
Trading via Selective Classification
Nestoras Chalkidis

Department of Computer Science
University of Liverpool

n.chalkidis@liverpool.ac.uk

Rahul Savani
Department of Computer Science

University of Liverpool
rahul.savani@liverpool.ac.uk

ABSTRACT
A binary classifier that tries to predict if the price of an asset will
increase or decrease naturally gives rise to a trading strategy that
follows the prediction and thus always has a position in the market.
Selective classification extends a binary or many-class classifier
to allow it to abstain from making a prediction for certain inputs,
thereby allowing a trade-off between the accuracy of the resulting
selective classifier against coverage of the input feature space. Se-
lective classifiers give rise to trading strategies that do not take a
trading position when the classifier abstains. We investigate the
application of binary and ternary selective classification to trading
strategy design. For ternary classification, in addition to classes
for the price going up or down, we include a third class that corre-
sponds to relatively small price moves in either direction, and gives
the classifier another way to avoid making a directional prediction.
We use a walk-forward train-validate-test approach to evaluate
and compare binary and ternary, selective and non-selective classi-
fiers across several different feature sets based on four classifica-
tion approaches: logistic regression, random forests, feed-forward,
and recurrent neural networks. We then turn these classifiers into
trading strategies for which we perform backtests on commodity
futures markets. Our empirical results demonstrate the potential of
selective classification for trading.

KEYWORDS
time series prediction, selective classification, trading strategy

1 INTRODUCTION
This paper studies the fundamental and well-studied problem of
financial price time series prediction. Specifically, we apply binary
and ternary machine learning (ML) classifiers to intraday futures
time series to predict if the next period’s price will increase or
decrease, with a third class in the ternary case that corresponds to
relatively small price moves in either direction. The novelty of our
work is to apply selective classification (also known as classification
with a reject option, and classification with abstention), which
allows a trained classifier to abstain from making a prediction.

We turn the selective and non-selective classifiers into trading
strategies that take a position for the next period based on the clas-
sifier’s prediction when it makes one. The selective classifiers are
able to not take a position if the classifier is not suitably confident
about its prediction. We perform cross-validated backtests using
a walk-forward approach for the resulting trading strategies and
analyse the results, which show the promise of selective classifica-
tion for trading strategy design. To the best of our knowledge, the
application of selective classification to trading strategy design has
not been explored in the literature.

Our key contributions are the following:

• We train, evaluate, and compare binary and ternary selective
classifiers using four different ML classification approaches (Sec-
tion 4): logistic regression, random forests, feed-forward net-
works, and Long-Short Term Memory (LSTM) networks.

• We compare selective and non-selective classifiers in terms of
their accuracy. We present the accuracy coverage trade-off of
the selective classifiers, and show that they have better accuracy
compared to the non-selective classifiers (Section 4.2).

• We perform walk-forward cross-validated backtests of trading
strategies based on the classifier’s predictions (Section 5). We find
that the selective classifiers give better risk-adjusted performance,
with several models remaining profitable even with a reasonable
level of slippage included, which shows the potential of selective
classification for trading strategy design (Section 5.2).

2 RELATEDWORK
Financial time series forecasting. A long line of work has studied
predictability of financial time series. In recent years, with the
rise of Deep Learning (DL), much of the focus of work in this
area has focussed on DL. A recent survey on financial time series
forecasting using ML, and in particular DL, is provided in [21].
The survey shows a comprehensive review of many studies that
apply ML and DL for financial time series forecasting. Most of
the studies were focused on stock price forecasting and the most
commonly used models were LSTM networks [15]. Here we present
a non-exhaustive but indicative selection of examples. Shihao Gu et.
al. [13] present a comparison of differentMLmethods for measuring
risk premia in empirical asset pricing. [1] present a DL framework
that uses a wavelet transform to de-noise stock price time series and
stacked auto-encoders to produce high-level features. [17] develop
a DL approach using a so-called feature fusion long short-term
memory-convolutional neural network (LSTM-CNN). [20] compare
artificial neural networks, support vector machines, random forest,
and naive-Bayes for prediction of stock price movements in Indian
stock markets. [3] applied an ensemble of LSTM networks to predict
intraday stock prices with technical indicators as input features.

Selective classification. The concept of abstention or rejection in
classification has a long history. It was introduced in 1970 [8]. In the
same year, Hellman investigated (𝑘, 𝑘 ′) nearest neighbors with a
rejection rule [14]. Much more recently, [2] considered binary clas-
sification where the classifier can abstain from making a prediction
but then incurs a cost. In [9], a boosting algorithm for binary clas-
sification with abstention was presented for the same case where
abstention has a cost.

The term “selective classification” was introduced in [10], which
studied the risk-coverage trade-off, and constructs algorithms that
near-optimally achieve the best trade-off, where in contrast to
earlier models there is no direct cost for abstention. [25] extend

ar
X

iv
:2

11
0.

14
91

4v
2

 [
q-

fi
n.

T
R

]
 3

1
O

ct
 2

02
1

Nestoras Chalkidis and Rahul Savani

the results [10] to the noisy and agnostic setting (where almost not
assumptions are made about the best model).

Given a trained neural network, the authors of [11] proposed a
method to construct a selective classifier. At test time, the classifier
rejected instances as needed to grant the desired risk with high
probability. The proposed classification mechanism was based on
applying a selected threshold on the maximum neuronal response
of the softmax layer. The results indicate that even for challeng-
ing data sets selective classifiers are extremely effective, and with
appropriate coverage surpassed the then-best-known results on
ImageNet. Our study is based on [11].

In [12] the authors considered the problem of selective classi-
fication in deep neural networks, by developing an architecture
with an integrated rejection option (SelectiveNet). Their goal was
to simultaneously optimize during training both classification and
rejection (in contrast to [11] which assumes a pre-trained classifier).

In [24], a method to combat label noise when training deep
neural networks for classificationwas proposed. A loss functionwas
used which permitted abstention during training thereby allowing
the deep neural networks to abstain on confusing samples while
continuing to learn and improve classification performance on the
non-abstained samples.

3 TECHNICAL PRELIMINARIES
Here we introduce the “Selection with Guaranteed Risk” method
for selective classification from [11] that we use in this paper. Our
exposition follows closely that of [11].

For a multi-class classification problem, let 𝑋 ⊆ R𝑘 for 𝑘 real-
valued features denote the feature space, and 𝑌 = {1, 2, . . . , 𝑘}
the finite set of 𝑘 classes (labels). Let 𝑃 (𝑋,𝑌) be the underlying,
unknown distribution over 𝑋 × 𝑌 . A classifier is defined as 𝑓 :
𝑋 → 𝑌 , and the true risk of this classifier w.r.t 𝑃 is given by
𝑅(𝑓 |𝑃) ≜ 𝐸𝑃 (𝑋,𝑌)

[
ℓ (𝑓 (𝑥), 𝑦)

]
, where ℓ : 𝑌 × 𝑌 → 𝑅+ is a loss

function. The empirical risk of a classifier 𝑓 given a training set
𝑆𝑚 = {(𝑥𝑖 , 𝑦𝑖)}𝑚𝑖=1 ⊆ (X×Y)𝑚 sampled i.i.d from 𝑃 (𝑋,𝑌) is defined
as 𝑟 (𝑓 |𝑆𝑚) ≜ 1

𝑚

∑𝑚
𝑖=1 ℓ (𝑓 (𝑥𝑖), 𝑦𝑖).

A selective classifier [10] is a pair of (𝑓 , 𝑔) functions, where 𝑓 is
a classifier and 𝑔 is a selection function, 𝑔 : X → {0, 1}:

(𝑓 , 𝑔) (𝑥) ≜
{
𝑓 (𝑥), if 𝑔(𝑥) = 1;
don’t know, if 𝑔(𝑥) = 0.

(1)

The selective classifier abstains iff 𝑔(𝑥) = 0, otherwise the predic-
tion of the classifier is given by 𝑓 .

The performance of the selective classifier is measured accord-
ing to its coverage and selective risk. The coverage is 𝜙 (𝑓 , 𝑔) ≜
𝐸𝑃

[
𝑔(𝑥)

]
, and represents the expectation under 𝑃 of the number

of the non-rejected samples. The selective risk is defined as:

𝑅(𝑓 , 𝑔) ≜
𝐸𝑃

[
ℓ (𝑓 (𝑥), 𝑦)𝑔(𝑥)

]
𝜙 (𝑓 , 𝑔) . (2)

According to (2), the risk of a selective classifier can be traded-
off for coverage: Given a classifier 𝑓 , training set 𝑆𝑚 , confidence
parameter 𝛿 > 0, and a desired risk target 𝑟∗ > 0, the goal is to use
𝑆𝑚 to create a selection function 𝑔 such that the selective risk of
(𝑓 , 𝑔) satisfies:

Pr𝑆𝑚 {𝑅(𝑓 , 𝑔) > 𝑟∗} < 𝛿 , (3)

where the probability is over training sets, 𝑆𝑚 , sampled i.i.d. from
the unknown underlying distribution 𝑃 . Among those that sat-
isfy (3), the best classifiers are those that maximize coverage.

For \ > 0, the selection function 𝑔\ : X → {0, 1} is defined as:

𝑔\ (𝑥) = 𝑔\ (𝑥 |^𝑓) ≜
{
1, if 𝑘𝑓 (𝑥) ≥ \ ;
0, otherwise, (4)

where ^𝑓 is a confidence rate function ^𝑓 : X →𝑅+ for 𝑓 .
After defining the selection function, the empirical selective risk

of any selective classifier (𝑓 , 𝑔) given a training set 𝑆𝑚 is given by:

𝑟 (𝑓 , 𝑔|𝑆𝑚) ≜
1
𝑚

∑𝑚
𝑖=1 ℓ (𝑓 (𝑥𝑖), 𝑦𝑖)𝑔(𝑥𝑖)
𝜙 (𝑓 , 𝑔|𝑆𝑚)

,

where 𝜙 is the empirical coverage, 𝜙 (𝑓 , 𝑔|𝑆𝑚) ≜ 1
𝑚

∑𝑚
𝑖=1 𝑔(𝑥𝑖). The

𝑔 projection of 𝑆𝑚 is 𝑔(𝑆𝑚) ≜ {(𝑥,𝑦) ∈ 𝑆𝑚 : 𝑔(𝑥) = 1}.
In Algorithm 1, the Selection with Guaranteed Risk (SGR) al-

gorithm from [11] is presented. The algorithm finds the optimal
bound guaranteeing the required risk with sufficient confidence
by applying a binary search. The SGR outputs a risk bound 𝑏∗ and
a selective classifier (𝑓 , 𝑔). Lemma 3.1 in [11], gives the tightest
possible numerical bound generalization for a single classifier based
on a test over a labelled sample.

Algorithm 1 Selection with Guaranteed Risk (SGR)

1: SGR(𝑓 , 𝑘𝑓 , 𝛿, 𝑟∗, 𝑆𝑚)
2: Sort 𝑆𝑚 according to 𝑘𝑓 (𝑥𝑖), 𝑥𝑖 ∈ 𝑆𝑚 (and now assume w.l.o.g.

that indices reflect this ordering).
3: 𝑧𝑚𝑖𝑛 = 1; 𝑧𝑚𝑎𝑥 =𝑚

4: for 𝑖 = 1 to 𝑘 ≜ ⌈𝑙𝑜𝑔2𝑚⌉ do
5: 𝑧 = ⌈(𝑧𝑚𝑖𝑛 + 𝑧𝑚𝑎𝑥)/2⌉
6: \ = 𝑘𝑓 (𝑥𝑧)
7: 𝑔𝑖 = 𝑔\ {see (4)}
8: 𝑟𝑖 = 𝑟 (𝑓 , 𝑔𝑖 |𝑆𝑚)
9: 𝑏∗

𝑖
= 𝐵∗ (𝑟𝑖 , 𝛿/⌈𝑙𝑜𝑔2𝑚⌉, 𝑔𝑖 (𝑆𝑚)) see Lemma 3.1 in [11]

10: if 𝑏∗
𝑖
< 𝑟∗ then

11: 𝑧𝑚𝑎𝑥 = 𝑧

12: else
13: 𝑧𝑚𝑖𝑛 = 𝑧

14: end if
15: end for
16: Output - (𝑓 , 𝑔𝑘) and the bound 𝑏∗

𝑘
.

In the rest of the paper, all selective classifiers are built using Algo-
rithm 1. All classification methods we use output class probabilities;
we use the maximum class probability for 𝑘𝑓 , and we use 𝛿 = 0.001
(both in line with [11]).

4 CLASSIFICATION
4.1 Classification methodology
4.1.1 Raw data. In this study, we used data from five metal com-
modities futures markets, specifically, Gold (GC), Copper (HG), Pal-
ladium (PA), Platinum (PL) and Silver (SI), as traded on the Chicago
Mercantile Exchange’s (CME) Globex electronic trading platform.
These futures markets trade 24 hours a day with a 60-minute break
each day at 5:00pm (4:00 p.m. CT). The raw data corresponds to

Trading via Selective Classification

the time period 14-02-2011 00:00 to 31-05-2019 17:00, which corre-
sponds to 97482 30-minute intervals.

4.1.2 Data preprocessing - labelling the data. In the supervised
binary classification problem, each sample has a corresponding
label which is defined based on the closing logarithmic return price
(clrp) of that sample1. The label of each sample is defined as follows:

label =

{
−1 or short, if 𝑐𝑙𝑟𝑝 ≤ 0 ,
1 or long, if 𝑐𝑙𝑟𝑝 > 0 .

In real-world trading strategies one has the option to be flat
and not hold a position in a given security. Motivated by this, in
addition to binary classification, we also explore ternary classifi-
cation problem, where one more label corresponding to “flat” is
added. Intuitively, this third class will be defined to correspond to
price moves that are small in absolute value, and to that end we
define a threshold value as follows. The threshold value is defined
as the product of the rolling volatility of the closing simple return
price over the last 𝑘 days with a multiplier value, and compared
with the volatility of the closing simple return price (csrpv). We set
𝑘 = 48 ∗ 30, which represents the previous one month data, and
we use four different multiplier values of {0.3, 0.6, 0.9, 1.2}. Thus
for the supervised ternary classification problem we have four dif-
ferent cases where we alter the class distributions based on the
aforementioned multiplier values. Lower multiplier values indicate
that there are more -1 and 1 labels and less 0 labels. By increas-
ing the multiplier’s value the number of 0 labels increases and the
number of -1 and 1 labels decreases.

label =

−1 or short, if 𝑐𝑠𝑟𝑝𝑣 < −threshold,
0 or flat, if

��𝑐𝑠𝑟𝑝𝑣 �� ≤ threshold,
1 or long, if 𝑐𝑠𝑟𝑝𝑣 > threshold.

The classes are particularly imbalanced when the multiplier’s
value equals 0.3 or 1.2. Standard techniques for imbalanced classes
are under-sampling, over-sampling, and class weighting. For our
sequential time series data, under-sampling and over-sampling are
problematic, so we used class weighting where the loss assigns
more weight to data from the under-represented classes.

4.1.3 Data preprocessing - feature construction. In our empirical
study, a range of different features and combinations of them were
used as inputs to the four ML classifiers as there is an interest to
investigate their effect to the learning process. In particular, four
different, expanding feature sets, were investigated. We call these
feature sets FS1, FS2, FS3, and FS4, and our base set of features, FS1
is contained in the remaining three feature sets, and so on:

FS1 ⊂ FS2 ⊂ FS3 ⊂ FS4.

There are two reasons for this setup. Firstly, by growing larger,
richer feature sets in this way, we explore whether the classifiers
that we train are able to learn from and exploit the added features.
Secondly, by considering four different feature sets, we are able
to investigate the benefits of binary versus ternary, and selective
versus non-selective classification within different settings, thereby
1For the binary case, the label could equivalently be defined just with the change in
close price, but since we actually use the return value for the ternary case, we use it
also here.

seeing if a consistent picture emerges of which approach appears
better (indeed in both our classification and backtesting results, we
do see consistent insights across these feature sets).

Basic price and volume features. To construct our basic feature
set, FS1, we first constructed standard price-volume time bars that
comprise the Open, High, Low, Close, and Volume (OHLCV) as-
sociated with 30-minute periods. We created these time-volume
bars from raw tick data. Then, since prices are typically highly
non-stationary2, we used logarithmic returns of the OHLC features,
which are more likely to be stationary.

We preprocessed trading volume independently. Firstly, we ob-
served that the trading volume appears to follow a power law
distribution and is positively skewed. We tested several popular
methods for normalizing positively skewed data and in the end
chose the Box-Cox transformation [5] as our method in order to
transform trading volume into a (more) stationary feature.

Finally, for the logarithmic returns of the OHLC, and the Box-
Cox normalised volume, we applied a temporal normalization. This
contextualises the features according to recent past (it is of course
crucial to not use future data for this normalization in order to
avoid lookahead bias). This “min-max” normalization used a rolling
window and produces scaled features in [0, 1] as follows:

𝑥 =
𝑥 − 𝑟𝑜𝑙𝑙𝑖𝑛𝑔_𝑚𝑖𝑛(𝑥)

𝑟𝑜𝑙𝑙𝑖𝑛𝑔_𝑚𝑎𝑥 (𝑥) − 𝑟𝑜𝑙𝑙𝑖𝑛𝑔_𝑚𝑖𝑛(𝑥) ,

where𝑥 is the value of a sample of a specific feature at a specific time,
and 𝑥 is the normalized value of sample 𝑥 . Our rolling window for
the normalization corresponded to 10 days of data (which was not
optimized). The “min-max” normalized OHLCV features comprise
FS1, our most basic feature set. FS1 contains 5 features.

Moving average of return.Moving averages are very commonly
used in “technical analysis” and trading strategy design, as a natural
way to summarize prices or volumes over different time periods.
Moving averages act as low-pass filters, smoothing the signal and
removing noise, and therefore they are often used to identify the
direction of trends. To construct FS2, we added simple moving
averages of the (min-max normalized) close price feature from FS1
with three different lookbacks (window sizes). The lookbacks that
we used correspond to 1 day (48 30-minutes bars), 5 days (240 30-
minute bars), and 10 days (480 30-minute bars). Thus, we add 3 new
features to FS1 to form FS2, one for each of the three lookbacks.

Volume at price features. To enrich the feature set further, we
consider features based on volume at price (VAP) (sometimes called
“Market Profile” [23]). In essence, VAP analysis considers the his-
togram of traded volume at different prices or price bins. We created
VAP-related features as follows, using two different windows as
shown in Figure 1. One long-timeframe window defines a “price
context”; we use one month of data for this window. The close price
range spanned over this window is split into twelve equal size bins.
We will have one feature for each of these bins. The second window
represents recent price action, in particular for the previous six
hours of data. Within this window, all traded volume is associated
with the bin of the close price of the respective price-volume time
bar. Thus, we associate with each bin the total amount of volume
2A stationary time series is one whose statistical properties, such as its mean and
standard deviation, do not depend on the time of an observation, i.e., they are constant.

Nestoras Chalkidis and Rahul Savani

traded at the prices associated with the bin (as measured by close
prices of the time bars) over the last six hours. Finally, we normalize
across the bins (divide by the total amount of volume over the last
six hours), so that the corresponding twelve non-negative features
sum to one and represent a distribution of volume (of the last six
hours) within the context of the price range over the last month.
FS3 is thus formed from FS2 by adding twelve additional features
that take the form of a discrete probability distribution.

1.13 … 1.11 … 1.21 … 1.16

1 month
6 hours

1.11 … 1.13 … 1.16 … 1.18 … 1.21

Closing Price

Bins
Creation

Traded Volume
to Bins

VAP features

Figure 1: Illustration of VAP feature generation.

Trade direction and aggressiveness features. Finally, we enrich
the feature space with information that is derived from the raw
tick data and is intended to capture the aggressiveness of trading
volume. We use a method from [4] that classifies each trade (and its
associated volume) as “aggressive” or “non-aggressive”. If a trade
triggers a price change (in practice because, for example, the volume
of an incoming market order is higher than the available volume at
the best quote on the opposite side of the limit order book) then the
trade and its volume is marked as aggressive; otherwise the trade
and its volume is marked as non-aggressive. [4] found this type of
classification had predictive value.

Using the raw tick data, we used this method to classify all trades
as aggressive or non-aggressive. We further classify trades and the
corresponding volume as buyer or seller initiated in the spirit of
the Lee-Ready indicator [18]. In a limit order book market, such as
the futures market in our investigation, a trade is triggered by an
incoming order, which is matched against sitting order(s) that are
already in the book. If this incoming order is a buy (sell), which is
normally apparent from the data if one knows the best bid and ask
when the order arrives3, then we classify this trade as a buy (sell)
trade and volume.

With these two categorizations of trades and their volume into
buy/sell and aggressive/non-aggressive, we construct for a given
30-minute bar, the following features (all min-max normalized in
the same way as the FS1 features): the total number of trades (the
total volume is already included in FS1), the difference between
buyer and seller initiated trade count, the difference between buyer
and seller initiated volume, the non-aggressive volume, the non-
aggressive trade count, the difference between buyer and seller
initiated non-aggressive trade count, and the difference between
buyer and seller initiated non-aggressive volume (given that we in-
clude total volume and trade count, we do not also include separate
features for aggressive volume/trade count, since the totals and the
non-aggressive features imply these). FS4 is formed from FS3 by
augmenting it with these seven features.
3When the tick data is ambiguous, standard rules such as using the last-used trade
direction, are applied to ensure that all trades/volume is classified as buy/sell volume.

4.1.4 Walk-forward cross-validation. Figure 2 illustrates the an-
chored walk-forward scheme that was used to create train, vali-
dation and test sets. The length of the initial train set used was 6
months; with the anchored scheme, the length of each subsequent
train set gets longer. The length of all validation test sets used were
2 and 6 months respectively (a shorter validation set was used so
as to keep as more data for training and testing).

1

2

3

4

5

Time

Iteration

Train Validate Test

Train Validate Test

Train Validate Test

Train Validate Test

Train Validate Test

Out-of-sample period

1

2

3

4

5

Time

Iteration

Train Validate Test

Train Validate Test

Train Validate Test

Train Validate Test

Train Validate Test

Out-of-sample period

Figure 2: Walk-forward train-validation-test scheme.

4.1.5 Hyperparameter Tuning. As the design of the trading strategy
will be based on the classifier’s predictions, one of our goals was
to determine the best set of hyperparameters that will result to
the most efficient ML classifiers. Popular methods that are used
in the literature for hyperparameter tuning are the Grid Search,
Random Search and Bayesian optimization process. In this study,
the Grid Searchmethodwas used due to its simplicity. Tomake a fair
comparison across all classifiers, 12 hyperparameter combinations
were used to define the best hyperparameter set of each classifier.

In both classification problems, at each walk-forward period,
the best hyperparameter set was selected based on the highest
validation Matthews Correlation Coefficient (MCC) value.

We used MCC as our metric to define best models because it is a
balanced measure that takes into account true/false positives and
negatives and it can be used for both binary and ternary classifica-
tion problems. Its advantages can be found in [7].

For logistic regression, we set the maximum number of iterations
equal to {250, 500}, the optimization algorithm to {𝑙𝑖𝑏𝑙𝑖𝑛𝑒𝑎𝑟, 𝑠𝑎𝑔𝑎},
and the inverse of regularization strength to {0.01, 0.001, 0.0001}.
For all the other hyperparameters, we used the default values from
scikit-learn. For random forests [6], we used {500, 1000, 2000} many
trees, splitting criteria in {𝑔𝑖𝑛𝑖, 𝑒𝑛𝑡𝑟𝑜𝑝𝑦}, and 𝑠𝑞𝑟𝑡 (#features) and
𝑙𝑜𝑔2(#features) for the number of features to consider when looking
for the best split. For all other hyperparameters for random forests,
default values in scikit-learn were used.

The feed-forward and LSTM networks consist from the same hy-
perparameter combinations as they share a lot of common aspects. It
is well known that neural networks have toomany hyperparameters
to set. In this study, four different network architectures and three
different learning rates were defined. An architecture is defined
by (number of features, number of hidden units in the first layer,
number of hidden units in the second layer (if applicable), number
of units in the output layer depending on the classification labels).
For both binary and ternary classification, the following archi-
tectures were used: (#features, 512, {2, 3}), (#features, 256, {2, 3}),

Trading via Selective Classification

(#features, 512, 256, {2, 3}), (#features, 256, 128, {2, 3}). Learning val-
ues of {0.01, 0.001, 0.0001} were used.

The feed-forward networks consist of an input layer, one or more
hidden layers and an output layer. Rectified linear units [19] were
used as activation functions for all layers except the output layer,
where softmax activation was used. In hidden layers, 𝑙2 weight
regularization method was applied to prevent overfitting. Batch
normalization [16] was used on each layer, where for each batch
it standardizes the inputs to a layer and reduces the number of
training epochs. Dropout [22] was also used as a further protection
against overfitting. The Adam optimizer with a decay of 1𝑒−6 was
used when the learning rate was equal to 0.0001; for the other
learning rates, a decay of 1𝑒−4 was used.

There are two different types of LSTM networks: stateless and
stateful. Stateless LSTM networks initialise the hidden and cell
states freshly for each batch. Stateful LSTM networks pass to the
second batch the hidden and cell states from the first batch, and so
on. In this study, we use the stateful LSTM networks as we want
the long-term memory to remember the content of the previous
batches. In the LSTM layers, the hyperbolic tangent function was
used as activation function and the softmax activation function in
the output layer. In the hidden layers the l2 weight regularization
method was applied. Batch normalization and dropout were also
used. The Adam optimizer was used in the same way as on feed-
forward networks. In the LSTM networks sequences of 48 (one
day’s) timesteps were used.

4.1.6 Selective Classification. To create the selective classifiers, the
SGR (Algorithm 1) was applied on the predicted probabilities for
each non-selective binary/ternary classifier. Coverage is defined as
the percentage of samples that have not been rejected by the SGR
algorithm (coverage for the non-selective classifiers is always 100%).
For different desired risk levels, the SGR algorithm applies selected
thresholds allowing a trade-off between accuracy and coverage. The
selection of the best selective classifier threshold for both binary
and ternary was chosen to be the one that gives the highest MCC
value (across all 2 or 3 classes respectively). Finally, for the ternary
classification problem, the multiplier that determines which price
moves get label 0, is selected based on the highest MCC value of
just the buy and sell labels, a choice driven by our goal of having
accurate buy/sell predictions as a basis for trading strategies.

4.2 Classification results
Ultimately, we use the (selective and non-selective) classifiers that
we train as the basis for trading strategies. Before we do that, in
this section we first analyze the trained classifiers, both selective
and non-selective, purely on the classification task. We explore the
relative performance of selective versus non-selective classifica-
tion, binary versus ternary classification, the different classification
algorithms and the different feature sets.

The first takeaway is that selective classification works as ex-
pected: By being selective and reducing coverage we are able to
improve our accuracy on those data points where we do make a
prediction. This can be seen in Tables 1 and 2, which show, for
binary and ternary classifiers respectively, the chosen realized test
coverage rates based on the chosen threshold levels. The resulting
coverage levels show quite stringent selectivity, ranging between

0

20

40

60

80

FS1 FS2

[0, 10]
[10, 20]

[20, 30]
[30, 40]

[40, 50]
[50, 60]

[60, 70]
[70, 80]

[80, 90]
[90, 100]

0

20

40

60

80

FS3

[0, 10]
[10, 20]

[20, 30]
[30, 40]

[40, 50]
[50, 60]

[60, 70]
[70, 80]

[80, 90]
[90, 100]

FS4

Coverage Range %

Ac
cu

ra
cy

 %

Selective Ternary
Selective Binary
Non selective Ternary

Figure 3: Accuracy/coverage trade-off of selective bi-
nary/ternary LSTM classifiers.

37% and 63% for the binary classifiers, and between 17% and 55%
for ternary classifiers. We see that in every single case (i.e., across
all classification approaches and feature sets), the selectivity results
in an improvement in accuracy. This shows the potential of selec-
tive classification; however to properly assess this potential in the
context of designing trading strategies requires backtesting that we
will return to in due course.

Figure 3 shows the coverage/accuracy trade-off for the selec-
tive classifiers, with results for the ternary non-selective classifier
given as a reference point. Here we see that, broadly speaking,
the accuracy coverage trade-off of the selective classifiers (binary
and ternary) are in line with the results of [11], where for lower
coverage values we have higher accuracy levels.

Table 1: Binary classifiers: Non-selective, selective accuracy
and coverage rates on the test set.

Models Features
Non-sel.

Accuracy %
Selective

Accuracy %
Coverage

%

LR

FS1 53.24 54.64 63.17
FS2 53.50 55.79 47.53
FS3 53.46 55.43 51.32
FS4 53.47 55.85 47.45

RF

FS1 51.23 52.19 61.14
FS2 52.13 53.95 56.62
FS3 52.38 54.20 48.68
FS4 52.45 54.29 41.86

NN

FS1 52.67 55.24 37.03
FS2 53.16 55.37 44.53
FS3 52.50 54.32 44.43
FS4 52.55 54.20 49.06

LSTM

FS1 53.05 54.95 57.13
FS2 53.47 55.84 47.77
FS3 53.28 55.74 37.34
FS4 53.66 56.52 38.14

The tables also show the relative performance of the different
classification methods, and of the different feature sets. Ultimately,

Nestoras Chalkidis and Rahul Savani

the results are mixed, but clear cut observations we can make
include the following. Logistic regression (LR) performed well both
for the binary and ternary setups. Random forests (RF) struggled
with the richer feature sets, very possibly due to overfitting. LSTMs
performed well for both binary and ternary setups, but were clearly
beaten by logistic regression in the ternary setup. In terms of the
feature sets while the results are mixed, it is certainly fair to say
that there is no clear evidence of a benefit to using the richer feature
sets, with FS2 arguably being the best choice on balance.

Table 2: Ternary classifiers: Non-selective, selective accuracy
and coverage rates on the test set, with the highest in-sample
MCC of the buy and sell labels used to choose themultiplier.

Models Features
Non-sel.

Accuracy %
Selective

Accuracy %
Coverage

%

LR

FS1 44.48 58.61 19.80
FS2 46.12 63.00 17.95
FS3 43.83 59.67 16.83
FS4 46.25 63.00 22.34

RF

FS1 54.66 57.63 55.11
FS2 44.08 49.78 31.25
FS3 42.71 49.35 24.69
FS4 42.90 48.71 32.41

NN

FS1 43.16 52.25 30.69
FS2 44.70 55.85 25.17
FS3 43.84 49.41 54.48
FS4 47.27 55.97 47.46

LSTM

FS1 45.29 56.13 33.88
FS2 45.90 59.07 31.89
FS3 42.67 55.86 25.61
FS4 43.92 54.84 24.71

Given that our selective classifiers abstain on a significant pro-
portion of samples, it is natural to explore how the abstentions are
distributed through time. For example, do we abstain for very long
periods of time? We investigate this, and, as shown in Figure 4, find
that this is not the case, namely, that the gaps between predictions
are generally not that large. Across all classification methods and
for all features sets, the distribution of gaps between predictions
appears to follow a power law distribution, and the majority of gaps
are between 30-minutes (the smallest possible) and 2.5 hours. This
is certainly not a requirement for a good classifier (and resulting
trading strategy), but is reassuring in so far as it shows that suitable
conditions for making predictions do occur regularly.

Binary versus ternary classification. To finish this section, we
discuss the performance of binary versus ternary classification. Ta-
bles 1 and 2 show significant differences between the binary and
ternary cases in terms of both coverage and accuracy. One con-
sistent pattern is that total non-selective accuracy is lower in the
ternary case. This is not a surprise since the ternary classifier has
to be strictly more discerning to achieve the same level of total
accuracy as the binary classifier. A clear but not totally consistent
pattern is that the total selective accuracy is higher in the ternary
case, and the coverage is less in the ternary case. A possible expla-
nation is that a selective ternary classifier is optimized based on
both the coverage threshold and the multiplier that determines the

5 10 150

10000

20000

30000

40000

50000
Logistic Regression

5 10 150

50000

100000

150000

200000
Random Forests

5 10 150

50000

100000

150000

Feed-Forward Networks

5 10 150

20000

40000

60000

80000

100000

120000 Long-Short Term Memory Networks

Number of 30-minute intervals

FS1
FS2
FS3
FS4

Figure 4: Time distribution of the non-abstained samples.

labelling. The multiplier is chosen to optimize the MCC of the buy
and sell labels. In the ternary selective case we find that, in general,
it picks relatively high multiplier values which gives a relatively
large number of 0 labels – this can be seen in Table 3, which shows
the resulting distribution of labels in the test set (with only FS1 for
brevity), where between 45 and 54% of the labels are 0 (flat), signifi-
cantly higher than 1

3 . The coverage threshold is set to optimize the
MCC across all (2 or 3) classes, and in the ternary case this opti-
mization step when combined with the extra multiplier parameter,
is giving better selective accuracy via lower coverage (higher cov-
erage thresholds). Table 3 also shows differences between models
in terms of the distribution of true labels among all samples and
just those where the model abstains; for example, unlike the other
models, the RF (random forests) model has a very large difference,
54% versus 36%, in the percentage of flat labels. This arises due to
the RF model being very certain of its flat predictions, so abstaining
relatively less for this label.

Table 3: True labels percentages across all test data, for all
rows (“All”) and just abstained rows (“Abs.”) for the ternary
selective classifiers with FS1. All true labels percentages are
rounded.

Label Rows LR RF NN LSTM

short All 26 23 28 27
Abs. 27 32 30 29

flat All 49 54 45 47
Abs. 46 36 41 42

long All 26 23 28 27
Abs. 27 32 29 29

Given our intended trading application, whether binary or ternary
classification is better cannot easily be determined by (selective)
accuracy, not least because correct and incorrect classifications can
correspond to very different profit and loss amounts for a trad-
ing strategy. In the next section, we backtest the resulting trading
strategies to explore this further.

Trading via Selective Classification

5 TRADING STRATEGIES
As we just noted, from a trading perspective somemisclassifications
are more costly than others.We next turn our classifiers into trading
strategies which we backtest and compare.

5.1 Backtesting methodology
We will hold a position that is consistent with our predictions. That
is, whenever we make a prediction of label -1, we will hold a short
position, and when we predict label 1 we will take a long position.
Position sizing is discussed below, along with slippage which will
be applied whenever we trade (which is determined by the desired
position sign, namely long/short/flat).

Thus, the behaviour of our binary/ternary selective/non-selective
classifiers will be as follows:

• A non-selective binary classifier is thus “always in the market”
(never flat).

• A selective binary classifier stays flat (i.e., does not take a position)
precisely when the classifier abstains.

• A non-selective ternary classifier stays flat when the predicted
label is 0.

• A selective ternary classifier stays flat either when the predicted
label is 0, or when the classifier abstains.

We trade when the desired position sign changes. The position
size for a given commodity (specified as a number of futures con-
tracts) is set to be inversely proportional to a 5-day moving average
of the absolute close-on-close move in dollar terms. This simple
scheme is used so that we can reasonably aggregate profit and loss
across the commodities. To be conservative, slippage was paid on
every contract traded. The amount of slippage was defined as a mul-
tiple {0, 0.1, . . . , 0.5} of the tick size for the respective commodity.
The number of contracts traded are determined by the difference
between the current position and desired position, so, for example,
if the current position is 6 contracts (long) and the desired position
is 2 contracts (short), then the resulting trade would sell 8 contracts
(paying slippage on each).

The backtest applies the classifiers to each commodity indepen-
dently and trades accordingly, aggregating the resulting profit and
loss across the commodities. In order to get a risk-adjusted measure,
we compute and report a profit-based variant of the Sharpe Ratio
(i.e., one that assumes a constant underlying cost to each trade,
which we consider fine as we only use the resulting numbers for
roughly assessing relative performance).

5.2 Backtesting results
All reported backtesting results are out-of-sample (see Figure 2).

In Figure 5, the results of the feed-forward networks backtest-
ing process are presented. Figure 6 shows the equity curves that
correspond to the FS1 and slippage level 0.2 results within Figure 5.
As slippage increases, both binary and ternary selective classifiers
have better Sharpe Ratio values compared to their respective non-
selective classifiers. From the four features sets, the FS2 feature set
has the best Sharpe Ratio results, taking into account the results of
each classifier for all slippage values. The FS3 feature set has the
worst Sharpe Ratio values compared to the other features sets. In

1.5

1.0

0.5

0.0

0.5

1.0

FS1 FS2

0.0 0.1 0.2 0.3 0.4 0.5
1.5

1.0

0.5

0.0

0.5

1.0

FS3

0.0 0.1 0.2 0.3 0.4 0.5

FS4

Slippage (in ticks)

Sh
ar

pe
 R

at
io

Selective Ternary
Non selective Ternary
Selective Binary
Non selective Binary

Figure 5: Sharpe Ratios for backtested ternary/ binary selec-
tive and non-selective Feed-Forward network classifiers.

2012
2013

2014
2015

2016
2017

2018
2019

Date

100000

0

100000

200000

300000

400000

500000
Selective Ternary
Non selective Ternary
Selective Binary
Non selective Binary

Figure 6: Indicative equity curves corresponding to Figure 5,
feature set FS1 and slippage level 0.2.

particular, since FS1 tended to provide better results than FS4, we
did not see the benefits of our richest feature sets4.

In Table 4, the Sharpe Ratio results of all the classifiers and
features sets are presented for slippage set to 0.3 ticks. At this
level of slippage, many configurations are not profitable, but some
are, including: With all four feature sets, the logistic regression
(LR) binary selective classifiers were profitable, as are some other
configurations of this type of classifier; for FS1 and FS2, the feed-
forward network (NN) binary selective classifiers were profitable;
for FS1 and FS2, the random forests (RF) ternary selective classifiers
were profitable. The classifiers using LSTMs are never profitable,
which may well just reflect the difficulty in training these types of
models.

4It is possible that overfitting was responsible, and where we did 𝑙2 regularization, it
may be beneficial in this regard to try 𝑙1 regularization.

Nestoras Chalkidis and Rahul Savani

Table 4: Sharpe Ratios for the binary/ternary selective and
non-selective classifiers with slippage at 0.3 ticks.

Models Features
Selective
Binary

Non-sel.
Binary

Selective
Ternary

Non-sel.
Ternary

LR

FS1 0.02 0.16 −0.12 −0.60
FS2 0.21 0.02 0.03 −0.97
FS3 0.15 −0.08 −0.16 −0.82
FS4 0.28 −0.03 −0.20 −0.31

RF

FS1 −1.61 −1.60 −0.35 −1.46
FS2 −0.57 −0.61 −0.24 −1.04
FS3 −0.03 −0.61 0.57 −1.03
FS4 −0.41 −0.75 0.35 −0.10

NN

FS1 0.33 −0.35 −0.05 −0.33
FS2 0.15 −0.05 0.15 −0.51
FS3 −0.23 −0.54 −1.06 −1.10
FS4 0.05 −0.29 −0.70 −0.87

LSTM

FS1 −0.86 −0.89 −0.23 −0.76
FS2 −0.81 −0.67 −0.29 −1.23
FS3 −0.70 −0.87 −0.40 −1.22
FS4 −0.43 −0.69 −0.12 −1.10

We consider these results to be a promising proof of concept for
this trading approach, especially given that many parameters of the
method were not optimized and just set as intuitively reasonable
choices. This also applies to the feature sets; there is a lot of scope
to improve these and other aspects of the setup.

6 CONCLUSIONS/ FUTUREWORK
This study presents an application of selective classification in
futures time series, and backtests trading strategies based on the
classifier’s predictions. We found that:

• The selective classifiers performed better than their non-selective
counterparts in terms of accuracy.

• Lower coverage values resulted in higher accuracy levels.

• The selective classifiers had better backtesting results compared
to their respective non-selective classifiers.

• The results did not demonstrate any advantage of the richer
feature sets.

• Selective classification reduced the misclassification percentages
by abstention, which helped the trading strategies to avoid losses.

• The selective binary classifiers had better backtesting results
compared to the selective and non-selective ternary classifiers.

The results show the potential of selective classification, as the
selective classifiers performed better than their non-selective coun-
terparts in terms of accuracy and backtesting results. It would be
interesting to explore the use of other selective classification algo-
rithms, such as [12, 24]. As discussed at the end of Section 4.2, the
ternary classifiers worked quite differently from the binary classi-
fiers and appeared promising when looking only at accuracy, but
in the end provided worse backtesting results. It would be interest-
ing to explore hyperparameter optimization based on backtesting
results directly, rather than the MCC criterion.

ACKNOWLEDGMENTS
The authors would like to acknowledge the support of this work
through the EPSRC and ESRC Centre for Doctoral Training on
Quantification and Management of Risk Uncertainty in Complex
Systems Environments Grant No. (EP/L015927/1).

REFERENCES
[1] Wei Bao, Jun Yue, and Yulei Rao. 2017. A deep learning framework for financial

time series using stacked autoencoders and long-short term memory. PloS one
12, 7 (2017).

[2] Peter L. Bartlett and Marten H. Wegkamp. 2008. Classification with a Reject
Option using a Hinge Loss. J. Mach. Learn. Res. 9 (2008), 1823–1840.

[3] Svetlana Borovkova and Ioannis Tsiamas. 2019. An ensemble of LSTM neural
networks for high-frequency stock market classification. Journal of Forecasting
38, 6 (2019), 600–619.

[4] Jean-Philippe Bouchaud, Julius Bonart, Jonathan Donier, and Martin Gould. 2018.
Trades, quotes and prices: financial markets under the microscope. Cambridge
University Press.

[5] George EP Box and David R Cox. 1964. An analysis of transformations. Journal
of the Royal Statistical Society: Series B (Methodological) 26, 2 (1964), 211–243.

[6] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32.
[7] Davide Chicco and Giuseppe Jurman. 2020. The advantages of the Matthews

correlation coefficient (MCC) over F1 score and accuracy in binary classification
evaluation. BMC genomics 21, 1 (2020), 6.

[8] C. K. Chow. 1970. On optimum recognition error and reject tradeoff. IEEE Trans.
Information Theory 16, 1 (1970), 41–46.

[9] Corinna Cortes, Giulia DeSalvo, and Mehryar Mohri. 2016. Boosting with Ab-
stention. In Proc. of NIPS. 1660–1668.

[10] Ran El-Yaniv and Yair Wiener. 2010. On the Foundations of Noise-free Selective
Classification. J. Mach. Learn. Res. 11 (2010), 1605–1641.

[11] Yonatan Geifman and Ran El-Yaniv. 2017. Selective Classification for Deep Neural
Networks. In Proc. of NIPS.

[12] Yonatan Geifman and Ran El-Yaniv. 2019. SelectiveNet: A Deep Neural Network
with an Integrated Reject Option. In Proc. of ICML.

[13] Shihao Gu, Bryan Kelly, and Dacheng Xiu. 2020. Empirical Asset Pricing via
Machine Learning. The Review of Financial Studies 33 (2020), 2223–2273.

[14] Martin E. Hellman. 1970. The Nearest Neighbor Classification Rule with a Reject
Option. IEEE Trans. Systems Science and Cybernetics 6, 3 (1970), 179–185.

[15] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[16] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167 (2015).

[17] Taewook Kim and Ha Young Kim. 2019. Forecasting stock prices with a feature
fusion LSTM-CNN model using different representations of the same data. PloS
one 14, 2 (2019).

[18] Charles MC Lee and Mark J Ready. 1991. Inferring trade direction from intraday
data. The Journal of Finance 46, 2 (1991), 733–746.

[19] Vinod Nair and Geoffrey E Hinton. 2010. Rectified linear units improve restricted
boltzmann machines. In Proc. of ICML.

[20] Jigar Patel, Sahil Shah, Priyank Thakkar, and Ketan Kotecha. 2015. Predicting
stock and stock price index movement using trend deterministic data preparation
and machine learning techniques. Expert systems with applications 42, 1 (2015),
259–268.

[21] Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu. 2020.
Financial time series forecasting with deep learning: A systematic literature
review: 2005–2019. Applied Soft Computing 90 (2020), 106181.

[22] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research 15, 1 (2014), 1929–1958.

[23] J Peter Steidlmayer and Steven B Hawkins. 2003. Steidlmayer on Markets: Trading
with Market Profile. Vol. 173. John Wiley & Sons.

[24] Sunil Thulasidasan, Tanmoy Bhattacharya, Jeff A. Bilmes, Gopinath Chennupati,
and Jamal Mohd-Yusof. 2019. Combating Label Noise in Deep Learning using
Abstention. In Proc. of ICML.

[25] Yair Wiener and Ran El-Yaniv. 2015. Agnostic Pointwise-Competitive Selective
Classification. J. Artif. Intell. Res. 52 (2015), 171–201. https://doi.org/10.1613/jair.
4439

https://doi.org/10.1613/jair.4439
https://doi.org/10.1613/jair.4439

	Abstract
	1 Introduction
	2 Related Work
	3 Technical preliminaries
	4 Classification
	4.1 Classification methodology
	4.2 Classification results

	5 Trading strategies
	5.1 Backtesting methodology
	5.2 Backtesting results

	6 Conclusions/ Future Work
	Acknowledgments
	References

