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Abstract: Here we examine the plausibility of deep convolutional neural networks (CNNs) as a
theoretical framework for understanding biological vision in the context of image
classification. Recent work on object recognition in human vision has shown that both
global, and local, shape information is computed, and integrated, early during
perceptual processing. Our goal was to compare the similarity in how object shape
information is processed by CNNs and human observers. We tested the hypothesis
that, unlike the human system, CNNs do not compute representations of global and
local object geometry during image classification. To do so, we trained and tested six
CNNs (AlexNet, VGG-11, VGG-16, ResNet-18, ResNet-50, GoogLeNet), and human
observers, to discriminate geometrically possible and impossible objects. The ability to
complete this task requires computation of a representational structure of shape that
encodes both global and local object geometry because the detection of impossibility
derives from an incongruity between well-formed local feature conjunctions and their
integration into a geometrically well-formed 3D global shape. Unlike human observers,
none of the tested CNNs could reliably discriminate between possible and impossible
objects. Detailed analyses using gradient-weighted class activation mapping
(GradCam) of CNN image feature processing showed that network classification
performance was not constrained by object geometry. We argue that these findings
reflect fundamental differences between CNNs and human vision in terms of
underlying image processing structure. Notably, unlike human vision, CNNs do not
compute representations of object geometry. The results challenge the plausibility of
CNNs as a framework for understanding image classification in biological vision
systems.
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February 22nd, 2021 

Dear Dr Oruç, 

Re: Ms. No.: VR-20-214: A failure to learn object shape geometry: Implications for convolutional 

neural networks as plausible models of biological vision 

Thank you for sending us these very helpful reviews and comments. To address the issues raised we 

have undertaken a substantial rewrite, and reorganisation of the manuscript, and included additional 

analyses and statistical comparisons between network and human performance. Several of the key 

issues noted in the reviews arose because of a lack of clarity in the writing and organisation. These 

have been fully addressed. The substantive conclusions of the work remain the same – but now 

reinforced, and strengthened, with the additional analyses. We believe that the work will make a 

significant novel contribution to the field.  

In what follows, we have detailed the changes, and our responses to the reviews, in blue text.  

Detailed Response to Reviews 

AE = Action Editor, R1 = Reviewer 1; R2 = Reviewer 2 

Action Editor 

AE1 Both reviewers have raised concern over the modest size of your dataset with several dozen 

images available to train the models, compared to the typical training/development sets consisting of 

millions of images. This issue is especially critical here in the context of models unable to successfully 

classify possible vs. impossible images.  

Response: Thank you for raising this issue. The augmentation approach we have taken to increase the 

size of the dataset is commonly used in machine learning and generates a relatively large training set 

and test image set. However, a key aspect of the rationale underlying our human-network 

performance comparison is its qualitative validity. It is important to note that we evaluate 

performance in both pre-trained and un-trained networks to test a specific hypothesis about the 

internal representational structures of object geometry that are generated by architectures that – 

when trained, are highly successful in image classification. Critically, we aim to test this hypothesis in 

a manner that is comparable to the qualitative experience of a human observer. Human observers 

reliably discriminate between possible and impossible forms without any prior training or experience 

with these specific forms of stimuli – because, we argue, the biological system computes internal 

representations of 3D object geometry (and CNNs do not). Thus, extensive training of networks on the 

classification task using larger datasets of possible and impossible forms would fundamentally 

undermine the validity of the human-network performance comparison that we aim to achieve. We 

have clarified this key point about the rationale in the revised manuscript.    

AE2 Reviewer 2 has suggested that creating an additional small dataset in which the 

impossible/possible distinction does not depend on global shape is necessary to confirm that the 

dataset size is not the bottleneck in the present study, and I agree. 

Response: The difficulty here is that the possible/impossible distinction relies on the mismatch, or 

incongruency, between well-formed local image features and global shape geometry. Thus, it is not 

possible to construct a dataset in which geometric impossibility does not depend on global shape.  

Response to Reviews



AE3 Both reviewers have also commented on the reporting of Study 2 and raising some questions as 

to the usefulness of including it as a central piece of the overall work. Reviewer 1 has suggested 

significantly shortening and moving to supplementary materials.  

AE4 Reviewer 1 is not convinced by your conclusion that the models have indeed based their decision 

predominantly on the image backgrounds. They have asked for additional analyses and discussion to 

bolster this point.  

Response: The motivation for inclusion of the analyses reported as Study 2 in the original manuscript 

was not clear – and we thank the reviewers for highlighting this. The initial analyses of network 

performance showed that all of the tested networks performed worse than human observers on the 

classification task. This point is now strengthened by the inclusion of robust statistical contrasts using 

a modified t-test (Crawford, Garthwaite & Porter, 2010; Crawford & Garthwaite, 2002). We 

highlighted a potential confound in the original dataset which we further explored and reported as 

Study 3 in the original manuscript. We now report those additional analyses as ‘Supplementary 

Analyses of Network Performance’ in which we ran an additional simulation using a background size 

normalised dataset. This is also important to show the robustness of the original results – that is, that 

network performance is replicated in a different dataset. The findings confirm that the networks fail 

to learn the classification task.  

Reviewer 1 

R1.1 Although study 2 should be mentioned as an example of best practice in identifying an error and 

removing it (so keep in a paragraph about it to educate PhD students) giving a study with errors the 

largest section of the paper is very odd and highly misleading. Why have you sent in a paper where 

there are more results shown for the erroneous study than the fixed repeat? 

Response: Please see AE4 above. 

R1.2 No one is going to believe your results in the 'fixed' study when you claim that the impossible 

objects are assigned based on background, the exact same finding as you got from the erroneous 

study, and that result is not explained in any way. We only have your word that you've managed to fix 

the error. Have you? Are you sure? 

Response: We now report statistical analyses comparing the original and normalised images.  

R1.3 This paper is not strong enough to make the claims that CNNs are not plausible models for human 

vision, as made in the title.  

Response: It is important to note that the substantive point of our paper is to test a specific hypothesis 

about the nature of the representational structure/s that are computed by CNNs to achieve image 

classification – namely, that the networks (unlike humans) rely on localist structure that does not 

consider global object geometry. To do so we investigated whether different CNNs are able (like 

human observers) to reliably discriminate between possible and impossible objects – as this task 

requires computing local and global object geometry. The results show that the networks fail at this 

task.  

R1.4 Rewrite with more analysis of study 3 (but keep in the error from study 2 for pedagogical reasons 

- shorten it or move results to supp. info.).  

Response: Please see AE4 above. 

 



 

R1.5 Give me IoU numbers if you want me to believe that the CNN is attending to the background. 

Response: We have now included quantitative measures for how networks attend to the background 

and the impossible part (heatmap analysis).  

R1.6 You could look at the Grad-CAM for different layers of the CNN to try to understand your results.  

Response: We have now included the results from Alex net for multiple layers. These heatmaps are 

consistent with our interpretation of the results.   

R1.7 If Grad-CAM gives such weird results, try using other visualization methods to get more 

information and elucidate what is going on.  

Response: The Grad-CAM analysis has provided a valuable tool for shedding light on how the CNNs 

are attempting to resolve the classification task. We have included further detailed analyses of the 

Grad-Cam data (heatmap analysis) in the revised manuscript. 

R1.8 Discuss human vision with regards to perspective line drawings.  

Response: We have added further discussion regarding our choice to use line drawing stimuli – which 

are widely used in studies of human vision. One reason is that line drawings allow us to test hypotheses 

about the recovery of 3D object shape from geometric cues alone (i.e., without texture, shading etc.).  

R1.9 I don't believe your results, but if you fix it and still get around 50% on the correct data, you 

should make the point that with two outputs, a random choice would be 50%, then do the stats to 

show if your results re significantly different from 50%, and if not, then you can conclude that the NN 

has not be able to do the task.  

Response: We have now included rigorous statistical comparisons between all test networks and 

human performance as requested.    

R1.10 From my memory of my reading about human visual processing and perspective, I read that 

humans had to learn to 'see' (and understand) perspective images (I think these are fixed-point 

perspective images as they have a single vanishing point), and that the discovery of this method of 

drawing was the major breakthrough of the Renaissance. I think it would improve the manuscript to 

mention this history and add in a (short) discussion of the effects of the discovery of the perspective 

on human visual perception. The book Art and Visual Perspective by Rudolf Arnhelm and references 

within is a good place to start.  

Response: See R1.8 above. We have included further discussion about the use of line drawing stimuli, 

and their importance to the rationale. Though interesting, we have not extended the discussion to 

include reference to the development of perspective as an artistic technique (which does not seem 

directly relevant to the current study). Note that human observers are readily able to identify objects 

from line drawings.  

R1.11 The authors mention Grad-CAM as a method to understand how the NN is making its decision, 

there are other such methods, and it would improve the manuscript to mention some of these and 

explain why they were not chosen in this work (1-2 sentences).  

Response: We have included a discussion along these lines in the introduction. 



R1.12 The authors mention that they applied rotations to the objects, but not how big the rotations 

were. Given the way the objects are drawn (perspective projection) I suspect that a large rotation 

would look odd to a human being and might well involve different processing pathways. I think the 

authors should expand on this if they used large rotations and show some images with large rotations 

so the reader can see if those images appear valid. (If the rotations are small, as is standard in CNN 

data augmentation, this is not necessary although the rotation angle range should be added to the 

paper).   

Response: We have now included the parameters for our augmentations in the method section.  

 

R1.13 I notice that 5 students were excluded due to low accuracy. Was this the case that they were 

not doing the trail properly or that there are some humans that have difficulty with perspective 

projection type images?  

Response: For completeness we have now included all participants in the analysis, apart one who 

showed an accuracy close to 50%.  

  

R1.14 Page 16, the authors state that the task was doable but not easy, is this due to the difficulty of 

understanding perspective images? (c.f. my suggestions on perspective for the intro).  

Response: Please see our earlier responses to this point above.  

 

R1.15 The authors state 'There was no significant difference between impossible and possible shape 

(88.8% vs. 83.8%; t (19) = 1.76; p = 0.094), but the confusion matrix (Table 1) indicates that participants 

had a small bias towards responding impossible shape. Measured in the framework of signal detection 

theory (SDT) the sensitivity (d':2.43) indicated that participants signal for possible vs impossible was 

fairly strong and we were not able to detect any bias either way (c: 0).' 

Is confusing. As there is no sig. diff. between the no correct for impossible vs impossible shapes, how 

can there be a small bias towards impossible shapes? Is this stating that there is a sig. diff. in the errors 

in the table? Also, I am familiar with signal detection theory but I don't understand how the authors 

have talked about it here. What is d'? what is c? can you define it please.  

Response: We have now clarified this in the revised manuscript.   

 

R1.16 Study 2. I know the authors put in the accuracy for the CNNs earlier in the document, but it 

would be useful to have a table of the difference between training on IM and training on these objects, 

this would back up the statement 'none of the networks achieved a high-level of classification 

accuracy.' Also regarding 'none of the networks achieved a high-level of classification accuracy.' is this 

true? AlexNet for example has a relatively low top-1 accuracy (from memory I think it might be as low 

as 56%, do check) so the AlexNet results don't look that bad to me. I know that the other cNNS have 

much higher accuracies (although do check that you are using top-1 accuracy as a comparison, as I do 

not think top-5 is comparable to this task).  

Response: We agree with the reviewer that the Top-1 accuracy is a benchmark. We have now include 

these accuracies in the manuscript. 



 

R1.17 Where is the data to show if the correct possible vs incorrect possible difference is significant? 

You had this for the human data, I think it should be included for the CNN data.  

Response: We have now included rigorous statistical comparisons between all test networks and 

human performance. The results show that the networks’ performance is inferior to human 

performance. Therefore, we think the inclusion of such a comparison is not meaningful. However, we 

included here the results for the benefit of the reviewer. 

 

Original dataset: 

 Training Validation 

Network t-value p-value d-value t-value p-value d-value 

AlexNet -0.77 0.453 -0.34 -0.73 0.474 -0.323 

VGG11 -1.38 0.186 -0.61 -1.37 0.186  -0.613  

VGG16 -0.89 0.385 -0.398 -0.89 0.385 -0.398 

ResNet18 -12.86 0 -4.591 -11.96 0 -4.627 

ResNet50 -19.29 0 -6.937 -20.17 0 -7.505 

GoogLeNet -4.09 0 -1.459 -2.11 0.049 -0.7904 

AlexNet (pretrained) -10.34 0 -4.03  -17.25 0 -6.199 

VGG11 (pretrained) -10.48 0 -3.845 -9.42 0 -3.877 

VGG16 (pretrained) -4.11 0 -1.645 -1.66 0.114 -0.720 

ResNet18 (pretrained) -18.23 0 -6.757 -11 0 -4.242 

ResNet50 (pretrained) -8.85 0 -3.616 -3.07 0.006 -1.264 

GoogLeNet 
(pretrained) 

1.55 0.139 0.626 6.05 0 1.995 

 

 

Normalized dataset: 

 Training Validation 

Network t-value p-value d-value t-value p-value d-value 

AlexNet -1.63 0.120 -0.729 -1.791 0.089  -0.799 

VGG11 -1.37  0.186 -0.613 -1.37 0.186 -0.613 

VGG16 -0.438 0.666 -0.195 -0.44 0.666 -0.196 

ResNet18 -6.78 0 -2.877 -7.467 0 -3.211 

ResNet50 -3.79 0.001 -1.665 -2.214  0.039 -0.919 

GoogLeNet -1.00 0.331 -0.431  -0.28  0.782  -0.112 

AlexNet (pretrained) -0.876  0.392 -0.389  -0.65  0.523  -0.285  

VGG11 (pretrained) -2.29  0.033  -1.005  -2.04 0.055  -0.900 

VGG16 (pretrained) -2.00 0.061 -0.842 0.400 0.694 0.176 

ResNet18 (pretrained) -12.91 0 -5.211 -0.16 0.878 -0.055 

ResNet50 (pretrained) -4.85  0.000  -2.087 -1.04 0.312 -0.428 

GoogLeNet 
(pretrained) 

1.77  0.092  0.754  0 1 0 



  

R1.18 Table 4: GoogLeNet results do not show that the CNN is looking at the background. Please 

discuss.  

Response: We have now included GradCam/Heatmap analysis for GoogLeNet too. 

 

R1.19 These findings raised the possibility of a systematic confound between the stimulus sets. In fact, 

we closely inspected the impossible objects and found that they are slightly smaller than possible 

objects. This confound should be able to explain our results, as the area size of the background is 

diagnostic for impossible objects. This means that all the data from study 2 is meaningless! As such I 

do not know why it is reported in this paper. It could be added to a supplementary information as an 

example of good practice fro drilling down into odd results to find an error, but this section does not 

show anything about the task! Why is it in this paper? It should be removed. A single paragraph 

explaining the error and how it was found is sufficient.  

Response: See our earlier response above (AE4).  

R1.20 Study 3. It is interesting that the CNN uses the background to identify impossible objects, but 

odd. Given study 2 this raises the question of whether the authors have properly removed the issue 

to do with size of the objects. This needs to be answered satisfactorily and some attempt needs to be 

made to check this. Also, why not add some stats, something like intersection over union values for 

attention (what I am calling the hot bits of the heat map) over a. the amount of the pixel space covered 

by the object and b. the part of the object that is impossible. These values are required to support this 

statement 'Grad-CAM results for this network (Table 7) seem to suggest that it attempted to use the 

background again to separate the two classes' (and are easy to get). This result is so odd that the 

authors need to be more convincing that it is true and try to understand why it is true.  

Response: See our earlier responses above (AE4; R1.2). 

 

R1.21. I want to see the results for AlexNet somewhere in this paper, as being a smaller network 

(easier to understand) and the claims that it learned gabor filters and is more like human vision, any 

paper purporting that CNNs are not like human vision (which I agree with incidentally) needs to 

address AlexNet.  

Response: AlexNet is one of the networks included in our study (un-trained and pre-trained).  

R1.22 You only had 64 images for training, ImageNet uses 1.3 million. Discuss the effects of this. Also 

a CNN can easily memorize this dataset. Are you sure that your results are not due to the CNN having 

memorized the dataset and thus it is looking at the parts of the image that cause that image to differ 

from the others in the set, and not the part that is impossible? Check this, it could explain the results. 

Response: We have addressed this point above (AE1). Note that our augmentation led to 6400 

training images. This is still smaller than commonly used, but as we explained earlier it is a 

reasonable size for the purpose of our study. The augmentation (0-360 rotation, horizontal flips and 

0.9-1 zooms) also produces very different pixel patterns in the input images. It is not clear to us how 

the CNNs could have memorized such a dataset. This is also supported by fact that the heatmap 

analysis indicates that the networks pay much attention to the background.       

 



Reviewer 2 

R2.1 In the introduction, I would have been curious to see a cited source for the sentence "Recent 

work has also shown that the (human) biological system computes shape information in parallel across 

both global and local spatial scales, and that it integrates this information during perceptual processing 

to generate representations of structured scene content and object geometry" (p. 4).  

Response: We have addressed this point in the revised text including supporting references.  

 

R2.2 One question I had related to this work was whether the augmented dataset the authors used 

was large enough to for the networks to learn to classify between possible and impossible objects. 

These objects are handcrafted with important controls between the possible and impossible stimuli, 

so I understand it would be hard to generate thousands of different training stimuli. One way the 

authors might address this is by augmenting another set of 40 image pairs that do not depend on 

global shape and showing that in that case the network does have enough training examples to 

accurately classify images in the validation set. 

Response: We have addressed this point above (AE2).  

 

R2.3 Another point I would be interested to see discussed more is what the findings on Experiment 2 

mean about deep networks. As the authors have currently written the paper, Experiment 2 lacks a 

control that, when corrected, supports the idea that DCNNs do not perceive global shape. I would 

recommend that if the authors think the network's success based on small size differences means 

something interesting about how DCNNs classify objects, they should add a little more discussion 

about that. Otherwise, it might make more sense to only report Experiment 3 with the size controlled. 

Response: See our earlier response above (AE4; R1.22).  

 

R2.4 One other very minor point about the size control: the authors re-tested the network after 

controlling for the size of the objects, but did they re-test humans? It seems extremely unlikely that 

humans' accurate performance in the behavioral experiment comes from an unconsciously perceived 

size difference, but the authors might draw a clearer distinction between DCNNs and humans if the 

behavioral experiment was done on size-controlled stimuli.  

Response: We have addressed this point by re-analyzing the existing data. In this re-analysize we 

removed the bias substantially and still found no significant effect (see footnote in manuscript)  

 

 

Typos corrected.  
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ABSTRACT 

 

Here we examine the plausibility of deep convolutional neural networks (CNNs) as a theoretical 

framework for understanding biological vision in the context of image classification. Recent work on 

object recognition in human vision has shown that both global, and local, shape information is 

computed, and integrated, early during perceptual processing. Our goal was to compare the similarity 

in how object shape information is processed by CNNs and human observers. We tested the 

hypothesis that, unlike the human system, CNNs do not compute representations of global and local 

object geometry during image classification. To do so, we trained and tested six CNNs (AlexNet, 

VGG-11, VGG-16, ResNet-18, ResNet-50, GoogLeNet), and human observers, to discriminate 

geometrically possible and impossible objects. The ability to complete this task requires computation 

of a representational structure of shape that encodes both global and local object geometry because 

the detection of impossibility derives from an incongruity between well-formed local feature 

conjunctions and their integration into a geometrically well-formed 3D global shape. Unlike human 

observers, none of the tested CNNs could reliably discriminate between possible and impossible 

objects. Detailed analyses using gradient-weighted class activation mapping (GradCam) of CNN 

image feature processing showed that network classification performance was not constrained by 

object geometry. We argue that these findings reflect fundamental differences between CNNs and 

human vision in terms of underlying image processing structure. Notably, unlike human vision, 

CNNs do not compute representations of object geometry. The results challenge the plausibility of 

CNNs as a framework for understanding image classification in biological vision systems.  

 

Word count = 252 
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Few machine learning methods have received as much interest in recent years as deep (multi-layer) 

feedforward convolutional neural networks (CNNs) - the performance of which is unparalleled across 

a range of image processing tasks (Guo et al., 2016; LeCun, Bengio, & Hinton, 2015; Voulodimos, 

Doulamis, Doulamis, & Protopapadakis, 2018). CNNs are also increasingly attracting attention in 

vision science due to their high levels of performance in image classification (and other) tasks that 

matches (and sometimes exceeds) that of human observers. They also superficially share certain 

similarities to other properties of biological vision systems including: a hierarchical structure, 

convolutional sampling across increasingly large ‘receptive fields’, and their capacity to support 

category generalisation (e.g., Cox & Dean, 2014; Güçlü & van Gerven, 2015; Kuzovkin et al., 2018). 

Recent work has also highlighted similarities between patterns of activity within specific layers of 

trained networks and neural properties at intermediate and higher-levels of cortical representation 

using techniques such as representational similarity analysis (e.g., Cichy, Khosla, Pantazis, Torralba, 

& Oliva, 2016; Khaligh-Razavi & Kriegeskorte, 2014; Yamins, Hong, Cadieu, et al, 2014).    

At the same time, the suitability of CNNs as a theoretical framework for understanding 

biological vision remains unclear. Here we examine this issue in the context of object classification. 

Human observers are remarkably adept at object recognition. We can rapidly classify objects despite 

changes in sensory information brought about by variation in viewpoint, lighting, and other factors 

(e.g., Harris, Dux, Benito & Leek, 2008; Leek, Atherton & Thierry, 2007). This ability is supported 

by a processing system that can compute structured, hierarchical, representations of 3D object shape 

geometry from 2D retinal sensory input (e.g., Bar, 2003; Davitt, Cristino, Wong & Leek, 2014; Leek, 

Reppa, Rodriguez & Arguin, M, 2009; Leek, Reppa & Arguin, 2005; Leek, Roberts, Dundon & 

Pegna, 2018; Reppa, Greville & Leek, 2015; Schyns & Oliver, 1994).   

One important characteristic of object processing in human vision is that both global, and 

local, shape information is computed, and integrated, during perceptual processing. For example, 

numerous studies have shown that observers can rapidly classify scenes based on coarse analyses of 
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global image content alone (e.g., Bullier, 2001; Peyrin, Michel, Schwartz, Thut, Seghier et al., 2010; 

Peyrin, Baciu, Segebarth & Marendaz, 2004; Schyns & Oliva, 1994), and that rapid analyses of low-

spatial frequency global image content constrains local high spatial frequency processing of local 

structure during object recognition (e.g., Bar 2003; Bar et al., 2006). Other work has shown that 

global and local information is integrated during the perceptual processing of object shape – as shown, 

for example, in the context of global-to-local processing in Navon-type displays (Navon, 1977 – see 

also, Beaucousin, Simon, Cassotti et al., 2013; Deco & Heinke, 2007; Han, He & Woods, 2000; 

Proverbio, Minniti & Zani, 1998), dissociations between local and global processing in patients with 

unilateral brain lesions (Robertson, Lamb & Knight, 1988; Robertson & Lamb, 1991), and – more 

recently, deficits to global but not local eye movement scanning patterns during object recognition in 

patients with acquired visual agnosia (Leek, Patterson, Paul, Rafal & Cristino, 2012). Further work, 

using event-related potentials (ERPs), has found evidence for an early differential perceptual 

sensitivity to local and global 3D shape structure during image classification within the first 200ms 

of stimulus onset (Leek, Roberts, Oliver, et al, 2016; Oliver, Cristino, Roberts et al, 2018).  

In contrast, the functional contribution of local and global shape structure to image 

classification in CNNs is unclear. The architecture of CNNs (increasing larger receptive fields) seems 

to suggest that, in principle, they could process global or higher-order image structure (e.g., 

Kriegeskorte, 2015; LeCun et al., 2015; Zeiler and Fergues, 2014). However, other work suggests 

that CNNs rely exclusively on local image information (e.g., Baker et al., 2018; 2020; Brendel & 

Bethge, 2019; Geirhos et al. 2019).  For example, Baker et al. (2018) examined the performance of 

two pretrained CNN architectures (VGG19 and AlexNet) in their ability to classify images of objects 

with either congruent or incongruent (e.g., mixed) global shape and local textures (e.g., a camel 

outline shape with a zebra’s texture). The results showed that network performance (unlike human 

observers) was perturbed by incongruency - with classification errors biased towards classification 

based on local but not global image properties (see also Geirhos et al., 2019). 
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This current study aims to further investigate this issue by testing whether CNNs compute 

representations of global and local 3D object geometry. To do so, we examined the ability of six (pre-

trained and un-trained) CNNs (AlexNet, VGG-11, VGG-16, ResNet-18, ResNet-50, GoogLeNet) to 

discriminate geometrically possible and impossible novel objects (see Figure 2 and 3). These sorts of 

stimuli comprise a 2D depiction of a 3D form that cannot be geometrically reconstructed in 3D space 

– like the  well-known Penrose triangle (Penrose & Penrose, 1958). This class of stimuli has also 

been extensively used previously to study how the human visual system computes representations of 

object shape (e.g., Carrasco & Seamon, 1996; Cooper, Schacter, Ballesteros, & Moore, 1992; Freud, 

Avidan, & Ganel, 2013; Freud et al., 2017; Freud, Hadad, Avidan, & Ganel, 2015; Schacter, Cooper, 

& Delaney, 1990; Schacter, Cooper, Delaney, Peterson, & Tharan, 1991). By definition, the ability 

to discriminate possible from impossible objects requires computation of a representational structure 

of shape that encodes both global and local object geometry, since the detection of impossibility 

derives from an incongruity between well-formed local feature conjunctions and their integration into 

a structured representation of global object shape. That is, object impossibility can only be detected 

at a level of perceptual processing in which local geometric structure is integrated into a coherent and 

physically possible 3D object. Thus, it follows that perceptual sensitivity to object impossibility 

implies a level of processing in the biological vision system that involves the integration of local and 

global object geometry. Our goal was to examine whether CNNs can, in principle, learn to 

discriminate geometrically possible from impossible objects to evaluate whether the networks – like 

the biological system, also compute, and integrate, local and global representations of 3D object shape 

geometry.  

The design of the study had two further important aspects. First, human observers can readily 

detect object impossibility without prior training, or exposure, to this specific class of stimulus (e.g., 

Carrasco & Seamon, 1996; Cooper et al., 1992; Freud et al., 2013) suggesting that this ability reflects 

fundamental representational properties of the object processing system in human vision. For this 
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reason, we wanted to test the performance of both pre-trained and un-trained networks with minimal 

prior exposure to impossible objects to indirectly probe the internal representational structures that 

the networks have acquired to support image classification. The rationale is that the failure of the 

networks to reliably discriminate possible and impossible forms can be taken as evidence that image 

classification is not based on the integration of internal representational structures that make explicit 

local and global object geometry.  Second, a further key aspect of the rationale was the use of datasets 

comprising line drawing depictions of novel 3D polyhedral. This class of stimulus provides a strong 

test of the ability to generate representations of 3D object structure from geometric cues alone – and 

are readily perceived by human observers (e.g., Attneave, 1954; Biederman, 1987; Pizlo (2014); see 

Sayim & Cavanagh, 2011, for a recent review). Here we use this stimulus class to provide a strong 

test of the capability of CNNs to generate representations of 3D object geometry.  
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METHOD 

Networks 

We trained 12 CNNs to perform an object discrimination task involving the classification of possible 

and impossible object shapes. The 12 CNNs were based on four architectures, AlexNet (Krizhevsky, 

Sutskever, & Hinton, 2012), VGG (Simonyan & Zisserman, 2015), ResNet (He, Zhang, Ren, & Sun, 

2016) and GoogleNet (Szegedy et al., 2015). For each of these architectures we also tested a pre-

trained and an un-trained version. The pre-trained version was based on the ImageNet database as 

set-up in PyTorch (Paszke et al. 2019).    

 

 

 

As illustrated in Figure 1, the four CNN architectures categorize an input image through a pipeline 

of stages. Each stage consists of a set number of layers. The number of layers vary across the different 

architectures and their specific instantiations (see below for details). Typically, the first stage consists 

Figure 1. This figure illustrates the structure common to all CNNs used in the papers. The CNNs 

categorize an input image through a pipeline of stages. The first stages consist of convolutional 

blocks which in turn are made of convolution layers and pooling layers.  The second series of 

stages comprises fully connected layers. A fully connected layer calculates weighted sums across 

all inputs. The convolution layers convolve the input with a kernel of pre-defined size that often 

varies across the convolutional layers. The kernel size and the type of pooling layer, and the number 

of layers depend on the particulars of the architecture (see main text for details).  
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of blocks made from convolutional layers and pooling layers.  The second stage is a classifier 

comprised of fully connected layers. The convolutional layers convolve the input with a kernel of 

pre-defined size that often varies across the convolutional layers of a particular network. 

Subsequently, the output of convolutional layers may be processed with a pooling layer. There are 

different types of pooling mechanisms. The most common form of pooling, called max pooling, 

simply divides the input into patches of a predefined size, and then outputs the maximal value in each 

patch. The results of convolutional layers and pooling layers are then vectorised and fed into fully 

connected layers. A fully connected layer calculates weighted sums across all inputs.  During the 

training process the values of the kernels and the weights of the fully connected layers are modified. 

Other characteristics like max pooling, kernel sizes, and number of layers are constant. We outline 

below the main characteristics of the tested CNN architectures together with their accuracy on 

ImageNet. Typically, a network’s response is considered as accuracy if the correct response is among 

the five categories with the highest output activations (Top-5 accuracy). However, given that our 

benchmark is a two-category problem we report the Top-1 accuracies here.      

AlexNet (Krizhevsky, Sutskever, & Hinton, 2012) has five convolutional layers and three fully 

connected layers (62.4 M parameters: Top-1 accuracy on ImageNet 62.5%). The first layer has a 

kernel size of 11x11, and Layer 2 a kernel size of 5x5. All other layers have a kernel size of 3x3. 

VGG (Simonyan & Zisserman, 2015) architecture is based on five blocks with a kernel size of three 

across all blocks. We tested two VGG networks, VGG-11 (113M parameters; accuracy: 69%) and 

VGG-16 (138M parameters; accuracy: 74%) (Configuration D, Simonyan & Zisserman, 2015).  In 

VGG-11 the first two blocks consist of one layer (convolutional layer plus pooling layer) each while 

the other three blocks are made of two layers each. A pooling layer is used only at the end of the three 

blocks. In VGG-16 the first two blocks consist of two layers followed by a pooling layer while the 

remaining three blocks consist of three layers followed by a pooling layer. There are three fully 

connected layers in each VGG-version.  
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ResNet (He, Zhang, Ren, & Sun, 2016) has a 7x7 kernel convolution layer in the first block and one 

fully connected layer.  Importantly, ResNet contains weighted “short-cut connections” which 

bypasses convolutional layers, and their result is added to the output of the convolutional layers 

(“short-cut connections”). We tested two ResNet networks, ResNet-18 (11M parameters; accuracy: 

72.12%) and ResNet-50 (25.5M parameters; accuracy 77.15%). In ResNet-18 the short-cut 

connections bypass only one convolutional layer (4 blocks with two 3x3 kernel layers each) while in 

ResNet-50 three layers are skipped (4 blocks with varying number of 3x3 kernel layers).  

GoogLeNet (Szegedy et al., 2015; 6.4M parameters; accuracy of 69.78%) is a 22-layer network that 

also includes a new mechanism for each layer termed an inception module. An inception module 

consists of three filters with different kernel sizes (1x1, 3x3, 5x5) and a max pooling layer. The 

outputs of these filters are concatenated and form the input to the next layer. Prior to the 3x3 and 5x5 

filters a channel pooling (1x1 convolution) takes place creating a “bottleneck” for these filters. The 

channels are made of several parallel convolutional layers also called feature maps. The network 

consists of 11 blocks. The first block is a standard layer with a 7x7 kernel. All other blocks comprise 

two parallel inception modules. There is only one fully connected layer. 

We evaluated this large number of CNNs to explore whether specific network characteristics 

contribute to classification accuracy in the possible/impossible discrimination task. For instance, 

CNNs with the highest number of parameters (VGG-11 and VGG-18) may be better equipped to learn 

mappings from the objects to the two categories. On the other hand, since the test images are simple 

contour-based line drawings and provide only a small training set (even though we used data 

augmentation) these networks may be prone to overfitting. Here using the pre-trained network (where 

only the fully connected layer is trained) may alleviate this problem. However, given Geirhos et al.’s 

(2018) study, we expect that the pre-trained approach would fail as these networks are biased towards 

the local level, while the untrained networks can be adapted to the task.  Of course, network 

architecture is also likely to be a critical determinant of performance. One such property is kernel 
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size.  Larger kernels may be assumed to capture properties of global shape, and smaller kernels local 

elements (e.g., corners, line crossing, etc.). Hence, AlexNet with the larger kernels in the first blocks, 

may be superior compared to other networks. On the other hand, GoogLeNet can adapt the kernel 

size and, together with the bottleneck mechanism, might be predicted to have more success in the 

task. The short-cut connections in ResNet also provide an important mechanism for the task at hand 

as they may, in principle, allow ResNet to integrate global and local levels of shape information.  

Datasets 

We used a base set of 40 possible and 40 impossible objects (adapted from Williams and Tarr, 1997; 

see Figures 2). Impossible objects were created by one modification of the drawing of a possible 

object (see Figure 3).  For each possible object there was a corresponding matched impossible object. 

Some stimuli were modified and redrawn to ensure that possible and impossible objects were matched 

for complexity in terms of contours and vertices. The complexity of objects was not significantly 

different: possible vertices (M=29.15, SD=5.69), impossible vertices (M=29.35, SD=5.65), t (39) = 

1.275, ns; possible contours (M=38.98, SD=7.9), impossible contours (M=38.63, SD=7.78), t (39) = 

1.617, ns.   

 

 

Figure 2. This figure shows all possible and impossible shapes used to train the networks. The 

right panel shows the impossible shape corresponding the shapes on the left. 
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Network Training 

Each network was trained for 100 epochs, which appeared to be approximately when the loss and 

accuracy scores stopped improving, based on preliminary testing. All networks were built using 

PyTorch 1.2.0 on a cuda-enabled NVIDIA GeForce GTX 1060 GPU. We fitted the CNNs with the 

Adam optimiser which typically shows good performance with little to no hyperparameter tuning 

(Kingma & Ba, 2015). We averaged the results across 20 different seeds in line with the Monte Carlo 

validation method or Repeated random sub-sampling validation (e.g., Picard & Cook, 1984).  

We inverted the images (black pixels to white pixels, and vice versa). They were then converted to 

224×224-pixel images with three colour channels and normalised in accordance with the pre-

processing procedures used for ImageNet. We applied data augmentation at every training batch 

consisting of random rotations (0-360 degrees picture plane), horizontal flips and random zooms (0.9 

– 1). We also applied data augmentation to the validation set so that we could perform two iterations 

of the validation at the end of each epoch, reducing the sensitivity of the validation scores to noise. 

We pseudo-randomly divided the images into training and validation sets where 20% of the data 

(N=16) was reserved for validation and the remaining 80% (N=64) was used for training. Importantly, 

Figure 3 Example of how a possible shape (left) was turned into an impossible shape (right). 
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since we augmented the images for each epoch, we obtain a training set comprised of 6400 images. 

When dividing the dataset, we ensured that each possible-impossible object pair was in the same 

(training or validation) dataset. This was done to facilitate the networks’ ability to learn what 

constitutes a possible or impossible object, and to ensure that the number of possible and impossible 

images was balanced between each set.  

The code for the project is available at https://github.com/PWman/Impossible-Shapes-Paper. 

Analyses of Network Performance 

1. Network accuracy 

The outputs of each network tested were adapted to have two output nodes (one-hot encoding), as 

opposed to binary encoding with a single output node, to ensure the network was compatible with 

Grad-CAM. For all networks tested, we used the PyTorch Cross-Entropy Loss Function to calculate 

network error, since this internally applies softmax to the outputs during the calculation of loss. Mean 

network accuracy on the validation dataset was compared to human performance using the modified 

t-test (Crawford, Garthwaite & Porter, 2010; Crawford & Garthwaite, 2002) with an a priori p < .05 

alpha criterion. We also analysed network performance and human performance using 

discriminability (d’) and criterion shift (c) based on signal detection theory (SDT; Macmillan and 

Creelman, 1991).  

 

2. Heatmap analysis  

The goal of these analyses was to elucidate which region of the images contribute to network 

classification performance. At the present there are three types of methods to determine these regions: 

gradient-based methods (e.g., Simonyan, & Zisserman, 2015), perturbation-based methods (e.g., 

Wagner et al., 2019) and class activation mapping (CAM) methods. We used a recently developed 

tool from the CAM family, Grad-CAM (Gradient-weighted Class Activation Mapping; Selvaraju et 

https://github.com/PWman/Impossible-Shapes-Paper
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al., 2019). GradCAM usefully provides heatmap visualisations representing the degree by which 

regions in the input image contribute to the correct classification.  Here we expect that Grad-CAM 

heat maps should highlight the single local region of each impossible objects that gives rise to the 

local-global shape incongruency. The heatmaps were determined for each of the 16 images in the 

validation dataset and then averaged across all 20 seeds.  

 To further analyse the spatial distributions of the activation in the heatmaps, we defined two 

ROIs, ROI-Background and ROI-Impossible. ROI-Background was determined with the Flood Fill 

algorithm from Python’s scikit-image toolbox. ROI-Impossible marked the local region of shape 

impossibility, determined by one of the authors. Based on these two ROIs we then calculated the ratio 

of GradCam activation in each ROI and the total Grad-Cam activation. Note that a value of 100% 

would indicate perfect correspondence between regions of Grad-Cam activation and the region 

defined by the ROI. The ratios reported here are the averages across all heatmaps and all seeds. 

 

Human Performance: Stimulus Validation Study 

We also conducted a stimulus validation study to determine whether human observers could reliably 

discriminate possible and impossible objects using the stimulus set described above.  

Participants The experiment tested 25 students recruited via advertisement on University of 

Birmingham social media pages who were reimbursed £10 for their time. Written informed consent 

was gained prior to participation with procedures approved by the local ethics committee. 

Materials and Apparatus The stimuli were the same 80 base images used in the network dataset and 

another 160 images generated by randomly flipping and rotating (0-360 degrees) the base set. The 

stimuli were scaled to 768x 768 pixels and presented centrally on a standard 22” monitor.  
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Design and Procedure Participants first completed 6 practice trials for which they received feedback.  

These trials used a random choice of the original images. Each trial began with the presentation of a 

fixation cross (see Figure 4). The presentation time varied randomly between 300ms and 900ms to 

prevent the trials becoming too predictable. Stimulus duration was 2500ms. Each stimulus was 

followed with a screen asking them to indicate whether the shape was possible or impossible by 

pressing a key. There were two breaks: one after 74 trials and another halfway after another 80 trials. 

After the practical trials, the images were presented in two blocks. First the images not seen during 

the practice session were presented. In the second block 160 randomly generated images were shown. 

The order of stimuli was randomised within each block, and each block and contained equal numbers 

of possible and impossible shapes. 

 

RESULTS 

Human Performance: Behavioural Stimulus Validation Study 

One participant was removed from the analysis as they showed an accuracy close to 50%. Participants 

classified images with a high degree of accuracy (M = 86.7%; SD = 4.88; 95%CI 84.6-88.7). There 

was no significant difference between classification accuracy for impossible and possible objects (M 

Fixation cross (300-900ms)

Shape stimulus (2500ms)

Time

Question screen

Please indicate whether shape is:

Possible 

(left key)

Impossible 

(right key)
or

Figure 4 Illustration of the trial structure for the behavioural study (see text for details). 
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= 88.1%; SD=7.3 vs. M = 85.4%; SD=9.4%; t (23) = 0.97; p = 0.341; Cohen’s d = 0.32). Based on 

the confusion matrix (Table 1), the discriminability between possible and impossible was high (d’ = 

2.11), and there was no criterion shift (c: 0). These results show that human observers, without prior 

experience or training, can reliably discriminate the possible and impossible objects used in the 

network dataset.   

 Table 1 Confusion matrix for human performance showing the % of responses by stimulus 

category (possible/impossible) and response. 

  Response [%] 
  impossible possible 

Stimulus 

Category 

impossible 42.6 7.4 

possible 5.9 44.1 

 TOTAL 48.5 51.5 
 

Analyses of Network Performance 

Table 2 shows a summary of network accuracy for all versions (pre-trained and un-trained) of the 

tested networks. Overall, performance was poor. In all cases, network performance was significantly 

below human performance as indicated by the modified t-test. The best result was achieved by 

ResNet-18 (pre-trained) with a mean accuracy of 67.7%. To understand better the influence of 

network architecture, we further analysed the results of the best network from each architecture, 

VGG-11 (pre-trained), AlexNet (pre-trained) and GoogLeNet (un-trained).  The confusion matrix 

(Table 3) shows that the networks were better at identifying possible objects than impossible objects 

while being biased towards responding with “possible object” (apart from GoogLeNet). In other 

words, these results are not consistent with human behaviour. 
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Table 2. Mean and standard deviation of training and validation accuracies and losses for each 

network from 20 seeds. The train loss and validation loss were determined with PyTorch’s native 

cross-entropy loss function. The networks in red indicate the best validation accuracy for each 

network architecture. The modified t-test compares the validation accuracy with human performance.   

Network 

Train 

Accuracy [%] 

Validation 

Accuracy [%] 

Modified t-test Train Loss Validation Loss 

Un-trained      

AlexNet 56.2 ± 7.8 55.5 ± 6.3 t=6.26, p<0.001 0.67 ± 0.04 0.67 ± 0.03 

VGG-11 50.0 ± 5.6 50.0 ± 0.0     t=7.36, p<0.001 0.69 ± 0.0 0.69 ± 0.0 

VGG-16 48.8 ± 5.3 50.0 ± 0.0     t=7.36, p<0.001 0.69 ± 0.0 0.69 ± 0.0 

ResNet-18 70.2 ± 5.0 63.9 ± 8.1 t=4.40, p<0.001  0.57 ± 0.05 0.73 ± 0.23 

ResNet-50 65.3 ± 6.9 65.9 ± 8.9 t=4.17, p<0.001 0.64 ± 0.08 0.65 ± 0.11 

GoogLeNet 66.0 ± 4.8 65.5 ± 9.5 t=4.25, p<0.001 0.99 ± 0.05 0.62 ± 0.07 

Pre-trained      
AlexNet 66.1 ± 4.1 64.1 ± 7.7 t=4.53, p<0.001 0.65 ± 0.08 0.66 ± 0.11 

VGG-11 67.6 ± 6.6 64.1 ± 4.4 t=4.53, p<0.001 0.7 ± 0.1 0.65 ± 0.1 

VGG-16 67.3 ± 7.2 63.6 ± 6.6 t=4.53, p<0.001 0.73 ± 0.16 0.71 ± 0.13 

ResNet-18 68.9 ± 5.3 67.7 ± 8.3     t=3.57, p=0.001 0.57 ± 0.04 0.59 ± 0.07 

ResNet-50 69.4 ± 5.4 66.4 ± 6.5 t=4.07, p<0.001 0.57 ± 0.05 0.6 ± 0.06 

GoogLeNet 67.6 ± 4.4 64.7 ± 7.3 t=4.41, p<0.001 0.59 ± 0.05 0.62 ± 0.04 

 

Table 3 Confusion matrix for four convolution neural networks using the original dataset. The 

confusion matrix shows the % of the network’s response by stimulus category (possible/impossible) 

and response.  

 

 

GoogLeNet 

(un-trained) 

AlexNet 

(pre-trained) 

VGG-11 

(pre-trained) 

ResNet-18  

(pre-trained) 

  Response [%] Response [%] Response [%] Response [%] 

  impossible    possible impossible possible impossible possible impossible possible 

Stimulus 

Category 

impossible 34 16 12 38 16 34 21 30 

possible 12 38 1 49 3 47 9 41 

 Total  46 54 13 88 19 81 29 71 

 SDT d’:0.94 c: 0.47 d’: -1.42 c: -0.72 d’: -0.97 c: -0.49 d’: -0.44 c: -0.22 

 

Figure 5 shows the results from Grad-CAM. Inspection of the visualisations shows an inconsistent 

pattern across stimuli and networks. While there is some indication that ResNet18 (pre-trained) based 

its decisions on impossible parts of some objects, the network classification decisions frequently 

involve image background. This bias seems particularly striking in GoogleNet, where the distinction 

between possible and impossible shape is based on the background.  Since AlexNet is very popular 

in brain imaging and its layered structure is relatively easy to understand we also included the 
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GradCam results for the layers in the un-trained and pre-trained in Table5. As expected, the activation 

from the pre-trained network tends to show an increase of the receptive field size. The untrained 

network shows a similar effect, but the receptive fields are generally wider possibly indicating that 

the network was trying to capture the global shape but failed as the architecture is too constraining.  
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Table 4 Grad-CAM heatmap visualisations representing the degree to which regions in the input 

image contribute to the correct classification. Red indicates high contributions while blue indicates 

no contribution.   

 GoogLeNet (un-trained) 

Impossible 

      

Possible 

      

 AlexNet (pre-trained) 

Impossible 

      

Possible 

      

 VGG-11 (pre-trained) 

Impossible 

      

Possible 

      

 ResNet-18  (pre-trained) 

Impossible 

      

Possible 
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Table 5. Heatmaps for pre-trained and un-trained AlexNet’s convolutional layers. 

Pre-trained AlexNet 

                impossible possible 

Layer 1 

      

Layer 2 

      

Layer 3 

      

Layer 4 

      

Layer 5 

      

Un-trained AlexNet 

Impossible Possible 

Layer 1 

      

Layer 2 

      

Layer 3 

      

Layer 4 
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Layer 5 

      

 

The heatmap analysis in Table 6 confirms our initial observation that network classification 

is not reliably based on impossible parts of the shapes (ROI-impossible heatmap) but is rather biased 

towards image content outside of the shape bounding contour (ROI-Background heatmap). Critically, 

this suggests that network analyses during the classification task is not constrained by any 

representation of object geometry. 

Table 6 Heatmap analysis. This table lists the percentage of the activation falls on the impossible 

part (ROI-impossible heatmap) and background of possible and impossible shapes (ROI-background 

heatmap).  
 

Network 

 

 

ROI-

Impossible 

heatmap 

[%] 

 

 

ROI-Background 

heatmap 

 Impossible [%] Possible [%] 

Un-trained    
AlexNet 1 94 57 
VGG-11  0 100 100 
VGG-16 0 100 100 

ResNet-18 0 92 29 
ResNet-50 0 95 34 
GoogLeNet 1 86 24 

Pre-trained    
AlexNet 3 84 36 
VGG-11 5 82 28 
VGG-16 5 39 28 

ResNet-18 12 38 38 
ResNet-50 10 42 43 
GoogLeNet  19 32 32 
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Supplementary Simulation and Analyses of Network Performance 

To further elucidate the determinants of network performance, and to verify the robustness of the 

results, we ran an additional simulation on a modified dataset. One motivation for this was based on 

the observation from the heatmap analysis that for some networks there was an apparent bias towards 

background image properties in the impossible object set. Although this was not consistent across all 

the tested networks and cannot account for the near chance level of overall network performance, we 

wanted to rule out a potential confound in the proportion of background area in the image sets between 

possible and impossible objects as a contributor to network performance.  

To examine this, we used the Flood Fill algorithm from the Python Scikit-Image Toolbox to 

identify the pixel size of the background for each image.  We found that there was a significant effect 

of background area between impossible (M=26051 pixels; SD=2108 pixels) and possible (M=23769 

pixels; SD=1960 pixels) images (t(39)=10.98, p<0.001, d=0.98).  We then modified the images by 

applying zooms using the PyTorch augmentation function. This operation reduced the bias of 

background in impossible (M=25621 pixels; SD=1940 pixels) shapes compared to possible 

(M=24900 pixels; SD=2031 pixels) shapes (t(39)=3.54, p=0.001, d=0.36). This reduction was 

significant (t(39)=5.22, p<0.001, d=1.03)1. Following this we reran the network tests on this 

background normalised dataset. The classification results are shown in Table 7. As previously 

                                                           
1 A reanalysis of the stimulus set used in the human observer validation study showed that Cohen’s d 

= 0.684. This differs from the apparent bias in the datasets used to evaluate network performance 

because the stimuli were not scaled. To examine whether a bias influenced our findings in the 

behavioural study we removed possible/impossible shape pairings that showed a particularly large 

difference in terms of background area. To be more specific, we calculated the SD of background 

differences and removed all stimuli pairings that showed a difference >1 SD (N=102 augmented 

stimuli). As a result, the background bias was reduced to 0.392 - which is comparable to the network 

dataset bias. A reanalysis of human performance with this stimulus subset showed no significant 

difference between impossible (88.2% accuracy) and possible (85.2% accuracy) objects: t (23) = 1.06, 

p = 0.299, d = 0.35). This suggests that the original results were not influenced by background area 

differences. 
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observed, network performance was very near to chance – and well below the level of performance 

achieved by the human observers as indicated by the modified t-test. The performance of ResNet-50 

(pre-trained) is perhaps notable at 54% (see Table 8 for its confusion matrix, d’ and c). 

Table 7 Classification results for supplementary network simulations using the background normalised 

dataset. 

Network Train Accuracy 

[%] 

Validation 

Accuracy [%] 

Modified t-test Train Loss Validation 

Loss 

Un-trained      
AlexNet 50.1 ± 6.3 51.1 ± 3.6         t=7.14, p<0.001 0.7 ± 0.01 0.69 ± 0.0 

VGG-11 50.1 ± 7.3 50.0 ± 0.0 t=7.36, p<0.001 0.69 ± 0.0 0.69 ± 0.0 

VGG-16 49.3 ± 4.8 50.0 ± 0.0 t=7.36, p<0.001 0.69 ± 0.0 0.69 ± 0.0 

ResNet-18 62.2 ± 4.4 49.1 ± 6.7 t=7.54, p<0.001 0.64 ± 0.03 0.86 ± 0.17 

ResNet-50 57.9 ± 5.8 47.7 ± 6.8 t=-7.82, p <0.001 0.69 ± 0.04 0.74 ± 0.04 

GoogLeNet 56.4 ± 4.0 52.3 ± 9.2 t=-6.90, p<0.001 1.09 ± 0.03 0.7 ± 0.03 

Pre-trained      
AlexNet 56.0 ± 4.9 45.6 ± 5.3 t=824, p<0.001 0.73 ± 0.04 0.77 ± 0.06 

VGG-11 57.5 ± 5.6 50.6 ± 6.0 t=7.24, p<0.001 0.8 ± 0.1 0.75 ± 0.05 

VGG-16 58.5 ± 5.0 50.6 ± 7.3 t=7.24, p<0.001  0.81 ± 0.17 0.76 ± 0.06 

ResNet-18 63.3 ± 6.0 50.2 ± 7.0 t=7.32, p<0.001 0.64 ± 0.04 0.74 ± 0.06 

ResNet-50 64.2 ± 4.4 54.5 ± 6.0 t=6.46, p<0.001 0.63 ± 0.03 0.72 ± 0.06 

GoogLeNet 59.4 ± 4.0 52.3 ± 5.8 t=6.90, p<0.001 0.66 ± 0.03 0.72 ± 0.03 

 

Table 8 Confusion matrix for ResNet50 (pre-trained) using the background normalised dataset. 

  ResNet50 

(pre-trained) 

  Response [%] 

  impossible possible 

Stimulus 

Category 

impossible 31 19 

possible 16 34 

 Total 46 46 

 SDT d’: 0.57; c: 0.29 

 

 

Heatmap results for this network (see Table 9) suggests that it attempted to use the background again 

to separate the two classes of images. The network clearly failed to consistently identify local regions 

of impossibility. This can also be seen for all other networks as shown in Table 10. 
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Table 9 Grad-CAM heatmap visualisations representing the degree to which regions in the input 

image contribute to the correct classification. Red indicates high contributions while blue indicates 

no contribution.   

ResNet-50 (pre-trained) 

impossible 

      

possible 

      

 

 

Table 10 Heatmap analysis on normalised dataset. This table lists the percentage of the activation 

falls on the impossible part (ROI-impossible heatmap) and background of possible and impossible 

shapes (ROI-background heatmap).  

 

 

ROI-

Impossible 

heatmap 

[%] 

 

ROI-Background 

heatmap 

 Impossible [%] Possible [%] 

Un-trained    
AlexNet 1 94 61 
VGG-11  0 100 100 
VGG-16 0 100 100 

ResNet-18 1 92 34 
ResNet-50 1 94 39 
GoogLeNet 3 85 28 

Pre-trained    
AlexNet 5 83 41 
VGG-11 11 83 31 
VGG-16 6 37 31 

ResNet-18 16 36 38 
ResNet-50 16 41 47 
GoogLeNet  23 31 37 
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GENERAL DISCUSSION 

We investigated the performance of a range of CNNs (AlexNet, VGG-11, VGG-16, ResNet-

18, ResNet-50, GoogLeNet) in a task involving the classification of geometrically possible and 

impossible objects. The ability to complete this task requires computation of a representational 

structure of shape that encodes both global and local object geometry because the detection of 

impossibility derives from an incongruity between well-formed local feature conjunctions and their 

integration into a geometrically well-formed 3D global shape. Unlike human observers, none of the 

tested CNNs could reliably discriminate between possible and impossible objects. Detailed analyses 

using gradient-weighted class activation mapping (GradCam) of CNN image feature processing 

showed that network classification performance was not constrained by object geometry. 

Before discussing the broader implications of these results, we consider some relevant 

methodological points concerning the dataset. First, one possible argument is that network 

performance is underestimated because of the relatively small size of the augmented dataset. On this 

point, it is relevant to note that neither the pretrained nor untrained networks were able to perform 

the task. Furthermore, human observers can discriminate possible and impossible objects without 

prior training or experience with these forms of stimuli. Thus, extensive training of networks on the 

classification task using larger datasets of possible and impossible forms would fundamentally 

undermine the validity of the human-network performance comparison that we aimed to achieve. 

Second, the dataset comprised contour-based line drawing objects. We have argued that this class of 

stimulus provides a strong test of the ability to generate representations of 3D object structure from 

geometric cues alone. Additionally, human observers are readily able to extract 3D object structure 

from such stimuli (e.g., Attneave, 1954; Biederman, 1987; Pizlo 2014; see Sayim & Cavangh, 2011, 

for a recent review). Thus, the use of this stimulus class provides a strong test of the capability of 

CNNs to generate representations of 3D object geometry.  
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Taken together, these results have important implications for our understanding of 

convolutional neural networks and their suitability as models for image classification in biological 

vision systems. Evidence from studies of human performance suggests that the extraction of visual 

information about both local and global image properties, as well as the integration of this information 

at intermediate levels of perceptual representation, is characteristic of human vision (e.g., Bar, 2003; 

Bar et al., 2006; Bullier, 2001; Leek et al., 2016; Oliver et al., 2018; Peyrin et al., 2010). For example, 

Bar (2003; Bar et al., 2006) has shown that image classification in human vision is constrained by 

parallel analyses of object shape as coarse (global) and fine (local) spatial scales which are mediated 

by distinct neural pathways. This is supported by other recent work using high-density ERPs showing 

evidence of parallel processing of local and global object structure (Leek, Roberts, Oliver, et al, 2016; 

Oliver, Cristino, Roberts et al, 2018). We have demonstrated, across a broad range of network 

architectures, that CNNs are unable to discriminate possible and impossible objects based on object 

geometry alone.  We hypothesised that sensitivity to object impossibility necessitates a level of object 

shape processing in which local shape features are integrated with a representation of global 3D shape 

geometry. Thus, our results suggest that object processing in CNNs, unlike in human vision, is not 

constrained by representations of local and global object geometry.  

The results add to a growing body evidence highlighting important differences between CNNs 

and the human visual system. Other recent work has also demonstrated that CNNs can fail to mimic 

human abilities in ways which suggest fundamental differences in processing architecture between 

the networks and the biological system. This finding is consistent with other recent studies of CNNs 

demonstrating their reliance on local image features in classification (e.g., Baker et al., 2020; 2018; 

Brendel & Bethge, 2019; Geirhos et al. 2019). For example, as noted earlier, Baker et al. (2018) 

examined the performance of two pretrained CNN architectures (VGG19 and AlexNet) in their ability 

to classify images of objects with either congruent or incongruent (e.g., mixed) global shape and local 

textures. The results showed that network performance was biased towards classification based on 
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local but not global image properties (see also Geirhos et al., 2019). Other important evidence comes 

from network performance under conditions of adversarial attack in which pre-trained networks can 

be shown to make classification decisions that human observers do not make (e.g., Nguyen, Yosinski, 

& Clune, 2015; Szegedy, et al., 2014; see also Zhang, Liu, Suen, 2020; for a recent review). We 

propose here that the failure of networks to learn possible-impossible image classification, and their 

(hyper)sensitivity to local feature perturbation in adversarial examples, derives from the absence of 

an explicit representation of 3D object geometry. A future grand challenge will be to explore whether 

other combinations of CNN architectures, and processing parameters, will be more successful. For 

instance, whether modification of filter sizes, and the incorporation of short- and long-range recurrent 

connections, may provide a means to capture and integrate both local and global shape structure. One 

promising line of development is dual pathway architectures in which processing of image content is 

constrained by parallel analyses across multi spatial scales – and which take some inspiration from 

neurobiological models of human vision (e.g., Bar, 2003; Bar et al., 2006; Mishkin & Ungerleider, 

1983; Milner & Goodale, 2006). Some recent examples of such architectures include SAIM 

(Selective Attention for Identification model, e.g., Abadi et al., 2019; Narbutas et al., 2017; Heinke 

& Humphreys, 2003), and NAM (Naming and Action model; Yoon et al., 2002) and CoRLEGO (a 

model of reaching; Strauss, Woodgate, Sami, & Heinke, 2015).  

It is worth noting that, compared to CNNs, the design of these architecture takes a very 

different approach. Here a theoretical framework informs the architecture’s structure and 

mechanisms.  By and large, this approach follows the traditional method commonly used in natural 

sciences (see Farrell & Lewandowsky, 2018; Mavritsaki et al., 2011; Heinke, 2009; for reviews). In 

contrast, in the CNN approach the implemented operations are determined through a combination of 

architectural constrains and training material. While the architecture is often loosely inspired by 

theories about biological structures, the processing is not informed by conceptual frameworks, but by 
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the training material provided by the user.  Future work will need to compare these approaches and 

evaluate which is better at advancing our understanding of biological vision. 

In summary, we tested the hypothesis that, unlike the human system, CNNs do not compute 

representations of global and local object geometry during image classification. To do so we trained 

and tested six CNNs (AlexNet, VGG-11, VGG-16, ResNet-18, ResNet-50, GoogLeNet), and human 

observers, to discriminate geometrically possible and impossible objects. The ability to complete this 

task requires computation of a representational structure of shape that encodes both global and local 

object geometry because the detection of impossibility derives from an incongruity between well-

formed local feature conjunctions and their integration into a geometrically well-formed 3D global 

shape. Unlike human observers, none of the tested CNNs could reliably discriminate between 

possible and impossible objects. Detailed Grad-Cam analyses of CNN image feature processing 

showed that network classification performance was not constrained by object geometry. We argue 

that these findings reflect fundamental differences between CNNs and human vision in terms of 

underlying image processing structure. Notably, unlike human vision, CNNs do not compute 

representations of object geometry. The results challenge the plausibility of CNNs as a framework 

for understanding image classification in biological vision systems.  
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