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Abstract—In the massive grant-free orthogonal frequency
division multiple access (OFDMA), the timing and frequency
offsets between users impose new challenges on joint active user
detection (AUD) and channel estimation (CE) for the subsequent
data recovery. In the asynchronous OFDMA, the timing and
frequency offset effects can be modeled as the phase-shifting
on the pilot matrix. As such, by constructing the measurement
matrix with timing and frequency offsets, the joint estimation
problem can be formulated as a multiple measurement vector
(MMV) recovery problem with structured sparsity. However, such
structured sparsity cannot be tackled by the existing compressed
sensing (CS) techniques. To address this issue, we develop an
efficient structured generalized approximate message passing
(S-GAMP) algorithm, which includes the parallel AMP-MMV
algorithm as a particular case. To deal with the high dimen-
sionality of the measurement matrix, we propose the dynamic S-
GAMP algorithm with a dynamic measurement matrix to reduce
the computational complexity. Simulation results confirm the
superiority of the proposed algorithms in grant-free OFDMA
with both timing and frequency offsets.

Index Terms—grant-free, mMTC, channel estimation, active
user detection, message passing.

I. INTRODUCTION

MASSIVE machine-type communication (mMTC) is one
of the three typical application scenarios in the fifth-

generation (5G) mobile communication system, aiming to pro-
vide services for massive low-cost and low-energy devices in
the Internet of Things (IoT) [2], [3]. In the uplink transmission
of the mMTC scenario, the base station (BS) should serve
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millions of users, of which only sporadic users are active and
send short packets [4]–[6].

In the grant-based communication system, the handshaking
procedure results in excessive signaling overhead, network
congestion, and high transmission latency [7]. The grant-free
transmission system is proposed to address this issue, where
users send messages to the BS in the pre-allocated collision
domain without the scheduling process [7], [8]. To detect
transmitted data, the BS must carry out channel estimation
(CE) and active user detection (AUD) based on the pilot
signals [9].

In current wireless communication systems, the orthogonal
frequency division multiple access (OFDMA) technique has
been widely adopted for high spectrum efficiency and flexi-
ble resource element allocation. Recently, massive grant-free
transmission in the OFDMA framework has attracted plenty of
research interest where massive users access for transmission
on the same resource elements without the scheduling process
[10]. In practical OFDMA uplink transmission, e.g., LTE or
5G NR, timing offsets between users are allowed within one
cyclic prefix (CP) duration, thus guarantee the orthogonality
of subcarriers. However, these allowable users’ timing offsets
cause the inevitable phase shift of user signals in OFDMA-
based grant-free transmission. On the other hand, although fre-
quency offset compensation may be applied in user equipment
(UE), there are still slight residual frequency offsets between
users. The phase shift of user signals caused by the timing and
frequency offsets imposes significant challenges on the joint
CE and AUD in the BS. This paper investigates the impact
of timing and frequency offsets between users on grant-free
transmission and designs efficient algorithms for joint CE and
AUD.

A. Prior Work

By exploiting the sporadic activity feature in the mMTC
scenario, the joint AUD and CE problem can be formulated as
a single measurement vector (SMV) or multiple measurement
vector (MMV) problem, depending on the number of receiving
antennas [4], [11]. The compressed sensing (CS) techniques
have been developed to solve such problems, and can be
divided into three categories: convex optimization-based ap-
proaches [12], greedy algorithms [13]–[15], and Bayesian
methods [16]–[20].

A mixed l2,1-regularization penalty function based on the
least absolute shrinkage and selection operator (LASSO) was
proposed in [21], and the alternating direction method of
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multipliers algorithm was adopted to handle the large-scale
convex joint estimation problem. According to the stability
of the user’s activity within the frame, [22] proposed the
block CS-based sparse signal recovery problem and solved
it by two enhanced greedy algorithms, which respectively
adopted additive white Gaussian noise floor based threshold,
and statistics and machine learning-based cross-validation to
determine the termination conditions. By utilizing the spar-
sity and similarity between neighboring access points, [23]
proposed a covariance-based method to perform excellent
cooperative activity detection for grant-free massive random
access.

More recently, attention has been placed on Bayesian algo-
rithms such as sparse Bayesian learning (SBL) and message
passing algorithms to achieve joint estimation. In [16], the
SBL algorithm was utilized for CE and data detection in
orthogonal frequency division multiplexing (OFDM) systems.
In the uplink grant-free scenario, CE and AUD are achieved by
the SBL algorithm [24] and the approximate message passing
(AMP) algorithm with a soft threshold denoiser [25]. By
utilizing the feature of channel sparsity, Yu et al. proposed
an AMP algorithm based on the minimum mean squared
error (MMSE) denoiser [4]. When the BS is equipped with
multiple antennas, the joint estimation problem can be for-
mulated as the MMV problem [7], where the supports of
all sparse vectors are identical. This problem can be solved
by the vector denoiser-based AMP algorithm [4], [26] and
the parallel AMP-MMV algorithm [4], [27]. Furthermore, the
generalized approximate message passing (GAMP) algorithm
was proposed by [20] to solve the SMV problem in generalized
linear systems, and later on, it was developed to solve the
MMV recovery problem in [28]. The message passing-based
block SBL algorithm was proposed in [29] for joint estimation,
which can reduce the computational complexity while achiev-
ing similar performance to the block orthogonal matching
pursuit algorithm. Based on the expectation maximization and
hybrid message passing algorithms, [30] achieved the joint
user activity tracking and data detection in the faster-than-
Nyquist non-orthogonal multiple access uplink random access.

Considering the different timing offsets caused by the users’
different geographical locations and transmission environ-
ments, several joint estimation schemes against the timing
offset have been proposed in [9], [31], [32]. The authors in
[9] transformed the estimation problem from the frequency
domain to the time domain to utilize the access delay fea-
tures. The SBL algorithm and support vector machine (SVM)
classifier are proposed for CE and AUD, respectively. [31] in-
troduced the auxiliary preamble structure to detect user activity
and proposed the modified interleave-division multiple access
receiver to mitigate the interference caused by asynchronous
transmission. The joint estimation problem was formulated
as the signal recovery problem with the hierarchical sparse
structure in [32], and the learned approximate message passing
algorithm was proposed to improve the performance without
prior information.

B. Motivation and Main Contribution

From the above state-of-the-art overview, it can be found
that most current works focus on the research of massive grant-
free uplink transmission either in synchronous scenarios or
asynchronous scenarios with only timing offset. As a matter
of fact, in a practical OFDMA system, both the timing and
frequency offsets are inevitable due to the signal transmission
distance and variation of oscillators. To the best of our
knowledge, little work has been carried out on massive grant-
free OFDMA in the presence of timing and frequency offset
discrepancy between users. Moreover, when the timing and
frequency offsets come to play together, the system model is
quite different due to the coupled phase shift of users’ signals
caused by them. In other words, the previous system models
and the corresponding algorithms are not compatible with
the practical OFDMA-based massive grant-free system in the
presence of both timing and frequency offsets, which results
in the unsatisfactory joint estimation performance for grant-
free massive access. To deal with the timing and frequency
offset in OFDMA-based mMTC scenarios, we are motivated
to complete this work. Our contributions can be summarized
as follows:

• By decoupling the complex combination of phase shift
caused by the timing and frequency offsets, we build the
signal model of the grant-free massive access transmis-
sion in the asynchronous OFDMA system, covering both
the existing synchronous and asynchronous scenarios
with only the timing offsets as particular cases. However,
due to the random nature of the timing and frequency
offsets, the equivalent pilot measurement matrix with
phase shift is random and unknown to the BS, making
the existing CS algorithms unable to be applied to solve
the joint estimation problem. To solve the uncertainty
of the measurement matrix, we expand the original pilot
measurement matrix with all possible timing offsets and a
finite number of discrete frequency offsets and formulate
the joint CE and AUD problem as a generalized MMV
problem with structured sparsity.

• To solve the above structured sparse MMV problem, we
develop an efficient structured generalized approximate
message passing (S-GAMP) algorithm, which sets up
indicator vectors especially for representing this unique
sparsity structure. The proposed S-GAMP algorithm di-
vides the original MMV problem into several independent
SMV subproblems and exchanges soft information of
indicator vectors from these SMV parts to utilize the prior
information of structured sparsity and joint sparsity in
the original MMV problem. Moreover, the conventional
GAMP algorithm can be seen as a particular case of the
S-GAMP in the synchronous transmission scenario.

• To reduce the computational complexity due to the high
dimensionality of the measurement matrix, we propose
the dynamic S-GAMP algorithm with a low-dimensional
dynamic measurement matrix. In each iteration, a few
column vectors are extracted from the original measure-
ment matrix to form a low-dimensional measurement ma-
trix to reduce the computational complexity. The optimal
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column vectors estimated in each iteration will be used
to extract the column vectors more accurately in the next
iteration to reduce the error caused by extraction. As
a byproduct, this algorithm can also improve the joint
estimation performance because it makes the measure-
ment matrix closer to the independent and identically
distributed (i.i.d.) Gaussian matrix so as to meet the
requirement of the GAMP algorithm.

The remainder of this paper is organized as follows. We
build the system model in Section II. The S-GAMP algorithm
is developed in Section III. The method to reduce the algorithm
complexity by dynamically updating the measurement matrix
is proposed in Section IV. Simulation results of joint estimation
performance are included in Section V. Conclusions are drawn
in Section VI.

Notation: Throughout this article, uppercase and lowercase
bold-face letters denote matrices and column vectors, respec-
tively. In addition, a (l) represents the l-th element of the vec-
tor a and A (m,n) represents the element in the m-th row and
n-th column of the matrix A. Moreover, Im denotes the m-
dimensional identity matrix and (Im)d is the matrix generated
by cyclically shifting all the row vectors in Im to the left by d
units simultaneously. The vector ei represents the unit vector
with the i-th element being one, and its dimension depends on
the needs in the calculation process. The symbols C, R, and
N represent the fields of complex numbers, real numbers, and
integers, respectively. The expression CN

(
x;µ, σ2

)
represents

the complex Gaussian distribution function of variable x, with
expectation µ and variance σ2. The superscripts (·)∗, (·)T and
(·)H denote the conjugate, transpose and conjugate transpose
operations, respectively. diag (x) is a diagonal matrix with
elements of x on its diagonal. ‖·‖0, ‖·‖2 and ‖·‖F denote
the l0, l2 and Frobenius norm, respectively. Furthermore,
the operator b·c means to round down the real number, and
the operator ⊗ represents the Kronecker product operation.
E [·] and Var [·] denote mathematical expectation and variance
operations, respectively. δ (·) is the Dirac delta function.

II. PROBLEM FORMULATION

A. Signal Model

Consider the multiuser uplink transmission with OFDMA,
where the M -antenna BS serves N single-antenna potential
users, and only Na of them are active. As shown in Fig.
1, an OFDM symbol contains Nc subcarriers, among which
only Nsub adjacent subcarriers are allowed to be shared
by users. In addition, the transmission of each user in the
time domain occupies the same Nsym OFDM symbols. The
transmitted signals consist of pilots and data, with the pilots
occupying S of the allocated Nsub subcarriers and G of the
Nsym OFDM symbols. The indices of the subcarriers and
the OFDM symbols occupied by pilots are represented as
s = [k1, k2, · · · , kS ]

T ∈ NS×1 and g = [t1, t2, · · · , tG]
T ∈

NG×1, respectively, where k1 < k2 < · · · < kS and
t1 < t2 < · · · < tG. In other words, each active user occupies
the same resource elements and transmits L = SG pilots
simultaneously. The above system parameters are summarized
in Table I for reference.
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Fig. 1. Time-frequency resource allocation in the mMTC scenario. Each
square represents a resource element (RE) occupying an OFDM symbol in
the time domain and a subcarrier in the frequency domain. The red and the
blue parts represent the pilot and data signal transmitted by the active user,
respectively, whereas the white part indicates that the user does not transmit
any signal over the RE.

TABLE I
VARIABLE DESCRIPTION

Variables Meanings
M The number of the BS antennas

N The number of single-antenna potential users

Na The number of active users

Nc The number of subcarriers in one OFDM symbol

Nsub The number of adjacent subcarriers assigned to users

s The index vector of subcarriers occupied by pilots

Nsym The number of OFDM symbols assigned to users

g The index vector of OFDM symbols occupied by pilots

L The length of pilot sequences

Suppose only a small fraction of subcarriers are occupied
by each user, such that the considered system is a narrowband
OFDMA. Therefore, the channel coefficient between each user
and each antenna can be modeled as an independent Gaussian
distributed random variable. That is, the uplink channel vector
hn ∈ CM×1 between the n-th user and the BS is given by

hn ∼ CN (0, σ2
hIM ), (1)

where σ2
h is the variance of channel coefficient that is identical

across users and antennas. We consider the block fading
channel model where the channel coefficients remain static
within each block.

Each user is assigned with unique but not necessarily
orthogonal pilot sequences for CE and AUD. We denote the
frequency-domain pilots of the n-th user on the t-th OFDM
symbol as xtn ∈ CS×1 and it is modulated to the time-domain
pilot signal x̃tn ∈ CNc×1 as follows:

x̃tn = WH
s xtn, (2)

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2021.3121066

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



1536-1276 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2021.3121066, IEEE
Transactions on Wireless Communications

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Sampling 

Time

Phase

Shift

0
CP

user1

user2

user3

CPCPCPCPCP CPCP CPCP CPCP

Fig. 2. The effect of frequency offset on the phase of the time-domain sampled
signal is linearly related to the sampling time, and the rate of phase shift will
be different for users with different values of frequency offset. In addition,
the removal of CP sequences results in a discontinuous phase shift between
adjacent OFDM symbols.

where Ws ∈ CS×Nc represents the matrix composed of S
row vectors (S � Nc) extracted from the Nc-point discrete
Fourier transform (DFT) matrix W indexed by the vector s.
Since the pilot and data signals occupy different subcarriers
that are sufficiently apart, the inter-carrier interference between
them is negligible. Therefore, we place our focus on the pilot
signals in the rest of the paper.

The time-domain signal can be generated by adding the CP
sequences of length NCP in front of the signal x̃tn. Since the
CP sequences are the same as the last NCP samples of x̃tn, the
influence of the timing offset on the signal x̃tn is equivalent
to cyclically shifting x̃tn to the right by τn sampling intervals.
On the other hand, the phase shift of the time-domain signal
caused by the frequency offset εn has a linear relationship
with sampling time [33], [34], as shown in Fig. 2. It is worth
noting that the phase shift of adjacent OFDM symbols is
discontinuous due to the removal of the CP sequences after
receiving the signal.

After removing the CP sequences, the time domain received
signal Ỹt ∈ CNc×M on the t-th OFDM symbol can be written
as

Ỹt =
N∑
n=1

ξnΛt
εn(INc)τn x̃tnhTn + Z̃t, (3)

where ξn ∈ {0, 1} is the activity indicator of the n-th user
and it is equal to 1 when the n-th user is active and 0
otherwise. We assume that the activity probabilities of all
users are identical and represented by α. The matrix Λt

εn

∆
=

φtdiag(1, ω, · · · , ωNc−1) represents the phase shift matrix
caused by the frequency offset εn, where ω = e

j2πεn
Nc and

φt = ωNCP+(t−1)(NCP+Nc) is the cumulative phase shift in
the previous sequences. Moreover, the cyclically shifted matrix
(INc)τn shows the effect of timing offset τn. Z̃t ∈ CNc×M is
the circularly symmetric complex white Gaussian noise matrix.

Plugging equations (2) into (3), we obtain the demodulated

signal Yt ∈ CS×M , which is given by

Yt =WsỸ
t

=
N∑
n=1

ξn WsΛ
t
εn(INc)τnWH

s︸ ︷︷ ︸
∆
=Ptn

xtnhTn + Zt

=XtH + Zt,

(4)

where Pt
n ∈ CS×S represents the phase shift matrix of the

n-th user caused by the timing and frequency offsets on
the t-th OFDM symbol, Xt ∆

= [Pt
1x
t
1,P

t
2x
t
2, · · · ,Pt

NxtN ] ∈
CS×N denotes the equivalent pilot signal matrix, and H

∆
=

[ξ1h1, ξ2h2, · · · , ξNhN ]
T ∈ CN×M is the equivalent channel

matrix.
Further, the received signal over G OFDM symbols can be

written as
Y = XH + Z, (5)

where Y
∆
= [(Yt1)

T
, (Yt2)

T
, · · · , (YtG)

T
]T ∈ CL×M is

the demodulated received signal on G OFDM symbols with
L = SG as defined earlier, Z ∈ CL×M is the system
noise matrix whose elements follow the Gaussian distribu-
tion with mean value of 0 and variance of σ2

z , and X
∆
=

[(Xt1)
T
, (Xt2)

T
, · · · , (XtG)

T
]T ∈ CL×N is the equivalent

pilot matrix of N users on the G OFDM symbols. To simplify
the subsequent analysis of the phase shift caused by the timing
and frequency offsets, we rewrite the matrix X as follows

X = [P1x1,P2x2, · · · ,PNxN ] , (6)

where xn
∆
= [(xt1n )

T
, (xt2n )

T
, · · · , (xtGn )

T
]T ∈ CL×1 denotes

the unique frequency-domain pilot sequences sent by the n-th
user and satisfies the i.i.d. zero-mean complex Gaussian dis-
tribution with the variance of 1

L , i.e, xn ∼ CN (0, 1
LIL),∀n =

1, 2, · · · , N . The matrix Pn ∈ CL×L represents the phase shift
matrix of the n-th user resulted from the timing and frequency
offsets on the G OFDM symbols. The phase shift matrix Pn

is defined as

Pn
∆
=


Pt1
n

Pt2
n

. . .
PtG
n

 . (7)

In the next section, we will analyze and approximate the phase
shift matrix Pn to simplify the subsequent analysis.

B. Approximation of Phase Shift Matrix

Before proceeding further, we take a closer look at the
elements in Pt

n. For the ku-th and kv-th subcarriers, the (u, v)-
th element of Pt

n (u, v) can be expressed as

Pt
n (u, v) =

1

Nc
ωNCP+(t−1)(NCP+Nc)ψεn−ku+1

·
Nc−1∑
i=0

e
j2π(kv−ku+εn)i

Nc
+j2π(ku−1−εn)b i+τnNc

c,
(8)

where ψ = e
j2πτn
Nc , and ku, kv are the u-th and v-th elements

of the vector s.
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When u 6= v, Pt
n(u, v) indicates the coefficient of the

inter-carrier interference (ICI). In practical communications,
e.g., LTE or 5G NR, the users must estimate the frequency
offsets by detecting the downlink synchronization signals in
cell search procedure [35] and utilize the frequency offset
compensation methods [36], [37] to compensate the large
frequency offsets, so that the frequency offsets can be con-
trolled within a slight range. It is worth noting that the 3rd
Generation Partnership Project (3GPP) 38.101-1 specifies the
minimum radio frequency requirements for new radio users,
where the frequency error is within ± 0.1 ppm, and the
subcarrier spacing must be 15 kHz, 30 kHz or 60 kHz [38].
Consequently, the maximum frequency offset εmax is between
0.27% and 4.75%. Given the slight residual frequency offsets
in the practical communication systems, we can figure out the
amplitude of Pt

n(u, v) as

∣∣Pt
n (u, v)

∣∣ =
1

Nc

∣∣∣∣∣ 1− ej2πεn

1− e
j2π(kv−ku+εn)

Nc

∣∣∣∣∣
≈
∣∣∣∣ εn
kv − ku + εn

∣∣∣∣ , u 6= v,

(9)

where |Pt
n(u, v)| is not related to the timing offset τn, and

the maximum amplitude of ICI coefficient is around 0.01. As
such, the ICI caused by the slight residual frequency offsets
is negligible and the matrix Pt

n can be approximated as a
diagonal matrix for the sake of tractability in modeling.

Further, given the infinitesimal εn, Pt
n (u, u) can be approx-

imated by utilizing the Taylor expansion, with its summation
term in (8) being expressed as

Nc−1∑
i=0

ωiej2π(ku−1−εn)b i+τnNc
c

=
Nc + jπ (Nc − 2τn) εn + o (εn)

1 + jπ
Nc
εn + o (εn)

≈ Ncω
Nc−1

2 −τn ,

(10)

where o (εn) is the high-order infinitesimal of εn. Combining
equation (8) and (10), the main diagonal element Pt

n (u, u)
can be approximated as

Pt
n (u, u) ≈ ω(NCP+Nc)t−Nc+1

2 ψ1−ku , (11)

where the two parts of the above expression represent the
phase shift caused by the frequency offset εn and timing offset
τn, respectively.

By decoupling the phase shift caused by the timing and
frequency offsets, the phase shift matrix Pn can be expressed
as follows:

Pn = Γεn ⊗ Γτn , (12)

where the diagonal matrices Γεn and Γτn are the phase shift
matrices caused by frequency offset εn and timing offset τn,
respectively, whose expressions are shown in equation (13)
and (14).

Γτn
∆
= diag

[
ψ1−k1 , ψ1−k2 , · · · , ψ1−kS

]
. (14)

TABLE II
THE DEVIATION CORRESPONDING TO DIFFERENT FREQUENCY OFFSETS

Frequency Offset εn Deviation Ea

±0.27% 1.20× 10−5

±1.10% 1.99× 10−4

±2.00% 6.58× 10−4

±3.38% 1.88× 10−3

±4.75% 3.71× 10−3

To verify the accuracy of the above approximation, we
calculate the deviation Ea of the above approximation for the
main diagonal elements can be defined as

Ea
∆
=
∣∣∣Pt

n (u, u)− ω(NCP+Nc)t−Nc+1
2 ψ1−ku

∣∣∣
=

∣∣∣∣∣∣1− sin (πεn)

Nc sin
(
πεn
Nc

)
∣∣∣∣∣∣ .

(15)

It can be found that the deviation Ea is independent of the
timing offset τn and increases as |εn| does within the range
of [0, εmax]. Table II shows the value of the deviation Ea
corresponding to different value of the frequency offset εn, and
it can be found that the deviation of the above approximation
is negligible.

C. Structured Sparse Model

Differently from the conventional CS models, the measure-
ment matrix X in (5) is unknown to the receivers due to
the random nature of timing and frequency offsets. Without
knowing such a matrix, it is challenging for CS algorithms
to achieve excellent joint estimation performance. To address
this issue, we expand the system model (5), where the known
complete measurement matrix is expanded from X with
all possible timing offsets and a finite number of discrete
frequency offsets within [−εmax, εmax]. Correspondingly, the
joint activity detection and channel estimation problem is
formulated as a generalized MMV problem with structured
sparsity, which means each block in the evaluated matrix has
at most one non-zero row, and the positions of non-zero rows
indicate the values of timing and frequency offsets.

For tractability, we assume that the possible timing offsets
are within d = [1, 2, · · · , D]

T ∈ ND×1, and the frequency
offsets are within q =

[
ε(1), ε(2), · · · , ε(Q)

]T ∈ RQ×1, which
is uniformly sampled from the range [−εmax, εmax]. A proper
choice of Q compromises between computational complexity
and tractability. Given the small value of εmax, the uniform
sampling with a small Q does not cause much deviation.
Therefore, the system model (5) can be rewritten as follows:

Y = XeHe + Z, (16)

where Xe
∆
= [Xe,1,Xe,2, · · · ,Xe,N ] ∈ CL×(NDQ) is the

expanded known measurement matrix, Xe,n ∈ CL×(DQ) is
given by

Xe,n = [Pn,1,1xn,Pn,1,2xn, · · · ,Pn,D,Qxn] , (17)
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Γεn
∆
= ω−

Nc+1
2 diag

[
ω(NCP+Nc)t1 , ω(NCP+Nc)t2 , · · · , ω(NCP+Nc)tG

]
, (13)

where Pn,d,q represents the phase shift matrix Pn with the
timing offset τn = d(d) and the frequency offset εn = q(q),
i.e.,

Pn,d,q
∆
= [Γεn ]d ⊗ [Γτn ]q,

where [Γεn ]d and [Γτn ]q represent the matrix Γεn when
τn = d(d) and the matrix Γτn when εn = q(q), respectively.
In addition, He =

[
HT
e,1,H

T
e,2, · · · ,HT

e,N

]T ∈ C(NDQ)×M

is the structured sparse channel matrix, where He,n contains
at most one non-zero row vector, as shown in Fig. 3. The
submatrix He,n ∈ C(DQ)×M corresponding to the n-th user
can be expressed as

He,n = ηnhTn , (18)

where ηn ∈ {0, 1}DQ×1 is the indicator vector and there is
at most one non-zero element in ηn. To be specific, ηn = 0
means that the n-th user is inactive with the probability of
1 − α, i.e. p(ηn = 0) = 1 − α; In addtion, ηn = ei
means that the n-th user is active, and i ∈ {1, 2, · · · , DQ}
indicates the position of the non-zero row in the He,n, which
can subsequently represent the timing and frequency offset.
By assuming that the user’s timing and frequency offsets
are chosen from the vectors d and q with equal probability,
respectively, we can get p(ηn = ei) = α

DQ . Therefore, the
probability density function p (ηn) of the indicator vector ηn
can be written as

p (ηn) =
∑
η̄∈Sη̄

p (ηn = η̄) δ (ηn − η̄)

=
α

DQ

DQ∑
i=1

δ (ηn − ei) + (1− α) δ (ηn) ,

(19)

where Sη̄ = {0, e1, e2, · · · , eDQ}.
By expanding the measurement matrix Xe, we transform

the system model (5) into a new one (16) with a structured
sparse He. It can be recognized as a CS model and solved by
employing message passing algorithms, which will be detailed
in Section III.

III. JOINT ACTIVE USER DETECTION AND CHANNEL
ESTIMATION WITH TIMING AND FREQUENCY OFFSET

This section focuses on the joint CE and AUD with both
timing and frequency offsets, which can be formulated as a
generalized MMV problem with structured sparsity. While
such a formulation can be solved by using classical approaches
such as the parallel AMP-MMV algorithm in the synchronous
transmission system with the sparsity structure ignored, the
joint estimation performance is severely degraded because
their assumption on the random position of non-zero rows does
not match the unique sparse structure here. To address this
issue, we propose a novel approach (S-GAMP) by combining
the GAMP with the belief propagation (BP) algorithm, setting
up a new factor especially for representing this unique sparse

0

0

0

0

0

0

inactive user

active user

inactive user

active user

M

,1e
H

,2e
H

,3e
H

,e N
H

DQ

Fig. 3. Structured sparsity of matrix He. The white parts represent zero
matrices, and the blue parts represent non-zero vectors. There is at most one
non-zero row vector in the matrix He,n. If there is a non-zero row vector
in the He,n, the n-th user is active, and the position of that indicates the
values of timing offset τn and frequency offset εn; Otherwise, the n-th user
is inactive if He,n is a zero matrix.

structure. The soft information of structured sparsity is ex-
changed on the new factor, which makes the prior information
of structured sparsity be utilized effectively, thus improving the
joint estimation performance.

A. Derivation of the S-GAMP Algorithm

In what follows, we detail the derivation behind the algo-
rithm. The derivation starts with the joint posterior probability
p (R,He,η|Y), which can be expressed as

p (R,He,η|Y) =
1

p (Y)
p (Y,R,He,η) , (20)

with η = [ηT1 ,η
T
2 , · · · ,ηTN ]T ∈ {0, 1}NDQ×1, where p(η) =∏N

n=1 p(ηn) because the active states and values of tim-
ing and frequency offsets of different users are independent
with each other. The matrix R = XeHe represents the
received signal matrix without noise. Given the knowledge
of Y, the maximization of posterior probability function
p (R,He,η|Y) is equivalent to the maximization of joint
probability density function p (Y,R,He,η). The expression
of p (Y,R,He,η) can be factorized as equation (21), where
hem =

[
(hem1)T , (hem2)T , · · · , (hemN )T

]T ∈ C(NDQ)×1 and
hemn ∈ C(DQ)×1 are the m-th column vectors of matrix He

and He,n, respectively, with the following probability rela-
tionship p (hem) =

∏N
n=1 p (hemn). Furthermore, the posteriori

probability function p (He|η) =
∏M
m=1

∏N
n=1 p (hemn|ηn)

because the channel coefficients between different users and
different antennas are independent. The function p (R|He) =∏L
l=1

∏M
m=1 p (R (l,m)|hem) due to the independence be-

tween different hemn and the independence between pilot
sequences from the same user. In addition, the expression of
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p (Y,R,He,η) = p (Y|R) p (R|He) p (He|η) p (η)

=
L∏
l=1

M∏
m=1

p (Y (l,m)|R (l,m))
L∏
l=1

M∏
m=1

p (R (l,m)|hem)
M∏
m=1

N∏
n=1

p (hemn|ηn)
N∏
n=1

p (ηn),
(21)

the conditional probability function p (hemn|ηn) in equation
(21) is given by

p (hemn|ηn)

=

∫
δ (hemn − ηnhn (m)) CN

(
hn (m); 0, σ2

h

)
dhn (m),

(22)
where the variable hn (m) ∼ CN (0, σ2

h) and the function
δ (hemn − ηnhn (m)) is to constrain the vector hemn to satisfy
the structural sparsity described in equation (18). Given the
equation (21), the corresponding factor graph can be drawn in
Fig. 4, based on which the message passing algorithm will be
presented accordingly [39].

Inspired by [4] and [27], our idea of solving the generalized
MMV problem is to break it into M independent SMV
subproblems, each of which will be solved in parallel. Unlike
conventional algorithms using user activity indicator variables,
our proposed S-GAMP algorithm sets up indicator vectors ηn,
which contains both the user activity and structured sparsity
information. The prior information of structured sparsity and
joint sparsity in the original MMV problem can be utilized in
the S-GAMP algorithm through exchanged soft information
of indicator vector ηn among different SMV subproblems.
Among many SMV solutions, the BP algorithm is one of
the most efficient approaches to perform statistical inference
and achieve excellent convergence when the factor graph is
tree-like [27]. However, lots of circles between the hemn and
fR(l,m) nodes make it difficult to guarantee the convergence
of the BP algorithm. To solve this problem, considering the
same cycle structure as in the factor graph of the GAMP
algorithm [4], [20], we leverage the GAMP algorithm as a
part of the S-GAMP algorithm to guarantee the convergence
by approximating the messages passed between the nodes hemn
and the nodes fR(l,m). Therefore, the convergence of the S-
GAMP algorithm is the same as the GAMP algorithm [4],
[20], [40], which is verified in Fig. 6 in Section V. The proof
of the convergence of the GAMP algorithm can be referred to
[20].

In particular, the messages passed between the ηn and hemn
nodes can be derived as follows. Note that IA→B (x) denotes
the message passed from node A to node B, which is a
function of x, and bx (x) represents the belief of variable x.

1) Message Computations between Nodes: Since the mes-
sage Ihemn→fmn (hemn) is the output of the GAMP algorithm,
and each element of the vector hemn is assumed to be inde-
pendent of each other, the message Ihemn→fmn (hemn) can be
expressed as

Ihemn→fmn (hemn) =

DQ∏
i=1

CN
(
hemn (i) ;µhmni, σ

h
mni

)
, (23)

where µhmni and σhmni are the mean and variance of the
variable hemn (i), respectively.

Messages from all SMV subproblem parts are sent
to node ηn to exchange soft information about the
unique sparse structure. With the BP rules, the message
Ifmn→ηn (ηn) related to ηn can be expressed by integrating
p (hemn|ηn)Ihemn→fmn (hemn) with respect to hemn, and its
expression is given by

Ifmn→ηn (ηn) =

∫
p (hemn|ηn)Ihemn→fmn (hemn) dhemn

Zfmn→ηn

=

DQ∑
i=1

λmniδ (ηn − ei) + δ (ηn)

DQ∑
i=1

λmni + 1

,

(24)
where the normalization constant Zfmn→ηn is expressed as
equation (25) and the constant λmni is defined as

λmni =
CN

(
0;µhmni, σ

h
mni + σ2

h

)
CN

(
0;µhmni, σ

h
mni

) . (26)

The exchanged information is fed back to these SMV
subproblem parts as input to achieve better joint estimation.
The feedback message Iηn→fmn (ηn) can be represented by
Ifm′n→ηn (ηn) and p (ηn) as

Iηn→fmn (ηn)

=

p (ηn)
∏

m′ 6=m
Ifm′n→ηn (ηn)

Zηn→fmn

=

α
DQ∑
i=1

δ (ηn − ei)
∏

m′ 6=m
λm′ni + (1− α)DQδ (ηn)

α
DQ∑
i=1

∏
m′ 6=m

λm′ni + (1− α)DQ

,

(27)
where Zηn→fmn is the normalization constant and its expres-
sion can be written as

Zηn→fmn =

∫
p (ηn)

∏
m′ 6=m

Ifm′n→ηn (ηn) dηn

=

α
DQ

DQ∑
i=1

∏
m′ 6=m

λm′ni + 1− α

∏
m′ 6=m

(
DQ∑
i=1

λm′ni + 1

) .

(28)

The message Ifmn→hemn (hemn) can be written as equation
(29) and it is considered as the input of the GAMP algorithm
for the next iteration as shown in Fig. 4, where the normal-
ization constant Zfmn→hemn can be written as

Zfmn→hemn =

∫ ∫
Iηn→fmn (ηn)p (hemn|ηn)dηndh

e
mn = 1.

(30)
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Zfmn→ηn =

∫ ∫
p (hemn|ηn)Ihemn→fmn (hemn) dhemndηn

=

DQ∑
i=1

CN
(
0;µhmni, σ

h
mni + σ2

h

)∏
i′ 6=i

CN
(
0;µhmni′ , σ

h
mni′

)
+

DQ∏
i=1

CN
(
0;µhmni, σ

h
mni

)
,

(25)

Ifmn→hemn (hemn) =

∫
Iηn→fmn (ηn)p (hemn|ηn)dηn

Zfmn→hemn

=

α
DQ∑
i=1

CN
(
hemn (i); 0, σ2

h

) ∏
i′ 6=i

δ (hemn (i′))
∏

m′ 6=m
λm′ni + (1− α)DQδ (hemn)

α
DQ∑
i=1

∏
m′ 6=m

λm′ni + (1− α)DQ

,

(29)
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Fig. 4. Factor graph of the system model. The orange circles and blue squares denote variable nodes and function nodes, respectively. We use the BP algorithm
to transmit messages in the left tree-like structure and the GAMP algorithm to transmit messages in the circle structure on the right.

2) Probability Density Function of Variable Nodes: Ac-
cording to the BP rules and the messages in (23) and (29),
we derive the belief bhemn (hemn) of hemn as equation (31),
where the normalization constant Zhemn is given by

Zhemn

=

∫
Ifmn→hemn (hemn) Ihemn→fmn (hemn) dhemn

=

(
α
DQ∑
i=1

M∏
m=1

λmni + (1− α)DQ

)
DQ∏
i=1

CN
(
0;µhmni, σ

h
mni

)
α
DQ∑
i=1

∏
m′ 6=m

λm′ni + (1− α)DQ

.

(32)
For simplicity, we abbreviate bhemn (hemn) as bhemn in
the following equations. Furthermore, the posterior mean
E
[
hemn (i)|bhemn

]
and posterior variance Var

[
hemn (i)|bhemn

]
of hemn (i) are given by

E
[
hemn (i)|bhemn

]
=

∫
hemn (i)bhemndh

e
mn

=

α
σ2
hµ

h
mni

σhmni+σ
2
h

M∏
m=1

λmni

α
DQ∑
i=1

M∏
m=1

λmni + (1− α)DQ

,
(33)

and

Var
[
hemn (i)|bhemn

]
= E[|hemn (i)|2|bhemn ]−

∣∣E [hemn (i)|bhemn
]∣∣2 , (34)

where E[|hemn (i)|2|bhemn ] can be expressed as

E[|hemn (i)|2|bhemn ] =

∫
|hemn (i)|2 bhemndh

e
mn

=

α

(∣∣∣ σ2
hµ

h
mni

σhmni+σ
2
h

∣∣∣2 +
σ2
hσ

h
mni

σhmni+σ
2
h

)
M∏
m=1

λmni

α
DQ∑
i=1

M∏
m=1

λmni + (1− α)DQ

.

(35)
The probability density function bηn (ηn) of the vector ηn

is utilized to detect active users and estimate the timing and
frequency offset, which can be written as

bηn (ηn) =

p (ηn)
M∏
m=1

Ifmn→ηn (ηn)

Zηn

=

α
DQ∑
i=1

δ (ηn − ei)
M∏
m=1

λmni + (1− α)DQδ (ηn)

α
DQ∑
i=1

M∏
m=1

λmni + (1− α)DQ

,

(36)
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bhemn (hemn) =
Ifmn→hemn (hemn) Ihemn→fmn (hemn)

Zhemn

=

α
DQ∑
i=1

CN
(
hemn (i);

σ2
hµ

h
mni

σhmni+σ
2
h

,
σ2
hσ

h
mni

σhmni+σ
2
h

) ∏
i′ 6=i

δ (hemn (i′))
M∏
m=1

λmni + (1− α)DQδ (hemn)

α
DQ∑
i=1

M∏
m=1

λmni+ (1− α)DQ

.

(31)

where Zηn is the normalization constant and can be expressed
as

Zηn =

∫
p (ηn)

M∏
m=1

Ifmn→ηn (ηn)dηn

=

α
DQ

DQ∑
i=1

M∏
m=1

λmni + 1− α

M∏
m=1

(
DQ∑
i=1

λmni + 1

) .

(37)

The estimated indicator variable ξ̂n, timing offset τ̂n and
frequency offset ε̂n of n-th user can be estimated through the
distribution probability bηn (ηn), which can be expressed as
follows:

ξ̂n =

{
0 , if

∫
bηn (ηn)δ (ηn) dηn > Tth

1 , otherwise. (38)

τ̂n = d

(
b în − 1

Q
c+ 1

)
, (39)

ε̂n = q
(
în − (τ̂n − 1)Q

)
, (40)

where Tth is the threshold used to determine user activity with
its value compromising the miss detection rate and the false
alarm rate, and the variable în is defined as

în = arg max
i∈{1,··· ,DQ}

∫
bηn (ηn) δ (ηn − ei) dηn. (41)

Building upon the factor graph and the message expressions
derived above, we come up with the S-GAMP algorithm,
as shown in Algorithm 1, where Xe (l, (n− 1)DQ+ i) is
expressed as xinl for simplicity, µrml, σ

r
ml, µ

s
ml and σsml are

the mean and variance of the variables R (l,m) and sml,
respectively. During the iterations, the damping factor can be
leveraged to prevent our algorithm from diverging [28], [41].
In Algorithm 1, lines 7-16 represent the GAMP algorithm, and
lines 17-21 are expressions derived using BP algorithm rules.

Remark 1: The parallel AMP-MMV algorithm mentioned
in [4], [27] is a particular case of our S-GAMP algorithm in
the synchronous scenario. It means that the system model is
no longer structured sparse, and the joint estimation problem
degenerates into a canonical MMV problem.

Remark 2: The AMP decoder for sparse superposition
coding proposed in [42], [43] is a special case of the S-
GAMP algorithm when α = 1, M = 1, hn (m) = c, and
all complex Gaussian variables degenerate into real Gaussian
variables, where c is a fixed constant used to constrain transmit
power.

Algorithm 1: S-GAMP Algorithm

1 Input: Y, Xe, d, q, α, σ2
h, σ2

z and Number of
iterations Tmax.

2 Output: Estimated channel matrix Ĥ, estimated user
activity vector û, estimated user timing and frequency
offset vector τ̂ and ε̂, and bηn (ηn).

3 Initialize:E
[
hemn (i) |bhemn

]
= 0,

Var
[
hemn (i) |bhemn

]
= σ2

h, ∀i,m, n.
4 for t = 1, · · · , Tmax do
5 for m = 1, · · · ,M , l = 1, · · ·L do

6 σrml =
N∑
n=1

DQ∑
i=1

|xinl|2Var
[
hemn (i)|bhemn

]
7 µrml =

−µsmlσrml +
N∑
n=1

DQ∑
i=1

xinlE
[
hemn (i)|bhemn

]
8 E

[
R (l,m)|bR(l,m)

]
=

Y(l,m)σrml+µ
r
mlσ

2
z

σrml+σ
2
z

9 Var
[
R (l,m)|bR(l,m)

]
=

σrmlσ
2
z

σrml+σ
2
z

10 µsml =
E[R(l,m)|bR(l,m)(R(l,m))]−µrml

σrml

11 σsml =
σrml−Var[R(l,m)|bR(l,m)(R(l,m))]

(σrml)
2

12 end
13 for m = 1, · · · ,M , n = 1, · · · , N , i = 1, · · · , DQ

do
14 ĥmni = E

[
hemn (i)|bhemn

]
15 σhmni =

(
L∑
l=1

(
|xinl|2σsml

))−1

16 µhmni = σhmni
L∑
l=1

x∗inlµ
s
ml + ĥmni

17 Update E
[
hemn (i)|bhemn

]
and

Var
[
hemn (i)|bhemn

]
via (33) and (34)

18 end
19 end
20 for n = 1, · · · , N do
21 Calculate bηn (ηn), ξ̂n, τ̂n, ε̂n and în via (36),

(38), (39), (40) and (41).
22 end
23 for m = 1, · · · ,M , n = 1, · · · , N do
24 Ĥ (n,m) = ξ̂nE

[
hemn(̂in)|bhemn

]
25 end
26 û = [ξ̂1, · · · , ξ̂N ]T , τ̂ = [τ̂1, · · · , τ̂N ]T ,

ε̂ = [ε̂1, · · · , ε̂N ]T .
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B. State Evolution Analysis

One significant feature of the AMP framework is that the
state evolution can measure the per-iteration performance [4],
[44]. Under large system limits, the expression of the variance
of the variable to be estimated is exactly the state evolution
function [4], and the smaller the value, the more accurate
the estimated variable value is. For generality, we unify the
variance σhmni of the element hemn (i) ,∀m,n, i, in the matrix
He to be estimated into τh, and let τ (t)

h represent the variance
of the channel coefficient in the t-th iteration. In the asymptotic
regime where L,NDQ → ∞ with fixed ratio NDQ

L , the
general state evolution can be expressed as

τ
(t+1)
h = σ2

z +
NDQ

L
E{|fΘ(X +

√
τ

(t)
h V,Θ)−X|2}, (42)

where the random variable X captures the distribution of
the entries of the matrix He, V ∼ CN (0, 1), and Θ ={
{ηn}Nn=1

}
denotes the set of structured sparsity indicator

vectors. The function fΘ (·,Θ) is the denoiser with the infor-
mation of Θ, and the expectation is taken over X , V and Θ.

E{|fΘ(X +

√
τ

(t)
h V,Θ)−X|2} characterizes the MSE of the

denoiser at the t-th iteration. Note that for MMSE denoiser
used in the GAMP algorithm, the MSE of the denoiser can be
rewritten as

E{|fΘ(X+

√
τ

(t)
h V,Θ)−X|2} = E

{
Var

(
X(t) | Φ(t),Θ

)}
,

(43)

where Φ(t) , X +

√
τ

(t)
h V . With the decomposition of

variance [4], [40], we can get

E
[
Var

(
X | Φ(t)

)]
= E

[
Var

(
X | Φ(t),Θ

)]
+ E

[
Var

(
E
[
X | Φ(t),Θ

]
| Φ(t)

)]
≥ E

[
Var

(
X | Φ(t),Θ

)]
,

(44)
which shows that the MSE of the denoiser can be reduced
by E

[
Var

(
E
[
X | Φ(t),Θ

]
| Φ(t)

)]
with the knowledge of the

structured sparsity indicator set Θ. Therefore, the introduction
of the structured sparsity informtion Θ helps to improve the
estimation performance in each iteration.

IV. THE S-GAMP ALGORITHM WITH DYNAMIC
MEASUREMENT MATRIX

As mentioned in Section II-C, the high dimensionality
of the expanded measurement matrix Xe incurs potentially
high computational complexity. To overcome this problem, we
propose to dynamically update the measurement matrix Xe to
reduce the complexity.

The joint estimation process is divided into several cascaded
steps, as shown in Fig.5. The receiver runs the S-GAMP
algorithm in these steps, but the dynamic measurement matrix
constructed in different steps is different. In each step, the
BS selects a few timing and frequency offsets to construct
the dynamic low-dimensional measurement matrix, which sub-
stantially reduces the computational complexity. The estimated
timing and frequency offsets in each step are used to determine
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Fig. 5. The diagram of dynamically updating measurement matrix. The
two-dimensional coordinates are used to represent the timing and frequency
offset combinations. The dark blue area and the light blue area represent the
regions where the timing offset and frequency offset are most likely and less
likely, respectively. The orange area is obtained from equations (47) and (48),
indicating the region where the timing and frequency offset are most likely
among all the blue regions.

the construction of the dynamic measurement matrix in the
next step to ensure accuracy.

Take the n-th user as an example. All possible combi-
nations of timing and frequency offsets are represented by
two-dimensional coordinates (d, q), where d indicates the
timing offset τn = d (d) and q the frequency offset εn =
q (q). Initially, the timing offset vector d and the frequency
offset vector q are evenly divided into D1 and Q1 parts,
respectively as shown in Fig. 5. Median values of these
parts can constitute d1

n = {τ1
n,1, τ

1
n,2, · · · , τ1

n,D1
}and q1

n =
{ε1
n,1, ε

1
n,2, · · · , ε1

n,Q1
}, respectively. The D1Q1 coordinates

composed of d1
n and q1

n can be used to represent these D1Q1

uniform regions.
Then, we use Algorithm 1 to estimate the region where

the actual timing and frequency offsets are most likely to
be. Assume that the dynamic timing and frequency offset
vectors in the j-th step are djn = {τ jn,1, τ

j
n,2, · · · , τ

j
n,Dj
} and

qjn = {εjn,1, ε
j
n,2, · · · , ε

j
n,Qj
}, respectively. Thus, the dynamic

measurement matrix Xj
e ∈ CL×(NDjQj) in the j-th step can

be generated by the following equation:

Xj
e =

[
Xj

1,X
j
2, · · · ,X

j
N

]
, (45)

where the matrix Xj
n is given by

Xj
n =

[
Pj
n,1,1xn,P

j
n,1,2xn, · · · ,P

j
n,Dj ,Qj

xn

]
, (46)

where Pj
n,a,b represents the phase shift matrix Pn with the

timing and the frequency offsets being djn (a) and qjn (b),
respectively. By substituting the dynamic measurement matrix
Xj
e into Algorithm 1 and replacing d and q with djn and qjn,

we can estimate that the actual timing and frequency offsets
are most likely to be in the region corresponding to the kjn,t-th
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timing offset part and the kjn,f -th frequency offset part, where
kjn,t and kjn,f can be expressed as

kjn,t = arg max
k∈{1,··· ,Dj}

∫
bjηn (ηn)

kQj∑
i=(k−1)Qj+1

δ (ηn − ei) dηn,

(47)

kjn,f = arg max
k∈{1,··· ,Qj}

∫
bjηn (ηn)

Dj∑
i=1

δ
(
ηn − ek+(i−1)Qj

)
dηn.

(48)
where bjηn (ηn) is the bηn (ηn) output by algorithm 1 in the
j-th step. As shown in Fig.5, the most likely regions in each
step are shown in orange.

In addition to the initial timing offset vector d1
n and

frequency offset vector q1
n, the choice of timing offset and

frequency offset vectors in other steps is also critical. Each
timing offset part in the j-th step is further evenly divided
into (Dj+1 −Dj + 1) smaller parts, and each frequency
offset part in the j-th step is further evenly divided into
(Qj+1 −Qj + 1) smaller parts. Take the timing offset as an
example. The timing offset is most likely to be in the kjn,t-
th part among the Dj parts in j-th step. Therefore its corre-
sponding (Dj+1 −Dj + 1) smaller parts are all reserved for
the (j + 1)-th step. On the other hand, only one smaller part in
the middle of each remaining unlikely (Dj − 1) parts is kept to
the (j + 1)-th step. Therefore, we can get Dj+1 smaller timing
offset parts in the (j + 1)-th step, with (Dj+1 −Dj + 1)
smaller parts from the most likely part and (Dj − 1) smaller
parts from the (Dj − 1) unlikely parts. Median values of these
smaller parts are used to form dynamic timing offset vector
dj+1
n . Similarly, the frequency offset vector qj+1

n is generated
in the same way.

Algorithm 2: Dynamic S-GAMP Algorithm

1 Input: the timing offset vector d, frequency offset
vector q, and the number of steps T dynmax.

2 Output: The output of Algorithm 1 when j = T dynmax.
3 for j = 1, · · · , T dynmax do
4 if j = 1 then
5 Generate d1

n and q1
n using the vectors d and q,

n = 1, 2, · · · , N .
6 else
7 Update djn and qjn according to dj−1

n , qj−1
n ,

kj−1
n,t and kj−1

n,f , n = 1, 2, · · · , N .
8 end
9 Generate the measurement matrix Xj

e via (45).
10 Substitute matrix Xj

e into Algorithm 1, replace d

and q with djn and qjn, and calculate kjn,t and
kjn,f via (47) and (48), n = 1, 2, · · · , N .

11 end

Algorithm 2 summarizes the above dynamic programming
process. Table III shows the computational complexity com-
parison of the proposed algorithms with other baseline algo-
rithms. It is shown that the complexity of the S-GAMP algo-
rithm is similar to that of the parallel AMP-MMV algorithm.
Furthermore, compared with the S-GAMP and the parallel
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Fig. 6. The convergence of the S-GAMP algorithm under different SNR
scenarios while M = 10 and α = 0.04.

AMP-MMV algorithms, the dynamic S-GAMP algorithm has
significant advantages in computational complexity. Notice
that as the poor AUD performance of both the cross-correlation
and the linear MMSE methods cannot meet the requirement
in practical systems, as shown in Section V, it is of little
significance to compare them with the proposed algorithms
in terms of complexity.

V. SIMULATION RESULTS

In this section, we evaluate the performances of our pro-
posed algorithms compared with parallel AMP-MMV algo-
rithm, linear MMSE algorithm and cross-correlation algo-
rithm, which are classical algorithms used for synchronization
in OFDM system. The performance metrics are defined as
follows:
• Channel Estimation Mean Square Error (MSE):

MSE = 10log10

‖Ĥ−H‖22
‖H‖22

. (49)

• User False Alarm Rate (UFAR) and User Detection Miss
Rate (UDMR):

UFAR =
‖U (û− u)‖0
N −Na

, UDMR =
‖U (u− û)‖0

Na
,

(50)
where u = [ξ1, ξ2, · · · , ξN ]

T is the user activity vector.
The function U (·) is the step function, and the operation
is componentwise. The UFAR and UDMR are contra-
dictory and sensitive to the threshold, which means that
the threshold can be adjusted to reduce the UFAR at
the cost of increasing the UDMR, and vice versa. In
practical systems, the choice of the threshold depends on
the desired value of UDMR or UFAR. In our simulation,
to fairly compare the active user detection performance
among different algorithms, we adjusted the threshold
values under different conditions to make their UFAR
equal to 10−3 [45] and then compared their UDMR.

• Average timing offset estimation error (ATEE) and Aver-
age frequency offset estimation error (AFEE):

ATEE =
uT |τ − τ̂ |

Na
, AFEE =

uT |ε− ε̂|
Na

, (51)
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TABLE III
COMPUTATIONAL COMPLEXITY COMPARISON

Multiplications Additions
S-GAMP O

(
TmaxM2ND2Q2

)
O
(
TmaxM2ND2Q2

)
dynamic S-GAMP O(TmaxM2N

∑Tdynmax
j=1 D2

jQ
2
j ) O(TmaxM2N

∑Tdynmax
j=1 D2

jQ
2
j )

parallel AMP-MMV O (TmaxMNDQL) O (TmaxMNDQL)

cross-correlation O (MNDQ(L+ 1)) O ((LM − 1)NDQ)

Linear MMSE O
(
NDQL2

)
O
(
NDQL2

)

TABLE IV
SYSTEM PARAMETERS

System Parameters Values System Parameters Values
Number of subcarriers Nc = 2048 Number of discrete frequency offset Q = 9

Number of pilots L = 72 Subcarrier index vector of pilots s = [1, 3, 5, · · · , 71]T

Number of users N = 200 OFDM symbol index vector of pilots g = [3, 12]T

Length of CP NCP = 144 Maximum frequency offset εmax = 0.0133

Channel coefficient variance σ2
h = 1 Number of the dynamic extraction steps T dyn

max = 2

Maximum timing offset D = 9 Dimensions of extraction in each step D1 = Q1 = 3, D2 = Q2 = 4
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Fig. 7. The performance comparison under different SNR scenarios while α = 0.04 and M = 4.
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Fig. 8. The performance comparison under different user activity probability while SNR = 9dB,M = 4.

where τ ∈ RN×1 and ε ∈ RN×1 represent users’ actual
timing and frequency offset vectors, respectively.

The parameter settings of the following simulation scenarios
are shown in Table IV. Besides, the signal-to-noise ratio (SNR)
in the simulations is defined as follows:

SNR = 10log10

‖XH‖2F
LMσ2

z

. (52)

In Fig. 6, we simulated the CE performance of the S-GAMP
algorithm in each iteration under different SNR to verify the
convergence of the S-GAMP algorithm. It is shown that the
performance of the S-GAMP algorithm is improved as the
number of iterations increases until convergence.

In Fig. 7, we compare the CE, AUD, and offset estima-
tion performance with SNR among these algorithms under
α = 0.04,M = 4. As shown in Fig. 7, the proposed dy-
namic S-GAMP and S-GAMP algorithms perform better joint
estimation than other baseline algorithms because they make
full use of the prior information of structured sparsity. Notice
that the dynamic S-GAMP algorithm can perform better than
the S-GAMP algorithm because the extracted measurement
matrix is closer to the i.i.d. Gaussian matrix, which is required
to guarantee the performance of the GAMP algorithm [4],
[12], [20]. However, since the extracted measurement matrix is
incomplete after all, the excellent performance of the dynamic
S-GAMP algorithm cannot be guaranteed in all scenarios, such

as the high SNR region, as shown in Fig. 7(c) and 7(d).
Furthermore, the CE performance of the S-GAMP algorithm
is slightly worse than the cross-correlation algorithm under
low SNR in Fig. 7(a), because the performance of the S-
GAMP algorithm degrades when the elements of the expanded
measurement matrix are no longer i.i.d. Gaussian distributed,
or the noise interference is high. It is worth mentioning that
the poor AUD performance of the cross-correlation algorithm
makes it unable to be applied in practical systems, resulting
in its CE performance of little significance.

Fig. 8 illustrates the joint estimation performance compar-
ison among these algorithms with different values of user
activity probability under SNR = 9 dB,M = 4. As shown
in Fig. 8(a), the dynamic S-GAMP algorithm can achieve
better CE performance than other algorithms in the same
SNR regime. Furthermore, we can observe from Fig. 8(b)
that the UDMR of the dynamic S-GAMP algorithm is slightly
better than the S-GAMP algorithm, and their performance is
far better than the other three algorithms. Fig. 8(c) and 8(d)
show that the dynamic S-GAMP algorithm performs superior
offset estimation in the same SNR regime. Although the joint
estimation performance of these algorithms decreases with the
increase of the user activity probability, the dynamic S-GAMP
is still superior to others.

Fig. 9 provides the joint estimation performance comparison
of the considered algorithms versus the number of antennas
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Fig. 9. The performance comparison under different numbers of antennas while α = 0.04, SNR = 6dB.

under α = 0.04,SNR = 6 dB. It is shown that the proposed
algorithms outperform other baseline algorithms, and their
joint estimation performance becomes better as the increase
of the number of antennas thanks to the more information of
joint structured sparsity from the increasing SMV parts.

VI. CONCLUSION

This paper considered the massive grant-free transmission
in the asynchronous OFDMA system and analyzed the impact
of timing and frequency offsets on joint active user detection
and channel estimation. To deal with the structured sparsity
introduced by timing and frequency offsets, we proposed an
efficient message passing algorithm (S-GAMP), leveraging the
properties of the structured sparsity. In addition, we proposed
the dynamic S-GAMP algorithm by updating the measurement
matrix dynamically to reduce the computational complexity,
which also improves the robustness. It is expected that the
proposed S-GAMP algorithms could pave the way for the
deployment of massive grant-free OFDMA in the mMTC
scenarios.
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