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Abstract. Echocardiography is an essential diagnostic method to assess
cardiac functions. However, manually labelling the left ventricle region
on echocardiography images is time-consuming and subject to observer
bias. Therefore, it is vital to develop a high-performance and efficient
automatic assessment tool. Inspired by the success of the transformer
structure in vision tasks, we develop a lightweight model named ‘Trans-
Bridge’ for segmentation tasks. This hybrid framework combines a con-
volutional neural network (CNN) encoder-decoder structure and a trans-
former structure. The transformer layers bridge the CNN encoder and
decoder to fuse the multi-level features extracted by the CNN encoder, to
build global and inter-level dependencies. A new patch embedding layer
has been implemented using the dense patch division method and shuf-
fled group convolution to reduce the excessive parameter number in the
embedding layer and the size of the token sequence. The model is evalu-
ated on the EchoNet-Dynamic dataset for the left ventricle segmentation
task. The experimental results show that the total number of parame-
ters is reduced by 78.7% compared to CoTr [22] and the Dice coefficient
reaches 91.4%, proving the structure’s effectiveness.

Keywords: Echocardiography · Left ventricle segmentation · Lightweight
Transformer model · Parameter efficiency

1 Introduction

Cardiovascular disease has one of the highest mortality and morbidity rates
worldwide. Echocardiography imaging is essential for evaluating cardiac func-
tions in clinical practice, such as left ventricular ejection fraction [16]. The left
ventricular ejection fraction assessment is usually performed by comparing the
left ventricular volume at end-systolic and end-diastolic frames. Manual anno-
tation of the left ventricular region is a time-consuming and human-dependent
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step, resulting in high inter-observer variance and limited precision [8, 11]. Hence,
it is vital to develop an automatic segmentation algorithm of the left ventricle
in echocardiographic images. Some machine learning methods have been pro-
posed, such as Structured Random Forest [9] and dynamic appearance model
[7]. However, they are either based on hand-crafted features or not sufficiently
robust. Recent research interest moves to the deep learning methods that will
avoid hand-crafted features and are robust enough. Several models using distinct
network structures have shown promising performance [17, 10, 12], while [12] pro-
vides a comprehensive review of the recent methods. One of the limitations of
these methods is the large model size that is not efficient to use.

Related Works The development of deep learning methods and approaches [19,
14, 2, 15, 3] has led to improvements in biomedical image segmentation tasks. For
example, U-Net [19] uses encoder-decoder architecture with the skip-connection
to extract features from multiple scales and recover them to the original scale.
It has been shown that the U-Net reaches good accuracy on left ventricle seg-
mentation [10]. The residual connection in ResNet [5] improves the accuracy of
the CNN by constructing a clean identity mapping path to ease optimization [6],
and ResUNet [21] employs this technique in the U-Net structure. DeepLabV3
[2] uses dilated convolutions to increase the receptive field so that the model can
catch dependency at a longer distance. It has been shown that DeepLabV3 can
reach a remarkable performance on the left ventricle segmentation task [17]. In
a recent study, the transformer model is introduced to break through the limita-
tion of locality from convolution operators to build the global dependency. The
Vision Transformer [4] is a pure Transformer model in image recognition tasks
with state-of-the-art performance. The transformer model combined with CNN
structure has also shown great potential in the image segmentation task [24, 1,
22]. However, the drawback of introducing transformer structures is the signifi-
cant increase in the number of parameters. Therefore, it is necessary to design a
lightweight transformer model to utilize its high performance on vision tasks.For
example, works on reducing parameter number in CNNs and transformers by ap-
plying shuffle algorithm have been proposed in [23, 13]. The Sandwich parameter
sharing the transformer encoder structure has also been discussed [18]. There-
fore, building an efficient and training-friendly model should also be a crucial
criterion of the deep learning model.

Our Contributions In our works, the patch embedding before the Transformer
structures are re-designed using the shuffling layer and group convolutions to
reduce the excessive parameter number and token numbers. Sandwich parameter
sharing was used to minimize the transformer parameters [18]. We propose the
TransBridge, a lightweight hybrid model using the transformer and the CNN
structure for left ventricle segmentation in echocardiography.
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Fig. 1. TransBridge: Downsampling block in CNN Encoder and upsampling block in
CNN decoder. The transformer bridges the CNN encoder and decoder to model inter-
feature level dependency. The Sandwich parameter sharing mechanism allows param-
eters shared in all the middle layers except for the beginning and the end.

2 Methods

CNN Encoder The CNN encoder is used to extract features efficiently to
obtain high abstract level features, saving time for the transformer encoder to
focus its attention on low-level features. The CNN encoder adopts the U-Net
encoder structure that cascades convolution layers and downsamples the re-
sulting features between each block [19], shown in Fig. 1. The downsampling
layer comprises a max-pooling operation to downsample the feature map size
and a residual double convolution block. The residual block contains two BN-
ReLU-Conv layers and a 1x1 Conv for identity mapping. In addition, the Pre-
activation residual block can result in easier training [6]. Assuming the input
image is of size of (H,W ), the extracted feature maps can be expressed as

{x}l ∈ R(C×l)×H
l ×

W
l , 1 ≤ l ≤ L. Considering the efficiency of the model, the

feature maps from the first CNN encoder layer are not used for the transformer
encoder layer but directly skip-connect to the CNN decoder layer at the same
level to retain the low-level features and reduce the cost of attention.

Patch Division In the transformer-based vision task, such as ViT [4] and SeTr
[24], the input of the transformer encoder layers is embedded patch sequence.
In the embedding layer, shown in Fig. 2(a), the input image x ∈ RC×H×W is
equally divided into patches. Every patch is flattened to a 1-dimensional vector
so that the patch sequence becomes p ∈ RN×D0 , where the number of patches is
represented as N = H

P ×
W
P and the vector size is represented as D0 = C×P×P .

In order to embed the multi-channel feature maps, channels are split into
several groups and treated independently. The patch is divided with a fixed
size of (P, P ), and D channels in each group are attributed to the patch, as
shown in Fig. 2(b). Therefore, the sequence of a patch of feature maps is in the



4 K. Deng et al.

𝑃 × 𝑃

3

... 𝐻

𝑃
×
𝑊

𝑃

(a) Patch division for RGB image

𝑃 × 𝑃 𝑃 × 𝑃

𝐷

... 𝐻

𝑃
×
𝑊

𝑃
×
𝐶

𝐷

𝐷

𝐶

𝐻

𝑊

𝐷

𝑃

(b) Patch division for multi-channel
feature maps

Fig. 2. Patch division: The division method in TransBridge is designed for multi-
channel feature maps as in Fig. 2(b). The total C channels are divided into several
D channel groups. Then, channels in each group are treated independently. Finally,
those D-channeled patches are flattened into vectors and concatenated.

form of a sequence of dense patches p ∈ RC
D×

H
P ×

W
P ×D×P×P . After flattening

the dense patches to vector, the feature map x ∈ RC×H×W is transformed into
a dense flattened patch sequence of zd ∈ RM×Dd , where the vector length is
Dd = D×P×P , and the total number is M = C

D×
H
P ×

W
P . As feature maps from

the different levels have different channel sizes and spatial dimension, the number
of token M is different in each level. However, the input size of the patch Dd is
the same among all sequence so that the token sequence is {zd}l ∈ RMl×Ddand
the l denotes the level of features.

Length Shortening The length of the token sequence is shortened before patch
embedding. The token length is crucial because the complexity of the transformer
encoder layer is sensitive to the sequence length. In this design, a shuffling layer
and 1x1 group convolution are applied to shorten the length. First, in the shuf-
fling layer, as shown in Fig. 3, all the four token sequences are divided into G
groups individually through the channel dimension and all divided sequences
from different feature levels are shuffled according to the group number to rear-
range the group division so that each new group contains an element from each
level. Next, sequences are concatenated through the channel dimension and con-
duct a 1x1 convolution in a group of G to compress the channel number to N
to shorten the total sequence length.

Transformer Encoder Before feeding into the transformer encoder, patch and
positional embedding are required to pre-process the patch sequence. A trainable
linear layer projects the token vector from its length Dd to the hidden size Dh

of the transformer encoder to obtain the patch embedding as shown in Eq.(1).
Next, a trainable positional embedding layer is added to the patch embedding to
retain the spatial information that the transformer encoder layer cannot model.

z0 =
[
z1hE; z2hE; . . . ; zNh E

]
+ Epos, E ∈ RDd×Dh , Epos ∈ RN×Dh (1)
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Fig. 3. Shuffling layer and group convolution: tokens from different feature channels
are firstly split into groups and shuffled; A group convolution is applied to the grouped
tokens to shorten the token sequence length from M1 + M2 + M3 to N . All the tokens
are concatenated together at the final stage. For the demonstration purpose, the level
of features L is set to 3 and the group number G is 4.

Every single layer of the transformer encoder consists of Multihead Self-
Attention (MSA) blocks and Multi-Layer Perceptron (MLP) blocks, shown in
Eq.(2) and Eq.(3). A residual connection bypasses each block to form an identity
mapping and a layer normalization operator is inserted in the front of each block.
In addition, to increase the parameter efficiency, the parameter is shared in the
Sandwich mode [18], which shares the parameters of all L − 2 middle layers,
except the beginning and the ending layer in this L layer transformer encoder.

z′l = MSA (LN (zl−1)) + zl−1 (2)

zl = MLP
(
LN

(
z′l−1

))
+ z′l−1 (3)

The token sequence will be expanded and rearranged by reversing the length
compression and patch division back to feature maps with the original dimension.
During the rearranging, the shuffling process is not applied because the channel
dimension has already been mixed.

CNN Decoder The CNN decoder absorbs feature maps from the transformer
encoder and recovers them to the original size. For example, in the upsampling
block, the feature maps from the previous decoder layer use 1x1 convolutions to
match the channel numbers to half of the desired input channel number. Then
its height and width are doubled by bilinear interpolation. Next, the resulted
planes are concatenated with the feature maps from the transformer encoders to
feed into a residual block to refine the feature maps. Finally, the output block
will fuse the resulted planes into a one-dimensional segmentation map to output
it as the final prediction.

3 Experiments

Dataset EchoNet-Dynamic dataset is a large public dataset with apical four-
chamber two-dimensional echocardiographs [17]. For each video, an end-systole
and an end-diastole frame were selected for the analysis. Expert sonographers
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and cardiologists annotate the left ventricle region during the standard clinical
workflow. Among the 20,048 images, 14,920 images were used for training, 2,576
images for validating, and 2,552 images for testing. The end-systolic and end-
diastolic frame of the same subject were placed in the same group. All the images
were resized to 112*112 pixels and converted to grayscale. The training set was
shuffled in each epoch to avoid any specific class distribution in each batch.

Implementation details The proposed model was implemented with two
scales: Base (‘TransBridge-B’) and Large (‘TransBridge-L’). To better compare
with the TransBridge, the CoTr [22] was implemented with the original Vaswani
Transformer instead of the Deformable Transformer and built in the base scale.
The differences between the two scales of the TransBridge are CNN channel
number, transformer hidden size, and transformer MLP intermediate layer size,
shown in Table 1. The number of CNN feature levels fed to the Transformer, L,
is set to 4. The patch size was set to (7, 7), and the grouping factor G was set
to 8 so that there were at least two groups in each feature level for the shuffling.
The transformer encoder layer has six layers and is split into four heads in the
self-attention layer. The parameter number of TransBridge-B has been reduced
by 78.7% compared with the CoTr model. Meanwhile, the number of parame-
ters of the embedding layer has been reduced from 12.07M in CoTr to 0.17M in
TransBridge, which is 1.4% of the normal embedding layer. The UNet and the
ResUNet have also been implemented as references. The ResUNet has the CNN
structure but without the transformer encoder layer in TransBridge.

Table 1. The configurations of the evaluated models

Method
Total

Param
Embedding Layer

Param
CNN Structure Transformer Structure

L1 Channel Number Hidden size MLP size

CoTr 16.39M 12.07M 16 256 256

TransBridge-B 3.49M 0.17M 16 256 256
TransBridge-L 11.3M 0.23M 32 392 512

UNet 7.25M - 32 - -
ResUNet 7.6M - 32 - -

The model was trained on an Nvidia Tesla P100 GPU with a batch size of 8.
The running GPU memory of our model can be limited to approximately 2GB.
All the models were trained with an RMSprop optimizer with learning rate of
1e-4, momentum of 0.9, and a weight decay of 1e-8 for 15 epochs. Each epoch
contains 20 steps, and each step has 93 iterations. The learning rate dropped
to 10% of its original value if there is no further improvement in 10 steps. Bi-
nary cross-entropy loss is used to train the model and the Dice loss is used for
validation.
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(a) Original image (b) CoTr (c) TransBridge-B (d) TransBridge-L

Fig. 4. Segmentation Results Visualization: The ground truth is labeled with a green
line, while the segmentation boundary from each model is in red.

4 Results

Comparison between models The performance of the TransBridge in two
scales is compared with other methods on the left ventricle segmentation task.
The segmentation are divided into two groups based on the heart contraction
stage, either end-systolic or end-diastolic. Dice coefficient and Hausdorff distance
are used to evaluate the segmentation quality.

Table 2. Comparing the segmentation results of: TransBridge-B (ours), TransBridge-L
(ours), CoTr [22] are trained on the dataset. In addition, the results of the UNet and
DeepLabV3 are cited from [10] and [17] respectively.

Method Hausdorff distance Dice (in %)
end-systolic end-diastolic

Average
end-systolic end-diastolic

Average
Mean Std Mean Std Mean Std Mean Std

UNet [10] - - - - 7.3 - - - - 89.6

DeepLabV3 [17] - - - - - 90.3 - 92.7 - 91.5
UNet 6.506 5.977 6.017 4.405 6.262 82.50 0.078 87.63 0.054 85.07

ResUNet 4.175 5.403 3.725 5.403 3.950 91.17 0.048 93.51 0.034 92.34

CoTr 4.699 5.838 4.201 3.652 4.450 89.87 0.061 92.71 0.042 91.29
TransBridge-B 4.633 5.853 4.184 3.757 4.409 90.01 0.057 92.76 0.037 91.39
TransBridge-L 4.411 5.528 3.959 3.346 4.185 90.24 0.058 93.04 0.035 91.64

The testing results are shown in Table 2. Comparing the TransBridge-B
and TransBridge-L with CoTr, improvements are made on the Dice coefficient
(91.69% and 91.39% vs. 91.29%) and Hausdorff distance (4.185 and 4.409 vs.
4.450). In particular, TransBridge-B has only 21.3% parameters of CoTr, so it
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Table 3. Ablation test with each structure configuration

The first layer skip connection CNN-block Sandwich sharing Dice (in %)

No Conv No 90.7
No ResConv Yes 90.7
Yes Conv No 89.9
Yes ResConv No 90.2
Yes ResConv Yes 91.0

is more lightweight and efficient. Meanwhile, UNet, ResUNet, and DeepLabV3
have also been compared with the TransBridge models. In previous work [10],
the UNet is evaluated on a small dataset with 1000 images. When training on
this larger dataset, the large variance on features makes it difficult to perform
as well as in the smaller dataset, and the further increment on its width cannot
contribute to better accuracy. However, after introducing the Residual block,
the accuracy of ResUNet has improved compared to UNet, exceeding the per-
formance of DeepLabV3 and TransBridge. The reason for this might be that for
this specific dataset, the image size is relatively small and the LV geometry is
simple to segment, so there is no need for complicated models.

Ablation test In the ablation test, the model is trained until early converged,
and it takes no more than five epochs for the validation loss to converge with
tolerance less than 0.001. The results show that almost all the design changes
can improve the overall performance, shown in Table 3. Sandwich sharing can
make the most significant progress. Using the residual block instead of simple
convolutions cannot make sufficient progress but it can avoid gradient vanishing.
The skip connection of the first layer introduce low-level features, and its effect on
the overall performance might depend on the presence of the other two features.

5 Discussion

The proposed TransBridge shows excellent potential for the left ventricle seg-
mentation task. This lightweight design reduces the parameter by 78.7% while
achieving a Dice score of 91.4%. In addition, the group and shuffling embedding
can facilitate the information exchange in different feature levels and channels
with fewer parameters. However, compared to the pure CNN structure, the trans-
former is not easy to train and attain competitive performance. It is sensitive
to the dataset and hyperparameters, demanding extensive large-scale empiri-
cal trials to achieve the best performance [20]. Therefore, more sophisticated
hyper-parameter tuning could further enhance the performance of the model.

6 Conclusion

This paper has proposed TransBridge, an efficient lightweight model that com-
bines the CNN and transformer architecture for the LV segmentation task. The
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proposed shuffling layer and group convolution for patch embedding significantly
reduces the total number of parameters by 78.7% and efficiently utilizes the
transformer’s power to cooperate with CNN. The model has been evaluated on
the largest public echocardiography dataset, and the results confirm its effec-
tiveness. In the future, the proposed model can be used as a powerful tool to
support the management of cardiovascular diseases.

References

1. Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., Lu, L., Yuille, A.L., Zhou,
Y.: Transunet: Transformers make strong encoders for medical image segmentation
(Feb 2021)

2. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution
for semantic image segmentation (2017)

3. Chen, X., Williams, B.M., Vallabhaneni, S.R., Czanner, G., Williams, R., Zheng,
Y.: Learning active contour models for medical image segmentation. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 11632–11640 (2019)

4. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.:
An image is worth 16x16 words: Transformers for image recognition at scale (Oct
2020)

5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (June 2016)

6. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks.
In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision – ECCV
2016. pp. 630–645. Springer International Publishing, Cham (2016)

7. Huang, X., Dione, D.P., Compas, C.B., Papademetris, X., Lin, B.A., Bregasi,
A., Sinusas, A.J., Staib, L.H., Duncan, J.S.: Contour tracking in echocardio-
graphic sequences via sparse representation and dictionary learning. Medical Im-
age Analysis 18(2), 253–271 (2014). https://doi.org/10.1016/j.media.2013.10.012,
https://www.sciencedirect.com/science/article/pii/S1361841513001564

8. Lang, R.M., Badano, L.P., Mor-Avi, V., Afilalo, J., Armstrong, A., Ernande,
L., Flachskampf, F.A., Foster, E., Goldstein, S.A., Kuznetsova, T., Lancellotti,
P., Muraru, D., Picard, M.H., Rietzschel, E.R., Rudski, L., Spencer, K.T.,
Tsang, W., Voigt, J.U.: Recommendations for Cardiac Chamber Quantifica-
tion by Echocardiography in Adults: An Update from the American Society
of Echocardiography and the European Association of Cardiovascular Imaging.
European Heart Journal - Cardiovascular Imaging 16(3), 233–271 (02 2015).
https://doi.org/10.1093/ehjci/jev014

9. Leclerc, S., Grenier, T., Espinosa, F., Bernard, O.: A fully automatic and multi-
structural segmentation of the left ventricle and the myocardium on highly hetero-
geneous 2D echocardiographic data. In: 2017 IEEE International Ultrasonics Sym-
posium (IUS). pp. 1–4 (2017). https://doi.org/10.1109/ULTSYM.2017.8092797

10. Leclerc, S., Smistad, E., Grenier, T., Lartizien, C., Ostvik, A., Espinosa, F., Jodoin,
P.M., Lovstakken, L., Bernard, O.: Deep learning applied to multi-structure seg-
mentation in 2D echocardiography: A preliminary investigation of the required



10 K. Deng et al.

database size. In: 2018 IEEE International Ultrasonics Symposium (IUS). pp. 1–4
(2018). https://doi.org/10.1109/ULTSYM.2018.8580136

11. Leclerc, S., Smistad, E., Pedrosa, J., Østvik, A., Cervenansky, F., Espinosa, F.,
Espeland, T., Berg, E.A.R., Jodoin, P.M., Grenier, T., Lartizien, C., D’hooge,
J., Lovstakken, L., Bernard, O.: Deep learning for segmentation using an open
large-scale dataset in 2D echocardiography. IEEE Transactions on Medical Imaging
38(9), 2198–2210 (2019). https://doi.org/10.1109/TMI.2019.2900516

12. Li, M., Dong, S., Gao, Z., Feng, C., Xiong, H., Zheng, W., Ghista,
D., Zhang, H., de Albuquerque, V.H.C.: Unified model for interpreting
multi-view echocardiographic sequences without temporal information. Applied
Soft Computing 88, 106049 (2020). https://doi.org/10.1016/j.asoc.2019.106049,
https://www.sciencedirect.com/science/article/pii/S1568494619308312

13. Mehta, S., Ghazvininejad, M., Iyer, S., Zettlemoyer, L., Hajishirzi, H.: Delight:
Deep and light-weight transformer (Aug 2020)

14. Meng, Y., Meng, W., Gao, D., Zhao, Y., Yang, X., Huang, X., Zheng, Y.: Regression
of instance boundary by aggregated CNN and GCN. In: European Conference on
Computer Vision. pp. 190–207. Springer (2020)

15. Meng, Y., Wei, M., Gao, D., Zhao, Y., Yang, X., Huang, X., Zheng, Y.: Cnn-gcn
aggregation enabled boundary regression for biomedical image segmentation. In:
International Conference on Medical Image Computing and Computer-Assisted
Intervention. pp. 352–362. Springer (2020)

16. Oktay, O., Ferrante, E., Kamnitsas, K., Heinrich, M., Bai, W., Caballero, J., Cook,
S.A., de Marvao, A., Dawes, T., O‘Regan, D.P., Kainz, B., Glocker, B., Rueckert,
D.: Anatomically constrained neural networks (ACNNs): Application to cardiac
image enhancement and segmentation. IEEE Transactions on Medical Imaging
37(2), 384–395 (2018). https://doi.org/10.1109/TMI.2017.2743464

17. Ouyang, D., He, B., Ghorbani, A., Yuan, N., Ebinger, J., Langlotz, C.P., Heidenre-
ich, P.A., Harrington, R.A., Liang, D.H., Ashley, E.A., Zou, J.Y.: Video-based AI
for beat-to-beat assessment of cardiac function. Nature 580(7802), 252–256 (mar
2020). https://doi.org/10.1038/s41586-020-2145-8

18. Reid, M., Marrese-Taylor, E., Matsuo, Y.: Subformer: Exploring weight sharing for
parameter efficiency in generative transformers (2021)

19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) Medical Image Computing and Computer-Assisted Intervention (MICCAI
2015). pp. 234–241. Springer International Publishing, Cham (2015)

20. Steiner, A., Kolesnikov, A., Zhai, X., Wightman, R., Uszkoreit, J., Beyer, L.: How
to train your vit? data, augmentation, and regularization in vision transformers
(2021)

21. Xiao, X., Lian, S., Luo, Z., Li, S.: Weighted Res-UNet for high-quality retina vessel
segmentation (Oct 2018). https://doi.org/10.1109/ITME.2018.00080

22. Xie, Y., Zhang, J., Shen, C., Xia, Y.: CoTr: Efficiently bridging CNN and trans-
former for 3D medical image segmentation (Mar 2021)

23. Yang, Q.L.Z.Y.B.: SA-Net: Shuffle attention for deep convolutional neural networks
(Jan 2021)

24. Zheng, S., Lu, J., Zhao, H., Zhu, X., Luo, Z., Wang, Y., Fu, Y., Feng, J., Xiang,
T., Torr, P.H., Zhang, L.: Rethinking semantic segmentation from a sequence-to-
sequence perspective with transformers. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR). pp. 6881–6890 (June
2021)


