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Abstract. We relate the mass growth (with respect to a stability condition)

of an exact auto-equivalence of a triangulated category to the dynamical be-
haviour of its action on the space of stability conditions. One consequence is

that this action is free and proper whenever the mass growth is non-vanishing.
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1. Introduction

The seminal paper [5] initiated the dynamical study of an exact endofunctor
of a triangulated category, making a number of striking parallels with classical
dynamics. These were inspired in part by the analogies between Teichmüller theory
and Bridgeland stability conditions encapsulated in Figure 1. Elements of this
analogy had been noted by Kontsevich and Soibelman, and independently Seidel,
before it was developed more fully by Gaiotto, Moore and Neitzke in [6]. Aspects
of it have been made precise by Bridgeland and Smith [3] who relate the stability
spaces of certain 3-Calabi–Yau categories constructed from ideal triangulations of
a surface to spaces of quadratic differentials, and separately by Haiden, Katzarkov
and Kontsevich [7] who identify the stability space of a certain Fukaya category of a
surface with the space of marked flat structures. Beyond these precise relationships,
however, the analogy remains a useful heuristic guide.

We consider the dynamical behaviour of an exact auto-equivalence α of a trian-
gulated category D acting as an isometry of the Bridgeland metric on the stability
space StabΛ(D). Following the analogy this should be akin to studying the action
of a surface diffeomorphism on Teichmüller space. There, the mapping class group
acts by isometries of the Teichmüller metric. This action is properly discontinuous
and extends to the Thurston compactification. Analysing the fixed points of this
extended action led Thurston to his classification of elements of the mapping class
group as either periodic, pseudo-Anosov or reducible [17]. Although we do not
currently have an analogous compactification of the stability space in general —
however, see [1] for a proposed construction — this suggests that the dynamics of
the action on stability space should be useful for classifying automorphisms of D.
As a baby step in this direction we show that the infinite cyclic group generated by
α acts freely and properly on a component of StabΛ(D) whenever α has non-zero
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Surfaces Triangulated categories

Closed curve C Object E
Intersection C ∩ C ′ Morphisms Ext∗(E,E′)

Flat metric Stability condition
Geodesics Stable objects

Length of C Mass of E
Slope of C Phase of E

Diffeomorphism Auto-equivalence
Teichmüller space Stability space

Figure 1. Analogies between smooth surfaces and triangulated categories.

mass-growth. Similar results were obtained in the particular case of pseudo-Anosov
functors by Kikuta [10, §4].

We now explain in more detail. The entropy ht(α) ∈ [−∞,∞) of an exact
endofunctor α of D was defined in [5] by analogy with the notions of entropy in
dynamics. It measures the complexity of α; here t is a real parameter reflecting the
fact that the Z-grading of a triangulated category allows one to define an invariant
with extra structure. The authors of [5] conjectured that the entropy should be
related to the way the mass of objects, measured in a fixed stability condition σ on
D, grows as we successively apply α. A relationship of this kind was established by
Ikeda in [8] when the mass growth with parameter

hσ,t(α) = sup
E∈D

lim sup
n→∞

1

n
logmσ,t(α

nE) (t ∈ R)

of α was introduced. Here mσ,t(E) =
∑n
i=1mσ(Ai)e

ϕit is a parameterised version
of the mass of the object E which takes account not only of the masses of its Harder–
Narasimhan factors Ai but also of their phases ϕi. Ikeda shows that hσ,t(α) depends
only on the component of the stability space StabΛ(D) in which σ lies, and that
ht(α) ≥ hσ,t(α) with equality when σ is in a component containing an algebraic
stability condition, i.e. one whose heart is an abelian length category with finitely
many isomorphism classes of simple objects.

When α is an auto-equivalence its action on StabΛ(D) is controlled by the mass-
growth because mσ,t(α

nE) = mα−nσ,t(E), allowing us to view hσ,t(α) as a measure
of how masses and phases grow as we move (backwards) along the orbit of α in the
stability space. We show in Proposition 4.6 that

(1) lim
n→∞

d(σ, αnσ)

n
≥ max

{
hσ,0(α),

∣∣∣∣ lim
t→±∞

hσ,t(α)

t

∣∣∣∣}
with equality when there is an algebraic stability condition in the component
Stab◦Λ(D) of σ. Here d is the Bridgeland metric on StabΛ(D). We refer to the
term on the left of (1) as the eventual displacement of α. It is bounded above by
the translation length infσ∈Stab◦Λ(D) d(σ, ασ) and depends only on the component

Stab◦Λ(D). The action of the infinite cyclic group generated by α is free and proper
when the eventual displacement is strictly positive. The piecewise-linear bounds
we establish in Proposition 3.2 together with (1) show this occurs when hσ,t(α) 6= 0
for some t ∈ R. Unfortunately, there is no simple way to compute the mass growth
of a composite αβ from those of α and β, so it is not enough to consider a set of
generators to check whether the action of Aut(D), or some subgroup thereof, on
StabΛ(D) is free and proper.

The space StabΛ(D) has a natural right C action which commutes with the
left Aut(D) action. We also consider the induced action of α on the quotient
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StabΛ(D)/C. This is an isometry of the induced metric and we obtain similar
inequalities. In this case the eventual displacement is bounded below by

1

2

(
hσ,0(α) + hσ,0(α−1)

)
in general (Lemma 4.14), and by

1

2
max

{
hσ,0(α) + hσ,0(α−1), lim

t→∞

hσ,t(α)

t
− lim
t→−∞

hσ,t(α)

t

}
when there is an algebraic stability condition in the component of σ (Proposi-
tion 4.16). This yields a criterion for when the action on the quotient is free and
proper. The bound is sharp for pseudo-Anosov auto-equivalences [10, Theorem 4.9].

We obtain these results by making direct estimates of the eventual displace-
ment, and illustrate them by well-known examples including pseudo-Anosov func-
tors, auto-equivalences of semisimple categories and spherical twists. Section 2 is a
review of the basic definitions and results on entropy and mass growth. The main
result of Section 3 is piecewise-linear bounds for the mass growth (Proposition 3.2).
These imply that both limits limt→±∞ hσ,t(α)/t are well-defined, and can be ex-
pressed in terms of the phase growth of semistable objects or of a split generator.
They also lead to criteria for when the mass growth hσ,t(α) is piecewise-linear or
linear in the parameter t. Section 4 contains the results relating mass growth to
eventual displacement outlined above.

2. Entropy and Mass Growth

We recall the definitions of entropy, and of stability condition and mass growth,
and review their key properties and inter-relationship.

2.1. Entropy. For an object D ∈ D let thick(D) denote the minimal thick subcat-
egory of D containing D. Thus E ∈ thick(D) if there is a finite sequence of exact
triangles

(2)

0 E1 · · · En−1 En = E ⊕ E′

D[d1] D[dn]

for some E′ ∈ D and d1, . . . , dn ∈ Z. When E ∈ thick(D) the complexity of E
relative to D is defined to be

δt(D,E) = inf

{
n∑
i=1

edit : diagrams (2)

}
;

otherwise δt(D,E) =∞. By convention the empty sum is zero so that δt(D, 0) = 0.
The complexity is a well-behaved quantity, in particular:

Lemma 2.1 ([5, Proposition 2.2] and [8, Lemma 2.3]). For objects C, D, E and
F of D

(1) δt(D,F ) ≤ δt(D,E)δt(E,F ),
(2) δt(C,E) ≤ δt(C,D) + δt(C,F ) whenever there is an exact triangle

D → E → F → E[1],

(3) δt(αD,αE) ≤ δt(D,E) for any exact endofunctor α : D→ D.

(Here and in the sequel, we suppress the brackets in αD etc. to aid readability.)

Let End(D) be the ring of exact endofunctors of D and assume that D has a
split-generator, i.e. an object G such that thick(G) = D.
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Definition 2.2 ([5, Definition 2.4]). The entropy of α ∈ End(D) is defined to be

ht(α) = lim
n→∞

(
1

n
log δt(G,α

nG)

)
∈ [−∞,∞).

The limit exists and is independent of the choice of generator by [5, Lemma 2.5].

By [5, §2] one has ht(α
k) = kht(α) for any k ∈ N>0 and ht(α

−1βα) = ht(β) for
an exact auto-equivalence α and endofunctor β. Further, ht(α[d]) = ht(α) +dt and
if α and β are commuting endofunctors then

ht(αβ) ≤ ht(α) + ht(β).

If α and β do not commute there is no obvious relation between the entropies of α,
β and αβ.

In many contexts the entropy h0(α) at t = 0 is bounded below by the logarithm
of the spectral radius of the linear endomorphism induced by α on Hochschild
homology or on the numerical Grothendieck group — see for example [5, Theorem
2.8] and [12, Theorem 2.13]. Often, this lower bound is sharp for auto-equivalences,
but this is not always the case — see [15, Proposition 1.6] for counterexamples
involving K3 surfaces.

Examples 2.3. (1) Suppose D is fractional Calabi-Yau of dimensionm/n ∈ Q,
i.e. that D has a Serre functor S : D→ D such that Sn ∼= [m]. Then by [5,
§2.6] ht(S) = mt/n.

(2) Let X be a smooth projective variety over a field k, and

S = −⊗ ωX [dim(X)] : Db(X)→ Db(X)

be the Serre functor. Then by [5, Proposition 2.12] ht(S) = dim(X) t.
(3) Let Q be a quiver, and S : Db(Q)→ Db(Q) the Serre functor on the bounded

derived category of finite-dimensional representations of Q. When Q is
Dynkin Db(Q) is fractional Calabi–Yau [14, Theorem 3.8] and so ht(S) is
linear by (1) above. When Q is not of Dynkin type

ht(S) = log ρ ([S]) + t

where the spectral radius ρ([S]) of the induced endomorphism [S] of the
Grothendieck group satisfies ρ([S]) ≥ 1 with equality if and only if Q is
extended Dynkin [5, Theorem 2.16].

(4) Let f : X → X be a regular self-map of a smooth complex projective vari-
ety X, and assume that the odd and even components of the induced map
H∗(f ;Q) on rational cohomology have different eigenvalues (with multi-
plicity) on the spectral radius ρ (H∗(f,Q)). Then

ht(f
∗) = log ρ (H∗(f,Q))

is constant [5, Theorem 2.11]. If, in addition, f is surjective then

ht(f
∗) = log ρ ([f∗]) = htop(f)

by [13, Theorem 5.5] where the latter is the topological entropy of the map f ,
and [f∗] denotes the induced endomorphism of the numerical Grothendieck
group.

(5) Let D be the perfect derived category of a smooth proper dg-algebra. Let
ΦS be the spherical twist about an N -spherical object S ∈ D. For t ≤ 0,
we have ht(ΦS) = (1−N)t, and if there is 0 6= E ∈ D with Ext∗(E,S) = 0
then in addition ht(ΦS) = 0 for t > 0 [15, Theorem 1.4].
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2.2. Stability conditions. We briefly review the notion of stability condition on
a triangulated category D. Throughout we fix a surjection ν : K(D)→ Λ from the
Grothendieck group to a finite rank lattice, and a norm || − || : Λ⊗ R→ R≥0. Let
[E] denote the class of an object E of D in K(D).

A stability condition σ = (P,Z) on D consists of an additive homomorphism
Z : Λ→ C and a full additive subcategory P (ϕ) ⊂ D for each ϕ ∈ R such that

(1) P (ϕ+ 1) = P (ϕ)[1];
(2) if 0 6= E ∈ P (ϕ) then Z(ν([E])) = m(E) exp(iπϕ) for some m(E) ∈ R>0;
(3) each object 0 6= E ∈ D admits a Harder–Narasimhan filtration, i.e. a finite

collection of exact triangles

0 E1 · · · En−1 En = E

A1 An

where Ai ∈ P (ϕi) with ϕ1 > · · · > ϕn;
(4) there is a constant K > 0 such that m(E) ≥ K||ν([E])|| for each E ∈ P (ϕ)

and ϕ ∈ R.

The objects of P (ϕ) are said to be semistable of phase ϕ and the quantity m(E)
is called the mass of E. More generally, the mass of 0 6= E ∈ D is defined in the
above notation by

m(E) =

n∑
i=1

m(Ai),

and the maximal and minimal phases are ϕ+(E) = ϕ1 and ϕ−(E) = ϕn respec-
tively. These definitions make sense because the Harder–Narasimhan filtration is
unique up to isomorphism. By convention we set m(0) = 0 and ϕ±(0) = −∞. The
fourth condition above is called the support property and implies that there is a
strictly positive lower bound

m = inf
06=E∈D

m(E) ≥ 1

K
min{||ν(λ)|| : 0 6= λ ∈ Λ} > 0

on the masses of non-zero objects of D. Since all norms on Λ ⊗ R are equivalent
the support property is independent of the particular norm.

A stability condition σ = (P,Z) determines a bounded t–structure on D with
heart the extension-closure P (0, 1] of the collection of semistable objects with phases
in the interval (0, 1].

Theorem 1.2 of [2] implies that the set StabΛ(D) of stability conditions on D
admits the structure of a finite-dimensional complex manifold such that the pro-
jection

StabΛ(D)→ Hom(Λ,C) : (P,Z) 7→ Z

is a local isomorphism with respect to the linear complex structure on Hom(Λ,C).
The topology on StabΛ(D) arises from the Bridgeland metric

d(σ, τ) = sup
0 6=E∈D

max

{∣∣∣∣log
mσ(E)

mτ (E)

∣∣∣∣ , |ϕ+
σ (E)− ϕ+

τ (E)|, |ϕ−σ (E)− ϕ−τ (E)|
}
.

If convenient, it suffices to take the supremum over all σ semistable objects, and
even over all such with phases in the interval (0, 1], when computing the metric.
The space of stability conditions StabΛ(D) has a left action

α · (P,Z) = (α ◦ P,Z ◦ α−1)
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of by the group AutΛ(D) of exact auto-equivalences α such that the induced isomor-
phism [E] 7→ [αE] on the Grothendieck group K(D) descends to an isomorphism
Λ→ Λ. It also has a right action by the universal cover of GL+

2 (R) given by

(P,Z) · g = (P ◦ f,M−1 ◦ Z)

where we write g = (M,f) as a pair consisting of a matrix M ∈ GL+
2 (R) and an

increasing function f : R→ R with f(ϕ+1) = f(ϕ)+1 such that the induced maps
on RP1 ∼= R/2Z agree. This action preserves the collection of semistable objects.
The universal cover C of the subgroup C∗ ⊂ GL+

2 (R) of dilations and rotations acts
freely: w ∈ C acts on charges via Z 7→ e−iπwZ, maps semistable objects of phase
ϕ to ones of phase ϕ−<(w), and rescales masses by eπ=(w).

Although many examples are known, it is in general extremely difficult to com-
pute StabΛ(D), indeed even to show it is non-empty. However, it is conjectured
that StabΛ(D) is contractible, in particular connected, whenever it is non-empty.

Finally, we say that a stability condition is algebraic if its heart is a finite length
abelian category with finitely many isomorphism classes of simple objects. In
several senses algebraic stability conditions are the simplest. Whenever D has a
bounded t–structure with algebraic heart then we can construct algebraic stability
conditions for Λ = K(D) ∼= Zn, where n is the number of isomorphism classes of
simple objects in the heart, by freely assigning a charge in

{reiπϕ ∈ C : 0 < r, 0 < ϕ ≤ 1}
to each isomorphism class of simple objects of the heart — see [2, Example 5.5].
Moreover, if an entire component of StabΛ(D) consists of algebraic stability condi-
tions then that component is contractible [16, Theorem 4.9].

2.3. Mass growth. It is useful to combine the masses and phases of the Harder–
Narasimhan factors of an object into a single parameterised quantity.

Definition 2.4 ([5, §4.4] and [8, Definition 3.1]). The mass with parameter of
E ∈ D is

mσ,t(E) =

n∑
i=1

mσ(Ai)e
ϕit ∈ [−∞,∞]

where as above the Ai ∈ P (ϕi) are the Harder–Narasimhan factors of E. By
convention mσ,t(0) = 0.

The mass with parameter satisfies a triangle inequality for exact triangles, and
is also closely related to the complexity.

Lemma 2.5 ([8, Propositions 3.3 and 3.4]). Suppose D → E → F → D[1] is an
exact triangle. Then mσ,t(E) ≤ mσ,t(D) +mσ,t(F ). Moreover,

mσ,t(E) ≤ mσ,t(F )δt(E,F )

for any E,F ∈ D.

Definition 2.6 ([8, §1.1]). The mass growth with parameter of the exact endofunc-
tor α : D→ D is

hσ,t(α) = sup
E∈D

lim sup
n→∞

(
1

n
logmσ,t(α

nE)

)
where, by convention, log(0) = −∞. Using the triangle inequality for mass with
parameter (Lemma 2.5), one obtains the same result by taking instead the supre-
mum over all semistable objects E, or even over all semistable objects with phases
in the interval (0, 1].

We recapitulate the properties of the mass growth as developed in [8].
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Lemma 2.7. The following basic properties follow directly from the definition.

(1) For any k ∈ N we have hσ,t(α
k) = khσ,t(α).

(2) For any d ∈ Z we have hσ,t(α[d]) = hσ,t(α) + dt.
(3) hσ,t(α

−1βα) = hασ,t(β) for an exact auto-equivalence α and endofunc-
tor β. In particular, if α preserves the component Stab◦Λ(D) of σ then
hσ,t(α

−1βα) = hσ,t(β) by Proposition 2.8.

More interestingly the mass growth is invariant under deformation in the space
of stability conditions.

Proposition 2.8 ([8, Proposition 3.10]). If σ and τ are in the same connected
component of StabΛ(D) then hσ,t(α) = hτ,t(α) for each t ∈ R.

We now consider lower bounds for the mass growth at zero. Either α is object-
wise nilpotent, i.e. for each E ∈ D there is some n ∈ N with αnE = 0, in which case
hσ,t(α) = −∞ for all t ∈ R, or

hσ,0(α) ≥ lim sup
n→∞

(
1

n
logmσ

)
= 0

where mσ > 0 is the infimal mass of the non-zero objects. A more interesting lower
bound is provided by the following result.

Proposition 2.9 ([8, Proposition 3.11]). Suppose that σ ∈ StabΛ(D) and that the
endofunctor α induces a linear map [α] : Λ → Λ. Then hσ,0(α) ≥ log ρ([α]) where
ρ([α]) denotes the spectral radius of [α].

Example 2.10 (Gepner points). A stability condition σ ∈ StabΛ(D) is a Gepner
point [18] for α ∈ AutΛ(D) if α · σ = σ · w for some w ∈ C, equivalently if σ · C is
a fixed point of the action of α on the quotient StabΛ(D)/C. If there is a Gepner
point in the component of σ then, without loss of generality by Proposition 2.8, we
may assume σ is that Gepner point and compute the mass growth as follows:

hσ,t(α) = sup
E∈D

lim sup
n→∞

(
1

n
logmσ,t(α

nE)

)
= sup
E∈D

lim sup
n→∞

(
1

n
logmα−n·σ,t(E)

)
= sup
E∈D

lim sup
n→∞

(
1

n
logmσ·(−nw),t(E)

)
= sup
E∈D

lim sup
n→∞

(
1

n
log e−nπ=(w)+n<(w)tmσ,t(E)

)
= −π=(w) + <(w)t = <(w)t

because hσ,0(α), hσ,0(α−1) ≥ 0 so that w ∈ R and α acts by rotating phases.

Example 2.11 (Pseudo-Anosov auto-equivalences). An auto-equivalence α is said
to be pseudo-Anosov [5, Definition 4.1] if there is a stability condition σ such that
α · σ = σ · g for some g = (M,f) in the universal cover of GL+

2 (R) with

M =

(
r 0
0 1/r

)
or

(
1/r 0
0 r

)
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where the stretch factor |r| > 1. The mass growth can be computed as follows:

hσ,t(α) = sup
06=E semistable

lim sup
n→∞

1

n
logmσ,t(α

nE)

= sup
06=E semistable

lim sup
n→∞

1

n
logmα−n·σ,t(E)

= sup
06=E semistable

lim sup
n→∞

1

n
logmσ·g−n,t(E)

= sup
06=E semistable

lim sup
n→∞

1

n

(
log |MnZ(E)|+ f−n(ϕ(E))t

)
≤ log |r|+ sup

0≤ϕ<1
lim sup
n→∞

f−n(ϕ)t

= log |r|+ f−1(0)t

because f−1(0) ∈ Z from which, by induction, nf−1(0) ≤ f−n(ϕ) < nf−1(0) + 1
for any 0 ≤ ϕ < 1. In fact we have equality above because we can use the right
C action to move σ to σ′ in the same component where σ′ has a semistable object
E of phase 0 and charge 1, or of phase 1/2 and charge i respectively, according to
whether

M =

(
r 0
0 1/r

)
or

(
1/r 0
0 r

)
.

Then hσ,t(α) = hσ′,t(α) by Proposition 2.8, and we still have α · σ′ = σ′ · g so that

hσ′,t(α) ≥ lim sup
n→∞

1

n
logmσ′,t(α

nE) = log |r|+ f−1(0)t

Finally, 0 = f(f−1(0)) = f(0) + f−1(0) because f−1(0) ∈ Z so f−1(0) = −f(0). In
particular hσ,t is an injective homomorphism from the subgroup of pseudo-Anosov
auto-equivalences in AutΛ(D) to the group of real linear functions under addition.

The mass growth is determined by the action on a split-generator, when one
exists, and provides a lower bound for the entropy — indeed the two coincide when
D has an algebraic t–structure.

Theorem 2.12 ([8, Theorem 3.5]). If G ∈ D is a split-generator then

∞ > ht(α) ≥ hσ,t(α) = lim sup
n→∞

1

n
logmσ,t(α

nG).

Moreover, if there is an algebraic stability condition in the same component of
StabΛ(D) as σ then hσ,t(α) = ht(α).

Remark 2.13. It is easy to see that the entropy ht(idD) ≤ 0, but equality is not
evident except for t = 0, see the comment on page 6 of [5]. However, Lemma 2.7
and Theorem 2.12 imply that ht(id) = 0 when StabΛ(D) 6= ∅, and therefore that
ht(α

k) = kht(α) for all k ∈ N in this case. Conversely, if ht(idD) < 0 for some t ∈ R
then D does not admit any stability conditions.

Lemma 2.14. Let G ∈ D be a split generator and α and β commuting exact
endomorphisms of D. Then for σ ∈ StabΛ(D) there is an inequality

hσ,t(αβ) ≤ hσ,t(α) + ht(β).

If there is an algebraic stability condition in the component Stab◦Λ(D) of σ then

hσ,t(αβ) ≤ hσ,t(α) + hσ,t(β).



MASS-GROWTH OF TRIANGULATED AUTO-EQUIVALENCES 9

Proof. By Theorem 2.12 and Lemmas 2.1 and 2.5 we have

hσ,t(αβ) = lim sup
n→∞

1

n
logmσ,t ((αβ)nG) = lim sup

n→∞

1

n
logmσ,t (αnβnG)

≤ lim sup
n→∞

1

n
logmσ,t (αnG) δt(α

nG,αnβnG)

≤ lim sup
n→∞

1

n
logmσ,t (αnG) δt(G, β

nG)

≤ lim sup
n→∞

1

n
logmσ,t (αnG) + lim sup

n→∞

1

n
log δt(G, β

nG)

≤ hσ,t(α) + ht(β).

The last part follows directly from Theorem 2.12. �

3. Linear Bounds for Mass Growth and Entropy

We establish piecewise-linear lower and upper bounds for the mass growth with
parameter. Let α be an exact endomorphism of D, and σ ∈ StabΛ(D) a stability
condition. We assume that α is not object-wise nilpotent, i.e. there exists some
object E for which αnE 6= 0 for all n ∈ N. Define constants

ϕ−σ (α) = inf
E∈D

lim inf
n→∞

(
ϕ−σ (αnE)

n

)
≤ sup
E∈D

lim sup
n→∞

(
ϕ+
σ (αnE)

n

)
= ϕ+

σ (α)

with values in [−∞,∞]. Recall that by convention ϕ±σ (0) = −∞. If D has a split
generator G then

ϕ−σ (α) = lim inf
n→∞

(
ϕ−σ (αnG)

n

)
and ϕ+

σ (α) = lim sup
n→∞

(
ϕ+
σ (αnG)

n

)
.

Under the stronger condition that there is an algebraic stability condition in the
same component the limits exist.

Lemma 3.1. Suppose a component Stab◦Λ(D) of the stability space contains an
algebraic stability condition. Then D has a split generator G such that the limits
limn→∞ ϕ±σ (αnG)/n exist for any σ ∈ Stab◦Λ(D) and exact endofunctor α which is
not object-wise nilpotent.

Proof. Suppose σ ∈ Stab◦Λ(D) is algebraic. Without loss of generality we may
assume that all objects in its heart have phase 1. Set G = ⊕i∈ISi[−1] where
{Si | i ∈ I} is a set representatives of the isomorphism classes of simple objects
in the heart. We make this choice so that G is semistable of phase 0. Since every
object in the heart has a finite composition series G is a split generator for the
abelian heart. Then, since every object E ∈ D has a finite filtration whose factors
are the cohomology groups H∗(E) with respect to the t–structure, G is a split
generator for D.

For a collection of objects A ⊂ D let split (A) be the full subcategory on those
E ∈ D such that E ⊕F is isomorphic to an object in the extension-closure of A for
some F ∈ D. Since all objects have integral phases we then have

ϕ+
σ (E) = min{d ∈ Z | E ∈ split (G[n] : n ≤ d)}

and ϕ−σ (E) = max{d ∈ Z | E ∈ split (G[n] : n ≥ d)}

so that E ∈ split (G[n] : ϕ−σ (E) ≤ n ≤ ϕ+
σ (E)) for any E ∈ D. In particular

αm+nG ∈ split
(
αnG[n] : ϕ−σ (αmG) ≤ n ≤ ϕ+

σ (αmG)
)

⊂ split
(
G[n] : ϕ−σ (αmG) + ϕ−σ (αnG) ≤ n ≤ ϕ+

σ (αmG) + ϕ+
σ (αnG)

)
.
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It follows from this and the above characterisations of ϕ±σ that ϕ−σ (αnG) is super-
additive and ϕ+

σ (αnG) subadditive in n ∈ N. Therefore Fekete’s Lemma shows
that the limits limn→∞ ϕ±σ (αnG)/n exist, and are given by supn≥1 ϕ

−
σ (αnG)/n and

infn≥1 ϕ
+
σ (αnG)/n respectively . �

Proposition 3.2. Let α be an exact endomorphism which is not object-wise nilpo-
tent. For any σ ∈ StabΛ(D) there are bounds

ϕ−σ (α) t ≤ hσ,t(α) ≤ hσ,0(α) + ϕ−σ (α) t for t ≤ 0 and

ϕ+
σ (α) t ≤ hσ,t(α) ≤ hσ,0(α) + ϕ+

σ (α) t for t ≥ 0.

In particular, if hσ,0(α) = 0 then

hσ,t(α) =

{
ϕ−σ (α) t t ≤ 0

ϕ+
σ (α) t t ≥ 0

is piecewise-linear. Moroever, if there is an algebraic stability condition in the
component of σ then the lower bounds can be sharpened to

max{ϕ−σ (α)t, hσ,0(α) + ϕ+(α)t} ≤ hσ,t(α) for t ≤ 0 and

max{ϕ+
σ (α)t, hσ,0(α) + ϕ−(α)t} ≤ hσ,t(α) for t ≥ 0.

In particular, the mass growth is linear if and only if ϕ−σ (α) = ϕ+
σ (α) in which case

hσ,t(α) = hσ,0(α) + ϕσ(α)t

where ϕσ(α) is the common value. Both sets of bounds are illustrated in Figure 2.

Proof. The initial bounds follow from the fact that for any 0 6= E ∈ D we have
inequalities

mσ exp
(
ϕ−σ (E) t

)
≤ mσ,t(E) ≤ mσ(E) exp

(
ϕ−σ (E) t

)
for t ≤ 0 and

mσ exp
(
ϕ+
σ (E) t

)
≤ mσ,t(E) ≤ mσ(E) exp

(
ϕ+
σ (E) t

)
for t ≥ 0

where mσ > 0 is the infimal mass of the non-zero objects. The last assertion follows
immediately from the bounds.

Now suppose there is an algebraic stability condition in the component of σ.
Then by Lemma 3.1 the category D has a split generator G such that the limits
limn→∞ ϕ±σ (αnG)/n exist. For any E ∈ D there are inequalities

mσ(E) exp
(
ϕ+
σ (E) t

)
≤ mσ,t(E)

for t ≤ 0 and mσ(E) exp (ϕ−σ (E) t) ≤ mσ,t(E) for t ≥ 0. Applying these with
E = αnG we obtain lower bounds

hσ,0(α) + ϕ+(α)t ≤ hσ,t(α) for t ≤ 0 and

hσ,0(α) + ϕ−(α)t ≤ hσ,t(α) for t ≥ 0.

Combining these with the first part we obtain the sharper lower bounds.
For the last part, if the mass growth is linear then (either) pair of bounds imply

its slope is ϕ−σ (α) = ϕ+
σ (α). Conversely if ϕ−σ (α) = ϕ+

σ (α) then the sharper bounds
imply that hσ,t(α) = hσ,0(α) + ϕσ(α)t is linear, of slope the common value. �

Remark 3.3. These bounds are compatible with the properties in Lemma 2.7:

(1) ϕ±σ (αk) = kϕ±σ (α) and hσ,0(αk) = khσ,0(α) for any k ∈ N,
(2) ϕ±σ (α[d]) = ϕ±σ (α) + d and hσ,0(α[d]) = hσ,0(α) for any d ∈ Z and
(3) ϕ±σ (α−1βα) = ϕ±σ (β) and hσ,0(α−1βα) = hσ,0(β) for any exact auto-

equivalence α and endofunctor β.
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t

y

y = ϕ+
σ (α)t

y = ϕ−σ (α)t

(0, 0)

(0, hσ,0(α))

Figure 2. The mass-growth y = hσ,t(α) lies in the red shaded
region, and in the pale red shaded region when there is an algebraic
stability condition in the component of σ — see Proposition 3.2.

Remark 3.4 (Asymptotic mass growth). It follows from Proposition 3.2 that
limt→±∞ (hσ,t(α)/t) = ϕ±σ (α), and moreover by Proposition 2.8 these limits de-
pend only on the component of σ in StabΛ(D).

Remark 3.5. Suppose G is a split-generator for D and α an exact endofunctor
which is not object-wise nilpotent. Then for any stability condition σ ∈ StabΛ(D)
there are lower bounds for the entropy

ht(α) ≥

{
ϕ−σ (α)t for t ≤ 0

ϕ+
σ (α)t for t ≥ 0

because ht(α) ≥ hσ,t(α) by Theorem 2.12. If in addition σ lies in a component of
the stability space containing an algebraic stability condition then ht(α) = hσ,t(α)
so that the entropy satisfies the sharper lower bounds and the upper bounds in
Proposition 3.2. In particular, in this case the entropy is piecewise linear when
h0(α) = 0, and linear when ϕ−σ (α) = ϕ+

σ (α).

Example 3.6 (Serre dimensions). The lower and upper Serre dimensions of a k-
linear Ext-finite triangulated category D with Serre functor are defined in [4, §5].
When D is the perfect derived category of dg-modules over a smooth and proper
dg-algebra these are the limiting slopes

Sdim(D) = lim
t→−∞

ht(S)/t and Sdim(D) = lim
t→∞

ht(S)/t

of the entropy of the Serre functor S [11, Definition 2.4]. Furthermore [11, Lemma
3.11] and Proposition 3.2 show that

lim
t→±∞

ht(S)

t
= lim
t→±∞

hσ,t(S)

t
= ϕ±σ (S).

Example 3.7 (Semisimple categories). Semisimple categories are a convenient class
of examples in which the mass growth of all endofunctors is known, and the bounds
of Proposition 3.2 easily computed.

Let F be a finite set and Db(F ) be the triangulated category of F -indexed
bounded complexes over a field k. This has split-generator kF considered as a com-
plex in degree zero. Any exact endofunctor α of Db(F ) is a Fourier–Mukai functor
given by a kernel Kα ∈ Db(F × F ) with trivial differential. Such a kernel corre-
sponds to the matrix Mα(z) ∈ MF×F

(
N[z, z−1]

)
whose entries are the Poincaré

polynomials of the components of the kernel. The endofunctor α is object-wise
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nilpotent if and only if Mα(z) is nilpotent; we assume this is not the case. Compo-
sition of functors corresponds to composition of matrices. By [5, §2.4] and Theorem
2.12 the mass growth

hσ,t(α) = ht(α) = log ρ
(
Mα(e−t)

)
= lim
n→∞

1

n
log ||Mα(e−t)n||

where ρ denotes the spectral radius, and the final equality is Gelfand’s formula
for the spectral radius where || · || is (any) matrix norm. Perron–Frobenius theory
gives a more explicit description of ρ (Mα(e−t)) as the maximal real eigenvalue of
Mα(e−t), so that the graph is the maximal branch of the (real) spectral curve{

(t, λ) ∈ R2 | det
(
Mα(e−t)− λ

)
= 0
}
,

see [5, §2.4]. In particular, h0(α) = log ρ (Mα(1)) is the logarithm of the maximal
real eigenvalue of Mα(1).

When |F | = 1 the endofunctor is given by a Laurent polynomial f ∈ N[z, z−1]
and ht(α) = log f(e−t). As predicted by Proposition 3.2 this is (piecewise) linear
when h0(α) = 0 for in this case f(z) = zd must be a monic monomial, in which case
α = [−d] and ht(α) = −dt. In fact it is (piecewise) linear if and only if h0(α) = 0.
Moreover, there are examples such as Mα(z) = (z + 1/z) for which

t 7−→

{
ε+ ϕ−σ (α)t t ≤ 0

ε+ ϕ+
σ (α)t t > 0

is not a lower bound for ht(α) = log(e−t + et) for any ε > 0. In this sense,
Proposition 3.2 is the best possible result.

Returning to the case of arbitrary F , let zd be the lowest power of z occurring
in the entries of Mα(z) and set Mα(z) = zdM ′α(z). Then

ϕ+
σ (α) = lim

t→∞

ht(α)

t
= lim
t→∞

log ρ (Mα(e−t))

t
= lim
t→∞

log ρ (M ′α(e−t))

t
− d = −d

because ρ (M ′α(e−t)) is bounded as t→∞. Similarly ϕ−σ (α) = −D where zD is the
highest power of z occurring in the entries of Mα(z).

Examples 3.8. In the following examples h0(α) = 0 and therefore hσ,0(α) = 0
too for any σ ∈ StabΛ(X). In these cases Proposition 3.2 guarantees that hσ,t(α)
is piecewise-linear.

(1) For any triangulated category h0([n]) = 0. In this case hσ,t([n]) = nt.
(2) For a Dynkin quiver Q and any α ∈ Aut(Db(Q)) the entropy h0(α) = 0

by [12, Corollary 2.15]. The group of auto-equivalences Aut(Db(Q)) is
generated by the Serre functor, shifts and auto-equivalences of the quiver
Q [14, Theorem 3.8], and it follows that hσ,t(α) is always linear.

(3) Let X be a smooth complex projective variety with either ample canonical
or ample anti-canonical bundle, and let α ∈ Aut(Db(X)). Then h0(α) = 0
by [13, Theorem 5.7].

(4) Let Q be a connected acyclic quiver with at least two vertices, and let
DN (Q) be the associated Calabi–Yau category of dimension N ≥ 2, see [9].
Then

hσ,t(Φ) =

{
(1−N)t t < 0

0 t ≥ 0

where Φ ∈ Aut(DN (Q)) is the spherical twist about one of the simple
objects in the standard heart [8, Proposition 4.5].

Proposition 3.2 implies that ϕ±σ (α) = 0 when hσ,t(α) is constant. In the other
direction, if ϕ±σ (α) = 0 then 0 ≤ hσ,t(α) ≤ hσ,0(α). The next result provides a
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sufficient condition for the constancy of the mass growth with parameter, in the
same spirit as [5, Lemma 2.10] for the entropy.

Lemma 3.9. Suppose α preserves the heart P (0, 1] of the stability condition σ.
Then hσ,t(α) = hσ,0(α) is constant.

Proof. The existence of Harder–Narasimhan filtrations implies that any object E
lies in P (−d, d] for some d ∈ N. Since α preserves P (0, 1] we see that αnE is also
in P (−d, d]. Hence mσ(αnE)e−d|t| ≤ mσ,t(E) ≤ mσ(αnE)ed|t|. The result then
follows directly from the definition of hσ,t(α). �

Remark 3.10. By the deformation invariance of the mass growth the same con-
clusion holds if α preserves the heart of any stability condition τ in the same
component of StabΛ(D) as σ. By a simple adaptation of the argument it remains
true if α preserves Pτ (I) for any interval I ⊂ R of strictly positive length.

Example 3.11. Suppose A is an abelian category and α ∈ Db(A) is induced from
an exact endomorphism of A. Then α preserves the canonical heart and hence
hσ,t(α) is constant for any σ in the (possibly empty) component of the space of
stability conditions on Db(A) containing those with heart A.

4. Mass Growth of Auto-equivalences

We relate the mass growth of an exact auto-equivalence to the properties of its
action on the space of stability conditions, and on the quotient of this by C.

4.1. Translation length and eventual displacement. We recall the definition
and basic properties of the translation length and a related quantity which we refer
to as the eventual displacement of an isometry.

Definition 4.1 (Translation length and eventual displacement). Let (X, d) be a
metric space and α : X → X an isometry. Then the translation length of α is
l(α) = infx∈X d(x, αx), and the eventual displacement is

d(α) = lim
n→∞

d(x, αnx)

n
.

Lemma 4.2. For an isometry α of a metric space (X, d) the eventual displacement
d(α) is well-defined, independent of the point x ∈ X, and satisfies d(α) ≤ l(α).

Proof. Fix x ∈ X. The triangle inequality implies that (d(x, αnx)) is sub-additive.
Fekete’s Lemma then says that the limit of d(x, αnx)/n as n → ∞ exists and is
given by the infimum:

lim
n→∞

d(x, αnx)

n
= inf
n≥1

d(x, αnx)

n
.

For any y ∈ X and n ∈ N we have, again by the triangle inequality,

d(x, αnx) ≤ d(x, y) + d(y, αny) + d(αny, αnx) = d(y, αny) + 2d(x, y).

Hence the eventual displacement d(α) is independent of x ∈ X. Therefore

d(α) = inf
x∈X

inf
n≥1

d(x, αnx)

n
≤ inf
x∈X

d(x, αx) = l(α)

as claimed. �

It follows directly from the definition and the triangle inequality that if α is an
invertible isometry then d(α) = d(α−1), and if α and β are commuting isometries
then d(αβ) ≤ d(α) + d(β).

Definition 4.3. An isometry α of a metric space (X, d) is
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(1) elliptic if α has a fixed point, i.e. there is x ∈ X with d(x, αx) = l(α) = 0
(2) hyperbolic if there is x ∈ X with d(x, αx) = l(α) > 0;
(3) parabolic if there is no x ∈ X with d(x, αx) = l(α).

Definition 4.4. The action of the cyclic group 〈α〉 generated by an invertible
isometry α of a metric space (X, d) is free and proper if

(1) each x ∈ X has an open neighbourhood U with U ∩αn(U) 6= ∅ ⇐⇒ n = 0;
(2) for each x and x′ in distinct orbits there are open neighbourhoods U 3 x

and U ′ 3 x′ such that U ∩ αn(U ′) = ∅ for all n ∈ Z.

Lemma 4.5. Suppose α is an invertible isometry with d(α) > 0. Then the action
of the cyclic group 〈α〉 on (X, d) is free and proper.

Proof. Fix 0 < ε < d(α)/2. We claim that Bε(x) ∩ αm (Bε(x)) = ∅ for m 6= 0.
Since α is an invertible isometry αm (Bε(x)) = Bε(α

mx) so it suffices to show that
d(x, αmx) ≥ 2ε for all m 6= 0. Suppose for a contradiction that there is some x ∈ X
and 0 6= m ∈ N with d(x, αmx) < 2ε. Then by the triangle inequality

d(x, αnx) ≤ K +
⌊ n
m

⌋
2ε

for any n ∈ N where K = max{d(x, αkx) : 0 ≤ k ≤ m}. Hence

d(α) = lim
n→∞

d(x, αnx)

n
≤ 2ε

m
≤ 2ε

contradicting our choice of ε.
Now suppose that x′ is not in the orbit of x. Then by the above there is at

most one n ∈ Z for which αnx′ ∈ Bε(x). Hence infn∈Z d(x, αnx′) = 2δ > 0 and
Bδ(x) ∩ αn (Bδ(x

′)) = ∅ for all n ∈ Z. �

4.2. Auto-equivalences acting on StabΛ(D). We relate the mass growth of an
exact auto-equivalence to the eventual displacement of the induced isometry of the
space of stability conditions. Throughout we assume that α is in the subgroup
Auto

Λ(D) ⊂ AutΛ(D) of auto-equivalences which preserve a specified component
Stab◦Λ(D) of the stability space.

Proposition 4.6. Suppose α ∈ Auto
Λ(D) and σ ∈ Stab◦Λ(D). Then

(3) max
{
hσ,0(α),

∣∣ϕ±σ (α)
∣∣} ≤ d(α)

with equality when Stab◦Λ(D) contains an algebraic stability condition.

Proof. We estimate as follows, where the suprema are taken over E ∈ Pσ(ϕ) with
0 < ϕ ≤ 1:

d(α) = lim
n→∞

sup
E

{∣∣∣∣ 1n log
mαnσ(E)

mσ(E)

∣∣∣∣ , |ϕ±αnσ(E)− ϕ±σ (E)|
n

}
≥ sup

E

{
lim sup
n→∞

∣∣∣∣ 1n log
mαnσ(E)

mσ(E)

∣∣∣∣ , lim sup
n→∞

|ϕ±αnσ(E)− ϕ±σ (E)|
n

}
= max

{
sup
E

lim sup
n→∞

∣∣∣∣ 1n logmαnσ(E)

∣∣∣∣ , sup
E

lim sup
n→∞

|ϕ±αnσ(E)|
n

}
= max

{
hσ,0(α−1),

∣∣ϕ±σ (α−1)
∣∣} .

The final step uses the fact that mαnσ,0(E) = mσ,0(α−nE) ≥ mσ to remove the
modulus signs on the first term, and similarly that ϕ±αnσ(E) = ϕ±σ (α−nE) to obtain
the second. Since d(α) = d(α−1) we obtain (3).

Now suppose that there is an algebraic stability condition in the component
Stab◦Λ(D) of σ. In fact, since d(α), hσ,0(α) and ϕ±σ (α) are all independent of the
choice of σ in the component, we may assume that σ is algebraic, and even that
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Zσ(S) = i for each of the simple objects S of the heart P (0, 1]. Since each E in the
heart has a finite length Jordan–Hölder filtration with simple factors

lim
n→∞

sup
E

|ϕ±αnσ(E)− ϕ±σ (E)|
n

≤ lim sup
n→∞

max
S

|ϕ±αnσ(S)− ϕ±σ (S)|
n

= max
S

lim sup
n→∞

|ϕ±αnσ(S)− ϕ±σ (S)|
n

≤ sup
E

lim sup
n→∞

|ϕ±αnσ(E)− ϕ±σ (E)|
n

= |ϕ±σ (α−1)|

where the suprema are taken over semistable E in the heart and the maxima over
simple S in the heart. Similarly, using the ‘triangle inequality’ for mass (Lemma
2.5) and the fact that the choice of σ means E has precisely mσ(E) simple factors,
we have

lim
n→∞

sup
E

∣∣∣∣ 1n log
mαnσ(E)

mσ(E)

∣∣∣∣ ≤ lim sup
n→∞

max
S

∣∣∣∣ 1n log
mσ(E)mαnσ(S)

mσ(E)

∣∣∣∣
= max

S
lim sup
n→∞

∣∣∣∣ 1n logmαnσ(S)

∣∣∣∣
≤ sup

E
lim sup
n→∞

∣∣∣∣ 1n logmαnσ(E)

∣∣∣∣ = hσ,0(α−1).

Thus d(α) ≤ max{hσ,0(α−1), |ϕ±σ (α−1)|} and we have equality in (3). �

Corollary 4.7. Suppose α ∈ Auto
Λ(D). Then

(1) hσ,t(α) = 0 if there is τ ∈ Stab◦Λ(D) with bounded orbit under 〈α〉;
(2) the cyclic action of α is free and proper if hσ,t(α) 6= 0 for some t ∈ R,

and the quotient Stab◦Λ(D) → 〈α〉\Stab◦Λ(D) is a holomorphic covering of
complex manifolds.

Proof. For the first part, the existence of a bounded orbit means that d(α) = 0 and
hence that hσ,t(α) = 0 by Proposition 4.6. For the second part, hσ,t(α) 6= 0 implies
d(α) > 0, again by Proposition 4.6, and therefore the action is free and proper
by Lemma 4.5. It follows that the quotient inherits a unique complex manifold
structure such that the quotient map is a holomorphic covering. �

Remark 4.8. The eventual displacement bounds the modulus of eigenvalues of the
action on charges. If σ = (P,Z) ∈ Stab◦Λ(D) and α ∈ Auto

Λ(D) satisfies αZ = aZ
for some a ∈ C then, taking the supremum over semistable E,

d(α) = lim
n→∞

d(σ, αnσ)

n
≥ lim
n→∞

1

n
sup
E

∣∣∣∣log

(
mαnσ(E)

mσ(E)

)∣∣∣∣
≥ lim
n→∞

1

n
sup
E

∣∣∣∣log

(
|αn · Z(E)|
|Z(E)|

)∣∣∣∣
= |log (|a|)|

because mτ (E) ≥ |W (E)| for any stability condition τ = (Q,W ) and object E of D.
In particular when d(α) = 0, for example when hσ,t(α) = 0 and Stab◦Λ(D) contains
an algebraic stability condition, only unit complex eigenvalues can occur.

Example 4.9 (Gepner points). Suppose σ is a Gepner point for α ∈ AutΛ(D) with
α · σ = σ · w for some w ∈ C. Then hσ,t(α) = <(w)t by Example 2.10. Thus the
cyclic action of α is free and proper unless w = 0, in which case σ is a fixed point.

Example 4.10 (Pseudo-Anosov auto-equivalences). Suppose α is pseudo-Anosov
with α · σ = σ · g for some σ ∈ Stab(D) and g = (M,f) in the universal cover of
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GL+
2 (R). Then computing as in Example 2.11 we obtain (without the requirement

that an algebraic stability condition exists)

d(α) = max {log |r|, |f(0)|} > 0

where |r| > 1 is the stretch factor. Hence 〈α〉 acts freely and properly. Moreover, as
in Example 2.11, we can always find σ′ in the orbit σ ·C such that d(α) = d(σ′, α·σ′)
so that l(α) = d(α) too. Thus α is a hyperbolic isometry of Stab(D).

Kikuta shows the analogue for the quotient Stab(D)/C with respect to the in-
duced metric. Namely, [10, Proposition 4.8 and Theorem 4.9] state that the induced
isometry α is a hyperbolic isometry of Stab(D)/C with

log ρ([α]) = hσ,0(α) = d(α) = l(α).

Example 4.11 (Semisimple categories). Let F be a finite set and Db(F ) be the
triangulated category of F -indexed bounded complexes over a field k as in Example
3.7. The stability space Stab(Db(F )) ∼= CF is the universal cover of the complex

torus C∗F ⊂ Hom(KDb(F ),C). The auto-equivalence α acts via Mα(1) on the
charge space, and via the covering action on Stab(Db(F )).

An endomorphism α represented by a matrix Mα(z) ∈ MF×F
(
N[z, z−1]

)
is an

auto-equivalence if and only if Mα(1) is a permutation matrix and all non-zero
entries of Mα(z) are monic monomials. This is because the only indecomposable
objects in Db(F ) are the shifts of the simple objects {Si | i ∈ F} of the standard
heart. Therefore Mα(z)k = Diag(zni | i ∈ F ) is diagonal where k ∈ N is the order
of the permutation matrix Mα(1). By Example 3.7 we then have

hσ,t(α) =

{
min{−ni/k | i ∈ F}t t ≤ 0

max{−ni/k | i ∈ F}t t ≥ 0

so that d(α) = max{|ni|/k | i ∈ F} by Proposition 4.6. In particular the cyclic
action of α is free and proper unless Mα(z)k = id for some k > 0 (in which case
every orbit is periodic with period k).

A stability condition σ on Db(F ) is determined by a choice of phases {ϕi | i ∈ F}
and masses for the simple objects Si. In order to minimise d(σ, ασ) we choose the
masses to be the same. Let π be the permutation corresponding to Mα(1) so that
α(Si) = Sπ(i)[−mi] for some mi ∈ Z. Note that ni =

∑
j∈Oi

mj where Oi ⊂ F is
the orbit of i under π. The minimal distance between σ and ασ occurs when we
choose the phases so that

ϕπ(i) − ϕi = mi −
ni

#Oi
(i ∈ F ).

This gives a minimal distance l(α) = d(σ, ασ) = max{|ni|/#Oi : i ∈ F}. So
l(α) ≥ d(α) with equality only when π is a cycle. We conclude that α is a hyperbolic
isometry when π is a cycle, and otherwise is parabolic (except when Mα(z) = id in
which case it is elliptic).

Example 4.12 (Spherical twists). Recall from Examples 3.8 that if Φ is the spheri-
cal twist about one of the simple objects in the standard heart of the N -Calabi–Yau
category DN (Q) associated to a connected acyclic quiver Q with at least two vertices
then for σ in the standard component

hσ,t(Φ) =

{
(1−N)t t < 0

0 t ≥ 0.

Therefore the cyclic action of Φ on Stab(DN (Q)) is free and proper. Moreover,
since the standard component contains algebraic stability conditions d(Φ) = N − 1
by Proposition 3.2. Moreover, if Φ is the twist about the simple object S then
Φ(S) = S[N−1] which implies that d(σ,Φσ) ≥ N−1 for σ with heart the standard
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heart of DN (Q). Thus l(Φ) = d(Φ) = N − 1 so that Φ is a hyperbolic isometry of
Stab(DN (Q)).

Example 4.13 (Serre functors). Let D be the perfect derived category of dg-
modules over a smooth and proper dg-algebra and S the Serre functor. Then it fol-
lows from Example 3.6 and Proposition 4.6 that max{−Sdim(D),Sdim(D)} ≤ d(S)
because Sdim(D) ≤ Sdim(D). Since the lower Serre dimension may be negative, see
[4, Examples 5.7 and 5.8], this cannot be further simplified in general.

4.3. Auto-equivalences acting on StabΛ(D)/C. Suppose that α ∈ Auto
Λ(D).

The action on Stab◦Λ(D) descends to an action α · σ = α · σ on the corresponding
component Stab◦Λ(D)/C of the quotient because the right action of Auto

Λ(D) com-
mutes with the left C action. Moreover, α is an invertible isometry of the induced
metric d(σ, τ) = infa∈C d(σ, τ ·a). Clearly d(α) ≤ d(α) since d(σ, α ·σ) ≤ d(σ, α ·σ);
we now discuss lower bounds.

Lemma 4.14. Suppose D has a split generator G, and α ∈ Auto
Λ(D). Then the

eventual displacement for the component Stab◦Λ(D)/C satisfies

d(α) ≥ hσ,0(α) + hσ,0(α−1)

2
.

Proof. We estimate using the mass term of the Bridgeland metric as follows:

d(α) = lim sup
n→∞

inf
w∈C

d(σ, αnσ · w)

n

≥ lim sup
n→∞

inf
w∈C

sup
E∈D

1

n

∣∣∣∣log
mαnσ·w(E)

mσ(E)

∣∣∣∣
= lim sup

n→∞
inf
w∈C

sup
E∈D

1

n

∣∣∣∣log
mαnσ(E)

mσ(E)
+ π=(w)

∣∣∣∣
= lim sup

n→∞

1

2n

(
sup
E∈D

log
mαnσ(E)

mσ(E)
− inf
E∈D

log
mαnσ(E)

mσ(E)

)
= lim sup

n→∞

1

2n

(
sup
E∈D

log
mαnσ(E)

mσ(E)
+ sup
E∈D

log
mσ(E)

mαnσ(E)

)
= lim sup

n→∞

1

2n

(
sup
E∈D

log
mαnσ(E)

mσ(E)
+ sup
E∈D

log
mα−nσ(E)

mσ(E)

)
≥ lim sup

n→∞

1

2n

(
log

mαnσ(G)

mσ(G)
+ log

mα−nσ(G)

mσ(G)

)
=

1

2

(
hσ,0(α−1) + hσ,0(α)

)
where the infimum over w ∈ C is achieved by setting

=(w) =
1

2π

(
sup
E∈D

log
mαnσ(E)

mσ(E)
+ inf
E∈D

log
mαnσ(E)

mσ(E)

)
at the fourth step. �

Example 4.15 (Pseudo-Anosov auto-equivalences). When α ∈ Auto
Λ(D) is pseudo-

Anosov with stretch factor |r| then d(α) ≥ log |r| because hσ,t(α) = log |r|+f−1(0)t
by Example 2.11. This is in agreement with [10, Theorem 4.9] which states that
d(α) = log |r|, and moreover that the induced action on Stab◦Λ(D)/C is hyperbolic.

Proposition 4.16. Suppose that the exact auto-equivalence α preserves a com-
ponent Stab◦Λ(D) of the stability space containing an algebraic stability condition.
Then

max

{
hσ,0(α) + hσ,0(α−1)

2
,
ϕ+
σ (α)− ϕ−σ (α)

2

}
≤ d(α) ≤ max{hσ,0(α), |ϕ±σ (α)|}.
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Proof. The upper bound comes directly from Proposition 4.6 since d(α) ≤ d(α).
As Stab◦Λ(D) contains an algebraic stability condition D has a split generator G

such that the limits limn→∞ ϕ±σ (αnG)/n exist for any σ ∈ Stab◦Λ(D) by Lemma 3.1.
The conclusion is independent of the particular choice of σ in the component so we
may assume that G is σ-semistable. Therefore d(α) ≥

(
hσ,0(α) + hσ,0(α−1)

)
/2 by

Lemma 4.14.
Recalling that infx supy f(x, y) ≥ supy infx f(x, y) for any f : X × Y → R we

estimate

d(σ, α · σ) = inf
a∈C

d(σ, ασ · a)

= inf
a∈C

sup
E

{∣∣∣∣log
mασa(E)

mσ(E)

∣∣∣∣ , ∣∣ϕ±ασa(E)− ϕσ(E)
∣∣}

≥ sup
E

inf
a∈C

max

{∣∣∣∣log
mασa(E)

mσ(E)

∣∣∣∣ , ∣∣ϕ±ασa(E)− ϕσ(E)
∣∣}

= sup
E

1

2

(
ϕ+
ασ(E)− ϕ−ασ(E)

)
≥ 1

2

(
ϕ+
ασ(G)− ϕ−ασ(G)

)
where the supremum is taken over all σ-semistable objects E and we set

=(a) = − 1

π
log

mασ(E)

mσ(E)
and <(a) = 2ϕσ(E)− ϕ+

ασ(E) + ϕ−ασ(E)

2

to obtain the infimum before using the fact that G is semistable. Thus

d(α) = lim
n→∞

d(σ, αn · σ)

n
≥ lim
n→∞

ϕ+
αnσ(G)− ϕ−αnσ(G)

2n
=
ϕ+
σ (α)− ϕ−σ (α)

2

too. �

Corollary 4.17. Suppose that the exact auto-equivalence α preserves a component
Stab◦Λ(D) of the stability space containing an algebraic stability condition. Then
d(α) > 0 so that the cyclic action of α on Stab◦Λ(D)/C is free and proper unless
ht(α) is linear with h0(α) = 0 = h0(α−1).

Proof. This follows from Theorem 2.12, Proposition 4.16 and Lemma 4.5. �

Remark 4.18. The bound in Proposition 4.16 is not sharp in general because
we take the infimum over the mass and phase terms in the Bridgeland metric
separately. Therefore the action of α on Stab◦Λ(D)/C may have strictly positive
eventual displacement, and so be free and proper, even when the entropy of α and
α−1 vanishes. I do not know of any examples of this behaviour.

Remark 4.19. If ϕ±σ (α) = 0 then d(α) = hσ,0(α) = hσ,0(α−1) since otherwise the
bounds of Proposition 4.16 yield a contradiction when α is replaced with α−1.

Example 4.20 (Spherical twists). Recall from Example 4.12 that if Φ is the spheri-
cal twist about one of the simple objects in the standard heart of the N -Calabi–Yau
category DN (Q) associated to a connected acyclic quiver Q with at least two vertices
then for σ in the standard component

hσ,t(Φ) =

{
(1−N)t t < 0

0 t ≥ 0

and Φ acts freely and properly as a hyperbolic isometry of Stab(DN (Q)). Since
hσ,t(Φ) is not linear the induced action on Stab(DN (Q))/C is also free and proper
by Corollary 4.17.
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