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Abstract. Morphological changes, e.g. thickness of retinal or choroidal
layers in Optical coherence tomography (OCT), is of great importance
in clinic applications as they reveal some specific eye diseases and other
systemic conditions. However, there are many challenges in the accu-
rate segmentation of retinal and choroidal layers, such as low contrast
between different tissue layers and variations between images acquired
from multiple devices. There is a strong demand on accurate and robust
segmentation models with high generalization ability to deal with images
from different devices. This paper proposes a new unsupervised guided
adversarial adaptation (GAA) network to segment both retinal layers
and the choroid in OCT images. To our best knowledge, this is the first
work to extract retinal and choroidal layers in a unified manner. It first
introduces a dual encoder structure to ensure that the encoding path of
the source domain image is independent of that of the target domain
image. By integrating the dual encoder into an adversarial framework,
the holistic GAA network significantly alleviates the performance degra-
dation of the source domain image segmentation caused by parameter
entanglement with the encoder of the target domain and also improves
the segmentation performance of the target domain images. Experimen-
tal results show that the proposed network outperforms other state-of-
the-art methods in retinal and choroidal layer segmentation.
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1 Introduction

Optical coherence tomography (OCT) is an indispensable ocular imaging tool
and has been extensively used in clinics. Anatomically, the retina can be divided
into nine cellular layers with varying thickness [1,2,3]. The choroid is a densely
vascularized layer lying between the retina and the sclera of the eye. Fig. 1 (a)
illustrates the boundaries of different retinal and choroidal layers in a B-scan
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Fig. 1. Illustration of full layer segmentation of OCT images. (a) Boundaries of dif-
ferent layers manually annotated by an experienced clinician. ILM: internal limiting
membrane, NFL: nerve fiber layer, GCL: ganglion cells layer, IPL: inner plexiform
layer, INL:inner nuclear layer, OPL: outer plexiform layer, ONL: outer plexiform layer,
ELM: external limiting membrane, IS: inner segment, OS: outer segment, RPE: retinal
pigment epithelium, Ch: choroid. (b) Segmentation results by a pre-trained U-Net on
images from the source and target domains. From left to right: example OCT B-scans,
ground truth, and the segmentations by U-Net, which was trained on the source domain
dataset.

OCT image annotated manually by a senior ophthalmologist. In clinics, layer
thickness is an important biomarkers for the diagnosis of many different types
of eye diseases. For instance, glaucoma leads to the thinning of the nerve fiber
layer (NFL) [4,5]. Age-related macular degeneration (AMD) causes a thinner
choroid [6] whilst central serous chorioretinopathy [7] and polypoidal choroidal
vasculopathy [6] may lead to choroidal thickening. In consequence, the accurate
measurement of thickness of retinal and choroidal layers is vital for diagnos-
ing and monitoring disease progression. However, manual annotation of a large
number of images is an exhausting task for clinicians and vulnerable to human
errors. Current proprietary segmentation programs of clinical OCT devices still
lack accuracy and robustness.

With the rapid development of deep learning, many segmentation networks,
such as FCN [8], U-Net [9], CS-Net [10,11] and CE-Net [3], have been employed
for retinal layer segmentation tasks. However, to the best of our knowledge,
no existing method is dedicated to the segmentation of retinal and choroidal
layers in a unified model. In addition, although the retina and choroid of the
human eye share similarity, different imaging devices could produce large domain
discrepancy even of the same eye due to different noise distributions, i.e., domain
gap between the training (source) and test (target) images. This often causes low
generalization of a pre-trained model - high performance in the source domain
and low performance in target domain, as demonstrated in Fig. 1 (b). Hence,
supervised model often requires re-annotating pixel-level ground truth and thus
require high labour costs. To this end, it is essential to establish a model trained
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on an existing dataset with manual annotations and can be generalized to new
test data from another domain (e.g. different device or with varying protocols).

In order to overcome these shortcomings, several unsupervised domain adap-
tation techniques [12] based on Generative Adversarial Network (GAN) [13,14,15],
have been proposed to close the gap between the source and target domains,
where manual labels are not available in the target domain. Although some
typical approaches such as Adversarial Discriminative Domain Adaptation [16]
achieved promising results, the input images of the source and target domains
are encoded using the same path, which means that the source and the target
domain segmentation networks share the same parameters. As a result, the pa-
rameters of the two networks will be entangled with each other and affect the
overall performance of the model.

In this paper, we develop a Guided Adversarial Adaptive (GAA) framework
for full layer segmentation in OCT images. We use the source domain encoder
to guide the target domain encoder for learning segmentation network parame-
ters. The dual encoder structure makes the encoding path of the source domain
independent of that of the target domain, and thus does not produce parameter
entanglement. Simultaneously, we carry out adversarial adaptation both in the
feature and output space of the two domain images, to minimize the feature dis-
crepancy between the source and target domains after encoding. Consequently,
the target domain encoder can make continuous progress.

The contributions of our work can be summarized in three-fold: 1) This is
the first attempt to segment full layers (both retinal and choroidal layers) in
OCT imagery by a single segmentation model, and it also demonstrates the
ability of data adaptation for different imaging devices. 2) We propose a guided
dual-encoder joint structure to guarantee the mutual independence between the
encoding paths of the source and target domains for parameter entanglement.
3) We show that without the need of any manual annotations on the target
domain, our method outperforms supervised learning using annotations in the
target domain by a large margin.

2 Proposed Method

In this section, we first provide an overview to the proposed method, and then
elaborate its two main components, i.e., the guided dual-encoding and the ad-
versarial adaption, respectively.

2.1 Overview

As shown in the Fig. 2, our framework consists of five basic modules: a source
domain encoder Es, a target domain encoder Et, a sharing decoder Dsh, a en-
coding discriminator Disen and a decoding discriminator Disde. Thus, Es and
Dsh constitute the source domain segmentation network (SDSN), and Et and
Dsh constitute the target domain segmentation network (TDSN). The input
OCT image from the source domain is denoted as Xs ∈ RC×H×W with its
corresponding annotation Ls while the one from the target domain denoted as
Xt ∈ RC×H×W has no annotation.
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Fig. 2. Overview of the Guided Adversarial Adaptation (GAA) Network. The yellow
and the green arrows indicate the source and target domain paths, respectively. The
black dashed arrows denote the parameter guidance and the red dashed arrows denote
the adversarial learning.

Adversarial methods can reduce the domain discrepancy [17] and thus make
the output feature space of TDSN consistent with that of SDSN through train-
ing. However, for most adversarial methods, since the parameters of the two net-
works are shared which trigger the parameter entanglement, the SDSN couldn’t
gain the optimal solution, so that TDSN will often end with a compromise per-
formance, which is better than that of the model trained only with the source
domain data but worse than that of the model trained with the target domain
data (assuming that the annotations are available). To alleviate this problem,
our idea is to lift the performance of TDSN by allowing it more independence
while still keeping its training guided by SDSN for domain adaption. There-
fore, we propose a guided dual-encoding architecture where the two encoders of
SDSN and TDSN are not shared and the domain adaption for transferring the
segmentation knowledge from SDSN to TDSN is delivered through a parameter
guidance process and an architecture of adversarial learning.

2.2 Guided Dual-Encoding

In this work, we use two individual encoders for Xs and Xt for SDSN and TDSN,
respectively so that there is no parameter sharing in their encoding paths during
the training. We build a teacher-student structure which aims to use Es to guide
Et for encoding the input images of the same modality but acquired by different
OCT devices into the same feature space.

Then, two levels of adversarial learning is adopted to promote the continuous
progress of Et and achieve the same encoding effect as Es. Here, we apply the
Exponential Moving Average (EMA) in order to guide Et to learn parameters
from Es: {

φn
t = γφ̂n−1

t + (1− γ)φn
s (n ≥ 2)

φn
t = φn

s (n = 1)
(1)

φ̂n−1
t = φn−1

t − α∇J(φn−1
t ) (n ≥ 2) (2)
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where φns and φnt denote the parameters of Es and Et before the adversarial train-

ing, respectively. φ̂nt denote the parameters of Et after the adversarial training
where n is the iteration index. γ as a hyperparameter is a smoothing coefficient.
J(φ) represents the loss function of Et and α denotes the learning rate.

2.3 Adversarial Adaptation

We regard the encoder and decoder of the segmentation network as two levels
of generators, which conduct adversarial learning with different discriminators
in the intermediary feature space and the output space of the whole model,
respectively. In the encoding stage, we adopt the adversarial process between
Et and the Disen to reduce the gap between the feature spaces of Es(Xs) and
Et(Xt), which aims to encode the Xs and Xt from Es and Et respectively to an
identical feature space. The Disen loss LE

d and the adversarial loss LE
adv for Et

can be expressed as follows:

LE
d (Xs, Xt) = −

∑
z log(Disen(Es(Xs)))

+ (1− z)(1− log(Disen(Et(Xt))))
(3)

LE
adv(Xt) = −

∑
log(Disen(Dsh(Et(Xt)))) (4)

where z = 1 if the encoding prediction is from S, and z = 0 if from T .
In the decoding stage, Dsh starts with the encoded features Es(Xs) and

Et(Xt), and fuse the multi-scale features outputs from different levels of the two
encoders concurrently through skip connections. Although such a popular net-
work architecture is well know for improving the segmentation mainly due to the
preservation of low-level features, it hinders the restoration of high-level features
after the adversarial encoding. Therefore, we use Disde in the output space of
Dsh to eliminate the potential impact of the skip connections. Disde can further
enhance the effect of domain adaptation and make the output Dsh(Et(Xt)) more
similar to Dsh(Es(Xs)). The Disen loss LD

d and the adversarial loss LD
adv for Et

are expressed as follows:

LD
d (Xs, Xt) = −

∑
z log(Disde(Dsh(Es(Xs))))

+ (1− z)(1− log(Disde(Dsh(Et(Xt)))))
(5)

LD
adv(Xt) = −

∑
log(Disde(Dsh(Et(Xt)))). (6)

We adopt the mean square error (MSE) loss function to train SDSN with
supervised learning.

Lseg(Xs) =
1

2m

m∑
i=1

(
l(i)s −Dsh(Es(x(i)s ))

)2
(7)

where l
(i)
s and x

(i)
s ∈ Xs denote the ith ground truth and the input image in the

source domain, respectively. m is the total number of the source domain OCT
images. The overall training objective for our framework is:

Ltotal(Xs, Xt) = Lseg(Xs) + LE
adv(Xt) + LD

adv(Xt). (8)



6 Jinyu Zhao et al.

Based on Eq. (8), we optimize the following min-max criterion:

min
G

max
D

= Ltotal(Xs, Xt). (9)

Where G denotes the generator and D denotes the discriminator. The ultimate objec-
tive is to minimize the segmentation loss for source image, while fooling the discrim-
inators Disen and Disde by maximizing the probability of Et(Xt) and Dsh(Et(Xt))
being considered as Es(Xs) and Dsh(Es(Xs)) in the feature and the output spaces,
respectively.

3 Experimental Results

3.1 Datasets

Our experiments are performed on two OCT image datasets acquired by two different
devices. The first dataset provides layer segmentation annotations and thus is consid-
ered as the source dataset to train SDSN in a supervised manner. The images in the
second dataset are used as target domain images and will be used to evaluate the model
generalization ability.

Source: Topcon dataset consists of 1,280 OCT B-scans with the resolution of 992
× 512 pixels. All the images were captured by a Topcon DRI-OCT-1 system from 20
subjects. Each image has a corresponding pixel-level manual annotation of the retinal
and choroidal layers provided by experts. We make use of 640 images for training and
640 images for testing.

Target : Optovue dataset comprises 670 OCT B-scans in total taken by an Optovue
RTVue-XR device, with the resolution of 640 × 400 pixels. In particular, 640 images
(without layer manual annotations) were used for training, and 30 images (with man-
ual annotations) were used for testing. All the images were acquired with regulatory
approvals and patient consents as appropriate.

3.2 Implementation details

In this experiment, DCGAN [13] and ResNet [18] were employed as the encoding and
decoding discriminator, respectively. Both the source and target domain images were
cropped to 512 × 400 pixels automatically, where all the cropped images contain retinal
and choroidal layers in either source or target domain. During the training, batch size
was set to 4 and we adopt the Adam optimizer with a weight decay of 5e−4 to train
the entire network end-to-end. The smoothing coefficient γ of EMA was set to 0.8.

3.3 Evaluation Metrics

In order to quantitatively evaluate the performance of our framework, the following
metrics were calculated: the Dice coefficient (Dice) and the Intersection over Union
(IoU). In addition, we introduce the mean absolute error of the boundaries (MAE
(pixels)) to evaluate boundary segmentation performance. It is defined as the mean
error of retinal and choroidal interfaces:

MAER/C =
1

M ×N

N∑
i=1

M∑
j=1

∣∣∣l(i)j − y
(i)
j

∣∣∣ (10)

where l
(i)
j and y

(i)
j denote the jth boundary mean coordinates of the ground truth label

and the prediction of the ith testing OCT image, respectively. We choose M = 10 when
computing the MAE of the retina layers, and M=2 of the choroid layer.
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Fig. 3. Visual results of different segmentation networks with domain adaptation.

3.4 Results

In the following sections, we report the segmentation performance under different sce-
narios, i.e., different segmentation models with and without our adaptation module.
For comparisons, we use the well-known network architectures such as U-Net [9], CE-
Net [3] and CS-Net [10,11] as SDSN and TDSN.

Domain Adaptation To justify the superiority of the proposed method in do-
main adaptation, we compared our GAA Net with state-of-the-art domain adapta-
tion methods: Adapt Structured Output Space for Semantic Segmentation (AdaptSeg
Net) [19], Perceptual-assisted Adversarial Adaptation(PAAA Net) [20], Unsupervised
domain adaptation by backpropagation (UDAB Net) [17], with the U-Net applied as
backbone for the segmentation of the target domain images.

Table 1 shows the evaluation results of the proposed GAA Net against the state-
of-the-art methods. Compared to utilizing U-Net to segment the target domain images
directly, the Dice and the IoU of domain adaptation methods have great improvements
in the retina and choroid segmentation. The GAA Net outperforms all competing
methods consistently in terms of all evaluation metrics. In particular, we calculate the
MAE of all domain adaptation methods after post-processing, our method achieves a
much lower MAE in both retina and choroid segmentation, which indicates that it is
an accurate and reliable method for measuring the retinal layers and choroid thickness.
Fig. 3 shows some visual results for retina and choroid segmentation. Moreover, we also
set CE-Net and CS-Net as the segmentation backbone to verify the versatility of our
method. The results in Table 1 show that compared to the pre-trained CE-Net and
CS-Net, our method leads to a roughly 18% improvement in terms of Dice score for
both segmentation backbones.

Parameter entanglement We also evaluate the effect of parameter entanglement
(i.e. SDSN and TDSN share the same encoder). In order to reasonably verify the per-
formance degradation caused by parameter entanglement in the source domain, the
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Table 1. Layer segmentation performances over target domain image by different
domain adaptation methods with different segmentation networks.

Method
Retinal layer Choroidal layer

IoU ↑ Dice ↑ MAE ↓ IoU ↑ Dice ↑ MAE ↓
U-Net [9] 64.09% 77.96% — 71.32% 83.26% —

Adaptseg Net (U) [19] 82.22% 90.15% 2.918 77.93% 87.40% 8.928

PAAA Net (U) [20] 83.56% 91.00% 2.141 70.21% 82.34% 10.689

UDAB Net (U) [17] 82.55% 90.40% 3.334 74.12% 85.04% 10.614

GAA Net(U) 92.41% 96.05% 1.099 85.01% 91.84% 5.374

CE-Net [3] 65.52% 79.17% — 57.09% 72.69% —

GAA Net(CE) 93.74% 96.76% 0.939 87.01% 93.06% 4.124

CS-Net [10] 62.06% 76.53% — 76.51% 86.01% —

GAA Net(CS) 90.12% 94.79% 1.026 83.37% 90.84% 5.610

* Adaptseg Net (U) denotes the Adaptseg Net uses U-Net as the segmentation
backbone, and so on.

Table 2. Performance degradation between U-Net and domain adaptation methods
over source domain image.

Method
Retinal layer Choroidal layer

EIoU ↓ EDice ↓ EMAE ↓ EIoU ↓ EDice ↓ EMAE ↓
U-Net [9] — — — — — —

Adaptseg Net [19] 4.37% 2.44% 1.285 0.55% 0.32% 1.699

PAAA Net [20] 5.06% 2.80% 1.145 0.96% 0.56% 2.474

UDAB Net [17] 6.17% 3.44% 1.145 2.93% 1.69% 2.592

GAA Net 0.68% 0.70% 0.70 0.10% 0.05% 0.178

SDSN and TDSN of the five competing methods listed in Table 2 all adopt U-Net with
the same setting. The parameters of the SDSN and TDSN are shared in AdaptSeg Net,
PAAA Net and UDAB Net but not in the GAA Net that we propose. We take the per-
formance mertics of U-Net as the baseline, and computed the error of IoU (EIoU ), Dice
(EDice) and MAE (EMAE) between U-Net and the other methods. It can be seen from
Table 2 that the metrics of retinal layer segmentation of all methods whose parameters
are shared, have significant margin when compared to U-Net. By contrast, our GAA
Net achieves a comparable performance with the original U-Net. This indicates that
the SDSN module in our method is capable of retaining the segmentation performance
of the source domain images, while the TDSN module can alleviate the performance
degradation caused by the parameter sharing. For the choroidal layer segmentation,
similarly, GAA Net performs better than all other competing methods in terms of all
metrics. The results demonstrate that the parameter entanglement generally leads to
the performance degradation of the SDSN, such that the TDSN cannot gain the best
performance when combined with SDSN together.
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4 Conclusion

This paper have proposed a guided adversarial adaptation (GAA) framework for the
segmentation of retinal and choroidal layers in OCT images acquired from different de-
vices. By using a dual-encoder structure, the source domain encoder guides the learning
of the target domain encoder. This helps to avoid the degradation of source domain
segmentation caused by parameter entanglement. In addition, through an adversarial
scheme, the target domain segmentations are also enhacned with good performance as
the source domain segmentations. In the future work, we will focus on applying the
GAA framework to the diagnosis of various ophthalmic diseases.
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