of from workers (Hughes 
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et al.)) to support safety managers on having timely decisions upon risk controls (Robinson et 

al., 2015, Hughes et al., Heidarysafa et al., Ribeiro et al., 2020, Goh and Ubeynarayana, 2017).  

The highest performance obtained are from the studies with texts sizes of around 200 

words, and which have collapsed many classes into a few more frequent ones. However, the 

need to expand the MATA-D to support better risk analysis is to classify full major accident 

reports (with text sizes of around 200 pages) and to not discard nor collapse classes that are less 

labelled (sparse data). 

 

2.2. Human-categorized text  

Readers can easily categorize a document into its topic if they have the classification 

scheme in mind, an action that can be described as manual coding (Grech et al., 2002) and 

human-categorization (Goldberg, 2017). In cases where more than one coder or rater classifies 

the same documents, it is good practice to measure the interrater agreement with a coefficient, 

such as Cohen’s kappa (Kim et al., 2020).  

Although human categorization is considered the standard approach, it is time-

consuming and resource demanding. It is also prone to error, in particular when involving large 

databases (Robinson et al., 2015). The manual assessment of accident reports  has been used by 

Moura et al. to create the Mata-D, after reading 238 accident reports and classifying them as 

Boolean values according to factors described in Table 4-2 (0 if a feature was not reported, 1 if 

a feature was reported), as represented in Figure 4-1. A step-by-step description of how the 

information has been classified is shown in (Moura et al., 2016) and the resulting dataset can 

be assessed in (Moura et al., 2020).  

 

 

Figure 4-1. Human categorization analysis of accident reports issued for Fukushima nuclear accident (Daiichi, 

2012, Fukushima Nuclear Accident Independent Investigation, 2012) 
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2.3. Automated text analysis algorithms 

2.3.1. Extracting and representing text features  

Before classifying a document, the text features need to be extracted to generate a 

representation of the document, capturing the properties that are important for further 

classification (Goldberg, 2017). There are many feature extraction methods available, but the 

methods that can be used to extract features from text data are mainly bag-of-words (BoW), 

TF-IDF and word2vec (Waykole and Thakare, 2018). 

A bag-of-words model extracts features from the text, specifically the vocabulary of 

known words and their frequency of occurrence. The reason the model is called a ‘bag’ of words 

is that it does not consider any information about the order or structure of words. To use it on a 

set of documents, data is collected from text files and organised into a list, forming a 

vocabulary. To improve results and save computational time and memory the model ignores 

case, punctuation, and other frequent words that do not contain relevant information, such as 

stop words (e.g. ‘a’, ‘the’, ‘of’). To score the known words in each file (i.e. document), their 

presence is marked as Boolean values (0 and 1) – thus, using the list of words previously 

prepared, each new file is analysed and converted into a binary vector. To extract features from 

files, the order of words is discarded (Brownlee, 2017). Bag-of-bigrams is a special case of 

feature combinations that counts consecutive word sequences of a given length, which proves 

to be more powerful than bag-of-words, as word-bigrams are more informative than individual 

words. However, it is difficult to know a-priori which bigrams will be useful for a specific task, 

thus the modeller should assign the less important combinations previously with low weights. 

Bag of trigrams are also common, differently from 4-grams and 5-grams that are sometimes 

used for letters, but rarely for words due to sparsity issues (Goldberg, 2017). 

TF-IDF (Term Frequency – Inverse Document Frequency) accounts for the frequency 

of each word in a set of documents and its useful to give higher scores to domain specific words, 

something that is considered a drawback for bag-of-words (as domain specific words which 

does not have higher frequency within a document may be ignored). TF-IDF reduces the score 

of frequent words in a document that are also frequent among all the documents, highlighting 

the words that are unique (Hughes et al., Waykole and Thakare, 2018). 

Word2vec assumes that words that occur in the same contexts tend to have similar 

meanings (Goldberg, 2017), thus models constructed by word2vec algorithms will place words 

with common contexts next to each other in a vector space (Heidarysafa et al., Waykole and 
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Thakare, 2018). Word2vec models are two-layer neural networks, and depending on their 

architecture they are able to consider nearby context words more heavily than words with 

distant context (i.e. continuous skip gram), or to not account for context at all (i.e. continuous 

bag-of-words) (Waykole and Thakare, 2018).  

 

2.3.2. Classifying text features  

After the text relevant features are captured from the document and represented in a 

model, they are ready to be classified by a machine-learning technique. The most known and 

broadly tested techniques for automated text classification are the dictionary method, Naïve 

Bayes, support vector machines (SVM), latent Dirichlet allocation (LDA), latent semantic 

analysis (SMA), structural topic model (STM) (Kim et al., 2020). Aside from the dictionary 

method, they can be mostly divided into supervised and unsupervised learning methods (some 

authors further distinguish semi-supervised approaches, in which the training set contains a 

small amount of data with known categories and a large amount of data with unknown 

categories (Ratsaby and Venkatesh)). The method selection might be based on how texts are 

going to be classified, and if some documents have been previously classified by humans 

(allowing their use as examples to train the machine) (Goldberg, 2017, Kim et al., 2020). Figure 

4-2 shows the main techniques for cases where the classification category is known and pre-

defined, whereas Figure 4-3 shows techniques which classification category is unknown.  

 

 

Figure 4-2. Most common automated text analysis techniques available when classification is known 

In dictionary-based methods, the machine uses predefined sets of words to infer 

particular features of a text, relying on a user-defined dictionary. In such methods, the 

categories of interest are represented by single words, which are searched for by an algorithm 

through large bodies of text (Kim et al., 2020, Iliev et al., 2015). In the classification of 
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organisational factors in accidents, it would be equivalent to define into the algorithm that every 

time any of the words or the expressions work shift, jetlag, lack of sleep, circadian rhythm, is 

identified in the text, the algorithm classifies the feature as the organisational factor of irregular 

working hours.  

Naïve Bayes and support vector machines (SVM) are popular supervised learning 

methods for text classification. Naïve Bayes is a simple Bayesian classifier which assumes that 

all attributes are independent of each other, thus independent of the word context and position 

in the document (Žubrinić et al., 2013, McCallum and Nigam). Naïve Bayes classifiers is 

reported to have better resilience to missing data than SVM classifiers (Shi and Liu), what 

potentially makes Naïve Bayes better to analyse fragments of texts (e.g. few paragraphs) and 

SVM to classify whole documents (Goh and Ubeynarayana, 2017, Wang and Manning). 

Support Vector Machine (SVM) is one of the most popular supervised machine-learning 

algorithms, due to its little need for adjustments (Matlab, 2019), and due to their excellent 

prediction and generalization capabilities (Goh and Ubeynarayana, 2017, Arrieta et al., 2020). 

They can be used for classification, regression, or other tasks such as outlier detection (Arrieta 

et al., 2020). The SVM algorithm constructs a hyper-plane (or a set of them) in a high-

dimensional space, so that a good separation between classes is achieved by the hyperplane that 

has the largest distance to the nearest training data point of any class (Arrieta et al., 2020). The 

simplest case, when data have only two classes, a SVM classifies data by finding the maximum-

margin hyperplane which separates the data points of one class  from those of the second class 

(Matlab, 2019).  

The support vectors cross the data points that are closest to the hyperplane that separate 

the classes. As SVM is a supervised learning model, it has to be trained before it cross-validates 

the classifier. Only then, the trained machine can be used to predict or classify new data. SVM 

is usually suggested if features’ interaction might be important for classification, similar to a 

semantic space, as learned hyperplane separates documents belonging to different topics in the 

input space (Žubrinić et al., 2013). Although it is usually suggested in literature that for more 

complex problems, other SVM kernel functions can be used to obtain more satisfactory 

predictive accuracy (Matlab, 2019), previous studies show that the classification performance 

is not always better when non-linear polynomial kernel is applied, e.g. linear kernel outperforms 

non-linear when applied for multi-word classification (i.e. when the context information of 

individual words is captured) (Zhang et al., 2008).  
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When the classification category is unknown, a situation represented in Figure 4-3, 

unsupervised learning methods are usually chosen to infer latent categories.  

 

Figure 4-3. Most common automated text analysis techniques when classification is unknown 

The latent semantic analysis (LSA) (Robinson et al., 2015, Deerwester et al., 1990) is a 

quantitative text-data analysis which employs singular value decomposition, which was a 

precursor of the latent Dirichlet allocation (LDA) (Blei et al., 2003), the first widely used topic 

model (Kim et al., 2020). LSA and LDA have similar methodologies, but LSA does not depend 

on rigorous statistical modelling. Statistical model estimates the categories or topics based on 

the pattern of word co-occurrences in the text. However, although unknown, the number of 

classes needs to be estimated before the analysis. Structural topic model (STM)(Roberts et al., 

2016) is built upon LDA (Kim et al., 2020), thus both are topic models used to discover latent 

themes (i.e. thematic structures in documents), being able to reveal topic proportions in each 

document. STM has been designed to compensate LDA weaknesses, such as possibility of 

incorporating metadata (e.g. investigators’ nationality and year a report was issued), and 

modelling direct correlations among topics (instead considering them independent) (Kim et al., 

2020). 

2.3.3. Measuring the performance of automatic text classification 

The performance of a classifier is based on its capability to correctly assign new data to 

the correct class. This is often represented by the true and false positives, and true and false 

negatives. For a binary classifier, 1 is used to represent an observed variable in a dataset while 

0 represents a non-observed variable: 

• true positives occur when the true value is 1 and the model correctly predicts 1  

• false negatives occur if the true value is 1 but the model wrongly predicts 0  

• true negatives occur when true value is 0 and the model correctly predicts 0  
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• and false positives occur when true value should be 0 but the model predicts 1. 

 

The selection of the best performance metrics to observe will vary according to how false 

positives and false negatives predictions will cost to the study’s objective. For example, the cost 

of false positive is higher if one is modelling how to identify spam emails (as someone can lose 

important information if an email is wrongly classified as spam). However, if the intention is 

to model the spread of a contagious disease, the cost of having a false negative is higher (as it 

is more impacting to public health if a person with a disease, an actual positive, does a test 

which wrongly classifies them as healthy, a false negative) (Ping Shun, 2018). 

A confusion matrix is used to depict the four possible outcomes by comparing the true 

classes expected by the classes predicted (Google). On the confusion matrix plot depicted in 

Table 4-1, the rows correspond to the true class (also known as target Class), and the columns 

correspond to the predicted class (also known as output Class). The diagonal cells (in green) 

correspond to observations that are correctly classified, and the off-diagonal cells (in red) 

correspond to incorrectly classified observations. Some confusion matrices also show the 

percentage of the total number of observations in each cell, with additional columns and rows 

showing accuracy, prediction and recall measures (Matlab and Mathworks, 2018). In the 

example provided in Table 4-1 the confusion matrix indicates only the observations: 6 true 

positives, 2 false negatives, 1 false positive and 30 true negatives. Confusion matrices are even 

more useful if many variables are being classified, as it provides handy information on which 

classes are mostly misclassified to what other classes (Heidarysafa et al.). 

Table 4-1. Confusion matrix example 

 

 

 

 

 

 

 

There are four main metrics to evaluate model performance according to true and false 

predictions: accuracy, precision, recall  and F-measures score  (Goh and Ubeynarayana, 2017). 

Accuracy is the fraction of correctly predicted data points out of all predictions and defined as 

follows.  
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Equation 4-1 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(true positives + true negatives)

(true positives + true negatives+false positives + false negatives)
  

 

 The potential problem of relying solely in accuracy is that it can be largely contributed by a 

large number of true negatives (Ping Shun, 2018), such as when dealing with imbalanced data 

(a dataset which has many more instances of certain classes than others) (Sun et al., 2009). 

Precision is a good measure to indicate the proportion of positive identifications that 

are actually correct, or to monitor when the cost of a false positive is high (Ping Shun, 2018, 

Google, 2018). Precision is equal to 1.0 if the model produces no false positives and defined as 

follows:  

 

Equation 4-2 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
(true positives)

(true positives +  false positives)
 

 

When the cost of false negative is high, the Recall is a good measure to indicate if the 

proportion of actual positives are identified correctly (Ping Shun, 2018, Google, 2018). A model 

that produces no false negatives has a recall of 1.0. The recall metric is defined as: 

  

Equation 4-3  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
(true positives)

(true positives +  false negatives)
 

 

F-measures are useful if a balance between precision and recall is needed (Ping Shun, 

2018), as empirical studies of retrieval performance have shown a tendency for precision to 

decline as recall increases (Buckland and Gey, 1994). It is also a good measure if the true 

classes present an uneven distribution such as a large number of true negatives (Ping Shun, 

2018). If false negatives and false positives are equally costly, 𝐹1 score represents the harmonic 

mean between recall and precision: 

  

Equation 4-4 

𝐹1  =  2 ∙
(Precision ∙  Recall)

(Precision +  Recall)
 



112 
 

 

However, if false negatives and false positives are not equally costly, 𝐹𝛽 measure might 

be indicated as it is an abstraction of the F-measure where the balance of precision and recall 

are controlled by a coefficient called β. If false negatives cost more, β > 1; if false positives are 

more costly, β < 1 (He and Ma, 2013). 

 

Equation 4-5 

𝐹𝛽  = (1 + β2) ∙
(Precision ∙  Recall)

(β2 ∙  Precision +  Recall)
 

 

Using the example given in the confusion matrix in Table 4-1, the accuracy of the model 

would be 92%, precision would be 86%, recall would be 75%, and using the results of precision 

and recall the F1 score would be 80%. 

Performance metrics may present different results depending on the size and on the 

randomised sample used for training and testing sets. To minimise the randomised sample 

effect, many studies present the metrics by variable (or sets of variables) instead of by overall 

indicators (Heidarysafa et al., Goh and Ubeynarayana, 2017, Grech et al., 2002, Zhang et al., 

2019). The difference in performance metrics can be more transparently depicted by error 

estimates (Ribeiro et al., 2020). The need for smaller uncertainties between estimates can also 

define the size of training and testing sets. Some machine-learning practitioners even suggest 

to have larger testing sets than what is normally recommended, in order to increase the 

confidence in model predictions (not only because the error estimates of performance metrics 

decrease, but because the user can actually see how the model works for more samples) (Malato, 

2015).    

3. Methodology 
 

Support vector machine was proposed to automatically read and classify accident reports 

into potential human factors, with the support of Bag-of-Words model for data collection. The 

model was trained and tested using data from MATA-D. This section better describes the 

dataset used and the procedures applied to train and test the models. 

3.1. Dataset  

The classification tool was trained using the data from Mata-D. The decision was based 

on the conceptual advantaged of potential cross-learning lessons from accidents in different 

sectors, but also brought two technical advantages regarding machine-learning techniques. 
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Firstly, the majority of accident reports were available to train and test the machine against the 

opinion classified by experts. Secondly, the dataset had a specific taxonomy, which simplified 

the decision on the automated text technique to choose.  

The type of documents analysed were accident investigation reports, all in English, with 

an average size of two hundred pages. The accidents described in those reports had happened 

in different industry sectors with similar complexity regarding the interaction within humans, 

technology and organization, such as: aviation, chemicals factory, construction, food, oil & gas 

(exploration, refinery, petrochemical), metallurgical, nuclear, terminals and distribution and 

waste treatment plant. The documents chosen were the same used to construct a dataset of 238 

reports classified into a human reliability taxonomy as described in (Moura et al., 2016), known 

as MATA-D which can be assessed in (Moura et al., 2020).  

Table 4-2 shows the taxonomy used, the classification scheme developed for a human 

reliability method known as CREAM (cognitive reliability and error analysis method) 

(Hollnagel, 1998). This taxonomy comprises human errors and performance shaping factors 

(PSFs) such as organisational, technological and individual factors. CREAM’s taxonomy has 

the benefit of serving both accident analysis and risk analysis purposes. Thus, by continuously 

updating the dataset with new accident investigation reports, the dataset will provide risk and 

reliability analysis with better predictions of which combinations of factors mostly trigger 

accidents. Although MATA-D is the dataset which contains information on how 238 accident 

reports have been labelled against CREAM taxonomy, only the publicly available reports have 

been used to train and test the virtual classifier in the present study: a total of 106 reports.  

 

Table 4-2. Taxonomy of human factors adopted in MATA-Dataset based on CREAM classification scheme 

Organisational Factors  Technological Factors  Individual factors  Human Execution Errors  

Communication failure  Equipment failure  Permanent related  Wrong time  

Missing information  Software fault  Functional impairment  Wrong type  

Maintenance failure  Inadequate procedure  Cognitive style  Wrong Object  

Inadequate quality control  Access limitations  Cognitive bias  Wrong place 

Management problem  Ambiguous information    

Design failure  Incomplete information  Temporary related  Cognitive function failures 

Inadequate task allocation  Access problems  Memory failure  Observation missed  

Social pressure  Mislabelling  Fear  False Observation  

Insufficient skills   Distraction  Wrong Identification  

Insufficient knowledge   Fatigue  Faulty diagnosis  

Temperature  Performance Variability Wrong reasoning  
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Sound  Inattention Decision error  

Humidity  Physiological stress Delayed interpretation  

Illumination  Psychological stress Incorrect prediction  

Other   Inadequate plan  

Adverse ambient conditions   Priority error  

Excessive demand    

Inadequate work place layout    

Inadequate team support    

Irregular working hours    

 

As the reports in the MATA-Dataset addressed different industry sectors, they presented 

different formats and vocabularies. The format changed not only in terms of number of pages, 

but also in terms of reproduceable sections in a corpus. The vocabularies varied not only on 

specificity of the different industrial sectors, but also in terms of taxonomy applied usually 

connected to the investigation methodology. This research used three different datasets: the first 

contained 106 publicly available reports (public at the time of the research), the second was a 

subset of the first dataset with 57 CSB reports (U.S. Chemical Safety and Hazard investigation 

board), and the third was another subset of the first dataset with 20 reports issued by NTSB 

(U.S. National Transport Safety Board). CSB is an U.S. independent government agency that 

investigates mainly industrial chemical accidents, covering accidents not only in chemical 

factories, but also in its branches (e.g. oil & gas, food, and metallurgical industries). NTSB is 

also an independent U.S. government agency, which investigates accidents in transportation, 

such as aviation, and including terminals and distribution. CSB and NTSB were chosen due to 

their larger number of reports in MATA-Dataset and due to their systematically organised and 

repetitive format (e.g. similar chapters titles and same order of chapters), which is potentially 

positive considering the training of a supervised learning technique.  

The three datasets generated three different models: all reports, CSB and NTSB models. 

The reports were randomly split into a training-testing ratio of 80-20%, therefore generated a 

training set of 85 reports and a testing set of 21 reports for all reports model, 46 to train and 11 

to test reports in CSB model, and 16 to train and 4 to test reports in NTSB model. The decision 

of choosing between an 80-20% split instead of a 90-10% was taken to increase the confidence 

in the results as suggested in (Malato, 2015).. 



115 
 

3.2. Machine-learning technique  

As the classification of the category is known (i.e., predefined taxonomy), and the dataset 

was previously labelled by experts, a supervised learning method is the most adequate, short-

listing the decision to Naïve Bayes or Support Vector Machine. It has been proven that Naïve 

Bayes classifiers perform better with missing data (Shi and Liu), and therefore it might be a 

good choice to identify human factors interactions in major accidents that are considered rare 

and uncertain events (Morais et al., 2020). However, SVM has the potentiality to better capture 

features interactions (Žubrinić et al., 2013) and better classify larger documents (Wang and 

Manning). Therefore, as interaction patterns have been observed between MATA-D factors in 

(Moura et al., 2017b) and the aim is to apply the tool to accident reports with 200 pages on 

average, an SVM model with a linear kernel has been chosen for classification. Bag-of-words 

was selected as the feature extraction tool to pre-process the features to be classified by SVM. 

The choice was not only due to its recognised simplicity and flexibility (Waykole and Thakare, 

2018), but also because the intention to classify accident reports with no specific sector or 

domain suggested that it was better not to use models that capture too much the context from 

the training set into account – to avoid giving much higher importance to sector specific words 

or set of words (Goldberg, 2017). 

The resulting automated text recognition and classification tool is referred to as the 

human factors virtual classifier.  A simplified workflow of the proposed approach is shown in 

Figure 4-4. 



116 
 

 

Figure 4-4. Simplified workflow of the human factor virtual classifier  

In the first module, accident investigation reports were analysed. The documents in 

portable document format (i.e., files with PDF extension) were processed to check if the text in 

pdf files were recognised by the machine and, if not, an optical character recognition software 

(OCR) was used to convert them to text files – an important step for relatively old accident 

reports. After this pre-treatment, the tool scanned the accident reports, and their texts were were 

sent to the next module. In the implemented version, the semi-supervised approach gave the 

users the option to manually identify relevant sections, which was the option used in this study. 

Otherwise, the most likely start and end of  the targeted sections,  recommendation and lessons 

learned, would be identified by a confidence scoring system (a basic algorithm, tailored for this 

project, which defines a dictionary of the most likely start and end target words in major 

accident reports), and these sections would be the output to the next module. Finally, the text 

was pre-processed to clean punctuation, stop words, and reduce words to their stem (e.g., 

‘testing’ was reduced to ‘test’).  

In the second module, using another confidence scoring system, the tool took each 

accident report’s file name and found the most likely corresponding entry in the MATA-D. For 

this reason, the accident reports had equally assigned names in dataset and correspondent PDF 

file. This gave the machine-learning component the desired output for each accident report, 

which was a combination of selected section texts and their known human factors. Then, the 
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selected text was converted into bag-of-words objects (X in Figure 4-4, forming the input of 

the model), and the factors extracted from the MATA-D (Y in Figure 4-4, served as the output 

of the model). The module partitioned the data into a training set (80% of total) and a testing 

set (20% of total).   

In the third module, the model based on SVM was trained and tested using data input 

from the previous two modules. Finally, the parameters of the classifier were recorded and 

overall performance metrics (i.e., accuracy, precision, recall and F1 score) were calculated 

based on test sets in all categories, as well as a confusion plot is generated. Only then, the tool 

was prepared to be used in the next module.  

The fourth and final module of the tool allowed users to add a new report that was not 

yet part of the MATA-D. The result was a list of the human reliability factors identified by the 

tool (an array of the predicted positive factors), a small table with all positives and negatives 

predictions (the 53 factors of the chosen taxonomy), and a word cloud of the most relevant 

words in the report.  

 

3.3. Implementation 

All the computational work was carried out using MATLAB software, and supported 

by the text analytics toolbox, which used the bag-of-words model to extract text strings from 

files and prepare data for the machine-learning algorithm. The MATLAB statistics and the 

machine-learning toolbox was used to transform text inputs into binary classification adopting 

the Support Vector Machine. Data was extracted from the Excel based MATA-Dataset, while 

the accident report were in portable document format (i.e., PDF extension). The text recognition 

software embedded in Adobe Acrobat Pro was used to convert text-images to text-strings in 

cases where original reports had been saved as images (e.g. relatively old accident reports, such 

as the Public Inquiry into the Piper Alpha Disaster (Cullen, 1993)). Computational times to 

evaluate a new report, including the machine training time, took around 63 seconds (using all 

reports), 28 seconds (using CSB reports), and 19 seconds (using NTSB reports), using a laptop 

configured with Intel® Core™ i5-8265U CPU @ 1.60GHz and 16.0 GB of RAM. 

The classification tool was implemented on a user-friendly web interface known as 

Virtual Raphael (after the name of the expert who  conceptualized and co-created MATA-D), 

where the reader can classify their own accident report online, without the need to save it to the 

database. Together with the results a message is displayed to remind that the human factors 

outputs are just an indication to support the user, and that they potentially present a similar 

accuracy, precision, recall and F1 score of the test set shown in this study. The classifier tool is 
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freely available at the following web address: 

https://cossan.co.uk/private/incident_classification/.  

The web-interface, coded in JavaScript, links three main components: the MATA-D 

dataset, the public accident reports, and a collection of six Matlab scripts.   The dataset and all 

the codes used in this work are also available to those readers and researchers that want to 

replicate the experiment or to do their own improvements:   

o The dataset MATA-D with labelled classifications of each report is available at 

University of Liverpool’s data repository, available at: 

 https://doi.org/10.17638/datacat.liverpool.ac.uk/1018  (Moura et al., 2020).  

o The links and references to the public accident reports classified in the MATA-D and 

used for the training and testing sets by the Virtual Raphael classifier are available from 

the Cossan website. However, due to property issues, they are not shared in their pdf 

formats.  

o The source code of the methods is available from the GitHub repository of the Cossan 

software. The path is https://github.com/cossan-working-group/VirtualRaphael/. 

 

3.4. Performance  

To measure the performance of the human factors virtual classifier, the binary 

classifications available in MATA-D were used as target classes. Four performance metrics 

were selected: accuracy, precision, recall and F1 score. The selection took into consideration 

that a typical accident in MATA-D is largely contributed by a large number of true negatives 

(an average of 46 negatives out of 53 categories were identified among all the reports), which 

might be classified as an imbalanced dataset. In those cases, F1 score is considered a better 

metric than accuracy (if recall and precision are considered equally important). 

The metrics were used to evaluate and compare the three trained classifiers using all 

reports, using the CSB reports and using the NTSB reports, respectively. To calculate them, ten 

randomly selected reports from the database were taken, maintaining constant the size of the 

samples and the training-test split. For each random sample generated, the training and testing 

sets were the same for the 53 category models created. The confusion matrices used to compare 

the true classes from MATA-D with the predicted classes are presented in Table 4-3 (all reports 

model),  

 

https://cossan.co.uk/private/incident_classification/
https://doi.org/10.17638/datacat.liverpool.ac.uk/1018
https://github.com/cossan-working-group/VirtualRaphael/
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Table 4-4 (CSB reports), Table 4-5 (NTSB reports). The green numbers represent the 

true positives and true negatives, while the red numbers are the false positives and false 

negatives – considering the cumulative sum of predicted results from 10 random training sets. 

The values in the tables indicate the counting of positive and negative classifications for all the 

reports. 

Table 4-3. Confusion matrix of all reports’ model predictions (cumulative sum of ten different samples) 

 
 

 
 
 
 
 
 

 

 

Table 4-4.Confusion matrix of CSB reports’ model predictions (cumulative sum of ten different samples) 

 
 
 
 
 

 

 

 

Table 4-5. Confusion matrix of NTSB reports’ model predictions (sum of ten different samples) 

 

 

 

 

 

 

 

 

The performance metrics were calculated using Equations 1 to 4 and summarised in 

Table 4-6. The classifier model trained and tested with CSB reports obtained the best 

performance in all four metrics. 

  

Table 4-6. Performance metrics according to confusion matrices cumulative sum of 10 randomly selected report 

from the database. 

 
all 

reports 

CSB 

reports 

NTSB 

reports 

T
ru

e 
cl

as
s 

 

0 8720 565 

1 994 851 

 
 0 1 

 
 Predicted class 

   

T
ru

e 
cl

as
s 

 

0 4730 198 

1 458 444 

 
 0 1 

 
 Predicted class 

   

T
ru

e 
cl

as
s 0 1608 156 

1 194 162 

 
 0 1 

 
 Predicted class 
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Accuracy 86% 89% 83% 

Precision 60% 69% 51% 

Recall 46% 49% 46% 

F1 score 52% 58% 48% 

 

Instead of measuring the performance based in the predictions’ cumulative sums, it was 

also useful to analyse how the performance metrics had varied according to different training 

and testing sets. Therefore,  Table 4-7 shows the minimum and maximum results achieved by 

the performance metrics, as well as their mean and standard deviation (SD) if the ten random 

samples were considered separately. It was possible to observe that the results in Table 4-6 

matched almost completely with the performance metrics mean values in Table 4-7. 

  

Table 4-7. Performance metrics of ten randomly selected reports from the database considered separately 

  All reports  CSB reports NTSB reports 

  Min max mean SD min max mean SD min max mean SD 

Accuracy  83% 89% 86% 2% 87% 91% 89% 1% 80% 88% 83% 3% 

Precision  51% 69% 60% 6% 64% 77% 69% 4% 37% 67% 51% 9% 

Recall  40% 53% 46% 4% 42% 55% 49% 5% 36% 72% 47% 10% 

F1 score  45% 60% 52% 4% 52% 61% 57% 3% 38% 57% 48% 5% 

 

In this study, the linear SVM model trained with all public reports achieved a mean of 

of 86% in the accuracy, 60% for the precision, 46% in the recall and 52% using the F1 score. 

Table 4-7 shows a slightly higher performance when the model was trained using only the CSB 

reports, which might be explained by their similarity of format and industry sectors. 

The results obtained had performed similarly to the benchmarked studies, as shown in 

the discussion section of this paper.  

Another important type of performance is the training time required by the machine-

learning algorithm. The elapsed time taken for the linear SVM to train and test with all reports 

was 63 seconds, with CSB reports was 28 seconds, and 20 seconds with the NTSB reports – all 

using the laptop configuration described in the methodology section. 

Word clouds were used in this research on an attempt to inspect the bag-of-words 

contents from the training and testing sets in the different models, in order to better understand 

their performance.  Figure 4-5,  Figure 4-6, and Figure 4-7 provide visualisation to the more 

frequent words in training and testing sets bag-of-words for all reports, CSB reports and NTSB 

reports. 
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Figure 4-5. Word cloud for the trained model all reports 

 

Figure 4-6. Word cloud for the CSB model 

 

Figure 4-7. Word cloud for the NTSB model 

4. Case studies 

 

In order to test the model in new accident reports (i.e.y, not yet on Mata-D), two 

investigation reports from different industry sectors (aviation and oil & gas) were chosen to be 

analysed and classified by the same expert that originated the dataset. The results of the 
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automated classification were not shown to him before the task, to avoid him to get biased. 

Many tests were conducted prompting the automated tool to analyse different sections of each 

report, to see if the analysis of different chapters impacted the results in different ways. The 

results shown in Table 4-8 and Table 4-11 present the results when the tool analysed the full 

report.  

 

4.1. Aviation case study – 2018 Boeing 737 MAX 8 AIRCRAFT final accident report 

On October 2018, an accident with a Lion Airline aircraft, led to 189 fatalities (KNKT, 

2019). Five months later, in 2019, an Ethiopian Airlines plane crashed minutes after take-off, 

killing all 157 onboard (Marks and Dahir, 2020). The fact that both accidents involved the same 

aircraft model, a Boeing 737-8 MAX, had concerned civil society and safety regulators about 

the possible common flaws, which resulted in all 387 planes with same model grounded 

globally (BBC, 2019). The two events have been famously known by the potential design flaws 

of the Manoeuvring Characteristics Augmentation System (MCAS) which might have mislead 

the pilots’ actions (Chronopoulos and Guzman, 2020).  

Differently from the first test of the tool performed on the preliminary accident report 

(Morais et al., 2019b), this research tested the machine-learning tool on the final accident report 

of the Lion Air Aircraft flight, issued on October 2019 (one year after the accident) (KNKT, 

2019). Although the final accident report of Ethiopian airlines was reportedly issued (Marks 

and Dahir, 2020), the link was not accessible for unknown reasons until the date this paper was 

submitted to reviewers, thus not included in this research. For the classification of the Lion 

Airline report, the three different training sets were also pursued (all publicly available reports, 

all CSB reports, and all NTSB reports). The final accident report was previously classified by 

the same experts which have classified MATA-Dataset within the CREAM human factors 

taxonomy, in order to compare their similarity in new reports. Table 4-8 shows the comparison 

between human factors classifications obtained with human coding and different training sets. 

The complete report was considered (from ‘SYNOPSIS’ to ‘6 APPENDICES’).  

The table was colour coded according to the legend below to help the reader understand 

how the model prediction metrics were calculated. It also helps to show what predictions the 

authors considered more important for this study (the darker the colour, the more important). 

(  ) True positives: dark green (expert classified as ‘1’ and machine predicted correctly as ‘1’) 

(  ) True negatives: light green (expert classified as ‘0’ and machine predicted correctly as ‘0’) 

(  ) False negatives: dark red (expert classified as ‘1’, but machine wrongly predicted as ‘0’) 
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(  ) False positives: red (expert classified as ‘0’, but machine wrongly predicted as ‘1’) 

 

Table 4-8. Virtual classifier trained using different report sets vs. expert classification for Lion Airline accident 

report (Boeing 737-8MAX) 

    

Expert 

classification 

Virtual 

classifier 

trained 

with all 

reports 

Virtual 

classifier 

trained 

with 

CSB 

reports 

Virtual 

classifier 

trained 

with 

NTSB 

reports 

H
U

M
A

N
 

Action Execution 

(Error Modes) 

Wrong Time 1 0 0 0 

Wrong Type 0 0 0 0 

Wrong Object 0 0 0 0 

Wrong Place 1 1 0 1 

Specific 

Cognitive 

Functions 

Observation Observation Missed 0 0 0 0 

False Observation 0 0 0 0 

Wrong Identification 0 0 0 0 

Interpretation Faulty diagnosis 1 1 0 1 

Wrong reasoning 0 0 0 0 

Decision error 0 0 0 0 

Delayed interpretation 1 0 0 0 

Incorrect prediction 0 0 0 0 

Planning Inadequate plan 1 0 0 0 

Priority error 1 0 0 0 

Temporary Person Related 

Functions 

Memory failure 0 0 0 0 

Fear 0 0 0 0 

Distraction 1 0 0 1 

Fatigue 0 0 0 0 

Performance 

Variability 
0 0 0 0 

Inattention 0 0 0 0 

Physiological stress 0 0 0 0 

Psychological stress 0 1 0 0 

Permanent Person Related 

Functions 

Functional impairment 0 0 0 0 

Cognitive style 0 0 0 0 

Cognitive bias 0 0 0 0 

T
E

C
H

N
O

L
O

G
Y

 Equipment Equipment failure 1 1 0 0 

Software fault 0 0 0 0 

Procedures Inadequate procedure 1 1 1 1 

Temporary Interface Access limitations 0 0 0 0 
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Ambiguous 

information 
1 0 0 0 

Incomplete 

information 
1 0 0 0 

Permanent Interface Access problems 0 0 0 0 

Mislabelling 0 0 0 0 

O
R

G
A

N
IS

A
T

IO
N

 

Communication Communication 

failure 
1 0 0 0 

Missing information 1 1 0 0 

Organisation Maintenance failure 1 1 1 0 

Inadequate quality 

control 
1 1 1 1 

Management problem 1 0 0 0 

Design failure 1 1 1 1 

Inadequate task 

allocation 
1 1 1 1 

Social pressure 0 0 0 0 

Training Insufficient skills 1 1 1 1 

Insufficient 

knowledge 
1 1 0 0 

Ambient Conditions Temperature 0 0 0 0 

Sound 0 0 0 0 

Humidity 0 0 0 0 

Illumination 0 0 0 0 

Other 0 0 0 0 

Adverse ambient 

conditions 
0 0 0 0 

Working Conditions Excessive demand 1 0 0 0 

Inadequate work place 

layout 
0 0 0 0 

Inadequate team 

support 
1 0 0 0 

Irregular working 

hours 
0 0 0 0 

   Sum of true positives 11 6 8 

   Sum of true negatives 30 31 31 

   Sum of false positives 1 0 0 

   Sum of false negatives 11 16 14 
   

Accuracy 77% (79%) 70%  74%  

   
Precision 

92% 
(100%) 

100%  100%  

   
Recall (or true positive rate) 50%  27%  36%  

   F1 Score 65% (67%) 43%  53%  
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According to Table 4-8, the model trained with all reports retrieved the best accuracy, 

recall and F1 score. Only the precision was slightly lower than those obtained using the CSB 

and NTSB reports. When the classifier is trained with all reports the following factors were 

observed in the Lion Air accident operating with the Boeing 737 MAX: human error of 

execution of wrong place (i.e. action out of sequence); the cognitive function failure of faulty 

diagnosis; the technological factors of equipment failure and inadequate procedure; the 

organisational factors of missing information, maintenance failure, inadequate quality control, 

design failure, inadequate task allocation, insufficient skills, insufficient knowledge. 

The confusion matrices for the three models are presented in Table 4-9. 

 

Table 4-9. Confusion matrices for the Boeing 737 MAX accident report predictions 

  All reports model  CSB reports  NTSB reports 

T
ru

e 
cl

as
s 

0 30 1  31 0  31 0 

1 11 11  16 6  14 8 

  0 1  0 1  0 1 
  Predicted class  Predicted class  Predicted class 

 

The report was also classified after selecting its potentially more important sections, 

which carried more information about the accident causes (the report initial informationwas 

discarded, as it contained overall info about the plane and not about the accident). For all three 

models, the performance metrics obtained are mostly similar to the analysis of the whole report, 

with slight improvement only for all reports model in terms of accuracy (79%), precision 

(100%) and F1 score (67%). Table 4-10 shows the results after grouping the model outputs for 

all the 53 factors into 4 main groups (i.e., human errors, individual factors, technological 

factors, and organisational factors). 

 

Table 4-10. Model performance by sets of human factors for the Boeing 737 MAX report. 

All 

reports 

Human errors and 

cognitive function 

failures 

Individual 

factors 

Technological 

factors 

Organisational 

factors 

Accuracy 71% 82% 75% 80% 

Precision 100% 0% 100% 100% 

Recall 33% 0% 50% 64% 

F1 Score 50% 0% 67% 78% 

The word cloud was included as it might serve as an additional support for the user to 

check if the information in the report is being correctly extracted or if there are problems that 
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deserve any intervention to improve the prediction performance. It might be also important to 

compare the word cloud obtained with the new report (Figure 4-8) with the word clouds of the 

training and testing sets (Figure 4-5, Figure 4-6, and Figure 4-7). 

 

Figure 4-8. Word cloud for the Boeing 737 MAX accident report 

To classify the Lion Air Accident report, the algorithm took 74 seconds with the model 

trained with all reports, 32 seconds with model trained with CSB reports, and 30 seconds with 

model trained with NTSB reports (considering the training time).  

 

4.2. Oil & Gas case study: FPSO Cidade de São Mateus (CDSM) accident report  

On February 2015, an explosion onboard FPSO Cidade de São Mateus killed nine, 

injured 26 workers, as well as caused damage to the installation, and production halt of two gas 

production fields up to this date (2021). The Brazilian Oil & Gas regulator (ANP) included in 

their investigation report root causes from the design phase to the emergency response. The 

FPSO (floating production, storage and offloading unit) was operated by BW Offshore in gas 

fields under concession to Petróleo Brasileiro S.A (Petrobras) in Brazilian waters (ANP, 2015). 

The tool was also trained with the same training sets adopted to the aviation case study. 

The FPSO CDSM accident report was previously classified by the same experts as MATA-

Dataset and Lion Airline report. Table 4-11 shows the comparison between human factors 

classifications obtained with human coding and the different training sets. The complete report 

was considered (from its title to ‘Conclusion’ chapter).  

Table 4-11. Virtual classifier x expert classification for FPSO Cidade de Sao Mateus accident report 

classification 

    

Expert 

classification 

Virtual 

classifier 

trained 

Virtual  

classifier 

trained 

Virtual 

classifier 

trained 

with 
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with all 

reports 

with CSB 

reports 

NTSB 

reports 
H

U
M

A
N

 

Action Execution 

(Error 

Modes) 

Wrong Time 0 0 0 0 

Wrong Type 0 0 1 0 

Wrong Object 0 0 0 0 

Wrong Place 1 0 0 1 

Specific 

Cognitive 

Functions 

Observation Observation Missed 1 0 0 1 

False Observation 0 0 0 0 

Wrong Identification 0 0 0 0 

Interpretation Faulty diagnosis 1 0 0 1 

Wrong reasoning 1 0 1 0 

Decision error 0 0 0 0 

Delayed interpretation 0 0 0 0 

Incorrect prediction 0 0 0 0 

Planning Inadequate plan 1 0 0 0 

Priority error 0 0 0 0 

Temporary Person Related 

Functions 

Memory failure 0 0 0 0 

Fear 0 0 0 0 

Distraction 0 0 0 0 

Fatigue 0 0 0 0 

Performance 

Variability 
0 0 0 0 

Inattention 0 0 0 0 

Physiological stress 0 0 0 0 

Psychological stress 0 0 0 0 

Permanent Person Related 

Functions 

Functional 

impairment 
0 0 0 0 

Cognitive style 0 0 0 0 

Cognitive bias 1 0 1 0 

T
E

C
H

N
O

L
O

G
Y

 

Equipment Equipment failure 0 0 0 0 

Software fault 0 0 0 0 

Procedures Inadequate procedure 1 1 1 1 

Temporary Interface Access limitations 0 0 0 0 

Ambiguous 

information 
0 0 0 0 

Incomplete 

information 
1 0 0 1 

Permanent Interface Access problems 0 0 0 0 

Mislabelling 0 0 0 0 

O
R

G
A

N
IS

A
T

IO
N

 

Communication Communication 

failure 
1 0 0 1 

Missing information 1 0 0 0 

Organisation Maintenance failure 1 1 1 0 

Inadequate quality 

control 
1 1 1 1 

Management problem 0 0 0 0 

Design failure 1 1 1 1 

Inadequate task 

allocation 
1 1 1 1 
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Social pressure 1 0 0 0 

Training Insufficient skills 1 0 0 1 

Insufficient 

knowledge 
1 0 1 0 

Ambient Conditions Temperature 0 0 0 0 

Sound 0 0 0 0 

Humidity 0 0 0 0 

Illumination 0 0 0 0 

Other 0 0 0 0 

Adverse ambient 

conditions 0 0 0 0 

Working Conditions Excessive demand 1 0 0 0 

Inadequate work 

place layout 
0 0 0 0 

Inadequate team 

support 
0 0 0 0 

Irregular working 

hours 
0 0 0 0 

   Sum of true positives 5 8 10 

   Sum of true negatives 35 34 35 

   Sum of false positives 0 1 0 

   Sum of false negatives 13 10 8 
   

Accuracy 75% 79%  85% 

   Precision 100%  89%  100%  
   

Recall (true positive rate) 28%  44%  56%  

   F1 Score 43%  59%  71%  

 

 

The model trained with NTSB reports retrieved the best accuracy, precision, recall and 

F1 score. If trained with NTSB reports the following features are observed in the oil & gas 

installation, the FPSO Cidade de Sao Mateus: human errors of execution of wrong place (i.e. 

action out of sequence); the cognitive function failures of observation missed and faulty 

diagnosis; the technological factors of inadequate procedure and incomplete information 

(related to temporary interfaces); the organisational factors of communication failure, 

inadequate quality control, design failure, inadequate task allocation, and  insufficient skills. 

For another visualisation of true and false predictions, the confusion matrices for the three 

models are presented in Table 4-12. 

 

Table 4-12. Confusion matrices for FPSO Cidade de Sao Mateus accident report predictions 

  All reports model  CSB reports  NTSB reports 

T
ru

e 
cl

as
s 

0 35 0  34 1  35 0 

1 13 5  10 8  8 10 

  0 1  0 1  0 1 
  Predicted class  Predicted class  Predicted class 
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The report was also classified after selecting its potentially more important sections, 

which carried more information about the accident causes (the chapters 3, 4 and 5 were 

discarded as they had more information on how the installation should operate rather than what 

went wrong). For all three models, the performance metrics obtained were mostly similar to the 

analysis of the whole report, with slightly improvement only for all reports model in terms of 

accuracy (77%), recall (33%) and F1 score (50%). Table 4-13 shows the results after grouping 

the model outputs for all the 53 factors into 4 main groups (i.e., human errors, individual factors, 

technological factors, and organisational factors). 

 

Table 4-13. Model performance for FPSO Cidade de Sao Mateus by sets of human factors. 

All reports Human errors and 

cognitive function 

failures 

Individual 

factors 

Technological 

factors 

Organisational 

factors 

Accuracy 62% 91% 88% 70% 

Precision 0% 0% 100% 100% 

Recall 0% 0% 50% 40% 

F1 Score 0% 0% 67% 57% 

 

The word cloud in Figure 4-9 shows that the text extracted from the full report had some 

frequent words that were not related to any accident cause of human factor. The words 

Brazilian, agency, biofuel, and ssm, are related to the name of the investigation body that is 

repeated at the footnote in every page – thus if possible, it would be desirable to clean footer 

and headers.  

 
Figure 4-9. Word cloud for the full FPSO CDSM accident report 
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To classify the Lion Air Accident report, the algorithm took 66 seconds with the model 

trained with all reports, 34 seconds with model trained with CSB reports, and 24 seconds with 

model trained with NTSB reports (considering the training time).  

 

5. Discussion 
 

MATA-D has the potential to incorporate the information of human reliability into risk 

assessments. It needs more data to increase its accuracy and reduce uncertainty. However, the 

data collection process of reading and classifying reports is a time consuming and challenging 

task, prone to errors. Therefore, this study aimed at demonstrating the capability of a machine 

learning tool trained using previously classified accident reports in MATA-D database to 

classify new accident reports with sufficient accuracy, precision and recall. In other words, this 

research investigates if machine learning is capable of accelerating the expansion of this 

database while maintaining the same data quality obtained with human experts. The results 

have shown that the automated classification of new accident reports can accelerate the data 

collection process, as it can reduce the time from around 3 days (when the report is classified 

by an expert) to around 1 minute. 

 

5.1. Performance and accuracy of the automatic classifier tool 
 

Four performance metrics were selected to investigate the differences between expert and 

machine-based classification. Table 4-14 benchmarks the performance metrics on this study 

against previous studies from literature. The results are summarised in Table 4-14 for the 

classifier trained using all reports. The classifier in this study and from previous studies were 

trained using all the human factors and the average performance among all the factors is 

reported in Table 4-14.  Additionally, only the best results available from the literature were 

considered. For instance, in the study of (Grech et al., 2002), when more reports were tested the 

precision of the method dropped from 84% to 48%, and the recall dropped from 89% to “not 

possible to measure”. 

 

Table 4-14. Average performance metrics for all the 53 factors versus results from literature 

Metric Test set  
Aviation 

case study  

Oil & gas 

case study  
Previous studies 

Accuracy 86% (SD = 2%) 77% 75% 
44% (Robinson et al., 2015) 

75% (Heidarysafa et al., 2018) 
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90%  (Ribeiro et al., 2020) 

Precision 
60% (SD = 6%) 

 
92% 100% 

22%  (Robinson et al., 2015) 

73%  (Goh and Ubeynarayana, 2017) 

84% (Grech et al., 2002) 

Recall 
46% (SD = 4%) 

 
50% 28% 

63%  (Goh and Ubeynarayana, 2017) 

89%  (Grech et al., 2002) 

F1 score 52% (SD = 4%) 65% 43% 

53%   (Ribeiro et al., 2020) 

67%  (Goh and Ubeynarayana, 2017) 

71%  (Heidarysafa et al., 2018) 

 

The availability of an acceptable threshold for each performance metric, which could 

help to decide when the data collected by an automatic classification could be added to a 

database without corrupting its quality, is not available. The comparison in Table 4-14 shows  

that, from the four chosen metrics, only the recall is below the benchmark studies. 

To understand how the recall impacts the quality assurance of this project, it is 

important to understand the objectives of the classification. At a first sight the recall metric 

seems to be the best candidate for human reliability classifier, because a performance shaping 

factor that goes undetected prevents the allocation of resources for the risk reduction. However, 

a good precision is also important for resource allocation– for a risk assessment purpose it might 

be more detrimental, as resources are allocated to prevent an event that might not really 

contribute to the risk. In other words, both false negatives and false positives are detrimental 

for the decision of partially replacing experts in the data collection. As it is not possible to 

achieve a precision and a recall of 100% at the same time (Buckland and Gey, 1994), it is 

suggested that a balance between both is achieved using the F1 score. If at some part of the 

analysis, it is considered that the recall or the precision are not equally important, it is suggested 

to use Fβ with β > 1 (recall more important) or β <1 (precision more important).  

Although the test set already provided the metrics needed to benchmark the performance 

of the proposed automatic classifier against previous studies, the presented case studies offered 

additional insights into how the classifier performed. The case studies have demonstrated the 

applicability of the approach for different sectors (i.e., aviation and oil & gas) although the 

performance achieved was slightly out of the bounds established by the test set standard 

deviation, especially regarding the precision and the recall. Literature suggests that this 

difference might be decreased by using domains specific training sets (Brownlee, 2018) and 
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this approach can be adopted  to improve the recall for a specific industry sector. However, in 

this study the aim is to learn from accident occurred in different sectors and therefore training 

a generic classifier.  

For the oil & gas case study trained with all reports, a perfect prediction (100%) has 

been obtained although with a low recall score (28%), meaning that only a few human errors 

and performance shaping factors were identified but no false positive.  

It has also been tested whether grouping all the 53 factors into 4 main groups (i.e., 

human errors, individual factors, technological factors, and organisational factors) would have 

been able to improve the classification when the classifier is trained using all reports. For the 

aviation case study, as shown in Table 4-10, the F1 score improved to 78% for organisational 

factors and only to 65% for technological factors (compared to the overall mean of 65% shown 

in Table 4-14). For the oil & gas case study, in Table 4-13, the F1 score of organisational and 

technological factors improved to 78% and 67%, respectively due to the use of an enriched 

training dataset with higher frequency of organisational and technological factors. For both case 

studies, the F1 score of human errors and individual factors performed worse when analysing 

the factors by groups. 

Surprisingly, the oil & gas case study has showed better results when the classifier was 

trained using only NTSB reports. Although this set contains some reports related to oil & gas 

terminals and distributions, the majority of reports are from the aviation sector. The expectation 

was that CSB reports would have provided a better training set. For the Lion Air accident report, 

the classifier trained with all reports performed better than those trained only with NTSB 

reports, which contains more aviation specific language (as can be seen by the word cloud 

presented in Figure 4-7). This result might be due to the different formats used for the reports 

tested, as they are from different investigation bodies. 

Observing the results of the case studies, it has been noted that the majority of categories 

detected by the machine-learning approach were inside the 26 most significant contributing 

factors per cluster identified in a previous research (Moura et al., 2017b). This might suggest 

training the classifier using only fewer frequent categories. However, tests were performed 

reducing the number of categories to the 13 most frequent ones, and the results did not present 

significant changes, e.g., an improvement of ~5% for precision, recall and F1 score, but with a 

deterioration of the same level in the accuracy. Therefore, it has been decided to keep all 

categories in the training set, as the main goal of this research is to expand the current MATA-

D dataset using the same categories already available and therefore decrease the uncertainty 

associated to rare combinations of human error and performance shaping factors.  
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This study had not found a significant difference between the automated classifications 

of full reports and of reports’ selected sections. Word cloud figures were provided to visualise 

frequent words and aided the task of inspecting which sections of the accident reports provided 

more relevant information.  

 

5.2. Future improvements and recommendations 

 

One of the limitations of the current classifier is its moderate capability to identify 

infrequent classes. One solution is to enrich the training set with accident reports where those 

infrequent classes had occurred (according to an analysis provided by human factor experts) – 

by training the model on these classes it is expected that the overall recall metric will increase 

as more data is used. Different resampling strategies might also be used (e.g., targeting 

infrequent classes to resample rather than sampling the training data set randomly). Finally, 

algorithms that maximise the recall while using the precision metric as a constraint should also 

be investigated (see e.g. (Bennett et al., 2017).   Solutions to strengthen learning with regards 

to the small class might be applied (e.g., adjusting the SVM class boundary based on kernel-

alignment). Further research might also assume higher misclassification costs applied to 

samples in the infrequent classes and seek to minimize high cost errors (Sun et al., 2009, 

Brownlee, 2021). 

In addition, further development of the word cloud tool to inspect bags-of-words of each 

human factor category are suggested. This might also help to understand some infrequent 

classes. Additionally, adjustments or pre-processing on the format of accident investigation 

reports could potentially improve the predictions from automated classifiers. The availability 

of good quality accident reports will also improve the performance of automatic classifiers.  For 

instance, accident reports should have consistent chapter enumeration, only repeated in the 

summary, or referred in the body text.  Section titles should clearly state if the information 

explain the normal characteristics of the system and it should not mix important information 

about the accident within normal behaviour.  Key information should also be provided in textual 

format and not only as image. Finally, the public availability of accident reports even if not in 

English (as translating tools are steadily getting better) would significantly contribute to the 

knowledge of human error.  

 

6. Conclusions 
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A virtual human factors classifier based on machine learning has been presented to 

provide an automatic classification of accident reports involving human error. The approach 

represents an efficient way of expanding existing human reliability databases based on accident 

reports analysed by a machine-learning algorithm. The approach has the potential to substitute, 

or at least support, the classification task normally conducted by a human expert (a time-

consuming process that could take weeks, depending on the complexity of the event and on the 

number of reports or inquiries available). The developed tool provides nearly real-time 

classification into a specific taxonomy able to classify a two hundred pages report in a minute 

(an insignificant time compared to the time required for a person to complete the same task).  

The findings will be of interest for risk assessors of any industry sector that may need 

to learn more and faster from major accidents, as automated text analysis can help them to 

expand their datasets. The presented approach focused at collecting new data for the MATA-D, 

but the tool can easily be used with other human reliability taxonomy or to be applied to 

components’ reliability data, as long as a labelled dataset is provided together with the text 

sources. 

The case studies showed that the approach is robust and efficient. The performance 

metrics achieved are satisfactory when compared against human classification and previous 

studies. In addition, this is the only study which has been trained using reports from different 

industry sectors, and with a relatively large number of human reliability categories. The results 

have demonstrated the possibility of using machine-learning based approaches for helping the 

empirical data collection to improve human reliability analysis, and finally learning lessons 

from different industry sectors in an efficient and timely way. 
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5. Chapter V: Modelling human reliability with confidence 
 

There is one last important issue in modelling data from MATA-D, which occurs in all 

the current human reliability datasets: the confidence which is dependent on the sample size. 

The diagram in Figure 3-6 had already posed this dilemma: even collecting more data, as 

proposed in Chapter 4,  the size of the interval probability might be never small enough to make 

the decision-maker have the necessary confidence to make an informed decision. This is a 

problem flagged by some empirical HRA data collection projects: the need to understand if 

small sample sizes are statistically significant – it is important to statistically infer if a human 

erroneous action has occurred by chance or due to a combination of certain performance 

shaping factors (Kim, 2020). 

The issue is recurrent when modelling safety critical tasks with Bayesian and credal 

networks using human reliability data: we have more confidence for some combinations in 

conditional probability tables (CPTs) than for others, due to their different sample sizes. In fact, 

this is an issue even for CPTs with no missing combination. 

Table 5-1 is an example of a conditional probability table from a node in the model 

mentioned in Chapter 3. This CPT shows that, according to MATA-D, the combination of the 

variables inadequate task allocation and insufficient knowledge occurs more often with 

workers’ faulty diagnosis than the combination of communication failure and inadequate task 

allocation. 

Table 5-1. CPT showing samples sizes 

Communication failure FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE 

Inadequate task allocation FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE 

Insufficient knowledge FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE 

Faulty diagnosis - FALSE 71 15 62 44 1 1 7 6 

Faulty diagnosis - TRUE 1 1 7 12 2 3 3 2 

However, during the CPTs normalisation process necessary for assessing Bayesian and 

credal networks, the information regarding the sample size for each combination is lost, as 

shown in the normalised CPT (Table 5-2). 

Table 5-2. Normalised CPT 

Communication failure FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE 

Inadequate task allocation FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE 

Insufficient knowledge FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE 

Faulty diagnosis – FALSE 0.99 0.94 0.90 0.79 0.33 0.25 0.70 0.75 

Faulty diagnosis – TRUE 0.01 0.06 0.10 0.21 0.67 0.75 0.30 0.25 



136 
 

 

Just looking at the normalised CPT, it could be (wrongly) inferred that the odds of 

having the combination communication failure – inadequate task allocation – faulty diagnosis 

is slightly higher than the combination inadequate task allocation – insufficient knowledge – 

faulty diagnosis. However, if the decision-maker could see the sample sizes, she/he would infer 

the opposite. We suggest naming this CPT issue as data disproportion. 

As small sample sizes and data disproportion are a typical problem in human reliability 

empirical data – for all data collection strategies – it has been decided to develop an approach 

where decision-makers could see the interval probability together with confidence. The 

approach suggested is to calculate the reliability by combining credal networks with confidence 

boxes (c-boxes).  

Confidence boxes (c-boxes) have been selected due to their computability, which makes 

this tool suitable for reliability analysis purposes. The bases for c-boxes are the association of 

classical notions of confidence (Neyman, 1937), confidence distributions (Cox, 1958), 

imprecise probability concepts (Walley, 1991) and probability boxes (Ferson et al., 2003). 

For instance, Error! Reference source not found. and Figure 5-2 below show how 

confidence can be depicted together with the probability. Our confidence about the probability 

of an event that has been observed in only one of ten trials (1/10) is not the same as that of an 

event observed to occur ten times in one hundred trials (10/100).  

 

Figure 5-1. C-box of one out of ten trials (1/10) 

 

Figure 5-2. C-box of one hundred out of one 

thousand trials (100/1000) 

The skinnier Figure 5-2 depicts that although one event out of ten trials has the same 

probability as an event that occurred 100 times out of a thousand trials, P(1/10) = P(100/1000), 

our confidence about the probability P(100/1000) is higher. The breadth between the left and 
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right bounds in each figure reflects the sample uncertainty, which is a function of sample size 

in the empirical data.  

This research solution is still under development, and yet needs to be fully automatized 

in OpenCossan software, where credal networks are written. However, OpenCossan is Matlab 

based, whereas the code for c-boxes is implemented in R. Thus, the first case study to this new 

approach consists of a very small problem: a network of only three nodes. The ‘toy problem’ 

chosen is a fatigue model of a worker in offshore leadership: irregular working hours and 

excessive demand as the influencing factors for leadership fatigue.  

 

Figure 5-3. A simple model of fatigue. 

The idea for the model has originated due to a workshop organised by the safety 

regulator in the UK, the Health and Safety Executive. In this workshop, HSE has suggested that 

more research should be addressed to understand how new work arrangements in place (e.g. 

different shifts and rotas) might increase workers’ fatigue, to help them develop an evidence 

based guidance for industry (HSE, 2020a). 

This last piece of research has been aimed at a conference – and its abstract has been 

submitted and accepted by the 31st European Safety and Reliability Conference (ESREL 2021). 

This piece of work is not published in this thesis, but it is listed in the List of publications.  

This research solution investigates mainly epistemic uncertainties, e.g. the relations 

within performance shaping factors, and between those and human errors. However, there are 

aleatoric uncertainties that might be not captured by this strategy, such as variance between 

crews’ performance in one specific plant. There are previous work where the estimates’ error 

bounds address a number of other sources of uncertainty and variability (e.g. model 

incompleteness, variability across plants and industries, incompleteness of the data), as HRA 

methods do not limit themselves to treat statistical uncertainty (Hallbert et al., 2006, Greco et 

al., 2021).   

http://esrel2021.org/en/index.html
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6. Chapter VI: Conclusion 
 

Aims of the study 

The present research has aimed to improve and reinforce the use of human reliability 

analysis as a tool to predict and prevent accidents in complex socio-technical systems. To 

achieve this aim, the research has explored a new dataset and some methods to overcome three 

problems: (i) the lack of confidence in HRA results due to variation and data sparsity, (ii) the 

over-conservatism of HRA methods due to lack of realistic relations between performance 

shaping factors and human errors, and (iii) the time-consuming and potentially biased process 

due to expert elicitation burden in the risk quantification. 

Main research findings 

This study has shown that MATA-D is a suitable empirical database to be used in human 

reliability analysis quantification and that modelling it with Bayesian or credal networks 

enables the assessor to directly infer the impact of performance shaping factors in human error 

probability. However, there are “implications of using an accident database as the basis for the 

developed HRA models. The data included in MATA-D is representative of situations that have 

resulted in accidents. Much of the probabilistic estimates that can be inferred from the database 

are conditional on the fact that the accident has occurred. Probabilistic risk assessment typically 

is not conditional on accidents, it’s aim is actually to assess the accident probability. Using 

conditional estimates in place of marginal ones may very well distort the numeric results”.   

One of the most significant findings to emerge from this study is that credal networks 

might be an interesting alternative to Bayesian networks. Their ability to model imprecision 

better describes human reliability data which tends to be more uncertain and sparser than 

component reliability data. If used together with the developed methodology of filling missing 

combinations of conditional probability tables with intervals that vary from zero to one, credal 

networks eliminate the need for expert elicitation in the quantification step.  

The research has also provided an alternative collection method to decrease the 

epistemic uncertainty of MATA-D and the time needed to extend and update it, based on natural 

language processing and machine-learning. Although the fact that a performance shaping factor 

observed during an accident does not necessarily mean that it is a driver, this assumption was 

based on the fact that previous study has shown that some combinations are recurrent and do 

have a pattern (Moura et al., 2017a), being possible to conclude that the combinations are not 
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governed by aleatory uncertainty alone (true random or uncontrollable processes), but also by 

epistemic uncertainty (which can be reduced, at least theoretically by collecting new data or 

using more detailed models) (Patelli et al., 2016). 

Implications for the field of knowledge 

The thesis argues that the human reliability community might have enough data to rely 

on data-driven analysis if the right imprecise probability tools are used. The evidence from this 

study provides insights needed to create the conditions for data-driven human reliability 

methods. It might be possible that the level of empirical data is already enough to conduct data-

driven human reliability if such novel probabilistic tools that accommodate and reflect 

imprecision are used. The credal network strategy might not only contribute to find human error 

probabilities, but to adjust them according to the level of each performance shaping factors, in 

a different methodology than proposed by previous studies (Kim et al., 2018). This adjustment 

step is usually conducted by assessors according to the rules proposed in HRA methods. 

This does not rule out using existing human reliability methods that rely on expert 

judgement, as they will still be needed to structure the qualitative part of the human reliability 

analysis, such as modelling the tasks and establishing a framework to classify human errors and 

performance shaping factors for each task. 

The findings will be of interest to safety and risk assessors, as well as decision-makers 

who have to decide where to allocate resources based on risk assessments. The fact that credal 

networks provide results with interval rather than point probabilities might improve the 

transparency of the results and facilitate risk communication between risk assessors and 

decision-makers.  

Although the present research does not include a full human reliability analysis that 

combines credal networks with c-boxes, the preliminary findings suggests that this combination 

has the potential to help the HRA community to fight off the fears of using empirical data that 

might lack statistical power. A natural progression of this work is to automatize an algorithm 

that combines credal networks with c-boxes, enabling the analysis of more complex human 

reliability models. 

Recommendations for further research work 

A possible shortcoming of the strategy of using MATA-D to generate human error 

probabilities (HEPs) is shown on the discussion following the results in Figure 2.5, where the 

HEPs from the proposed approach were higher than the CREAM’s HEPs estimates provided 
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by (Hollnagel, 1998): in CREAM  all human errors were accounted for, including those that 

have not produced an accident, thus increasing the HEP denominator ‘opportunities of errors’ 

(Equation 2-1) and decreasing the resulting HEPs. On the other hand, using MATA-D, we only 

have accounted for errors that resulted in accidents, consequently scrapping dozens or even 

hundreds of opportunities of error from the equation, those where the operator or the system 

have managed to recover the system. This discussion (and possible shortcoming) is also valid 

for the results obtained with the credal network, although the discussion was not raised in the 

second manuscript as the validation step was not undergone. Future work could investigate 

ways of turning such pessimistic denominator into a more realistic one, such as multiplying a 

correction factor. 

Further research could usefully explore different algorithms to decrease time spent on 

computing credal networks, translations between different HRA taxonomies (thus MATA-D 

could be used to support other HRA methods), strategies to convert human factors to human 

reliability data, exploration of different text analytics tools to collect data from new major 

accident reports, methods to give higher weight to data classified by experts and lower weight 

to data classified by machine in new versions of MATA-D, collecting the same data from 

different assessors to understand uncertainties related to the collection step, and to expand the 

dataset to industry sectors not yet investigated such as the mining industry. 

Regarding the automated data collection, it is possible that higher precision and recall 

might be achieved if using domains specific training sets, as suggested by literature (Brownlee, 

2018). Although this clustering was avoided for the data collection, as the aim was to learn from 

accident occurred in different sectors and therefore training a generic classifier, it is a fact that 

MATA-D pools together industries and plants with different safety performance standards – 

such as oil & gas and nuclear industry (Sovacool et al., 2015, Burgherr and Hirschberg, 2008, 

Ritchie, 2020). Although the assumption used in the thesis was that the human behaviour and 

its relation with performance shaping factors are similar in industries with similar social-

technical complexities, further investigation could be directed to understand if accident data 

from industries and plants with lower safety standards, are representative for industries and 

plants with higher safety standards. 

Continued efforts are needed to make human reliability analysis part of the risk 

management toolkit of different industry sectors, enabling informed decisions under 

uncertainties arising from the complex human-technology-organization interactions.  
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6(1). https://doi.org/10.1115/1.4044796 

Note: This research paper has been submitted on January 2019, published online as author’s version 

on November 2019, and finally had its final version published on March 2020 in the Special Issue of 

https://doi.org/10.1115/1.4044796
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Appendices 
 

Appendix A 

 

Bayesian networks can be represented by acyclic graphs, where nodes are connected to each 

other by arcs expressing dependencies among variables. The arcs directions must be coherent 

with the causal relationship of the connected variables. In the BN represented in Figure 0-1, the 

nodes A and B are called parent nodes of C, which is referred to as their child node. A and B 

are also called root nodes, as they do not have parents (Tolo et al., 2017). Figure 0-1 shows a 

graphic representation of the conditional probability expressed in the following equations: 

Equation 0-1 

𝑃(𝐶 = 𝑐1|𝐴 = 𝑎1, 𝐵 = 𝑏1)  

Equation 0-2 

𝑃(𝐶 = 𝑐2|𝐴 = 𝑎1, 𝐵 = 𝑏1) = 1 − 𝑃(𝐶 = 𝑐1|𝐴 = 𝑎1, 𝐵 = 𝑏1)  

 

 

Figure 0-1. Directed acyclic graph of a Bayesian network 

 

Bayes’ theorem expressed in Equation 0-2 provides the mathematical background for joint 

probabilities modelled by a generic BN with nodes X1, X2,…, Xn, where pi refers to the 

outcomes assumed by the parents of the node Xi, which state is represented by Xi. The joint 

probability associated with this generic BN is represented by the following equation: 

 

Equation 0-3 

𝑃(𝑥1, … , 𝑥𝑛) = ∏ 𝑃(𝑥𝑖|𝑝𝑖)

𝑖

 

 

If all nodes have a binary state, the number of combinations to consider in order to generate 

a child’s node conditional probability is two (a pair of combinations) to the power of the number 

of states of the parent nodes. These possible combinations are usually organized in conditional 

probability tables, as the one represented in Table 0-1. 
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Table 0-1. Example of CPT for the BN of Fig. 2.10 

A State 1 State 2 

B State 1 State 2 State 1 State 2 
State 

1 of C 
P(C=c1 | A=a1,B=b1)  

 

P(C=c1 | A=a1,B=b2)  

 

P(C=c1 | A=a2,B=b1)  

 

P(C=c1 | A=a2,B=b2) 

State 

2 of C 
P(C=c2 | A=a1,B=b1) 

Or 

1-P(C=c1 | A=a1,B=b1) 

P(C=c2 | A=a1,B=b2) 

 Or 

1- P(C=c1 | A=a1,B=b2)  

P(C=c2 | A=a2,B=b1)  

Or 

1- P(C=c1 | A=a2,B=b1)  

P(C=c2 | A=a2,B=b2) 

Or 

1-P(C=c1 | A=a2,B=b2) 

 

The conditional probabilities represent the strength of the dependencies associated with 

each cluster of parent-child nodes and it will depend on the structure of the BN, specifically on 

how the nodes are connected to each other. 

The inference computation in BNs can be obtained through some software packages, which 

allow the adoption of several algorithms, whether exact or approximate (Patelli et al., 2018, 

Murphy, 2007). Those algorithms and modelling techniques are used as a starting basis and 

supporting tool for our development, which extrapolates toward an enhanced approach with 

novel features. 
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Appendix B14 

 

Detailed description of tasks, their potential human errors and PSFs and the full correlation 

table of consequence-antecedent adapted from (Hollnagel, 1998). 

Safety Critical task analysis table  

The table below provides information about the tasks involved in cargo venting operation, its 

criticality, the team responsible for each of them, potential human errors associated, 

performance shaping factors that trigger those human errors (from context and, in case of doubt, 

from Hollnagel’s suggestion in consequent-antecedent links). 

  

                                                                 
14 Appendices B to H are also available online at Supplementary material:  
https://datanywhere.liv.ac.uk/?linkid=KZi4zr6VWWVMqwMftD1IkpU7sApsZNJC8YDODS6ncAGbVD1eLp6wfg  

https://datanywhere.liv.ac.uk/?linkid=KZi4zr6VWWVMqwMftD1IkpU7sApsZNJC8YDODS6ncAGbVD1eLp6wfg
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Cargo Venting Task Subtask Description 
Team that 
performs the 
task  

Human 
Execution 
Error     

Cognitive function failure 
Performance Shaping 
Factors 

1. Verify pressure in 
the cargo tanks  

 
Check operationality of tank pressure 
transmitters.  Verify tank pressures at the 
vessel's control room. 

Team A 
(cargo 
technician) 

Not 
Applicable 
(NA) 

Observation missed 
(because there was a 
measurement that was 
overlooked. No 
interpretation involved) 

Organisational factors: 
inadequate quality control 
(check operationality of tank 
pressure transmitters), 
maintenance failure (if 
transmitters are in 
maintenance backlog), 
training, insufficient 
knowledge (no situational 
awareness/understanding 
of the context could be an 
issue) 
Technological factors: 
incomplete information 
(monitoring of tank 
pressures is performed by 
the vessel's control room) 

2. Check if 
conditions (weather 
and simultaneous 
operations) are 
favourable for 
cargo venting 
operation 

2.1 Check 
wind 
direction and 
speed 

Prior venting, check the prevailing wind 
speed and direction in specific Instrument 
and compare with the tresholds specified 
in the procedure.  Usually wind speed with 
less than 5knots have stricter operational 
measures. The direction may impact boat 
operations, maintenance being carried on 
the deck and process modules. (N.B. not 
clear in the procedures where 
instrumentation is located, thus it was 
assumed it is in the cargo control room or 
at the bridge. Something to be checked in 
a future walk-through). 

Team A 
(cargo 
technician)  

 Observation missed  

Organisational factors: 
inadequate task allocation, 
insufficient skills. 
Technological factors: 
incomplete information   
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2.2 Check 
any lightning  
in the near 
vicinity  

 Check electrical storms (lightning) in the 
near vicinity. No instrument is used. 

Team A 
(cargo 
technician)  

 

Incorrect prediction (fail 
to anticipate side effects 
in some cases, speed of 
development or 
development of the 
event) 

Organisational factors: 
insufficient knowledge, 
inadequate managerial rule, 
adverse ambient conditions.  
Potential Individual factors: 
cognitive bias (due to 
confirmation bias).  

 

2.3 Check 
boat and 
helicopter 
operation in 
progress 

Check if there are any nearby boat 
operation in progress. Usually, no 
instrument is used, but FPSO may have a 
planned support vessel operation.                                   
Check if there are any helicopter operation 
in progress or planned. 

Team A 
(cargo 
technician): 
boats, 
support 
vessel                 
Team B 
(radio-
operator) 

 
 
 
Observation missed 

Potential Organisational 
factors: inadequate task 
allocation, adverse ambient 
conditions, missing 
information (a plan with 
helicopters and supply 
vessels is incomplete or was 
misunderstood), insufficient 
skills (in case of nearby 
boats, some of them are 
unplanned) 

3 Make decision:   

If wind speed and direction are not 
favourable and other simultaneous 
operation have priority, cargo technician 
and cargo superintendent have to decide if 
the tank pressure urgently demands 
venting or it can be delayed. /'If wind 
direction is clear off the any boat area, 
then venting during boat operations may 
be carried out. If wind is blowing in the 
same direction and if situation demands 
for venting then any boat operations will 
be suspended to facilitate venting'./To 
suport the decision, they can check the 
procedure, which brings information  from 
risk analysis of weather thresholds, and 
boat position to be avoided./ If the  risk 
analysis have used the wrong assumptions 
(e.g. the computational fluid dynamics 

Team A: 
cargo 
technician 
and cargo 
superintend
ent 

 Inadequate Plan 

Inadequate Procedure, 
Inadequate Task Allocation, 
Managerial Rule, task 
planning and work 
procedure, Insufficient 
Knowledge 
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used assumes the vented gas is inert with 
no, the risk analysis and procedure will 
have the wrong tresholds./It will be up to 
the Cargo superintendent to evaluate and 
establish criteria for the periodicity of the 
operation's routines, including anticipation 
of the same when weather and 
simultaneous operations are favourable 
(plan ahead according to the operational 
planning and forecast of weather 
conditions.  

4. In case of 
unfavourable 
condition of wind 
direction and speed, 
inform teams B and 
C about the 
operation. 

 

Inform the Production supervisor, control 
room operator and radio operator about 
the operation to be done and the area to 
be affected according to the wind 
condition. /The OIM and Production 
superintendent might decide whether to 
restrict loading flow./The communication 
is made by the radio. 

 

Wrong 
Place 
(Omission 
in a 
sequence 
of actions) 

Faulty Diagnosis 
(incomplete diagnosis), 
Inadequate Plan 

Inadequate Procedure, 
Insufficient Knowledge, 
Missing Information, 
Inadequate quality control 

5. Suspend all the 
Hot Work Permits, 
relevant spark 
potential permits, 
and any work near 
the vent riser (or 
areas affected by 
venting as reported 
by Cargo 
supervisor)  

5.1. Request 
Permit to 
Work (PTW) 
to Operation 
team  

When requesting the PTW, inform wind 
speed and direction and areas to be 
affected according to procedure. 

Team A: 
cargo 
technician 
and cargo 
superintend
ent 

Wrong 
Place , 
Omission 
in a 
sequence 
of actions 

Faulty Diagnosis 
(incomplete diagnosis) 

Insufficient Knowledge, 
communication failure, 
Inadequate Task Allocation 

 

5.2 Analyse 
affected 
area and 
affected 
ongoing and 
planned 
works 

The Production superintendent usually 
coordinates the Permits to Work (PTW) 
and must decide which ‘Relevant works’ 
have to stop (those with potential to 
generate spark). A PTW meeting might be 
conducted with the affected teams.  

Team C: 
PTW 
coordinator 
is usually 
team C. 

 
Faulty Diagnosis, 
incomplete diagnosis, 
Inadequate Plan 

Insufficient Knowledge, 
Inadequate Quality Control, 
Inadequate Task Allocation 
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5.3 Stop 
relevant 
works  

Maintenance teams  have to follow the 
instructions to stop relevant work until 
furhter notice./ The cargo superintendent 
(team A) usually  coordinate the 
suspension of cargo crane operation if the 
area is affected.   

Team A 
(cargo 
superintend
ent) and D 
(maintenanc
e teams in 
affected 
areas) 

Wrong 
Place 
(Omission 
in a 
sequence 
of actions) 

Cognitive Bias (Illusion of 
Control) 

Missing Information 

 

5.3 Issue the 
PTW for 
cargo 
venting 
operation 

PTW to cargo venting shall be issue only 
after all relevant works are stopped.  

Team C: 
PTW 
coordinator 
is usually 
team C. 

Wrong 
Place 
(Omission 
in a 
sequence 
of actions) 

  

 

5.3 
Announce 
the 
operation 
will start on 
‘PA’  

Announce on public announcement (PA) 
system, on the languages specified on 
procedure, that cargo tank venting will 
start and all the personnel must clear off 
the vent riser area.   

Team B: 
radio 
operator 

Wrong 
Place 
(Omission 
in a 
sequence 
of actions) 

Distraction 

Communication Failure, 
Inadequate Procedure, 
Inadequate Quality Control, 
Maintenance Failure  

6. After receiving 
the Permit to Work, 
start the Cargo tank 
venting.  

6.1 Open the 
vent riser 
valve in the 
range 
specified in 
procedure  

Start the operation opening the valve at 
range specified in the procedure, when the 
pressure in the tank is at a pressure 
specified in the procedure. These 
specifications varies in different wind 
conditions and under different tank 
pressures. The indications and actuation of 
the valves are in the cargo control room 
screen./To operate correctly the valves 
must be calibrated and fully functional. 

Team A: 
Cargo 
technician 

Wrong 
Type 
(Magnitud
e) 

Faulty Diagnosis, 
Cognitive Bias 

Inadequate Procedure, 
Inadequate Quality Control, 
Maintenance Failure, 
Insufficient Skills, 
Equipment Failure 

7. Remain standby 
during operation  

7.1. Remain 
in cargo 
control room 
until 
completion 
of venting.  

Cargo technician can only leave if replaced 
by a colleague from the same team trained 
in the procedure. (N.B. Monitoring of tank 
pressures is performed by the cargo 
control room, that is usually different and 

Team A: 
Cargo 
technician 

Wrong 
Time 

Priority Error, Distraction 
Communication Failure, 
Management Problem 
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far from the operation control room. To be 
checked in walk through.)  

 
7.1.1. Stay 
on watch by 
the radio  

Cargo technician must keep attention to 
radio while performing the operation. If 
team C informs that level of gas detection 
is rising to certain threshold, the vent post 
valve must be closed. 

Team A: 
Cargo 
technician 

   

 

7.1.2.  
Continuously 
monitor 
wind speed 
and direction  

In case of wind change of direction and 
speed, inform the cargo technician  

Team A: 
Pump man 
or another 
cargo 
technician 
(different 
from the one 
controlling 
the vent 
valve at the 
control room 

 Observation Missed, 
Cognitive Bias 

Insufficient Knowledge, 
Inadequate Procedure, 
Inadequate Task allocation, 
Inadequate Quality control 

 

7.2. Inform 
team A if any 
gas is 
detected on 
F&G 
detectors  

If low levels of gas are detected, control 
room operator must inform on the radio to 
stop venting, if venting is still necessary, 
stop production. 

Team C: 
Control 
room 
operator 

Wrong 
Time 

Observation Missed 

Communication Failure, 
Inadequate Task Allocation, 
Insufficient Skills, Missing 
Information 

 

7.2.1 
Monitor the 
fire and gas 
(F&G) panel 
during the 
ventilation 
and stay on 
watch by the 
radio. 

Control room operator shall monitor the 
lower explosive limit (LEL) via the gas 
detection system (screen at the 
production control room operation) during 
the whole cargo venting operation. If a 
high LEL is attained (usually around 40%), 
CRO should inform the cargo technician 
(team C) that venting must be stopped 
until the gas has been dispersed. Typically, 
the alarm is activated at 20% LEL and the 

Team C: 
Control 
room 
operator 

 Observation Missed, 
Cognitive Bias 

Insufficient Knowledge, 
Inadequate Procedure, 
Inadequate Task allocation, 
Inadequate Quality control 
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executive action, in this case an ESD, is set 
at 60% LEL.’ (de Vos D, Duddy M, 
Bronneburg J. The problem of inert-gas 
venting on FPSOs and a straightforward 
solution. 2006). 

 

7.3 Inform 
team A 
about any 
incoming 
boats and 
helicopter  

In case of unexpected incoming helicopter 
or incoming boats in the affected area, 
inform the cargo technician. A decision 
should be made on stopping the cargo 
venting operation or requesting the boat 
or helicopter to change route. 

Team B: 
Radio 
operator 

Wrong 
Time  

Faulty Diagnosis  

Insufficient Knowledge, 
Inadequate Procedure, 
Inadequate Task allocation, 
Inadequate Quality control 

8. Close vent valve 
when the pressure 
in tanks drop below 
the threshold 
stablished on 
procedure.  

 
Close totally the valve when the tank 
pressure reaches the range specified in the 
procedure. 

Team A: 
cargo 
technician 

Wrong 
Type , 
Magnitude 

Faulty Diagnosis, 
Cognitive Bias  

Inadequate Procedure, 
Inadequate Quality Control, 
Maintenance Failure, 
Insufficient Skills, 
Equipment Failure  

9. Inform teams B, 
C and nearby boats 
that venting 
operation has 
finished, and the 
vent valve is fully 
closed.  

  
Team A: 
cargo 
technician 

Wrong 
Place , 
Omission 
in a 
sequence 
of actions 

Distraction 
Communication Failure, 
Inadequate Task Allocation , 

Note 1: The most critical tasks, emphasised in bold, are the operational measures to prevent cargo venting related incidents. 

Note 2: In doubt on a human error or another, it was assigned the one that would deliver the worst consequence (in a qualitative scale, as suggested by 

Hollnagel). 

Note 3: Both procedures in Brazil duty holders contained instructions for the crew to inhibit (override) the gas detectors in the affected process area, in case 

the wind speed was below a threshold (e.g. 2knots) and with certain direction specified in the risk analysis that could reach some process modules. As it is not 

considered a best safety practice, as it maximises production continuity but minimises safety, it was not included in the task analysis nor in the model. Overriding 

the detectors means overriding the system automatic action to shut down the production and still leaves the vision and alarm of the gas level to the control room 

operator, so they can inform the cargo team to stop cargo venting. However, it increases the possibility of human error and accountability of the operator. 

Finally, to prevent reoccurrence of shutdown related incidents, a number of operational measures are proposed in references regarding this operation (cited in 

the paper case study session), and none of them proposing the override of a safety barrier such as gas detectors. 
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Note 4: Some references suggested the action ‘select the vent outlet according to the wind direction, always with the objective of removing gases from the 

installation’. However, it was not considered a critical task analysis as ‘downstream and upstream’ vent outlets (in regard of the direction of a ship) are not an 

option for the installations analysed. For those with starboard/port vent outlets (right and left side of the ship), the outlets are so close to each other that does 

not make a difference for gas dispersion. 
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Full correlation table of consequent-antecedents adapted from (Hollnagel, 1998) 
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Appendix C 

 

Model #2 and its prognostic results – comparing with frequencies obtained in MATA-D. Only 

state true is shown in the table and figure below. 

 

Classification in 

CREAM 

Event Lower 

bound 

Upper 

bound 

Frequency 

in MATA-D 

 Design failure  Node PSF 1 (design failure)|true 0.66 0.66 0.66 

Observation missed  Task 2A|true  0.1570 0.1727 0.155 

Inadequate plan Task 3A|true 0.1293 0.1505 0.097 

Observation missed  Subtasks 3A1 & 3A2 

merged|true 

0.1544 0.2128 0.155 

Incorrect prediction  Subtask 3A3|true 0.0361 0.0433 0.038 

Action in wrong place Task 4A|true 0.2937 0.3581 0.315 

Execution of wrong type  Task 5A|true 0.0992 0.1469 0.118 

Action in wrong place  Task 6ABCD|true 0.2993 0.3245 0.315 

faulty diagnosis  Subtask 6A1|true 0.1338 0.1338 0.13 

distraction  Subtask 6B3|true 0.0668 0.0668 0.059 

inadequate plan  Subtask 6C2|true 0.1163 0.1290 0.097 

Action performed at 

wrong time  

Task 7A|true 0.1421 0.1611 0.147 

Observation missed  Subtask 7C1|true 0.1449 0.1691 0.155 

faulty diagnosis  Subtask 7BC2 (merged)|true 0.1188 0.1281 0.13 

Equipment failure Node PSF 8D (equipment 

failure)|true 

0.5576 0.5576 0.55 

 
Node PSF 9 (droplets from 

flare)|true 

0.0027 0.0027 
 

 
Node 10|no consequence 0.8960 0.9998 

 

 
Node 10|ESD 1.72 x 10-4 0.1040 

 

 
Node 10|fire 2.17 x 10-7 3.76 x 10-7 
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Appendix D 

Data collection code from MATA-Dataset to Conditional Probability Table 

This algorithm aims to facilitate the data collection from MATA-D to fulfil the CPT of a Bayesian 
network. This code imports data from Excel file, the original platform of MATA-D. It is not possible to 
make this process in Excel, because the CPT template matrix extrapolates the number of columns 
allowed 

Data should be previously treated, which means that each child node must have a worksheet in the 
spreadsheet with information only from the accidents’ lines for this variable and parent nodes. This 
pre-treated worksheet must have first column with variables' names, first cell must be the child (cell 
A1) and the following are the parents. The second column until the end (IE..n) will have 0s and 1s 
related to observations of MATA-Dataset. To do this, dataset might be transposed from original 
MATA-D. 

Before running each child node, change the script according to instructions 'add' beside the 
commands. The expected results are inside the 'MgenieNormalised' file that will be generated after 
running this code. 

 

Coded in MATLAB,thus it has to be saved as a matlab file (.m extenstion) before used. 

 

%% Define parameters  

Spath='M:\xxxx\xxxx\'; % add here the path where your Excel file is 

SfileName='AccidentDatabase.xlsx'; % add here the name of Excel file 

SsheetName='DecisionError'; % add here the name of worksheet 

Srange='A1:IE2'; % add here the range where data is located in Excel, usually the first column contains 
the names of the variables 

Vorder=[2 3 4 1]; % add here the number of variables,including the child node. Number one is always 
the last. In this case there are four variables, if there were only 2 variables, it would be [2 1]. The first 
name in Excel table is the child node. 

myTable=readtable(fullfile(Spath,SfileName),'Sheet',SsheetName,... 

    'Range',Srange,'ReadVariableNames',false,'ReadRowNames',true); 

myArray=table2array(myTable); 

% Replace NaN with zeros 

myArray(isnan(myArray))=0; 

Nvariables=size(myTable,1); 

Naccidents=size(myTable,2); 

% Rearrange myArray 

myArrayOrdered=zeros(size(myArray)); 

for n=1:Naccidents 

    myArrayOrdered(:,n)= myArray(Vorder,n); 
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end 

Cnames=myTable.Properties.RowNames; 

Cnames=Cnames(Vorder); 

%Number of combinations 

Ncombinations=2^Nvariables; 

Mcomparison=zeros(Ncombinations,1); 

% Generate CPT  

CPT_template=flipud(transpose(fullfact(ones(1,Nvariables)+1)-1)); 

for n=1:Ncombinations 

   Mcomparison(n)=sum(all(myArrayOrdered==CPT_template(:,n))); 

end 

% Reschape Mcomparison for Genie (as this code has been initially designed to fit GenieModeller 
CPTs, but can also be used in OpenCossan) 

Mgenie=reshape(Mcomparison,2,length(Mcomparison)/2); 

MgenieNormalised=zeros(size(Mgenie)); 

for n=1:size(Mgenie,2) 

MgenieNormalised(:,n)=Mgenie(:,n)/sum(Mgenie(:,n)); 

end 

% Substitute nan (from normalization of 0 probability) with 0 (especially important step for datasets 
with missing data) 

MgenieNormalised(isnan(MgenieNormalised))=0; 

disp('Variables:') 

disp(Cnames) 

disp('Normalised CPT') 

disp(MgenieNormalised) %this result can be used directly in software like GenieModeller. To use in 
OpenCossan, put it in the vertical direction 

disp('Counts CPT') 

disp(Mgenie) %use this result if you need to see the exact number of combinations, instead the 
normalised combinations  
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Appendix E 

 

The complete CPTs for all nodes of model #1. 

Node 1 (design failure) 

Design Failure - False 0.34 

Design Failure - True 0.66 

 

Node 2 
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Node 3A 

 

 

Node 31A 

 

 

 

 

Observatio

n Missed 

(node 3.1A) F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
Observation 

Missed (node 

3.2.A) F F F F F F F F F F F F F F F F T T T T T T T T T T T T T T T T F F F F F F F F F F F F F F F F T T T T T T T T T T T T T T T T
Incorrect 

prediction F F F F F F F F T T T T T T T T F F F F F F F F T T T T T T T T F F F F F F F F T T T T T T T T F F F F F F F F T T T T T T T T
Inadequate 

procedure F F F F T T T T F F F F T T T T F F F F T T T T F F F F T T T T F F F F T T T T F F F F T T T T F F F F T T T T F F F F T T T T
Inadequate 

task 

allocation F F T T F F T T F F T T F F T T F F T T F F T T F F T T F F T T F F T T F F T T F F T T F F T T F F T T F F T T F F T T F F T T
Insufficient 

knowledge F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T
Inadequate 

plan (node 

3A) - False 0.
95

1 0.
9

0.
9

0.
89

0.
67

0.
94

0.
88

0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0.
5

0 1 0 0.
91

0.
8

0 0 0 0 0 0 1 1

Inadequate 

plan (node 

3A) - True 0.
05

0 0.
1

0.
1

0.
11

0.
33

0.
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0.
13
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1 0 1 0.
09
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2
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Node 32A 

 
 

Node 3.3A 

 

 

 

 

 

 

 

 

Missing 

information F F F F F F F F T T T T T T T T

Inadequate 

task allocation F F F F T T T T F F F F T T T T

Insufficient F F T T F F T T F F T T F F T T

Adverse 

ambient F T F T F T F T F T F T F T F T

Observation 

Missed - F 0.
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0.
89

0.
78

1 0.
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0.
5
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0 0.
5

0 0.
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1
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17
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12
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18

0

Cognitive bias F F F F F F F F T T T T T T T T

Management problem F F F F T T T T F F F F T T T T

Insufficient knowledge F F T T F F T T F F T T F F T T

Adverse ambient conditions F T F T F T F T F T F T F T F T

Incorrect prediction - FALSE
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Node 4 

 

Node 5 

 

 

 

Faulty 

diagnosis F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T TInadequate 

plan (node 

3A) F F F F F F F F F F F F F F F F T T T T T T T T T T T T T T T T F F F F F F F F F F F F F F F F T T T T T T T T T T T T T T T T

Inadequate 

procedure F F F F F F F F T T T T T T T T F F F F F F F F T T T T T T T T F F F F F F F F T T T T T T T T F F F F F F F F T T T T T T T T

Missing 

information F F F F T T T T F F F F T T T T F F F F T T T T F F F F T T T T F F F F T T T T F F F F T T T T F F F F T T T T F F F F T T T TInadequate 

quality 

control F F T T F F T T F F T T F F T T F F T T F F T T F F T T F F T T F F T T F F T T F F T T F F T T F F T T F F T T F F T T F F T T

Insufficient 

knowledge F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T
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0.
29 0 0
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0.
83 0 0 1 0.
5 0 0 1 0 1 0 0 0 0 0 0
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Observation 
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plan F F F F T T T T F F F F T T T T F F F F T T T T F F F F T T T T
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failure F F T T F F T T F F T T F F T T F F T T F F T T F F T T F F T T

Design failure F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T
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Node 6ABCD 

 

Node 61A 

 

Node 62C 

 

 

 

 

Wrong Place - 

6.1.A F F F F F F F F F F F F F F F F T T T T T T T T T T T T T T T T

Wrong Place - 

6.2.C F F F F F F F F T T T T T T T T F F F F F F F F T T T T T T T T

Wrong Place - 

6.3.B F F F F T T T T F F F F T T T T F F F F T T T T F F F F T T T T

Cognitive F F T T F F T T F F T T F F T T F F T T F F T T F F T T F F T T

Missing 

information F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T

Wrong Place - 

6.ABCD - 

False 1.
0

1.
0
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0
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0
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0
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0

Wrong Place - 

6.ABCD - True

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0
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0

0.
0

0.
0

0.
0

0.
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0.
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0.
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0.
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0.
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0.
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0.
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0

0.
0

0.
0

0.
0
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0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

1.
0

1.
0

1.
0

1.
0

Faulty diagnosis of 

Team A in Task6
F T

Wrong Place - False 0.73 0.39

Wrong Place - True 0.27 0.61

Wrong Place F F T T

Inadequate plan F T F T

Wrong Place - False 1.0 1.0 0.0 0.0

Wrong place - True 0.0 0.0 1.0 1.0
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Node 63B 

 

Node DistractionTeamB 

 

Node FaultyDiagnosisTeamATask6 

  

 

 

 

 

 

 

Distraction F F F F T T T T

Inadequate procedure F F T T F F T T

Maintenance failure F T F T F T F T

Wrong Place - False 0.78 0.77 0.65 0.52 0.33 1 0.43 0

Wrong Place - False 0.22 0.23 0.35 0.48 0.67 0 0.57 1

Communication failure F T

Distraction - False 0.96 0.8

Distraction - True 0.04 0.2

Communication 

failure F F F F T T T T

Inadequate task 

allocation F F T T F F T T

Insufficient 

knowledge F T F T F T F T

Faulty diagnosis 

- FALSE 0.99 0.94 0.90 0.79 0.33 0.25 0.70 0.75

Faulty diagnosis 

- TRUE 0.01 0.06 0.10 0.21 0.67 0.75 0.30 0.25
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Node InadequatePlanTask6 

 

Node 7A 

 

 

 

 

 

 

 

Faulty diagnosis F F F F F F F F F F F F F F F F T T T T T T T T T T T T T T T T

Inadequate procedure F F F F F F F F T T T T T T T T F F F F F F F F T T T T T T T T

Inadequate quality control F F F F T T T T F F F F T T T T F F F F T T T T F F F F T T T T

Inadequate task allocation F F T T F F T T F F T T F F T T F F T T F F T T F F T T F F T T

Insufficient knowledge F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T

Inadequate plan - false 1 1 1 1
0.

92
0.

88
0.

82
0.

85 0.
8

0.
5

0.
8

0.
71 1

0.
67 1 1 1 1 0 1 0.
5 1 1

0.
67 0 0 1 1 0 0.
5 1

0.
78

Inadequate plan - true

0 0 0 0
0.

08
0.

13
0.

18
0.

15 0.
2

0.
5

0.
2

0.
29 0

0.
33 0 0 0 0 1 0 0.
5 0 0

0.
33 0 0 0 0 0 0.
5 0

0.
22

Wrong Time 

(node 7.2.C) F F F F F F F F F F F F F F F F T T T T T T T T T T T T T T T T

Wrong Time 

(node 7.3.B) F F F F F F F F T T T T T T T T F F F F F F F F T T T T T T T T

Priority error F F F F T T T T F F F F T T T T F F F F T T T T F F F F T T T T

Distraction F F T T F F T T F F T T F F T T F F T T F F T T F F T T F F T T

Communication 

failure F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T

Wrong Time - F 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Wrong Time - T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0
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Node 71C 

 

Node 72C 

 

Node 73B 

Cognitive bias F F F F F F F F F F F F F F F F T T T T T T T T T T T T T T T T

Inadequate 

procedure F F F F F F F F T T T T T T T T F F F F F F F F T T T T T T T T

Inadequate 

quality control F F F F T T T T F F F F T T T T F F F F T T T T F F F F T T T T

Inadequate 

task allocation F F T T F F T T F F T T F F T T F F T T F F T T F F T T F F T T

Insufficient 

knowledge F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T

Observation 

Missed - F 0.
89

1 1 1 0.
88

0.
56

0.
94

0.
92

1 1 0.
65

0.
71

0.
8

0.
67

0.
81

0.
84

0 0 0 1 0 0 1 1 0 0 0 1 0 1 0.
67

1

Observation 

Missed - T 0.
11

0 0 0 0.
12

0.
44

0.
06

0.
08

0 0 0.
35

0.
29

0.
2

0.
33

0.
19

0.
16

0 0 1 0 1 0 0 0 0 0 0 0 0 0 0.
33

0

Observation Missed 

(node 7.1.C) F F F F F F F F F F F F F F F F T T T T T T T T T T T T T T T T

Communication 

failure F F F F F F F F T T T T T T T T F F F F F F F F T T T T T T T T

Missing information F F F F T T T T F F F F T T T T F F F F T T T T F F F F T T T T

Inadequate task 

allocation F F T T F F T T F F T T F F T T F F T T F F T T F F T T F F T T

Insufficient skills F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T

Wrong Time - F

0.
95

0.
87

0.
94

0.
89

0.
8

1 0.
93

0.
89

0 1 1 0.
8

0 0 1 0 0.
86

0 0.
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0.
8

1 0 0.
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1 0.
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0 0.
67

0.
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0 0 0 0.
33

Wrong Time - T

0.
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0.
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1 0 0 0.
3

0 0 0 1 0.
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5

1 0.
33

0.
33

0 0 0 0.
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Node FaultyDiagnosisTeamB 

 

Node 8 

 

Node 9 

 

 

 

 

 

 

 

 

Faulty diagnosis F T

Wrong Time - F 0.89 0.61

Wrong Time - T 0.11 0.39

Inadequate procedure F F F F F F F F T T T T T T T T

Inadequate quality control F F F F T T T T F F F F T T T T

Inadequate task allocation F F T T F F T T F F T T F F T T

Insufficient knowledge F T F T F T F T F T F T F T F T

Faulty diagnosis - F

0.
97

0.
75

0.
93

0.
83

0.
93

0.
89

0.
89

0.
81

1 1 0.
88

0.
88

1 0.
6

0.
83

0.
74

Faulty diagnosis - T

0.
03

0.
25

0.
07

0.
17

0.
07

0.
11

0.
11

0.
19

0 0 0.
12

0.
13

0 0.
4

0.
17

0.
26

Maintenance failure F F T T

Inadequate quality control F T F T

Node8D (Equipment failure) - F 0.56 0.47 0.31 0.33

Node8D (Equipment failure) - T 0.44 0.53 0.69 0.67

9. Droplets from flare - FALSE 0.99726

9. Droplets from flare - TRUE 0.00274
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Node 10 (consequence node, with 3 states) 

 

  

5.A. Open (or close) the valve to start (or stop) cargo 

venting [wrong type] F F F F F F F F F F F F F F F F T T T T T T T T T T T T T T T T

6.ABCD. Suspend sparkable operations [wrong place]
F F F F F F F F T T T T T T T T F F F F F F F F T T T T T T T T

7.A. Remain standby [wrong time] F F F F T T T T F F F F T T T T F F F F T T T T F F F F T T T T

8.D. Equipment Ex fails [equipment failure] F F T T F F T T F F T T F F T T F F T T F F T T F F T T F F T T

9. Flare sytem failure [design failure] F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T

no_consequence

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.
99

57
81

0 0 0.
96

88

0 0 0 0 0 0 0 0 0 0 0

ShutDown 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.
00

08
44

0 0 0.
03

13

0 0 0 0 0 0 0 0 0 0 0

Fire OR Explosion 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.
00

33
76

0 0 0.
00

00

0 0 0 0 0 0 0 0 0 0 0
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Appendix F 

 

Find below the complete CPTs for all nodes of model #2 (only the nodes that are different from those in model #1) 

 

Node3.1A&2A (merged) 

 

Node6ABCD 

 

 

 

Incomplete 

information F F F F F F F F F F F F F F F F T T T T T T T T T T T T T T T T

Missing 

information F F F F F F F F T T T T T T T T F F F F F F F F T T T T T T T T

Inadequate task 

allocation F F F F T T T T F F F F T T T T F F F F T T T T F F F F T T T T

Insufficient skills F F T T F F T T F F T T F F T T F F T T F F T T F F T T F F T T

Adverse ambient 

conditions F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T

Observation 

Missed - FALSE 0.
87

1 0.
81

1 0.
94

0.
5

0.
82

0 0.
83

0 0 0 0.
85

0 0.
93

1 0.
75

0 0.
5

0 0.
64

0 0.
7

1 0 0 0.
5

0 1 0 0.
57

0

Observation 

Missed - TRUE 0.
13

0 0.
19

0 0.
06

0.
5

0.
18

0 0.
17

0 0 0 0.
15

0 0.
07

0 0.
25

1 0.
5

0 0.
36

0 0.
3

0 0 0 0.
5

0 0 0 0.
43

0

Faulty diagnosis F F F F F F F F F F F F F F F F T T T T T T T T T T T T T T T T

Inadequate plan F F F F F F F F T T T T T T T T F F F F F F F F T T T T T T T T

Distraction F F F F T T T T F F F F T T T T F F F F T T T T F F F F T T T T

Cognitive bias F F T T F F T T F F T T F F T T F F T T F F T T F F T T F F T T

Missing information F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T

Wrong Place - F

0.
78

0.
64

1 0.
6

0.
67

1 0 0 0.
5

0.
5

0 0 0 0 0 0 0.
5

0.
4

0 0 0.
33

0 0.
33

0 0.
33

0 0 0 0 0 0.
5

0

Wrong Place - T

0.
22

0.
36

0 0.
4

0.
33

0 0 0 0.
5

0.
5

0 0 1 0 0 0 0.
5

0.
6

1 0 0.
67

0 0.
67

0 0.
67

0 0 0 0 0 0.
5

1
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Node61A 

 

Node62C 

 

Node63B 

 

 

 

 

 

 

Communication failure F F F F T T T T

Inadequate task allocation F F T T F F T T

Insufficient knowledge F T F T F T F T

Faulty diagnosis - F

0.
99

0.
94

0.
90

0.
79

0.
33

0.
3

0.
7

0.
8

Faulty diagnosis - T

0.
01

0.
06

0.
10

0.
21

0.
67

0.
8

0.
3

0.
3

Faulty diagnosis F F F F F F F F F F F F F F F F T T T T T T T T T T T T T T T T

Inadequate procedure F F F F F F F F T T T T T T T T F F F F F F F F T T T T T T T T

Inadequate quality control F F F F T T T T F F F F T T T T F F F F T T T T F F F F T T T T

Inadequate task allocation F F T T F F T T F F T T F F T T F F T T F F T T F F T T F F T T

Insufficient knowledge F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T

Inadequate plan - F

1 1 1 1 0.
92

0.
88

0.
82

0.
85

0.
8

0.
5

0.
8

0.
71

1 0.
67

1 1 1 1 0 1 0.
5

1 1 0.
67

0 0 1 1 0 0.
5

1 0.
78

Inadequate plan - T

0 0 0 0 0.
08

0.
13

0.
18

0.
15

0.
2

0.
5

0.
2

0.
29

0 0.
33

0 0 0 0 1 0 0.
5

0 0 0.
33

0 0 0 0 0 0.
5

0 0.
22

Inadequate procedure F F F F T T T T

Communication failure F F T T F F T T

Maintenance failure F T F T F T F T

Distraction - F 0.99 1 0.71 0.5 0.89 0.95 0.8 1

Distraction - T 0.01 0 0.29 0.5 0.11 0.05 0.2 0
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Node 7A 

 

Node72BC 

 

  

Observation Missed F F F F F F F F F F F F F F F F T T T T T T T T T T T T T T T T

Faulty diagnosis F F F F F F F F T T T T T T T T F F F F F F F F T T T T T T T T

Priority error F F F F T T T T F F F F T T T T F F F F T T T T F F F F T T T T

Distraction F F T T F F T T F F T T F F T T F F T T F F T T F F T T F F T T

Communication failure F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T F T
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Appendix G 

 

All graphs for diagnostic analysis simulated for Model #1. 
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Appendix H 
 

All graphs for diagnostic analysis simulated for Model #2. 
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