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Abstract

This paper investigates the evolution of unconventional monetary policies under a binding
ZLB constraint for the US economy. In doing so, this study provides a comprehensive em-
pirical assessment on the economic and statistical implications of allowing conventional and
unconventional monetary policies to work in mutually exclusive union using shadow rates.
Shadow rate Taylor rules and policy counterfactuals implied by time-varying coefficient
structural VAR models show: i) one can reconcile plausible economic results using shadow
rates when short-term interest rates approach the ZLB; and ii) unconventional monetary
policies are a viable response to recession and facilitate stability during economic recovery.
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1 Introduction

A binding zero lower bound (ZLB) constraint results in the monetary policy response to eco-
nomic downturns being large scale asset purchases, more commonly known as Quantitative
Easing (QE), and other lending facilities. These unconventional monetary policies are a di-
rect substitute for changes in the short-term interest rate and aim to provide stimulus to the
economy working through an array of channels; such as lowering the long-term end of the yield
curve, and to promote trading on financial markets. The implications of the ZLB and the overall
impact of unconventional monetary policies, are prominent issues in economic research which
are highly relevant for central banks. Both policymakers and economists advocate, from an
empirical perspective, that traditional and unconventional monetary policy work in mutually
exclusive harmony (see e.g. Yellen (2016), Reifschneider (2016), and Wu and Xia (2016)).

There is a growing literature that examines the economic impact and effectiveness of uncon-
ventional monetary policies in isolation (see, among others Gambacorta et al. (2014) and Weale
and Wieladek (2016)). Wu and Xia (2016) propose a shadow rate so that economists are able
to examine conventional and unconventional monetary policies using data preceding the 2008
recession. The shadow rate, stemming from a term-structure model, co-moves strongly with
the Federal funds rate when there is no binding ZLB constraint. When the Federal funds rate
approaches its ZLB, thereby conveying no information regarding monetary policy stance, the
shadow rate is negative. In particular, their study reveals that the shadow rate behaves similar
to the Federal funds rate in models of monetary policy.

Theoretically, Wu and Zhang (2019b) show that a negative shadow rate has identical ef-
fects on economic quantities to unconventional monetary policies within a micro-founded New
Keynesian model and demonstrate the data-consistent result that a negative supply shock is
always contractionary1. Sims and Wu (2020) examine how substitutable QE and conventional
monetary policy are in a New Keynesian model. Their results show that the observed increase
of the Federal Reserve’s balance sheet over the ZLB period provides stimulus equivalent to cut-
ting the policy rate to -2%; in line with the empirical decline in the federal funds–shadow rate
time series. Sims and Wu (2021) develop a DSGE framework permitting the analysis of QE,
forward guidance, and negative interest rate policies. They show such policies can all stimulate
output as much as conventional monetary policy. This burgeoning literature provides further
substance that shadow rates are a feasible time-series to use in econometric models to overcome
issues surrounding the ZLB.

The main contribution of this paper is to investigate the evolution of unconventional mone-
tary policies under a binding ZLB constraint. In doing so, this study provides a comprehensive
empirical assessment on the economic and statistical implications of allowing conventional and
unconventional monetary policies to work in mutually exclusive union using shadow rates in
structural VAR models. Focusing on the US economy, this study seeks to answer two main
questions. First, can one reconcile economically plausible results regarding monetary policy

1From an international perspective, Wu and Zhang (2019a) propose an open-economy New Keynesian model
that accommodates unconventional monetary policy. In particular, they resolve the lower bound anomaly in
an open economy New Keynesian model that causes output and terms-of-trade to move in opposite directions
following a supply shock.
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stance under a binding ZLB constraint? Second, are unconventional monetary policies viable
in facilitating economic stability following a deep recession?

Models using the Federal funds rate over the ZLB period yield a high degree of posterior
uncertainty. Under a binding ZLB constraint, this indicates the Federal funds rate conveys no
information regarding monetary policy stance. Consistent with Wu and Xia (2016), models
that use shadow rates throughout the ZLB period, deliver economically plausible results for
the monetary transmission mechanism. This paper quantifies the economic importance of un-
conventional monetary policy shocks from models using shadow rates. Specifically, structural
variance decompositions uncover economically meaningful differences over the ZLB period in
the percent of variance attributable to monetary policy shocks when using shadow rates.

This study extends on Wu and Xia (2016) from a methodological perspective. Using time-
varying coefficient VAR models, this paper backs out model implied shadow rate Taylor rules
that allow one to quantify how unconventional monetary policy relates to economic activity
and inflation. Adopting this methodology permits one to examine how monetary policy reacts
to economic activity and inflation in a dynamic manner. The results show a clear emphasis
on economic activity in shadow rate Taylor rules over the ZLB period. Shadow rate Taylor
rules also reveal the Federal Reserve’s intention of supporting the recovery of the US economy;
something that disappears under the conventional Taylor rule. More generally, these findings
help us understand how unconventional monetary policies can act as an expansionary monetary
policy tool available to central banks under a binding ZLB constraint; as well as promoting
recovery from deep recessions.

In mapping to the structural model it also enables one to construct policy counterfactuals.
Overall, counterfactual simulations support the findings from shadow rate Taylor rules with two
main findings. First, the contraction in GDP growth would have been 1.14% larger in absolute
terms followed by sustained volatility. Secondly there would have been a higher risk of entering
a deflationary period in 2010-2012 (i.e. during QE2 and Operation Twist) had the Federal
reserve placed no emphasis on economic activity over the ZLB period. These results conform
with Kapetanios et al. (2012), Baumeister and Benati (2013) and Eberly et al. (2020) who show
that without unconventional monetary policies, the respective recoveries of the UK and US
economy would have been far more sluggish than realised. Overall, these exercises imply that
unconventional monetary policies are a viable way to hinder contractions in GDP growth and
also to facilitate economic stability in terms of lower GDP and inflation volatility.

This study also relates with an emerging area that examines economic performance at the
ZLB (Wu and Zhang, 2019b; Gaŕın et al., 2019). Debortoli et al. (2019) test the null hypothesis
that there are no practical effects on economic performance under a binding ZLB constraint.
Their findings suggest little difference in the response of macroeconomic fundamentals to shocks
and that macroeconomic volatility was largely unaffected by the ZLB period. Their paper
examines the transmission mechanism through impulse response analysis. The approach taken
here tests both for differences in the transmission mechanism and economic importance of
shocks. Another innovation is the specification here explicitly accounts for unconventional
monetary policies using shadow rates; the former use long-term interest rates. Overall this
study presents evidence consistent with Debortoli et al. (2019) and Gaŕın et al. (2019). However

2



the main novelty in this paper examines shocks from a fully identified multivariate structural
model with a particular focus on monetary policy shocks themselves. Overall the results suggest
that, accounting for unconventional monetary policies using the shadow rate, the sensitivity of
macroeconomic fundamentals to monetary policy shocks has remained similar over the last 17
years.

All of the main findings are robust to three alternatives; the first uses alternative proxies
for economy activity and inflation by using an output gap measure (Wu and Zhang, 2019b)
and an alternative proxy for inflation. The second alternative extends the information set by
constructing a macro-financial factor using a subset of the FRED-MD database (McCracken
and Ng, 2016). Meanwhile the third, hinged upon a transaction model of money demand in the
spirit of Benati (2019), incorporates a narrow measure of money into the baseline specification.

This work contributes to three main streams of literature. First, it contributes to the
widespread work on monetary policy dynamics, which among many others, includes: Sims and
Zha (2006); Primiceri (2005); Benati and Mumtaz (2007); Benati (2008); and Belongia and
Ireland (2016). The main innovations of this paper are that the sources of time-variation are
tested through a model selection experiment, and that the focal point is the conduct of monetary
policy prior to, during, and following the 2008 recession.

Second, this work is pertinent to the growing literature on unconventional monetary policy
analysis (see e.g. Kapetanios et al. (2012); Hamilton and Wu (2012); Baumeister and Benati
(2013); D’Amico and King (2013); and Swanson and Williams (2014)). In general, this paper
supports the consensus view that QE policies were a necessity in harbouring the recovery of
the US economy (and others). Papers within this strand of literature typically examine un-
conventional monetary policies using interest rate spreads (Kapetanios et al., 2012; Baumeister
and Benati, 2013) , or in isolation (Gambacorta et al., 2014; Weale and Wieladek, 2016). This
paper relates well with Wu and Xia (2016) where conventional and unconventional monetary
policies are captured by the shadow rate. The innovation here is the adoption of a methodology
that allows monetary policy stance to change over time. This is a natural approach since the
objective is to examine the evolution of unconventional policy throughout the ZLB period.

Third, this paper aligns closely with work arguing that the ZLB imposes little constraint
on monetary policy. Notably, while central banks are unable to influence short-term policy
rates when approaching the ZLB, they are able to influence economic outcomes through other
avenues (see e.g. Bundick (2015) and Chen et al. (2012)). The empirical approach by Wu and
Xia (2016) provides evidence in favour the ZLB having little constraint on monetary policy.
The subsequent theoretical results in Wu and Zhang (2019b) and Wu and Zhang (2019a) show
how economic performance is unaffected by the ZLB if unconventional monetary policies in
New Keynesian models are tracked through shadow rates. Gaŕın et al. (2019) test predictions
of a New Keynesian model for supply shocks at the ZLB. Their analysis reveals that a binding
ZLB constraint has no effect on the influence supply shocks have for expected inflation. Overall
results presented here are consistent with the aforementioned. The novelty of these results
show that one can reconcile plausible economic results using shadow rates over the ZLB period
thereby emphasising the use of shadow rates in structural VAR models at tracking monetary
policy stance under a binding zero lower bound constraint.
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The remainder of this paper is structured as follows. Sections 2 outlines competing time-
varying coefficient VAR models. Section 4 discusses economic data and reports the main em-
pirical analysis. Section 5 tests the robustness of these results, and Section 6 concludes.

2 Competing Time-varying Coefficient VAR Models

Analysis begins with the class of time-varying coefficient VAR models with stochastic volatility.
The general model with p=2 lags, and N=3 variables is

Yt = β0,t + β1,tYt−1 + β2,tYt−2 + et ≡ X′tBt + et (1)

where Yt is defined as Yt ≡ [yt, πt, rt]
′ , with yt being annual growth rate of real GDP, πt is

the annual rate of consumer price inflation, respectively. X′t contains lagged values of Yt and
a constant. The VAR’s time-varying coefficients are collected in the vector Bt, and conditional
on the roots of the VAR polynomial lying outside the unit circle evolve as a driftless random
walk.

Bt = Bt−1 + ut, ut v N(0,Qt) (2)

Two different types of time-variation are considered regarding the covariance of the parameter
innovations. In the first case, Qt = Q where Q is a full matrix allowing parameters across
equations to be correlated. Note that when Q=0, the model reduced to a constant parameter
VAR with a stochastic volatility structure. In the second case, Qt is a diagonal matrix, whose
elements evolve as driftless geometric random walks:

ln qi,t = ln qi,t−1 + νt, νt v N(0,Zq) (3)

This structure on the parameter innovations was first introduced in Baumeister and Benati
(2013) under the premise that the conventional model of Primiceri (2005) tended to over-fit
during periods of economic tranquillity, and under-fit during periods of economic distress. The
innovations of the measurement equation, et are Normal with zero mean and time-varying
covariance matrix Ωt which is factored as

Ωt = A−1
t Ht(A−1

t )′ (4)

where At is a lower triangular matrix with unit diagonal containing the contemporaneous rela-
tions between variables in the model, and Ht is a diagonal matrix containing the reduced-form
stochastic volatility innovations. Collecting the non-unit non-zero elements of At and the diag-
onal elements of Ht in the vectors, ht ≡ [h1,t, h2,t,h3,t]′ and at ≡ [a21,t, a31,t, . . . ,a33,t]′, they
evolve as a geometric random walk and random walk respectively

ln hi,t = ln hi,t−1 + ηt, ηt v N(0,Zh) (5)

at = at−1 + ζt, ζt v N(0,S) (6)
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The innovations in the model, collected in the diagonal matrix V, are jointly Normal and the
structural shocks, vt are such that, et ≡ A−1

t H
1
2
t vt. S is a block diagonal matrix, which implies

that the non–zero and non–unit elements of At that belong to different rows evolve indepen-
dently. This is a simplifying assumption that permits estimation of At equation by equation.
The models are estimated using Bayesian methods where the initial conditions are calibrated
using the posterior mean of the coefficients and covariance matrix from a Bayesian VAR model
estimated using the first 20 years of data. The Appendix provides specific information with
regards to our choice of priors and an outline of the Markov-Chain Monte Carlo (MCMC)
posterior simulation algorithm.

2.1 Structural Identification

The structural models are identified using a variant of Algorithm 1 in Arias et al. (2018) that
stems from the Rubio-Ramirez et al. (2010) algorithm. Specifically, following Arias et al. (2018)
and Rubio-Ramirez et al. (2010), the time-varying structural impact matrix, A0,t is calculated
in the following manner. Given the current state of the economy, the eigenvalue-eigenvector
decomposition of the VAR’s time-varying covariance matrix at time t is, Ωt = PtDtP′t . Then an
N × N matrix K is drawn from the N(0, 1) distribution and its QR decomposition is computed.
Normalising the elements of the diagonal matrix R to be positive; the matrix Q is a matrix
whose columns are orthogonal to one another. The time-varying structural impact matrix is
computed as A0,t = PtD

1
2
t Q′. More detail is in the Supplementary Appendix.

The economy is subject to three shocks: a supply shock, vs
t ; a demand non policy shock, vd

t ;
and a monetary policy shock, vmp

t by imposing contemporaneous sign restrictions for each time
period following those in Belongia and Ireland (2016). Table 1 reports the contemporaneous
response of our variables to each identified shock. All structural inference is carried out in a
generalised framework, following Koop et al. (1996), thereby accounting for all sources of model
uncertainty; further details are in the Appendix.

Table 1: Contemporaneous Sign Restrictions
Notes: This table reports the contemporaneous response of real GDP growth, yt; inflation, πt; and the
interest rate, it with respect to a supply shock, vs

t ; a demand non policy shock, vd
t ; and a monetary

policy shock, vmp
t respectively. “x” denotes no restriction imposed.

vs
t vd

t vmp
t

yt ≥ ≥ ≤
πt ≤ ≥ ≤
rt x ≥ ≥

2.2 Structural Monetary Policy Rules

Structural monetary policy rules are obtained from the reduced-form estimates by factoring the
reduced-form covariance matrices as

Ωt = P̄−1
t D̄tD̄

′
t(P̄−1

t )′ (7)
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where P̄t and D̄t are 3×3 matrices of the form

P̄t =


1 −py,πt −py,rt

−pπ,yt 1 −pπ,rt

−pr,y
t −pr,π

t 1

 , D̄t =


dy,t 0 0
0 dπ,t 0
0 0 dr,t

 (8)

where P̄t is a matrix with unit diagonal elements and the structural impact coefficients within
the equations of the model. The matrix D̄t is diagonal and contains the volatility of the
structural innovations. Therefore the structural representation of our models may be written
as

P̄tYt = G0,t + G1,tYt−1 + G2,tYt−2 + D̄tvt (9)

where G0,t = P̄tβ0,t and Gj,t = P̄tβj,t for j = 1, 2. and vt is the 3 × 1 vector of structural
innovations where vt v N(0, I3). The third row of (9) delivers the structural monetary policy
rule. The third row of P̄t contains the structural impact coefficients within the monetary
policy rule associated to GDP growth, pr,y

t ; inflation, pr,π
t . These coefficients represent the

contemporaneous response of the interest rate to movements in GDP growth and inflation.
Ignoring the structural shock and its volatility, the third row of (9) delivers the structural
monetary policy rule of the model.

rt = gr,t
0 + pi,yt yt + gr,y

1,tyt−1 + gr,y
2,tyt−2 + pr,π

t πt + gr,π
1,tπt−1 + gr,π

2,tπt−2 + gr,r
1,trt−1 + gr,r

2,trt−2 (10)

As can be seen, this takes a similar form to the monetary policy rule proposed in Taylor (1993).
More specifically, it allows the interest rate to respond to movements in economic activity
and inflation, whilst also capturing the interest rate smoothing effect documented in Belongia
and Ireland (2016). Since the coefficients are allowed to vary throughout time, this specification
permits an investigation into the weight the Federal Reserve places on its objectives for inflation
versus economic activity; as well as how stringent they were in adhering to their (model implied)
systematic behaviour.

3 Results

3.1 Economic Data

The proxies for economic activity used in this study are US data on real GDP and the Consumer
Price Index (CPI). Following the recommendation in Wu and Xia (2016), and similar to Wu
and Zhang (2019b), the interest rate is proxied by either the Federal funds rate or a shadow
rate, which is a spliced series of the Federal funds rate with the estimated shadow rate of Wu
and Xia (2016). GDP and the CPI are converted into annual growth rates, the interest rate is
untransformed; data plots can be found in the Supplementary Appendix.

It is noteworthy to mention that, among others, Gertler and Karadi (2015) advise using
Treasury yields with longer maturities, such as the 1-year or 2-year Treasury yields to proxy
monetary policy under a binding ZLB constraint. Over the ZLB period (2008Q4–2015Q4), the
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contemporaneous correlation of the shadow rate and 2-year Treasury yield and the shadow rate
and 1-year Treasury yield are 0.69 and 0.81 respectively; thereby capturing similar information.
The advantage of the shadow rate over these Treasury yields is that during QE2, the 1-year and
2-year Treasury yields are essentially zero and thus also suffer from a binding ZLB constraint.
A second advantage, noted in Wu and Zhang (2019b), is the strong resemblance between the
shadow rate and Federal Reserve’s balance sheet2.

3.2 Model Evaluation

To evaluate the fit of our competing models, the Bayesian deviance information criterion (DIC)
proposed in Spiegelhalter et al. (2002) is used. The DIC consists of two terms, one evaluating
the fit of the model, and a penalty term for model complexity. Specifically, the DIC is given by

DIC = D̄ + pD (11)

where D̄ = −2E(ln L(Λi)), the measure of fit, is equal to minus two multiplied by the expected
value of the log likelihood evaluated over the draws of the MCMC, and pD = D̄ + 2 ln L(E(Λi)),
is the measure of model complexity; with ln L(E(Λi)) being the log likelihood evaluated at the
posterior mean of parameter draws. The lower the DIC, the better the model fit. For time-
varying coefficient VARs with stochastic volatility, the DIC is estimated using a particle filter
that evaluates the likelihood function to deal with the non-linear interaction of the stochastic
volatilities (Mumtaz and Sunder-Plassmann, 2013). Restricted variants of time-varying coef-
ficient VAR models, as well as a two-regime Markov Switching VAR (MSVAR) are examined
to identify whether the data suggests the need for such flexibility, and indeed the source(s) of
time-variation. Restricted variants of the time-varying coefficient models include: a conven-
tional Bayesian VAR; a time-invariant coefficient VAR with stochastic volatility and constant
contemporaneous relations; a time-invariant coefficient VAR with stochastic volatility and time-
varying contemporaneous relations (i.e. a time-varying covariance matrix); and a time-varying
coefficient VAR with constant covariance matrix3.

Table 2 reports the estimated DIC statistics, along with the measure of model complexity,
pD, and the expected value of the log likelihood evaluated over posterior draws of the parame-
ters, E(ln L(Λi)). Panel A contains statistics generated models using the Federal funds rate as
the short-term rate of interest. Panel B shows analogous statistics for models using the shadow
rate.

As can be seen in Table 2, models that fit the data best, according to DIC statistics, are the
time-varying coefficient VAR model with a full, time-invariant, covariance matrix of parameter
innovations. It is also evident that these models possess the largest expected log likelihood
relative to restricted variants of the TVP VAR models. However, note that models using

2Available on request are results using the 2-year Treasury rate in place of the Federal Funds rate; as expected
conclusions in the form of a high degree of posterior uncertainty around impulse response functions during QE2
and Operation Twist are present due to the 2-year Treasury rate approaching the ZLB during these periods.

3These models were all estimated with standard priors within the literature. In particular, BVARs were
estimated with a Minnesota prior on the coefficients, models with constant covariance matrices were assumed
to have inverse-Wishart priors (see e.g. Koop and Korobilis (2010)), and those with time-varying parameters or
stochastic volatility were estimated using analogous priors to the time-varying coefficient VAR models as outlined
in the Appendix.
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Table 2: DIC statistics for Competing Models
Notes: This table reports model evaluation statistics for competing time-varying coefficient VAR models,
and restricted variants. In Panel A, each model is estimated using the Federal funds rate as the short-
term interest rate. Panel B shows analogous estimates where the Federal funds rate is replaced with
the shadow rate as in Wu and Xia (2016). DIC is the estimated Bayesian DIC statistic proposed in
Spiegelhalter et al. (2002); pD is the measure of model complexity which Spiegelhalter et al. (2002) notes
as the effective number of parameters within the model; and E(ln L(Λi)) is the expected value of the
log likelihood function evaluated at the posterior draws of the model parameters. Row 1 of Panels A
and B refer to time-varying coefficient VAR model of Primiceri (2005) where the covariance matrix of
parameter innovations is time-invariant, but parameters across equations are allowed to be correlated.
Row 2 refers to TVP VAR models where the covariance matrix of the parameter innovations is diagonal,
with each element along the main diagonal evolving as a geometric random walk. Row 3 refers to a
two-regime Markov-Switching VAR, and Rows 4-7 of Panels A and B refer to restricted variants of the
time-varying coefficient models.

A: Models using Fed Funds Rate, r = it DIC pD E(ln L(Λi))
TVP VAR Qt = Q, with stochastic volatility 88.32 45.50 -21.41
TVP VAR Qt = Qt, with stochastic volatility 99.76 38.44 -30.66
Two-regime MS-VAR 190.19 35.67 -77.26
TVP VAR constant covariance matrix 1034.41 63.99 -485.21
BVAR with time-varying covariance matrix 161.92 43.43 -59.25
BVAR with stochastic volatility 170.72 49.58 -60.57
constant coefficient BVAR 1758.59 44.59 -857.00
B: Models using Shadow Rate, r = ist DIC pD E(ln L(Λi))
TVP VAR Qt = Q,with stochastic volatility 116.13 20.32 -47.91
TVP VAR Qt = Qt, with stochastic volatility 148.66 43.47 -52.59
Two-regime MS-VAR 216.20 38.34 -89.3251
TVP VAR constant covariance matrix 1091.2 52.68 -519.26
BVAR with time-varying covariance matrix 171.99 35.47 -68.26
BVAR with stochastic volatility 181.21 41.74 -69.73
constant coefficient BVAR 1762.55 44.40 -859.07
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the Federal funds rate, when benchmarked against their analogous model using the shadow
rate, have lower estimated DIC statistics. Regarding model complexity, it is clear they are
similar across all restricted variants of time-varying coefficient models, with the largest model
complexity being associated to TVP VARs with a constant variance matrix. This, corresponding
with Koop et al. (2009), highlights the importance of modelling time-variation in the volatility
of macroeconomic variables. Based on the results provided in Table 2, the conventional time-
varying coefficient VAR models of Primiceri (2005) are estimated using the Federal funds rate
and shadow rate respectively.

3.3 Monetary Policy Dynamics

Figure 1 plots the posterior median and 80% point-wise equal-tailed probability bands of the
impulse response functions of real GDP growth and inflation with respect to a monetary policy
shock at selected dates4. The dates cover 2009Q2–2017Q4 which corresponds to periods both
during, and following, a binding zero lower bound constraint in the US. The first four dates are
the mid points of QE periods implemented by the Fed (i.e. 2009Q2, 2011Q1, 2012Q2, 2013Q2),
with 2012Q2 being the mid point of Operation Twist. The final date chosen is 2017Q4 which
represents the post zero lower bound period.

It is clear that the response of GDP growth and inflation with respect to a monetary policy
shock are qualitatively similar in 2009Q2 and 2017Q4. This is to be expected in 2017Q4
as the ZLB constraint no longer binds. However, there is a less clear explanation for the
similarities we observe in 2009Q2, since the US economy exhibits a binding ZLB constraint
from 2008Q4. A possible explanation for this is to note that: i) the model consists of two lags;
and ii) the MCMC Gibbs sampling algorithm mixes future and past realisations (Benati and
Mumtaz, 2007). Therefore around the period the US approaches the ZLB one expects to see
these similarities in the posterior distribution of impulse response functions. Note that as time
progresses, one expects to see these similarities disappear; we also see this in the slightly higher
degree of posterior uncertainty stemming from the model using the Federal funds rate.

The second, third, and fourth row confirm the expectation that similarities between impulse
response functions disappear over the ZLB period. This phenomenon is found in Wu and Xia
(2016). We can see that there is a substantially higher degree of posterior uncertainty in the
response of GDP and inflation when the ZLB is binding. The differences in posterior uncertainty
from the model using the shadow rate and the model using the Federal funds rate is highest
during Operation Twist and QE3. Again this is expected since the Federal funds rate remains
constant at effectively zero, thus providing no information about monetary policy stance5.

To assess the statistical significance between differences in the transmission of monetary
policy shocks stemming from each respective model, the probability that the four quarter accu-

4The impulse response functions of the short-term interest rates are not reported as they are uninteresting;
however, they are available on request. The only noteworthy point regarding these is that response of the Federal
funds rate with respect to a monetary policy shock is substantially more persistent, relative to the response of
the shadow rate to a monetary policy shock over selected dates. Statistical evidence of this is reported in Table
3 of the paper.

5Available on request are estimates of impulse response functions using 1-year and 2-year Treasury yields.
These convey the same message as in Figure 1. This is completely expected since during QE2, these yields are
approaching the ZLB.
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Figure 1: Impulse Response Functions of Monetary Policy Shocks for GDP growth
and Inflation during and after the Zero Lower Bound Period
Notes: This figure plots the posterior median and 80% point-wise equal-tailed probability bands of the
impulse response functions of real GDP growth, yt; and Consumer price inflation, πt. In each model,
the short-term interest rate is proxied by either the Federal funds rate, rt = it, or the shadow rate,
rt = ist across selected dates. The consecutive rows in the figure correspond to 2009Q2, 2011Q1, 2012Q2,
2013Q2, and 2017Q4. Note that the first four rows, all correspond to the mid-points of Quantitative
Easing periods, with 2012Q2 representing the mid-point of Operation Twist. 2017Q4 represents the post
zero lower bound period. Impulse responses are plotted over a 20 quarter horizon (x-axis) and expressed
in % (y-axis). 10



mulated impulse response functions for variable x = {yt, πt, rt = {it, ist}} from the TVP VAR
model using the Federal funds rate during period T is greater than the analogous 4 quarter
accumulated impulse response function implied by the model using the shadow rate of Wu and
Xia (2016) are tested. Following Cogley et al. (2010), a statistical difference is observed if the
probability is lower (greater) than 0.1 (0.9). A value lower (greater) than 0.1 (0.9) indicates that
the four quarter accumulated response is smaller (greater) when using the Federal funds rate.
Given that a monetary policy shock causes contractions to GDP and inflation, probabilities
lower than 0.1 indicate that the contraction to the variable is larger.

Three factors emerge from Table 3. First, the response of the Federal funds rate, relative to
the response of the shadow rate, is more persistent both during and following the ZLB period.
Second, models using the shadow rate suggest that inflation is statistically less sensitive to
monetary policy shocks from 2009 to 2017. Thirdly, during QE2, Operation Twist, and QE3,
the contraction in GDP with respect to monetary policy shocks is relatively more subdued when
using the shadow rate6.

Table 3: Assessing Statistical Differences in the Transmission of Monetary Policy
Shocks throughout and after the Zero Lower Bound Period. The Federal Funds
Rate vs. the Shadow Rate
This table reports the probability that the four quarter accumulated response of variable x = {yt, πt, rt =
{it, ist}} with respect to a monetary policy shock, from the TVP VAR model where the short-term interest
rate is the Federal funds rate, IRFMP,4,r=it

x,T , is greater than the four quarter accumulated response of
variable x, with respect to a monetary policy shock, from the TVP VAR model using the shadow rate of
Wu and Xia (2016) as a proxy for the short-term interest rate for a given time period T , IRFMP,4,r=ist

x,T .
Therefore: Pr

(
IRFMP,4,r=it

x,T > IRFMP,4,r=ist
x,T

)
. A statistical difference is observed when the probability

is less (greater) than 0.1 (0.9). A value lower (greater) than 0.1 (0.9) implies that the IRF implied by
the TVP VAR using the Federal funds rate (shadow rate) in time period T is smaller (larger) than that
implied by the TVP VAR using the shadow rate (Federal funds rate).

x= yt πt rt

Pr
(
IRFMP,4,r=it

x,2009Q2 > IRFMP,4,r=ist
x,2009Q2

)
0.88 0.99 1.00

Pr
(
IRFMP,4,r=it

x,2011Q1 > IRFMP,4,r=ist
x,2011Q1

)
0.97 0.99 0.95

Pr
(
IRFMP,4,r=it

x,2012Q2 > IRFMP,4,r=ist
x,2012Q2

)
0.99 1.00 0.83

Pr
(
IRFMP,4,r=it

x,2013Q2 > IRFMP,4,r=ist
x,2013Q2

)
1.00 1.00 0.80

Pr
(
IRFMP,4,r=it

x,2017Q4 > IRFMP,4,r=ist
x,2017Q4

)
0.85 0.96 0.97

To explore the economic importance of monetary policy shocks, frequency domain structural
variance decompositions of US macroeconomic variables are computed; details of the procedure
are provided in the Appendix. Figure 2 plots the posterior median and 80% highest posterior
density intervals of the proportion of variance of US macroeconomic variables attributable
to monetary policy shocks. From density intervals, there are negligible statistical differences
between models using the Federal funds rate and shadow rate7.

6Note that these results hold when examining 8, 12, and 20 quarter accumulated responses.
7It is worth noting here that a feature of these class of models are large error bands. However, our variance

decompositions are consistent with Benati and Mumtaz (2007) and Benati (2008), in that monetary policy shocks
play a negligible role in the Great Moderation.
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However, there are economically significant differences from posterior median estimates over
the ZLB period. Specifically, during QE2 the proportion of variance in GDP growth explained
by monetary policy shocks using the shadow rate is 24% which is some 6% higher than that
implied by the model using the Federal funds rate. During the very same period, expectedly,
the percent of variance explained by monetary policy shocks of the shadow rate is 24.5%; 10%
higher than the percent of variance explained by monetary policy shocks of the Federal Funds
rate. Furthermore, in 2015Q4 as the Federal Reserve announces rises in the short-term interest
rate, the proportion of inflation variance explained by monetary policy shocks from the model
using the shadow rate is double that of the model using the Federal funds rate.

On the whole, these results indicate that models using short-term interest rates that are
subject to a binding ZLB constraint overstates the transmission of monetary policy shocks
when the constraint binds. The analysis presented in Figure 1 and Table 3 imply, from both a
statistical and economic perspective, significant differences when replacing the Federal funds rate
with its shadow rate alternative. Furthermore, the variance decompositions reveal economically
meaningful differences in the importance of monetary policy shocks. The increased proportion
of variance explained by monetary policy shocks from the TVP VAR using the shadow rate
highlights that unconventional monetary policies can be effective tools in response to deep
recession. Taken together these results provide further substance to those in Wu and Xia
(2016) whilst also demonstrating empirical validation of the theoretical findings in Wu and
Zhang (2019b).
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Figure 2: Frequency Domain Structural Variance Decomposition: The Importance
of Monetary Policy Shocks from 1976Q3–2017Q4
Notes: This figure plots the posterior median and 80% point-wise equal-tailed probability bands of
the percent of variance explained by monetary policy shocks for real GDP growth, yt; Consumer price
inflation, πt; and the short term interest rate, rt = {it, ist}, implied by TVP VARs using the Federal
funds rate, rt = it; and the shadow rate, rt = ist, from 1976Q3–2017Q4. Grey bars indicate NBER
recession dates.
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3.4 Dynamic Taylor Rules

Wu and Zhang (2019b) demonstrate theoretically that the impact of unconventional monetary
policies for the economy is identical to a negative shadow rate. From an empirical perspective,
they show the Taylor rule is a good description of shadow rate dynamics8. In the context of
this study, the time-varying Taylor rule and shadow rate Taylor rule are computed by mapping
from the reduced-form model to the structural model using algorithm 1 in Arias et al. (2018)
and can be thought of as an extension on the empirical illustration in Wu and Zhang (2019b).
In particular this exercise allows parameters, and volatilities to change over time. In doing so,
this analysis assesses the dynamic monetary policy response to economic activity and inflation
during the ZLB period whilst accounting for unconventional monetary policies in a structural
multivariate model.

Figures 3 and 4 focus on the impact and long-run coefficients implied by the Taylor rule
from each respective model. Figure 3 shows the impact coefficients, pr,y

t , pr,π
t thereby tracking

the contemporaneous responses of the Federal funds rate and shadow rate to movements in
GDP and inflation. Figure 4 plots the long-run coefficients, computed in the same manner as
Belongia and Ireland (2016), that capture the change in the Federal funds/shadow rate following
a permanent one percentage point increase in GDP growth or inflation.

It is clear there are substantial differences in the impact and long-run coefficients associated
to GDP growth implied by the Taylor rule and shadow rate Taylor rule during, and following,
the ZLB period. The contemporaneous response of the shadow rate to movements in GDP
throughout 2009–2015, from posterior median estimates, fluctuates around 0.4. Comparing this
with the (posterior median) contemporaneous response of the Federal funds rate over the same
period at around 0.1. From posterior median estimates, there is also a clear divergence in the
long-run coefficients associated to GDP from the Taylor rule and shadow rate Taylor rule from
2009–20179. During 2014, the impact of a permanent one percentage point increase in GDP
growth yields an increase in the shadow rate of 4%; double that of the increase in the Federal
funds rate. These differences in structural impact and long-run coefficients associated to GDP
growth are attributable to the fact that the Federal funds rate cannot summarise expansionary
monetary policy under a binding ZLB constraint.

It is also evident that there are negligible differences in the impact and long-run coefficients
for inflation implied by the Taylor rule and shadow rate Taylor rule. Consistent with Belongia
and Ireland (2016), the impact and long-run coefficients on inflation from both models exhibit
a gradual downward trend, which becomes particularly prominent when the Fed funds rate hits
the ZLB. In both cases, there is a surge in the impact and long-run coefficients, in 2015Q4,
when the Federal Reserve started to move away from the ZLB. The evolution of the impact
and long-run coefficients associated to inflation reflect a combination of two factors. First is
relatively low inflation rates throughout the ZLB period which suggests the Federal Reserve
had no need to alter policy stance through (unconventional) monetary policies as a result of

8Note that Wu and Zhang (2019b) estimate the shadow rate Taylor rule using the output gap and inflation.
The subsequent section reports estimates using the output gap as a robustness exercise.

9The differences begin to appear following the burst of the dot-com bubble in 2001. This could arise due
to the fact that estimates are conditional on the full sample, therefore the Gibbs sampler in this case could be
mixing the future and past around this period such that the break is nuanced.

13



1977 1997 2017

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
%

pr,y
t

1977 1997 2017

0

0.5

1

1.5

2

2.5

%

pr,π
t

Posterior median TVP VAR r = it
Posterior median TVP VAR r = is

t

Figure 3: Structural Impact Coefficients Implied by Structural Monetary Policy
Rules from 1976Q3–2017Q4
Notes: This figure plots the posterior median and 80% point-wise equal-tailed probability bands of the
structural impact coefficients associated to real GDP growth, pr,y

t and Consumer price inflation, pr,π
t .

In each model, the short-term interest rate is proxied by either the Federal funds rate, rt = it, or the
shadow rate, rt = ist. Grey bars indicate NBER recession dates.
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Federal funds rate, rt = it, or the shadow rate, rt = ist. Grey bars indicate NBER recession dates.

14



imminent inflationary pressures. Second, the Federal Reserve is prioritising the facilitation of,
or hindering further declines to, GDP growth in response to the 2008 recession.

Table 4: Assessing Statistical Differences in Taylor Rules throughout and Following
the Zero Lower Bound Period. The Federal Funds Rate vs. the Shadow Rate
Panel A of this table reports the probability that the structural impact coefficient associated to variable
x = {yt, πt, rt = {it, ist}}, within the structural monetary policy rule from the TVP VAR model
where the short-term interest rate is the Federal funds rate at period T , prx,r=it

T , is greater than the
structural impact coefficient associated to variable x, within the structural monetary policy rule from
the TVP VAR model using the shadow rate of Wu and Xia (2016) as a proxy for the short-term interest
rate at period T , prx,r=ist

T . Therefore: Pr
(
prx,r=it
T > prx,r=ist

T

)
. Panel B of this table reports analogous

statistics, but for the long-run coefficients associated to variable x, LRCrx
T , implied by the structural

monetary policy rules from TVP VARs using the Federal funds rate and shadow rate respectively.
Therefore: Pr

(
LRCrx,r=it

T > LRCrx,r=ist
T

)
. A statistical difference is observed when the probability is less

(greater) than 0.1 (0.9). A value lower (greater) than 0.1 (0.9) implies that the structural impact/long-
run coefficient implied by the TVP VAR using the Federal funds rate (shadow rate) in time period T is
less than that implied by the TVP VAR using the shadow rate (Federal funds rate).

A: Structural Impact Coefficients
x= yt πt

Pr
(
prx,r=it

2009Q2 > prx,r=ist
2009Q2

)
0.25 0.37

Pr
(
prx,r=it

2011Q1 > prx,r=ist
2011Q1

)
0.12 0.26

Pr
(
prx,r=it

2012Q2 > prx,r=ist
2012Q2

)
0.04 0.60

Pr
(
prx,r=it

2013Q2 > prx,r=ist
2013Q2

)
0.02 0.58

Pr
(
prx,r=it

2017Q4 > prx,r=ist
2017Q4

)
0.33 0.42

B: Long Run Coefficients
x= yt πt

Pr
(
LRCrx,r=it

2009Q2 > LRCrx,r=ist
2009Q2

)
0.29 0.54

Pr
(
LRCrx,r=it

2011Q1 > LRCrx,r=ist
2011Q1

)
0.28 0.50

Pr
(
LRCrx,r=it

2012Q2 > LRCrx,r=ist
2012Q2

)
0.23 0.56

Pr
(
LRCrx,r=it

2013Q2 > LRCrx,r=ist
2013Q2

)
0.23 0.54

Pr
(
LRCrx,r=it

2017Q4 > LRCrx,r=ist
2017Q4

)
0.35 0.56

Having established the economic significance of the differences between the Taylor rule and
shadow rate Taylor rule, Table 4 assesses the statistical credibility of differences between mon-
etary policy rules from both models during and following the ZLB period. Panel A reports the
probability that the impact coefficients associated to GDP growth and inflation from the con-
ventional Taylor rule during period T={2009Q2, 2011Q1, 2012Q2, 2013Q2, 2017Q4} is greater
than the analogous impact coefficient implied by the shadow rate Taylor rule. Therefore, the
probability that the structural impact coefficient of variable x = {yt, πt} during time T implied
by the Taylor rule is greater than the comparable impact coefficient implied by the shadow rate
Taylor rule is denoted as Pr

(
prx,r=it
T > prx,r=ist

T

)
. Panel B reports the same probabilities, but

for the long-run coefficients, LRC, denoted as Pr
(
LRCrx,r=it

T > LRCrx,r=ist
T

)
. Statistical differ-

ences emerge in the impact coefficients associated to GDP growth throughout Operation Twist
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and QE3. Specifically during Operation Twist Pr
(
pry,r=it

2012Q2 > pry,r=ist
2012Q2

)
=0.04, and during QE3,

Pr
(
pry,r=it

2013Q2 > pry,r=ist
2013Q2

)
=0.0210.

In general, the conventional Taylor rules and shadow rate Taylor rules provide a clear depic-
tion of the fact that the Federal funds rates harbours no information regarding (expansionary)
monetary policy stance under a binding ZLB constraint. The shadow rate Taylor rule however,
clearly captures expansionary unconventional monetary policies implemented in response to the
Great Recession whilst retaining the characteristics of the conventional Taylor rule prior to the
ZLB era. From both an economic and statistical perspective, the structural impact coefficients
and long-run coefficients throughout the ZLB period, suggest that the Federal Reserve placed a
larger emphasis on economic activity relative to inflation; something that is absent when looking
at the conventional Taylor rule.

To provide an idea of how unconventional monetary policies, and monetary policy stance,
affect realised the performance of the economy in response to the Great Recession, three coun-
terfactual experiments are conducted. First, throughout the ZLB period, the shadow rate is
restricted to be greater than or equal to zero. This experiment essentially shuts off the imple-
mentation of unconventional monetary policies11 Panel A of Figure 5 shows the implied path of
GDP growth, inflation and the shadow rate in the absence of unconventional monetary policies,
along with the model implied history of each time series. The counterfactual path of GDP
growth implies the recovery would have been far more sluggish had there been no implemen-
tation of asset purchase facilities. In particular, in the quarter following QE1, the implied
counterfactual for GDP is 1.14 percentage points lower than the actual simulated history. This
exercise also suggests that inflation would have been substantially lower in the absence of QE.
For instance during QE3 in 2014Q2, the implied rate of inflation is 1.29% lower than the actual
simulated path.

The second additional counterfactual experiment assumes a different systematic component
of the shadow rate Taylor rule throughout the ZLB period. Specifically, this counterfactual
predicts outcomes for GDP growth, inflation, and the shadow rate if the Federal Reserve stopped
considering inflation within their shadow rate Taylor rule following the 2008 recession. The final
experiment shuts of the reaction of the shadow rate Taylor Rule to movements in GDP growth.
Therefore the counterfactual reports the outcomes for US macroeconomic variables if the Federal
Reserve reacted only to lagged interest rates and inflation during the ZLB period.

Panels B and C plot the model implied history of US macroeconomic data, along with
the posterior median counterfactual paths under each respective scenario. From Panel B, it is
clear that if the Federal Reserve stopped considering inflation in their monetary policy rules
throughout the ZLB period, monetary policy would have been even more expansionary than

10To put these probabilities in the context of Cogley et al. (2010), these values imply that 96% and 98% of
the joint distribution lie above the 45◦ line; assuming the impact coefficient associated to GDP growth from the
Taylor rule is on the x-axis.

11In particular,the structural shocks of the model are manipulated such that the implied path of the shadow
rate cannot surpass the zero threshold. Therefore, this exercise is free from the criticisms of structural VAR based
policy counterfactuals of Sargent (1979). With regards the unconventional monetary policies, and following the
theoretical results in Wu and Zhang (2019b), the influence of a negative shadow rate is equivalent to that of
unconventional monetary policies. Therefore it can be perceived as a summary statistic for unconventional
monetary policy that is mapped into the interest rate domain. Thus, constraining the shadow rate to be ≥0 can
be thought of as an absence of QE and other asset purchase facilities.
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realised. The differences between realised GDP growth and the implied path, as expected,
are negligible. However, inflation would have been substantially lower during Operation Twist
and QE3 entering negative territory prior to the Federal Reserve tightening monetary policy in
2015Q4. Turning to Panel C, t is clear that, had the Federal Reserve considered only inflation in
their conduct of monetary policy, GDP growth volatility would have been notably larger during
the ZLB period. Furthermore, the implied path for inflation indicates a much sharper decline
than realised, followed by a stubborn recovery hitting the Fed’s target of 2% during Operation
Twist12.

Taken together, these policy counterfactuals provide three key findings. First, had there
been no asset purchase facilities the recovery of the US economy would have been substantially
hindered throughout 2009–2015. Second if the Federal Reserve placed no weight on inflation,
monetary policy would have been even more expansionary with little benefit in terms of GDP
growth and the risk of entering a deflationary phase in 2015. Third, had the Federal Reserve
placed no weight on output, the contraction in GDP growth would have been 1.5% larger in
absolute magnitude in 2008 followed by sustained volatility over the ZLB period.

These simulations link well with those in: i) Kapetanios et al. (2012), who show that QE1
may have had a (peak) effect of 1.5% on the level of UK real GDP; ii) Baumeister and Benati
(2013), who provide evidence that in the absence of QE1, US GDP growth reaches a trough
of -10% in 2009Q1; and iii) Eberly et al. (2020), who use a structural VAR that uses high
frequency jumps in asset prices around FOMC meetings as external instruments. Their results
show that unconventional policies support recovery, with earlier unconventional policy action
suggesting a faster recovery.

Overall, the comparison of conventional and shadow rate Taylor rules, and policy counter-
factuals further justify the theoretical results in Wu and Zhang (2019b) that the shadow rate
acts as a useful summary statistic to track unconventional monetary policies. These results go
further in quantifying how unconventional monetary policy evolved over the ZLB period; and
how economic fundamentals were influenced. Building on this, we can see that unconventional
monetary policies contribute not only to hindering contractions in output during periods of
recession, but also in stabilising price changes and GDP growth volatility during recovery. Ul-
timately, this highlights the empirical advantages of utilising shadow rates during an ultra-low
interest rate environment.

12Of course the latter two counterfactuals suffer from the Lucas Critique. However unlike the counterfactual
monetary policies presented in Sims and Zha (2006), the difference between actual (model implied in this case)
and counterfactual paths for US macroeconomic variables are not large enough to warrant disbelief (Benati and
Mumtaz, 2007). The only discernible difference is the implied and actual paths of the shadow rate in Panel B
of Figure 5. However, noting that interpretation of the shadow rate is a summary statistic for monetary policy
stance, it is entirely plausible that unconventional monetary policies could have been even more expansionary
should economic activity have warranted such a response.
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Figure 5: Counterfactual Simulations of Shadow Rate Taylor Rules
Notes: Panel A of this figure plots the model implied history for variable x = {yt, πt, rt = ist} (blue
lines) along with the counterfactual (implied) value (red lines) if there had been no monetary policy
shocks from 2008Q4 to 2015Q4, and assuming that the ZLB constraint binds. Essentially implying no
unconventional monetary policies were implemented. Panel B of this figure plots the model implied
history for macroeconomic variables along with the counterfactual (implied) value if the Federal Reserve
had stopped reacting to inflation in their structural monetary policy rule during the ZLB period. Panel
C plots the implied history for macroeconomic variables along with the counterfactual (implied) values if
the Federal Reserve stopped reacting to output in their structural monetary policy rule during the ZLB
period. Grey bars indicate NBER recession dates.
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3.5 Are there Differences in the Impact of Structural Shocks over the ZLB
Period?

The empirical analysis in Debortoli et al. (2019) suggests that unconventional monetary policies
have been highly effective at overcoming the issue of the ZLB. More specifically, their results
from a 4 variable TVP VAR yield negligible differences in identified structural shocks when
comparing average impulse response functions computed both prior to, and following, the 2008
recession13. The conjecture that an economy’s performance is similar, empirically, under a
binding and non-binding ZLB constraint is an emerging stream of literature.

Wu and Zhang (2019b) propose a New Keynesian model that includes a shadow rate to
capture unconventional monetary policies that generates the data consistent result that a neg-
ative supply shock is always contractionary. Similarly, Wu and Zhang (2019a) extend on this
by deducing an open-economy New Keynesian model with a shadow rate that overcomes the
anomaly that output and terms of trade respond to supply shocks in opposite directions under
a non-binding and binding ZLB constraint. Gaŕın et al. (2019) provides empirical tests of the
prediction from a New Keynesian model that positive supply shocks are less expansionary un-
der a binding ZLB constraint. Using utilisation-adjusted total factor productivity data, they
find that output and other measures relating to economic activity respond significantly more to
positive productivity shocks under a binding ZLB constraint; while expected inflation remains
similar across monetary regimes.

Furthermore, Sims and Wu (2020) show that QE and conventional monetary policy are
substituable in a New Keynesian model. This analysis shows that the Federal Reserve’s balance
sheet expansion provides stimulus equivalent to cutting the Federal funds rate to -2%. This
matches the empirical decline of the shadow rate (Wu and Xia, 2016) over the ZLB period.
Meanwhile, Sims and Wu (2021) deduce a model that allows for the analysis of QE, forward
guidance, and negative interest rate policies. They show such policies can all stimulate output
as much as conventional monetary policy.

To explore this issue in the context of this study, Figure 6 plots the posterior median, along
with the 90% highest posterior density intervals, of the difference in average impulse response
functions for GDP growth, inflation and the policy rate, rt = {it, ist}, with respect to all
identified structural shocks between the periods 2000Q1–2008Q4 and 2009Q1–2017Q4. Within
each graph are results stemming from the TVP VAR using rt = it (red lines), and rt = ist (black
lines). Panels A, B, and C, refer to supply, demand, and monetary policy shocks respectively.
Statistically credible differences within these plots occur when the highest posterior density
intervals do not include 0.

It is clear that the response of the Federal funds rate and shadow rate appear to be more
responsive to both demand and supply shocks prior to the 2008 recession. At first glance, this
looks to contradict the findings in Debortoli et al. (2019) and Gaŕın et al. (2019). However, one
should expect differences from the model using the Federal funds rate due to the fact that it
contains no information regarding monetary policy stance. Therefore during the ZLB period the

13It should be noted here that Debortoli et al. (2019) do not include the Federal funds rate within their
estimated TVP VAR models, instead they use the long-term government bond yield. Also note that they provide
calibrations from theoretical models they reconcile with Wu and Zhang (2019b) as well as exercises analysing
macroeconomic volatility.
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response should be less sensitive to these shocks. Regarding the shadow rate, it is unsurprising to
see that the shadow rate is less responsive to shocks under a binding ZLB constraint. Intuitively
one would expect that any positive demand or supply shocks would have been welcomed by the
Federal Reserve following the 2008 recession in order to facilitate expansion.

The difference in average impulse response functions of GDP growth and inflation with
respect to both demand and supply shocks from the model using the shadow rate and Federal
funds rate, on the whole, report no statistically credible or economically meaningful differences in
the transmission of these shocks prior to and during the ZLB period. It is worth mentioning here
that supply shocks in the shadow rate TVP VAR appear to be more persistent for inflation prior
to the ZLB period. However, noting that structural analysis is carried out conditional on the
current state of the economy and that the stochastic volatility of supply shocks is substantially
larger prior to the ZLB period, this can be attributable to the fact that the size and magnitude
of supply shocks is smaller during the ZLB period and that inflation was lower following the
2008 recession. Therefore, we cannot conclude that the persistence of supply shocks is solely a
result of the ZLB.

Perhaps the most interesting result is that the average response of GDP growth and inflation
to monetary policy shocks, when using the shadow rate, has not changed throughout the period
2000-2017; something that is completely contradicted from the model using the Federal funds
rate. The stark increase in the relative sensitivity of GDP growth and inflation with respect to
monetary policy shocks in the model using the Federal funds rate is a result of the high degree of
posterior uncertainty in impulse response functions we observe in Figure 1. This suggests that,
when accounting for unconventional monetary policy stance under a binding ZLB constraint
using a shadow rate, the sensitivity of US macroeconomic fundamentals to monetary policy
shocks has indeed remained similar over the last 17 years of the sample.

Table 5 assesses the statistical differences in the economic importance of supply and demand
shocks throughout the binding ZLB constraint. Panel A reports the probability that the pro-
portion of variance of variable x = {yt, πt, rt = {it, ist}}, during time q = {2006Q4, 2017Q4},
explained by supply shocks, SVDSUP

x,q , is greater than the proportion of variance of variable x
explained by a supply shocks in time j = {2009Q2, 2011Q1, 2012Q2, 2013Q2}, SVDSUP

x,j . Panel
B of this table reports analogous probabilities but for the proportion of variance explained by
demand non-policy shocks. Note that statistical differences are observed when the probability is
less (greater) than 0.1 (0.9). A value lower (greater) than 0.1 (0.9) implies that the proportion
of variance explained, and therefore the overall economic importance, during the pre or post
zero lower bound period is smaller (larger) than when the ZLB constraint is binding. As is
clear there is no evidence in favour of statistical differences in the economic importance of these
shocks throughout the ZLB period.

In general, these exercises are coherent with Debortoli et al. (2019) and Gaŕın et al. (2019).
These results go further by providing empirical confirmation of their New Keynesian model with
a shadow rate not only in terms of the transmission mechanism, but also terms of the economic
importance of supply and demand non policy shocks. The novel implication suggests that con-
ventional and unconventional monetary policies may work in mutually exclusive harmony under
a binding ZLB constraint. These results provide empirical support of the theoretical literature
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concerning unconventional monetary policies (see e.g. Wu and Zhang, 2019b,a; Sims and Wu,
2020, 2021). Consistent with conclusions drawn from Taylor rules and policy counterfactuals,
this analysis provides further substance that the shadow rate is a useful summary statistic for
unconventional monetary policies.
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Figure 6: Difference in Average Impulse Response Functions: Analysing the Impact
of Shocks Pre and Post Zero Lower Bound
Notes: Panel A of this Figure plots the posterior median and 90% highest posterior density intervals
of the difference in average impulse response functions from 2000Q1–2008Q4 and 2009Q1–2017Q4 for
GDP growth, yt; inflation, πt; and the short-term interest rate, rt = {it, ist} with it denoting the Federal
funds rate and ist denoting the spliced Federal funds rate with the shadow rate (Wu and Xia, 2016) with
respect to a supply shock. Panels B and C report the same plots, but with respect to a demand and
monetary policy shock respectively.
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Table 5: Assessing the Statistical Differences in the Economic Importance of Supply and Demand Non-Policy Shocks over the
Zero Lower Bound Period.
Notes: Panel A of this table report the probability that percent of variance attributable to supply shocks of variable x = {yt, πt, rt = {it, ist}}, during time
q = {2006Q4, 2017Q4}, SVDSUP

x,q , is greater than the percent of variance explained by supply shocks for x in time j = {2009Q2, 2011Q1, 2012Q2, 2013Q2},
SVDSUP,4

x,j . Therefore, Pr
(

SVDSUP
x,2006Q4 > SVDSUP

x,2009Q2

)
. Panels Al and A2 report these statistics from the TVP VAR using the Federal funds rate and shadow

rate respectively. Panel B of this table reports analogous probabilities but for the percent of variance explained by demand non-policy shocks. Here Panels B1
and B2 refer to models using the Federal funds rate and shadow rate respectively. A statistical difference is observed when the probability is less (greater) than
0.1 (0.9). A value lower (greater) than 0.1 (0.9) implies that the percent variance explained by the shock during the pre or post zero lower bound period is smaller
(larger) than when the constraint is binding.

A1: Supply Shocks, models using Federal funds rate B1: Demand Shocks, models using Federal funds rate
x= yt πt rt x= yt πt rt

Pr
(
SVDSUP,rt=it

x,2006Q4 > SVDSUP,rt=it
x,2009Q2

)
0.62 0.58 0.47 Pr

(
SVDDEM,rt=it

x,2006Q4 > SVDDEM,rt=it
x,2009Q2

)
0.43 0.42 0.55

Pr
(
SVDSUP,rt=it

x,2006Q4 > SVDSUP,rt=it
x,2011Q1

)
0.46 0.45 0.29 Pr

(
SVDDEM,rt=it

x,2006Q4 > SVDDEM,rt=it
x,2011Q1

)
0.60 0.70 0.69

Pr
(
SVDSUP,rt=it

x,2006Q4 > SVDSUP,rt=it
x,2012Q2

)
0.41 0.43 0.25 Pr

(
SVDDEM,rt=it

x,2006Q4 > SVDDEM,rt=it
x,2012Q2

)
0.58 0.61 0.67

Pr
(
SVDSUP,rt=it

x,2006Q4 > SVDSUP,rt=it
x,2013Q2

)
0.39 0.40 0.26 Pr

(
SVDDEM,rt=it

x,2006Q4 > SVDDEM,rt=it
x,2013Q2

)
0.60 0.62 0.69

Pr
(
SVDSUP,rt=it

x,2017Q4 > SVDSUP,rt=it
x,2009Q2

)
0.71 0.73 0.59 Pr

(
SVDDEM,rt=it

x,2017Q4 > SVDDEM,rt=it
x,2009Q2

)
0.29 0.31 0.41

Pr
(
SVDSUP,rt=it

x,2017Q4 > SVDSUP,rt=it
x,2011Q1

)
0.57 0.60 0.42 Pr

(
SVDDEM,rt=it

x,2017Q4 > SVDDEM,rt=it
x,2011Q1

)
0.47 0.54 0.55

Pr
(
SVDSUP,rt=it

x,2017Q4 > SVDSUP,rt=it
x,2012Q2

)
0.50 0.60 0.40 Pr

(
SVDDEM,rt=it

x,2017Q4 > SVDDEM,rt=it
x,2012Q2

)
0.43 0.46 0.51

Pr
(
SVDSUP,rt=it

x,2017Q4 > SVDSUP,rt=it
x,2013Q2

)
0.43 0.55 0.37 Pr

(
SVDDEM,rt=it

x,2017Q4 > SVDDEM,rt=it
x,2013Q2

)
0.45 0.45 0.54

A2: Supply Shocks, models using shadow rate B1: Demand Shocks, models using shadow rate
x= yt πt rt x= yt πt rt

Pr
(
SVDSUP,rt=ist

x,2006Q4 > SVDSUP,rt=ist
x,2009Q2

)
0.59 0.55 0.53 Pr

(
SVDDEM,rt=ist

x,2006Q4 > SVDDEM,rt=ist
x,2009Q2

)
0.43 0.39 0.47

Pr
(
SVDSUP,rt=ist

x,2006Q4 > SVDSUP,rt=ist
x,2011Q1

)
0.51 0.43 0.34 Pr

(
SVDDEM,rt=ist

x,2006Q4 > SVDDEM,rt=ist
x,2011Q1

)
0.53 0.58 0.66

Pr
(
SVDSUP,rt=ist

x,2006Q4 > SVDSUP,rt=ist
x,2012Q2

)
0.48 0.33 0.21 Pr

(
SVDDEM,rt=ist

x,2006Q4 > SVDDEM,rt=ist
x,2012Q2

)
0.61 0.77 0.79

Pr
(
SVDSUP,rt=ist

x,2006Q4 > SVDSUP,rt=ist
x,2013Q2

)
0.41 0.27 0.25 Pr

(
SVDDEM,rt=ist

x,2006Q4 > SVDDEM,rt=ist
x,2013Q2

)
0.72 0.78 0.80

Pr
(
SVDSUP,rt=ist

x,2017Q4 > SVDSUP,rt=ist
x,2009Q2

)
0.63 0.65 0.65 Pr

(
SVDDEM,rt=ist

x,2017Q4 > SVDDEM,rt=ist
x,2009Q2

)
0.35 0.33 0.37

Pr
(
SVDSUP,rt=ist

x,2017Q4 > SVDSUP,rt=ist
x,2011Q1

)
0.57 0.60 0.45 Pr

(
SVDDEM,rt=ist

x,2017Q4 > SVDDEM,rt=ist
x,2011Q1

)
0.41 0.45 0.51

Pr
(
SVDSUP,rt=ist

x,2017Q4 > SVDSUP,rt=ist
x,2012Q2

)
0.53 0.45 0.33 Pr

(
SVDDEM,rt=ist

x,2017Q4 > SVDDEM,rt=ist
x,2012Q2

)
0.46 0.64 0.68

Pr
(
SVDSUP,rt=ist

x,2017Q4 > SVDSUP,rt=ist
x,2013Q2

)
0.50 0.41 0.36 Pr

(
SVDDEM,rt=ist

x,2017Q4 > SVDDEM,rt=ist
x,2013Q2

)
0.54 0.64 0.70
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4 Robustness Analysis

It is necessary to assess how sensitive the preceding results to alternatives. GDP growth and
CPI inflation in the baseline specification are exchanged for the output gap and GDP deflator
inflation respectively. The output gap is the difference between the log of GDP and the log of
potential GDP, and inflation is the annual growth in the GDP deflator; a specification similar
to Belongia and Ireland (2016) and Wu and Zhang (2019b).

Figures 7 and 8 report the structural impact and long-run coefficients from the structural
monetary policy rules from this alternative specification. Table 6 assesses statistical differences
in the structural impact and long-run coefficients between these models during and following the
ZLB period. Evidently these results are qualitatively similar to those in the baseline analysis.
In particular, the structural impact coefficients associated to output in the shadow rate Taylor
rule are statistically larger than the analogous coefficients from the conventional Taylor rule.
Further, the long-run coefficient associated to GDP growth in the shadow rate Taylor rule is on
average double that of the long-run coefficient stemming from the conventional Taylor rule.

Figure 9 reports the same policy counterfactuals from the TVP VAR using alternative
measures of economic activity and inflation as in Figure 5. Notably, the counterfactual that
reacts only to output during the ZLB period results in higher rates of inflation for no benefit in
closing the output gap. Further, the counterfactual that imposes no reaction to output suggests
the decline in the output gap would have been 2% larger (in absolute terms) in 2008 followed
by a stubborn recovery and lower rates of inflation. These results are coherent with the baseline
specification and conclusions remain the same.

In the Supplementary Appendix, two additional robustness checks that increase the in-
formation set are carried out. First, a macro-financial factor stemming from a subset of the
FRED-MD database (McCracken and Ng, 2016) is included in the TVP VAR models. The
second specification includes a measure of money growth resting on a transaction demand for
money model (Benati, 2019). Conclusions hold after increasing the information set and the
results are qualitatively similar to those presented in the main text.
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Figure 7: Structural Impact Coefficients Implied by Structural Monetary Policy
Rules from 1976Q3–2017Q4
Notes: This figure plots the posterior median and 80% point-wise equal-tailed probability bands of the
structural impact coefficients associated to real GDP growth, pr,gap

t and Consumer price inflation, pr,πdef
t .

In each model, the short-term interest rate is proxied by either the Federal funds rate, rt = it, or the
shadow rate, rt = ist. Grey bars indicate NBER recession dates.
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Figure 8: Long-run Coefficients Implied by Structural Monetary Policy Rules from
1976Q3–2017Q4
Notes: This figure plots the posterior median and 80% point-wise equal-tailed probability bands of the
long-run coefficients associated to real GDP growth, gapt and Consumer price inflation, πdef

t as implied
by the structural monetary policy rule. In each model, the short-term interest rate is proxied by either
the Federal funds rate, rt = it, or the shadow rate, rt = ist. Grey bars indicate NBER recession dates.

25



Table 6: Assessing Statistical Differences in Taylor Rules throughout and Following
the Zero Lower Bound Period. The Federal Funds Rate vs. the Shadow Rate
Panel A of this table reports the probability that the structural impact coefficient associated to variable
x = {gapt, πdef

t , rt = {it, ist}}, within the structural monetary policy rule from the TVP VAR model
where the short-term interest rate is the Federal funds rate at period T , prx,r=it

T , is greater than the
structural impact coefficient associated to variable x, within the structural monetary policy rule from
the TVP VAR model using the shadow rate of Wu and Xia (2016) as a proxy for the short-term interest
rate at period T , prx,r=ist

T . Therefore: Pr
(
prx,r=it
T > prx,r=ist

T

)
. Panel B of this table reports analogous

statistics, but for the long-run coefficients associated to variable x, LRCrx
T , implied by the structural

monetary policy rules from TVP VARs using the Federal funds rate and shadow rate respectively.
Therefore: Pr

(
LRCrx,r=it

T > LRCrx,r=ist
T

)
. A statistical difference is observed when the probability is less

(greater) than 0.1 (0.9). A value lower (greater) than 0.1 (0.9) implies that the structural impact/long-
run coefficient implied by the TVP VAR using the Federal funds rate (shadow rate) in time period T is
less than that implied by the TVP VAR using the shadow rate (Federal funds rate).

A: Structural Impact Coefficients
x= gapt πdef

t

Pr
(
prx,r=it

2009Q2 > prx,r=ist
2009Q2

)
0.37 0.34

Pr
(
prx,r=it

2011Q1 > prx,r=ist
2011Q1

)
0.18 0.21

Pr
(
prx,r=it

2012Q2 > prx,r=ist
2012Q2

)
0.09 0.33

Pr
(
prx,r=it

2013Q2 > prx,r=ist
2013Q2

)
0.03 0.25

Pr
(
prx,r=it

2017Q4 > prx,r=ist
2017Q4

)
0.40 0.42

B: Long Run Coefficients
x= yt πt

Pr
(
LRCrx,r=it

2009Q2 > LRCrx,r=ist
2009Q2

)
0.31 0.49

Pr
(
LRCrx,r=it

2011Q1 > LRCrx,r=ist
2011Q1

)
0.22 0.42

Pr
(
LRCrx,r=it

2012Q2 > LRCrx,r=ist
2012Q2

)
0.21 0.47

Pr
(
LRCrx,r=it

2013Q2 > LRCrx,r=ist
2013Q2

)
0.16 0.41

Pr
(
LRCrx,r=it

2017Q4 > LRCrx,r=ist
2017Q4

)
0.38 0.55
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Figure 9: Counterfactual Simulations of Shadow Rate Taylor Rules
Notes: Panel A of this figure plots the model implied history for variable x = {yt, πt, rt = ist} (blue
lines) along with the counterfactual (implied) value (red lines) if there had been no monetary policy
shocks from 2008Q4 to 2015Q4, and assuming that the ZLB constraint binds. Essentially implying no
unconventional monetary policies were implemented. Panel B of this figure plots the model implied
history for macroeconomic variables along with the counterfactual (implied) value if the Federal Reserve
had stopped reacting to inflation in their structural monetary policy rule during the ZLB period. Panel
C plots the implied history for macroeconomic variables along with the counterfactual (implied) values if
the Federal Reserve stopped reacting to output in their structural monetary policy rule during the ZLB
period. Grey bars indicate NBER recession dates.
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5 Conclusion

The results in Wu and Zhang (2019b) suggest shadow rates are useful in overcoming issues in
macroeconomic models and formalise the notion that shadow rates are useful summary statistics
tracking monetary policy stance at the zero lower bound. This paper provides a comprehensive
empirical assessment on the evolution of unconventional monetary policies under a binding ZLB
constraint for the US economy. Following a demonstration that the Federal funds rate conveys
no information regarding monetary policy stance under a binding ZLB constraint, analysis
reveals that one can reconcile economically plausible results using shadow rates. Thus, the
analysis here delivers further support for Wu and Xia (2016) who recommend researchers and
policymakers use shadow rates in VAR models to account for monetary policy stance without
loss of historical time-series.

These results go further by quantifying monetary policy stance under a binding ZLB con-
straint in the form of shadow rate Taylor rules permitted to evolve over time. In particular,
they uncover a greater emphasis placed on output during QE2 and Operation Twist. Counter-
factual simulations suggest that unconventional monetary policies are a viable response to deep
recessions when nominal interest rates approach their ZLB. Specifically they indicate that had
the Fed placed no emphasis on output during the Great Recession, then the contraction of GDP
growth would have been 1.14% lower during QE1 followed by sustained increase in volatility;
as well as higher risk of entering a deflationary period during QE2 and Operation Twist.

The importance and practical use of shadow rates is further justified by showing no statistical
or economically meaningful differences in the transmission, or economic importance, of supply
and demand non-policy shocks over the ZLB period both before the 2008 recession and after
the Fed moves away from a binding ZLB constraint. These results provide strong support that
conventional and unconventional monetary policies can work in mutually exclusive harmony in
structural VAR models.

The immediate implication is that the Federal Reserve, and indeed other central banks,
should consider shadow rates as an effective summary of monetary policy stance under a binding
ZLB constraint. The ability of shadow rates under a binding zero lower bound constraint to
reconcile economically plausible results consistent with those of conventional monetary policy
highlight its practical use. A natural recommendation is that central banks use these results in
combination with other methods to analyse the impact of unconventional monetary policies.
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Supplementary Appendix (Not for Publication)

Plot of Economic Data
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Figure 10: US Macroeconomic data from 1956 to 2017
Notes: This figure plots US macroeconomic data from 1956Q1–2017Q4. The top left plot reports the
annual growth rate of GDP, yt; the top right plot shows the annual CPI inflation rate, πt; the bottom
left plot is the Federal funds rate, it; and the bottom right plot reports the shadow rate as proposed in
Wu and Xia (2016), ist. The orange area indicates the time series used to calibrate our models. Grey
bars indicate NBER recession dates.

Priors

Our prior specification involves estimating a Bayesian fixed coefficient VAR (BVAR) model
over the training sample. The priors imposed on this BVAR model combine the traditional
Minnesota prior of Doan et al. (1984) and Litterman (1986) on the coefficient matrices with an
inverse-Wishart prior on the BVAR’s covariance matrix. In our specification, the prior mean on
the coefficient matrix sets all elements equal zero, except those corresponding to the own first lag
of each dependent variable which are set to 0.9. This imposes the prior belief that our variables
exhibit persistence whilst simultaneously ensuring shrinkage of the other VAR coefficients to
zero. The prior variance of the coefficient matrix is set similar to Litterman (1986). Our prior
for the BVAR’s covariance matrix follows an inverse-Wishart distribution with the prior scale
matrix and degrees of freedom set to an N-dimensional identity matrix and 1+N respectively.

We estimate the BVAR using a standard Gibbs sampler. For the sake of brevity, we do
not explicitly outline our algorithm since it is well documented; see e.g. Koop and Korobilis
(2010). Our alternative prior specification essentially replaces the conventional Cogley and
Sargent (2005) prior with the posterior means from the draws of an estimated BVAR over the
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training sample

B̄BVAR = 1
M

M∑
i=1

Bi, (12)

V(B)BVAR = 1
M

M∑
i=1

V(Bi), (13)

Σ̄BVAR = 1
M

M∑
i=1

Σi (14)

respectively. Here M denotes the number of saved draws from the estimated BVAR which we
set to 20,000. Bi and V(Bi) denote the ith draw of the coefficient matrix and the variance of
the coefficient matrix respectively. Σi denotes the ith draw of the BVAR’s covariance matrix.
From these estimates, the initial conditions of the time-varying coefficient models, B0, a0, h0

are Normal and independent of one another, and the distributions of the hyperparameters. We
set

B0 v N
[
B̄BVAR, 4 ·V(B)BVAR

]
(15)

for a0, h0, let Σ̄BVAR be the posterior median of the estimated covariance matrix of the
residuals from the time–invariant BVAR. Let C be the lower–triangular Choleski factor such
that CC ′ = Σ̄BVAR. We then set

ln h0 v N(lnµ0, 10× I3) (16)

where µ0 collects the logarithms of the squared elements along the diagonal of C. We divide
each column of C by the corresponding element on the diagonal; call this matrix C̃. We then
set

a0 v N
[
ã0, Ṽ(ã0)

]
(17)

with ã0 ≡ [ã0,11, ã0,21, ã0,31]′ which is a vector collecting all the elements below the diagonal of
C̃−1. We assume Ṽ(ã0) is diagonal with each element equal to 10 times the absolute value of
the corresponding element of ã0. This is an arbitrary prior but correctly scales the variance of
each element of a0 to account for their respective magnitudes.

For the time-varying coefficient model assuming Qt = Q, Q is set to follow an inverse–
Wishart distribution,

Q v IW (Q−1,T0) (18)

where Q = (1+dim(Bt))·V(B̄BVAR)·3.4×10−4. The prior degrees of freedom, (1+dim(Bt)), are
the minimum allowed for the prior to be proper. Our choice of scaling parameter of 3.4×10−4 is
consistent with Cogley and Sargent (2005). We have also estimated our models using different
priors, we allowed for a more restrictive scaling parameter of 1.0 × 10−4 and have also set
the degrees of freedom to be the length of the training sample; in our case this is 80. The
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scaling parameter essentially sets the amount of drift within the Bt matrices. The results and
conclusions presented within the main body are robust to changing the value of the scaling
parameter, and the prior degrees of freedom imposed.

For the time-varying coefficient model assuming Qt is diagonal where the elements follow
a geometric random walk, let CV(B)BVAR

be the lower-triangular Choleski factor such that
CV(B)BVAR

C
′

V(B)BVAR
= 3.4× 10−4V(B)BVAR. We then set

ln q0 v N [lnµq0,0, 10× I3] (19)

with lnµq0,0 collecting the logarithmic squared diagonal elements of 3.4× 10−4V(B)BVAR. The
variances of these stochastic volatility innovations follow an inverse-Gamma distribution for the
elements of Zq,

Zq,i,i v IG(10−4

2 ,
1
2) (20)

The blocks of S are also assumed to follow inverse–Wishart distributions with prior degrees
of freedom equal to the minimum allowed (i.e. 1 + dim(Si)).

S1 v IW (S−1
1 , 2) (21)

S2 v IW (S−1
2 , 3) (22)

(23)

we set S1, S2 in accordance with ã0 such that S1 = 10−3×|ã0,11|, S2 = 10−3×diag([|ã0,21|, |ã0,31|]′).
This calibration is consistent with setting S1, S2 to 10−4 times the corresponding diagonal block
of Ṽ(ã0). The variances for the stochastic volatility innovations, as in Cogley and Sargent (2005),
follow an inverse–Gamma distribution for the elements of Zh,

Zh,i,i v IG(10−4

2 ,
1
2) (24)

Posterior Simulation

In order to simulate the posterior distribution of the hyperparameters and states, conditional
on the data, we implement the following MCMC that combines elements from Primiceri (2005)
and Cogley and Sargent (2005).

1) Draw elements of Bt Conditional on YT , aT and HT , the observation equation (1) is
linear with Gaussian innovations with a known covariance matrix. Factoring the density
of Bt, p(Bt) in the following manner

p(BT |yT ,AT ,HT , V ) = p(BT |YT ,AT ,HT ,V)
T−1∏
t=1

p(Bt|Bt+1,Yt,AT ,HT ,V) (25)

the Kalman filter recursions pin down the first element on the right hand side of the above;
p(BT |Y T ,AT ,HT ,V) v N(BT , PT ), with PT being the precision matrix of BT from the
Kalman filter. The remaining elements in the factorisation are obtained via backward
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recursions as in Cogley and Sargent (2005). Since Bt is conditionally Normal

Bt|t+1 = Pt|tP
−1
t+1|t(Bt+1 −Bt) (26)

Pt|t+1 = Pt|t − Pt|tP−1
t+1|tPt|t (27)

which yields, for every t from T−1 to 1, the remaining elements in the observation equation
(1). More precisely, the backward recursion begins with a draw, B̃T from N(BT , PT ).
Conditional on B̃T , the above produces BT−1|T and PT−1|T . This permits drawing B̃T−1

from N(BT−1|T , PT−1|T ) until t=1.

2) Drawing elements of at Conditional on YT , BT and HT we follow Primiceri (2005) and
note that (1) can be written as

AtỸt ≡ At(Yt −X′tBt) = Atet ≡ vt (28)

Var(vt) = Ht (29)

with Ỹt ≡ [Ỹ1,t, Ỹ2,t, Ỹ3,t]
′ and

Ỹ1,t = v1,t (30)

Ỹ2,t = −a21,tỸ1,t + v2,t (31)

Ỹ3,t = −a31,tỸ1,t − a32,tỸ2,t + v3,t (32)

(33)

These observation equations and the state equation permit drawing the elements of at
equation by equation using the same algorithm as above; assuming S is block diagonal.

3) Drawing elements of Ht Conditional on YT , BT and aT , the orthogonal innovations ut,
Var(et) = Ht are observable. Following Jacquier et al. (2002) the stochastic volatilities,
hi,t’s, are sampled element by element; Cogley and Sargent (2005) provide details in
Appendix B.2.5 of their paper.

4) Drawing the hyperparameters Conditional on Y T ,BT ,Ht and aT , the innovations in Bt, at
and hi,t’s are observable, which allows one to draw the elements of Qt = Q, S1, S2 and
the Zh,i,i from their respective distributions.

Note that for the model allowing for stochastic volatility in the innovation variances of the
time-varying coefficients, Qt being a diagonal matrix, we add an extra block into the MCMC
algorithm.

3a) Drawing the elements of Qt Conditional on Bt, the innovations ut = Bt − Bt−1, with
Var(ut) = Qt are observable. Therefore we sample the diagonal elements of Qt applying
the Jacquier et al. (2002) algorithm element by element. Following this, we can then
sample the Zq,i,i from the inverse-Gamma distribution in step 4 of the above algorithm.
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Computational Issues

Impulse Response Computation

To compute generalised impulse responses, I follow an algorithm similar to Koop et al. (1996).
The impulse response function is defined as the difference between two conditional expectations,
with and without exogenous shocks

IRFt+j = E [yt+j |vt, Ft]− E [yt+j |Ft] (34)

where yt+j contains contains forecasts of the endogenous variables at horizon j = 1, ..., 20, Ft
represents the current information set and vt is a vector of current disturbance terms. The infor-
mation set with which the forecasts are conditioned on, contains the actual values of the lagged
variables and a random draw from the joint posterior distribution of the model parameters and
hyperparameters. 500 random states of the economy are drawn and stochastically simulated
the future paths of the coefficient vector and components of the covariance matrix based on the
laws of motion 20 quarters into the future. In this manner, all potential sources of uncertainty
are accounted for that may stem from the innovations, variations in lagged coefficients, and
evolutions in the contemporaneous relations among the variables.

Following Arias et al. (2018) and Rubio-Ramirez et al. (2010), the time-varying structural
impact matrix, A0,t is calculated in the following manner. Given the current state of the
economy, take the eigenvalue-eigenvector decomposition of the VAR’s time-varying covariance
matrix at time t, Ωt = PtDtP′t . Draw an N × N matrix K from the N(0, 1) distribution and
compute the QR decomposition of K, normalising the elements of the diagonal matrix R to
be positive; the matrix Q is a matrix whose columns are orthogonal to one another. The time-
varying structural impact matrix is computed as A0,t = PtD

1
2
t Q′. Given A0,t, compute the

reduced-form innovations using et = A0,tvt, where vt contains the structural shocks obtained
by drawing from a standard Normal distribution. The impulse response are computed by taking
the difference between the evolution of the variables with and without a shock. In the former
case, the shock is set to vi,t + 1 and in the latter the vector is left unchanged. From this set of
impulse responses, only 50 of those that satisfy the whole set of sign restrictions are retained.
Once 50 sets of responses meet the sign restrictions, the mean responses of the endogenous
variables over the accepted simulations is taken.

Computing Frequency Domain Structural Variance Decompositions

Structural variance decompositions are computed following Benati and Mumtaz (2007), as the
ratio of the conditional and unconditional spectral densities of each variable. The unconditional
spectral density of variable x = {yt, πt, it, mt} at frequency ω is given by

fx,t|T (ω) = sx(IN − B̃t|T e
−iω)−1 A0,t|T (A0,t|T )′

2π
[
(IN − B̃t|T e

−iω)−1
]′
s′x (35)

where A0,t|T is the structural impact matrix of the fully identified model, B̃t|T are the time-
varying coefficient matrices excluding the constants, IN is a N -dimensional identity matrix, and
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sx is a row vector selecting the variable of interest. The conditional spectral density of variable
x = {yt, πt, it} is

f̄x,t|T (ω) = sx(IN − B̃t|T e
−iω)−1 Ã0,t|T (Ã0,t|T )′

2π
[
(IN − B̃t|T e

−iω)−1
]′
s′x (36)

where A0,t|T (A0,t|T )′ is replaced with Ã0,t|T (Ã0,t|T )′ which shuts off all structural shocks except
for the one of interest. It is not possible to uniquely identify the innovation variances of our
structural shocks. However, it is plausible to compute the TVP-VAR covariance matrix at each
point in time that results from setting one or more of the structural innovation variances to
zero. Therefore the contribution of identified structural shocks to variable x at frequency ω is
given by the ratio

f̄x,t|T (ω)
fx,t|T (ω) (37)

Additional Results

Increasing the Information Set

Results so far have relied on a small information set, thereby impacting the space spanned
by the structural computation. It is necessary to investigate whether baseline results hold in
light of increasing the information set14. To account for additional macro-financial variables, a
subset of the FRED-MD database is used (McCracken and Ng, 2016). This includes 47 variables
accounting for the housing market, stock market, money, and corporate and government bond
yields reported in Table 7. Following the procedure outlined in McCracken and Ng (2016), and
using the Expectations Maximisation algorithm of Stock and Watson (2002), the first principal
component is extracted. Panels A and B of Figure 11 plot the macro-financial factor, Ft and
the factor loadings respectively.

To identify the fourth structural shock, vf
t , two sets of sign restrictions are applied and

reported in Table 8. The first identification scheme postulates that the shock, vf
t results in a

negative contemporaneous impact on GDP growth and inflation, and a positive impact on both
the short-term interest rate and the macro-financial factor. The second identification scheme
proposes that the shock yields a positive contemporaneous impact on Ft, whilst leaving all other
variables unconstrained15.

Tables 9 and 10 report tests for statistical significance of differences in the monetary policy
transmission mechanism, and structural impact and long-run coefficients implied by monetary
policy rules of the 4 variable TVP VARs respectively. It is clear from Table 8 that both iden-
tification schemes result in statistically significant differences in the four quarter accumulated
response of real GDP growth, inflation and the interest rate in the very same periods as baseline

14Note also that results are robust to using alternative measures of economic activity. More specifically, loacted
within the Supplementary Appendix is the baseline analysis reported for an output gap measure measured as the
percent difference between actual and potential real GDP, and using Consumer Prices to proxy inflation.

15Analysis using a third identification scheme is also considered for vf
t . Under this third identification scheme,

the shock vf
t results in a negative contemporaneous impact of GDP growth, inflation, and the interest rate; and

a positive impact on the macro-financial factor. Results are consistent with those reported in the main text and
are available on request.
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models16. Further echoing baseline analysis, Table 9 also shows that after accounting for a wider
array of macroeconomic and financial variables, that there are negligible statistical differences
in the structural impact, and long-run, coefficients when replacing the Federal funds rate with
the shadow rate.
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Figure 11: Macro-Financial Factor from 1959–2017, and Loadings from Macro-
Financial Dataset
Notes: Panel A of this figure plots the extracted macro-financial factor, Ft, estimated from our US
macro-financial dataset; a subset of the FRED-MD dataset in McCracken and Ng (2016). Grey bars
indicate NBER recession dates. Panel B of this figure plots the factor loadings associated to each of
the 47 variables in our dataset (labelled on the x-axis) for the extracted factor from our macro-financial
dataset.

16Note also that imposing sign restrictions on the response of macroeconomic fundamentals to the response of
a shock to vf

t also delivers statistically credible differences.
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Table 7: Variables Included in the Macro-Financial Dataset
Notes: This table reports the variables included in our macro-financial dataset. This is a
subset of the data used in McCracken and Ng (2016); the entire dataset is available from
https://research.stlouisfed.org/econ/mccracken/fred-databases/. The column Variable Code and De-
scription present the FRED Mnemonic and description of the time series respectively. The column T
Code denotes the following data transformation for time series ft: (1) No transformation; (2) ∆ft; (4)
ln (ft); (5) ∆ ln (ft); (6) ∆2 ln (ft); (7) ∆ (ft/ft−1 − 1).

Variable Code Description T Code
HOUST Housing Starts: Total New Privately Owned 4
HOUSTNE Housing Starts: North East 4
HOUSTMW Housing Starts, Midwest 4
HOUSTS Housing Starts, South 4
HOUSTW Housing Starts, West 4
PERMIT New Private Housing Permits (SAAR) 4
PERMITNE New Private Housing Permits Northeast (SAAR) 4
PERMITMW New Private Housing Permits Midwest (SAAR) 4
PERMITS New Private Housing Permits South (SAAR) 4
PERMITW New Private Housing Permits West (SAAR) 4
M1SL M1 Money Stock 6
M2SL M2 Money Stock 6
M2REAL Real M2 Money Stock 5
AMBSL St. Louis Adjusted Monetary Base 6
TOTRESNS Total Reserves of Depository Institutions 6
NONBORRES Reserves of Depository Institutions 7
BUSLOANS Commercial and Industrial Loans 6
REALLN Real Estate Loans at Commercial Banks 6
NONREVSL Total Nonrevolving Credit 6
CONSPI Nonrevolving consumer credit to Personal Income 2
S&P 500 S&P’s Common Stock Price Index: Composite 5
S&P: indust S&P’s Common Stock Price Index: Industrials 5
S&P div yield S&P’s Common Stock Price Index: Dividend Yield 2
S&P PE ratio S&P’s Common Stock Price Index: Price-Earnings Ratio 5
CP3Mx 3-Month AA Financial Commercial Paper Rate 2
TB3MS 3-Month Treasury Bill 2
TB6MS 6-Month Treasury Bill 2
GS1 1-Year Treasury Rate 2
GS5 5-Year Treasury Rate 2
GS10 10-Year Treasury Rate 2
AAA Moody’s Seasoned Aaa Corporate Bond Yield 2
BAA Moody’s Seasoned Baa Corporate Bond Yield 2
COMPAPFFx 3-Month Commercial Paper minus FEDFUNDS 1
TB3SMFFM 3-Month Treasury C minus FEDFUNDS 1
TB6SMFFM 6-Month Treasury C minus FEDFUNDS 1
T1YFFM 1-Year Treasury C minus FEDFUNDS 1
T5YFFM 5-Year Treasury C minus FEDFUNDS 1
T10YFFM 10-Year Treasury C minus FEDFUNDS 1
AAAFFM Moody’s Aaa Corporate Bond minus FEDFUNDS 1
BAAFFM Moody’s Baa Corporate Bond minus FEDFUNDS 1
TWEXMMTH Trade Weighted US Dollar Index: Major Currencies 5
OILPRICEx Crude Oil, spliced WTI and Cushing 6
MZMSL MZM Money Stock 6
DTCOLNVHFNM Consumer Motor Vehicle Loans Outstanding 6
DTCTHFNM Total Consumer Loans and Leases Outstanding 6
INVEST Securities in Bank Credit at All Commercial Banks 6
VXOCLSx VXO 1
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Table 8: Alternative Identification Schemes for Models using Macro-Financial Factor
Notes: This table reports the contemporaneous response of real GDP growth, yt; inflation, πt; and the
interest rate, it with respect to a supply shock, vs

t ; a demand non policy shock, vd
t ; a monetary policy

shock, vmp
t ; and a factor shock, vf

t , respectively. “x” denotes no restriction imposed.

Identification I vs
t vd

t vmp
t vf

t Identification II vs
t vd

t vmp
t vf

t

yt ≥ ≥ ≤ ≤ yt ≥ ≥ ≤ x
πt ≤ ≥ ≤ ≤ πt ≤ ≥ ≤ x
rt x ≥ ≥ ≥ rt x ≥ ≥ x
Ft x ≥ ≤ ≥ Ft x ≥ ≤ ≥

Table 9: Assessing Statistical Differences in the Transmission of Monetary Policy
Shocks throughout and after the Zero Lower Bound Period using 4 Variable TVP
VAR Models. The Federal Funds Rate vs. the Shadow Rate
This table reports the probability that the four quarter accumulated response of variable x = {yt, πt, rt =
{it, ist}} with respect to a monetary policy shock, from the TVP VAR model where the short-term interest
rate is the Federal funds rate, IRFMP,4,r=it

x,T , is greater than the four quarter accumulated response of
variable x, with respect to a monetary policy shock, from the TVP VAR model using the shadow rate of
Wu and Xia (2016) as a proxy for the short-term interest rate for a given time period T , IRFMP,4,r=ist

x,T .
Therefore: Pr

(
IRFMP,4,r=it

x,T > IRFMP,4,r=ist
x,T

)
. Panel A and B report results from identification schemes

I and II respectively. A statistical difference is observed when the probability is less (greater) than 0.1
(0.9). A value lower (greater) than 0.1 (0.9) implies that the IRF implied by the TVP VAR using the
Federal funds rate (shadow rate) in time period T is smaller (larger) than that implied by the TVP VAR
using the shadow rate (Federal funds rate).

Panel A: Identification I
x= yt πt rt Ft

Pr
(
IRFMP,4,r=it

x,2009Q2 > IRFMP,4,r=ist
x,2009Q2

)
0.67 0.97 1.00 0.03

Pr
(
IRFMP,4,r=it

x,2011Q1 > IRFMP,4,r=ist
x,2011Q1

)
0.75 0.95 1.00 0.06

Pr
(
IRFMP,4,r=it

x,2012Q2 > IRFMP,4,r=ist
x,2012Q2

)
0.96 0.99 1.00 0.03

Pr
(
IRFMP,4,r=it

x,2013Q2 > IRFMP,4,r=ist
x,2013Q2

)
0.95 0.98 1.00 0.00

Pr
(
IRFMP,4,r=it

x,2017Q4 > IRFMP,4,r=ist
x,2017Q4

)
0.74 0.92 1.00 0.11

Panel B: Identification II
x= yt πt rt Ft

Pr
(
IRFMP,4,r=it

x,2009Q2 > IRFMP,4,r=ist
x,2009Q2

)
0.59 0.98 1.00 0.50

Pr
(
IRFMP,4,r=it

x,2011Q1 > IRFMP,4,r=ist
x,2011Q1

)
0.76 0.97 1.00 0.43

Pr
(
IRFMP,4,r=it

x,2012Q2 > IRFMP,4,r=ist
x,2012Q2

)
0.94 1.00 0.99 0.47

Pr
(
IRFMP,4,r=it

x,2013Q2 > IRFMP,4,r=ist
x,2013Q2

)
0.97 1.00 0.99 0.50

Pr
(
IRFMP,4,r=it

x,2017Q4 > IRFMP,4,r=ist
x,2017Q4

)
0.78 0.97 0.99 0.32
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Table 10: Assessing Statistical Differences in Taylor Rules throughout and Following the Zero Lower Bound Period using 4
Variable TVP VAR Models. The Federal Funds Rate vs. the Shadow Rate
The top half of this table reports the probability that the structural impact coefficient associated to variable x = {yt, πt, rt = {it, ist}}, within the structural
monetary policy rule from the TVP VAR model where the short-term interest rate is the Federal funds rate at period T , prx,r=it

T , is greater than the structural
impact coefficient associated to variable x, within the structural monetary policy rule from the TVP VAR model using the shadow rate of Wu and Xia (2016)
as a proxy for the short-term interest rate at period T , prx,r=ist

T . Therefore: Pr
(
prx,r=it
T > prx,r=ist

T

)
. The bottom half of this table reports analogous statistics,

but for the long-run coefficients associated to variable x, LRCrx
T , implied by the structural monetary policy rules from TVP VARs using the Federal funds

rate and shadow rate respectively. Therefore: Pr
(

LRCrx,r=it
T > LRCrx,r=ist

T

)
. Panels A and B refer to results stemming from identification schemes I and II

respectively. A statistical difference is observed when the probability is less (greater) than 0.1 (0.9). A value lower (greater) than 0.1 (0.9) implies that the
structural impact/long-run coefficient implied by the TVP VAR using the Federal funds rate (shadow rate) in time period T is less than that implied by the
TVP VAR using the shadow rate (Federal funds rate).

Panel A: Identification I Panel B: Identification II
Structural Impact Coefficients Structural Impact Coefficients

x= yt πt Ft x= yt πt Ft

Pr
(
prx,r=it

2009Q2 > prx,r=ist
2009Q2

)
0.24 0.57 0.31 Pr

(
prx,r=it

2009Q2 > prx,r=ist
2009Q2

)
0.23 0.49 0.35

Pr
(
prx,r=it

2011Q1 > prx,r=ist
2011Q1

)
0.37 0.56 0.38 Pr

(
prx,r=it

2011Q1 > prx,r=ist
2011Q1

)
0.35 0.46 0.51

Pr
(
prx,r=it

2012Q2 > prx,r=ist
2012Q2

)
0.26 0.70 0.23 Pr

(
prx,r=it

2012Q2 > prx,r=ist
2012Q2

)
0.34 0.63 0.40

Pr
(
prx,r=it

2013Q2 > prx,r=ist
2013Q2

)
0.40 0.75 0.15 Pr

(
prx,r=it

2013Q2 > prx,r=ist
2013Q2

)
0.37 0.64 0.27

Pr
(
prx,r=it

2017Q4 > prx,r=ist
2017Q4

)
0.33 0.48 0.38 Pr

(
prx,r=it

2017Q4 > prx,r=ist
2017Q4

)
0.34 0.40 0.42

Long Run Coefficients Long Run Coefficients
x= yt πt Ft x= yt πt Ft

Pr
(
LRCrx,r=it

2009Q2 > LRCrx,r=ist
2009Q2

)
0.31 0.55 0.45 Pr

(
LRCrx,r=it

2009Q2 > LRCrx,r=ist
2009Q2

)
0.24 0.43 0.44

Pr
(
LRCrx,r=it

2011Q1 > LRCrx,r=ist
2011Q1

)
0.31 0.56 0.55 Pr

(
LRCrx,r=it

2011Q1 > LRCrx,r=ist
2011Q1

)
0.31 0.56 0.59

Pr
(
LRCrx,r=it

2012Q2 > LRCrx,r=ist
2012Q2

)
0.29 0.52 0.57 Pr

(
LRCrx,r=it

2012Q2 > LRCrx,r=ist
2012Q2

)
0.24 0.57 0.61

Pr
(
LRCrx,r=it

2013Q2 > LRCrx,r=ist
2013Q2

)
0.25 0.60 0.53 Pr

(
LRCrx,r=it

2013Q2 > LRCrx,r=ist
2013Q2

)
0.28 0.58 0.58

Pr
(
LRCrx,r=it

2017Q4 > LRCrx,r=ist
2017Q4

)
0.28 0.57 0.51 Pr

(
LRCrx,r=it

2017Q4 > LRCrx,r=ist
2017Q4

)
0.38 0.54 0.55
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Models with Theoretical Underpinnings: The Inclusion of Money

Although informative and desirable, examining the impact by pooling data from a large number
of variables lacks theoretical underpinning. Following the theoretical arguments in Benati (2019)
and the empirical model of Ellington (2018), the Divisia M1 aggregate is added to the original
data. This allows the fully identified structural model to include a money demand shock. Table
11 shows the contemporaneous sign restrictions imposed in this alternative framework.

Table 11: Contemporaneous Sign Restrictions for a model with Money
Notes: This table reports the contemporaneous response of real GDP growth, yt; inflation, πt; the interest
rate, rt = {it, ist}; and Divisia M1 growth, mt with respect to a supply shock, vs

t ; a demand non policy
shock, vd

t ; a monetary policy shock, vmp
t ; and a money demand shock, vmd

t , respectively. “x” denotes
no restriction imposed.

vs
t vd

t vmp
t vmd

t

yt ≥ ≥ ≤ ≤
πt ≤ ≥ ≤ ≤
rt x ≥ ≥ ≥
mt x ≥ ≤ ≥

The underpinnings of these identifying assumptions can be motivated by a simple transaction
demand for money model that allows for money in the utility function17. In particular, Benati
(2019) shows that the velocity of the M1 monetary aggregate is a linear function of the short-
term interest rate. In turn this suggests that the velocity of M1 is a close approximation to the
permanent component of the short-term interest rate. Thus, any disequilibrium between M1
velocity, and therefore M1 balances, and the interest rate arise from the interest rate. Upon
estimating a bi-variate VAR model, it is shown that the velocity of M1 increases in line the short-
term interest rate with respect to transitory shocks. This justifies the positive sign associated
to money growth and the interest rate.

Intuitively, the only ways in which velocity can increase are: i) money balances increase; ii)
GDP falls; iii) money balances increase while GDP falls; and iv) money balances increase at a
faster rate than GDP. Since any disequilibrium between M1 velocity and the interest rate implies
movements of the interest rate, iv) can be disregarded. If interest rates rise, this implies GDP
growth and inflation falls. Combining this with the fact that demand for money for transactions
incorporates a forward looking component, indicates people may hold money for transactions
in the future; thereby providing further substance to the identifying assumptions.

Results in this section add Divisia M1 annual growth to the baseline data. The models are
estimated in the exact manner as those presented in the main results, with the exception of
number of years used in the training sample to calibrate the initial conditions of the model. For
these results the first 10 years of data are used because Divisia M1 data begins in 1967. Results

17Using the Divisia M1 monetary aggregate is consistent with this type of model as the component as-
sets (currency and demand deposits) are used for transaction purposes. The Divisia M1 aggregate, along
with broader measures of US money supply are available from the Center for Financial Stability see
http://www.centerforfinancialstability.org/amfm˙data.php. The Divisia measure of M1 is used since its mea-
surement is embedded within superlative index number theory (Barnett, 1980) and is more consistent with the
methods used to calculate GDP. Divisia money also has a large historical literature, recent papers include Barnett
and Chauvet (2011); Belongia and Ireland (2015); Barnett et al. (2016).
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have also been calibrated using the first 20 years of data, and conclusions do not change from
those presented here.

Table 12 reports tests for statistical differences in the four quarter accumulated impulse
response functions of GDP growth, inflation, and Divisia M1 between models using the Federal
funds rate and shadow rate; comparable to Table 3. It is even more clear from these results of
the start differences in accounting for unconventional monetary policies using the shadow rate.
In particular both throughout and following the zero lower bound period results in a larger
(smaller) response of GDP and inflation (money growth) when using the Federal funds rate.

Table 12: Assessing Statistical Differences in the Transmission of Monetary Policy
Shocks throughout and after the Zero Lower Bound Period. The Federal Funds
Rate vs. the Shadow Rate: Models including Divisia M1 Growth
This table reports the probability that the four quarter accumulated response of variable x = {yt, πt, rt =
{it, ist}} with respect to a monetary policy shock, from the TVP VAR model where the short-term interest
rate is the Federal funds rate, IRFMP,4,r=it

x,T , is greater than the four quarter accumulated response of
variable x, with respect to a monetary policy shock, from the TVP VAR model using the shadow rate of
Wu and Xia (2016) as a proxy for the short-term interest rate for a given time period T , IRFMP,4,r=ist

x,T .
Therefore: Pr

(
IRFMP,4,r=it

x,T > IRFMP,4,r=ist
x,T

)
. A statistical difference is observed when the probability

is less (greater) than 0.1 (0.9). A value lower (greater) than 0.1 (0.9) implies that the IRF implied by
the TVP VAR using the Federal funds rate (shadow rate) in time period T is smaller (larger) than that
implied by the TVP VAR using the shadow rate (Federal funds rate).

x= yt πt rt mt

Pr
(
IRFMP,4,r=it

x,2009Q2 > IRFMP,4,r=ist
x,2009Q2

)
0.93 0.95 1.00 0.00

Pr
(
IRFMP,4,r=it

x,2011Q1 > IRFMP,4,r=ist
x,2011Q1

)
0.93 0.99 0.98 0.00

Pr
(
IRFMP,4,r=it

x,2012Q2 > IRFMP,4,r=ist
x,2012Q2

)
0.99 0.99 0.95 0.01

Pr
(
IRFMP,4,r=it

x,2013Q2 > IRFMP,4,r=ist
x,2013Q2

)
0.99 0.99 0.95 0.01

Pr
(
IRFMP,4,r=it

x,2017Q4 > IRFMP,4,r=ist
x,2017Q4

)
0.96 0.96 0.93 0.00

Figures 12 and 13 report the posterior median and 80% point-wise equal-tailed probability
bands of the structural impact and long-run coefficients obtained from Taylor-rules implied by
respective TVP VARs using the Federal funds rate and the shadow rate. The structural impact
coefficients for real GDP and inflation from both models exhibit similar time profiles to the
baseline results in Figure 3. Note that the impact coefficient associated to money follows a
downward trend with surges during recessions; consistent with Ellington (2018).

Although the long-run coefficients for GDP growth are similar to those in Figure 4, inflation
exhibits slightly different time profiles. In particular, and arguably more consistent with eco-
nomic theory, the posterior median long-run coefficient fluctuates around unity. Then, following
the 2008 recession, the long-run coefficient on inflation from these models diverge. The infla-
tionary impact on the shadow rate is up to half a percentage point larger relative to the Taylor
implied using the Federal funds rate; although economically meaningful, the differences are not
statistically credible. This divergence also occurs for the long-run coefficient(s) associated to
money18. Overall, model implied Taylor rules suggest a significant role for money within Taylor

18Although there are some economic differences in the impact and long-run coefficient associated to money,
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rules which supports the results in Belongia and Ireland (2015).
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Figure 12: Structural Impact Coefficients Implied by Structural Monetary Policy
Rules from 1979Q2–2017Q4
Notes: This figure plots the posterior median and 80% point-wise equal-tailed probability bands of the
structural impact coefficients associated to real GDP growth, pr,y

t ; Consumer price inflation, pr,π
t ; and

Divisia M1 growth, pr,m
t . In each model, the short-term interest rate is proxied by either the Federal

funds rate, rt = it, or the shadow rate, rt = ist. Grey bars indicate NBER recession dates.
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Figure 13: Long-run Coefficients Implied by Structural Monetary Policy Rules from
1979Q2–2017Q4
Notes: This figure plots the posterior median and 80% point-wise equal-tailed probability bands of the
long-run coefficients associated to real GDP growth, yt; Consumer price inflation, πt; and Divisia M1
money growth, mt, as implied by the structural monetary policy rule including money. In each model,
the short-term interest rate is proxied by either the Federal funds rate, rt = it, or the shadow rate,
rt = ist. Grey bars indicate NBER recession dates.

they are not statistically significant.
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In general from both sets of robustness analysis presented, it is clear that the results are
robust to a both alternative data driven specifications, and theoretically founded set-up. This
further highlights the importance of accounting for monetary policy stance, and indeed un-
conventional monetary policies; particularly over the last decade. These results add further
substance to baseline analysis. In particular, the sensitivity of macroeconomic variables to mon-
etary policy shocks when not accounting for unconventional monetary policies is over-stated.
Furthermore, model implied Taylor rules show that using the shadow rate suggest that the Fed
placed a larger weight on economic activity relative to inflation.
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