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Abstract: Motivated by the practical import free-flow program that aims to expedite the container 

retrieval process, we conceptualize a new container stacking strategy, termed Smart Stacking (SS) 
strategy. The SS strategy aims to create relocation-free stacks (smart stacks) by utilizing customer 
information. The Storage Location Assignment Problem (SLAP) under the SS strategy is addressed. 
The problem is to determine the smart customers/containers, and the number and locations of smart 
stacks, when assigning a batch of import containers to a yard block at an automated container terminal 
to minimize the total retrieval time. Two variants of SLAP are investigated under the non-split policy 
and the split policy, depending on whether the containers from the same customer are allowed to be split 
between smart stacks and non-smart stacks. For the non-split variant, a mixed-integer programming 
(MIP) model is formulated first. By analyzing the properties of the optimal solution, an improved 
formulation with enhanced computational performance is then proposed. Based on the structure of the 
model, a divide-and-conquer heuristic is designed to solve the non-split variant more efficiently. For the 
split variant, a MIP model under the optimal partitions of the non-split model is developed. We 
theoretically prove that the split variant yields better results than the non-split variant. Extensive 
experiments are carried out to illustrate the effectiveness of smart stacking. It is found that customer 
information and yard utilization rate have a significant influence on the effectiveness of smart stacking.  

Keywords: OR in maritime industry, import container stacking problem, smart stacking strategy, 
value of customer information 

1. Introduction 

Maritime container terminals, where containers are transferred between seaborn transport and 
hinterland transport, provide crucial linkages in the global container shipping network. The handling 
productivities and efficiencies of containers terminals are essential to ensure efficient container supply 
chains, which is particularly imperative in the current era where port congestion has stretched out the 
globe and exacerbated the global supply chain delays.  

A container terminal can be divided into three main areas: seaside, landside, and storage yard (de 
Melo da Silva, 2018). The storage yard serves as the buffer area for storing containers before their 
onward transportation and links the seaside and landside operations. Import containers are discharged 
from ships at the seaside, unloaded into the storage yard, and then loaded to external trucks or trains at 
the landside, whereas the export containers follow the reverse path (Kizilay and Eliiyi, 2020). Yard 
operations management is of paramount importance in determining the efficiency of a terminal (Caserta 
et al., 2020). Inefficient container unloading and loading operations at the yard can lead to port 
congestions and result in longer turnaround times for vessels and hinterland transport vehicles. This 
paper focuses on improving the retrieval efficiency of import containers loaded to external trucks at the 
interface of the storage yard and the terminal’s landside.  

Container stacking, the theme of this paper, addresses the assignment of storage positions in the yard 
to containers, which directly affects the container delivery efficiency and the truck waiting time. A major 
source of inefficiency when retrieving containers from yards is container relocation (Ku and Arthanari, 
2016a). Due to limited space in the yard, containers are piled up vertically in stacks. If a target container 
to be retrieved is not on the topmost tier, those above it – that is, the blocking containers - need to be 
moved out of the way in order to access the target one. Such moves of blocking containers are called 
relocation, reshuffling, or rehandling. Relocation is an unproductive operation, which is costly to 
terminals and results in delivery delays to customers. A series of container stacking related problems 

                                                      
 Corresponding author.  Email: Dongping.Song@liverpool.ac.uk 



2 
 

have been addressed to reduce relocations, for example, the container relocation problem that 
determines the positions of relocated containers (e.g., Bacci et al., 2020; Zhang et al., 2020; Azab and 
Morita, 2021; Tanaka and Voß, 2021), the container pre-marshalling problem that re-arranges the 
container stacking positions (e.g., Parreño-Torres et al., 2019; Tanaka et al., 2019; Boge et al., 2020), 
the container stacking problem that pre-plans the initial stacking positions of containers (e.g., Zhang et 
al., 2014; Gharehgozli and Zaerpour, 2018; Boge and Knust, 2020), and the joint planning of relocation 
and pre-marshalling (e.g., Zweers et al., 2020). In this paper, we address one of the container stacking 
problems - the Storage Location Assignment Problem (SLAP), where a batch of import containers are 
allocated to exact locations in a storage area at the yard to minimize their future retrieval times. 

The main challenge of the SLAPs for import containers lies in the uncertainty regarding which 
container will be retrieved first since external trucks arrive at the terminal randomly to pick up a specific 
container (Saurí and Martín, 2011; Yu and Qi, 2013). A couple of studies attempt to reduce the number 
of relocations by stacking containers based on the information of retrieval times (e.g., Lee et al., 2008; 
Maldonado et al., 2019). However, in reality, in most cases, the retrieval times of containers are not yet 
known when stacking the containers, and thus containers are often randomly stacked, which can lead to 
a high relocation rate. For example, in busy ports such as Los Angeles-Long Beach, it takes on average 
two to three relocations to deliver one container to a truck (Mongelluzzo, 2015a).  

With the development of port digitalization and the need to reduce truck turnaround times, an 
innovative container delivery and staging program — Import Free Flow (IFF) — has been initiated at 
Port of Los Angeles (Mongelluzzo, 2015b). The idea behind IFF is to eliminate the need for relocation 
and thus realize rapid retrieval flow through pre-staging large groups of containers to be picked up by 
the same customer. With IFF, high-volume customers can have all their containers stored in dedicated 
stacks when they are unloaded from a vessel. These containers are called free-flow containers. Free-
flow containers can be picked up from the top of the stacks on a last-in-first-out basis since they belong 
to the same customer. As a result, no relocations are needed for retrieving free-flow containers.  

The IFF program has resulted in significant improvements in truck turnaround times in practice. For 
example, free-flow containers reduced truck turnaround times by more than 50 percent at Port of Los 
Angeles in 2015 (Parker, 2015). However, the IFF program has not been widely adopted in practice. In 
the current practice, terminal operators usually do not utilize the customer information of containers 
when stacking the containers either because the information is not available to them, or probably more 
importantly, because they have not recognized the value of the customer information and do not know 
how to use the information to determine the container stacking positions. The current stacking strategy 
in the IFF program is rather heuristic and is inadequate for its mass application. For example, the free-
flow service is only available to high-volume customers who own at least 50 containers, and the free-
flow containers are simply pre-staged in specific stacks that are separated from the traditional containers 
(i.e., non-free-flow containers) (Dupin, 2015; Parker, 2015). Expanding the free-flow service to smaller 
customers could dramatically improve container retrieval efficiency, which is the next goal of the 
practitioners (Parker, 2015). However, academic research in this regard has rarely been seen. There is 
no method for determining which customers or containers should be free-flowed, how many free-flow 
stacks should be selected, and where these stacks should be located in the yard.  

Motivated by the IFF program, we conceptualized a new import container stacking strategy - Smart 
Stacking (SS) strategy - where import containers are grouped based on customer information, and they 
are classified into either smart (free-flow) or non-smart (non-free-flow) containers to be allocated to 
smart stacks and non-smart stacks respectively in a yard block in an optimal way. The smart containers 
of a customer do not share stacks with the containers from any other customers to guarantee zero 
relocation. The non-smart containers share stacks as normal, which still need relocations during the 
future retrieval process. This paper aims to investigate how customer information can be utilized to 
better plan the exact stacking positions for import containers so as to improve retrieval efficiency. The 
research objectives are: i) to seek the optimal solution for stacking a batch of import containers into a 
limited (pre-defined) storage area in a yard block under the proposed SS strategy; ii) to quantify the 
reduction in the total retrieval time by applying the SS strategy; iii) and to evaluate the impacts of 
relevant parameters (customer information and yard utilization rate) on the effectiveness of the SS 
strategy.  

Our contributions to the existing literature and practice can be summarized as follows: (i) We propose 
a new stacking strategy – Smart Stacking (SS) strategy - to improve the import container retrieval 
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efficiency at container terminals. (ii) We introduce two forms of stacking policies under the framework 
of the SS strategy, depending on whether the containers from the same customer are allowed to be split 
between smart stacks and non-smart stacks or not. Correspondingly, we develop two variants of 
mathematical models for the Storage Location Assignment Problem (SLAP) at an Automated Container 
Terminal (ACT), that is, the non-split model and the split model. The proposed models enable terminal 
operators to determine which customers or containers should be selected to be free-flowed and to 
quantify the additional benefits of the splitting policy. (iii) We establish structural properties of the 
optimal solution to the non-split model and leverage these properties to improve the computational 
efficiency of the non-split model. (iv) To overcome the computational complexity, we develop a 
heuristic algorithm to solve the non-split variant (which is the focus of this paper) based on the structure 
of the model. The heuristic algorithm can obtain near-optimal solutions in several seconds. (v) We 
conduct extensive experiments to demonstrate the effectiveness of the SS strategy, and the impact of 
the customer information and the yard utilization rate on the results. The findings can help to understand 
the effectiveness of the SS strategy under a variety of scenarios and assess the value of customer 
information to container retrieval efficiency, which could promote the vertical collaboration between 
terminal operators, trucking companies, and cargo owners to improve the container supply chain 
performance. 

The remainder of the paper is organized as follows. In Section 2, we review existing stacking 
strategies, discuss the previous work related to the container stacking problems, and summarize the 
research gap. Section 3 describes the problem under consideration and presents two forms of smart 
stacking policies. Section 4 formulates the SLAPs under the two policies by using mixed-integer 
programming and presents some theoretical analyses. Section 5 proposes a heuristic algorithm for the 
non-split model. In section 6, we conduct computational experiments to evaluate the effectiveness of 
the proposed strategies and generate managerial insights. Section 7 concludes the paper, discusses 
several extensions of this study, and envisages further research directions. 

2. Literature review 

Container stacking has attracted extensive attention over the last two decades (see reviews from Zhen 
et al., 2013; Carlo et al., 2014a, b; Lehnfeld and Knust, 2014). The problems related to container stacking 
include container stacking strategies, storage space allocation, storage location assignment, container 
relocation, and container pre-marshalling. This paper focuses on the short-term operational decision to 
assign a batch of import containers to exact storage locations in a yard block, which belongs to the 
storage location assignment problem (SLAP). Relevant literature is organized into three topics: 
container stacking strategies, storage location assignment, and container relocation estimation. 

2.1 Container stacking strategies 

Container stacking strategies are a set of stacking rules or criteria that should be adhered to when 
determining the storage position of each container or the storage space of a group of containers. 
Container stacking strategies are tactical level decisions of container terminals (Maldonado et al., 2019), 
which influence the allocation of stacking positions at the operational level. Several types of stacking 
strategies have been applied in practice and studied in the literature, which usually differ between export 
containers and import containers due to their different arrival and departure characteristics.  

Export containers usually arrive at terminals individually and are loaded onto vessels in large batches. 
Their arrival times are uncertain but their departure times are relatively fixed by the destination vessels. 
The stacking strategies for export containers are usually based on the containers’ categories or departure 
times, which include the residence time stacking strategy (Borgman et al., 2010), the category stacking 
strategy (Dekker et al., 2006), the dedicated stacking strategy and the shared stacking strategy 
(Gharehgozli et al., 2014; Gharehgozli and Zaerpour, 2018).  

Import containers are unloaded from vessels in large volumes and then picked up by customers 
individually and randomly. Due to the high uncertainty in the retrieval sequences of import containers, 
it is difficult to categorize import containers according to their departure times. Two types of stacking 
strategies for import containers are commonly used in practice and have been investigated in academic 
research: segregation strategy and non-segregation strategy. Under the segregation strategy, containers 
from different ships are stacked separately in the container yard. Under the non-segregation strategy, 
containers from different ships are mixed in the storage area such that newly discharged containers are 
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stacked on top of old ones. The segregation strategy may have the advantage of reducing the number of 
relocations during the container retrieval process because earlier-arrived containers are likely to be 
retrieved earlier, but it requires additional clearing moves before each ship’s arrival to create enough 
space for the new containers. On the other hand, the non-segregation strategy would increase relocation 
moves because the containers that have stayed for a longer time and thus tend to be picked up soon will 
be buried under recently arrived ones (De Castilho and Daganzo, 1993). 

The segregation strategy and non-segregation strategy are first investigated by De Castilho and 
Daganzo (1993) and then are further developed by Saurí and Martín (2011). Mathematical models have 
been developed to optimize the stacking height under the segregation strategy (Kim and Kim, 1999) and 
to optimize the number of import containers allocated to each bay under both segregation and non-
segregation strategies (Yu and Qi, 2013). The segregation strategy separates import containers roughly 
by the arriving vessels but does not specify how the containers from the same vessel are stacked. A few 
studies develop more detailed stacking strategies based on the container departure dates (e.g., Guldogan, 
2011) and the estimated dwell times of import containers (e.g., Lee et al., 2008; Gaete et al., 2017; 
Maldonado et al., 2019) where containers with longer dwell times are stored under those with smaller 
values to reduce the number of future relocations. However, in reality, the departure dates are often not 
available in advance, and accurate prediction of dwell times is difficult. Besides, the containers with the 
same dwell time will be picked up randomly, which still incur relocations.  

Different from the previous studies, in this paper, the smart stacking strategy utilizes the customer 
information of import containers to group containers so as to create relocation-free stacks. This can 
avoid the difficulty to predict the container departure time. The smart stacking strategy resembles 
category-based stacking or grouped-storage. Similar concepts and practice can also be identified in the 
storage systems of other relevant industries, such as containership stowage systems (Monaco et al., 2014; 
Iris et al., 2018), warehousing systems (Zaerpour et al., 2015) and generic block stacking systems (Yang 
and Kim, 2006; Jang et. al, 2013). However, there is a fundamental difference between our smart 
stacking strategy and the existing category-based stacking. The category-based stacking relies on simple 
criteria (e.g. container attributes, departure time, and destinations) to categorize containers into groups, 
which is treated as pre-determined before stacking. It does not differentiate between smart and non-
smart groups/containers because each stack is allowed to store multiple groups of containers. In contrast, 
the smart stacking strategy incorporates intelligence into the stacking decision-making by 
simultaneously determining which groups/containers should be smart and optimizing the locations of 
the smart and non-smart stacks and the containers.  

2.2 Storage location assignment problem 

The determination of container storage locations is usually addressed hierarchically in two decision 
problems: the Storage Space Allocation Problem (SSAP) and the Storage Location Assignment Problem 
(SLAP) (Kim and Park, 2003; Zhang et al., 2003). The SSAP determines the amount of yard storage 
space allocated to each vessel for their containers, which can be addressed at various levels according 
to the storage space unit considered: yard section, yard block, yard sub-block, and yard bay (Jin et al., 
2016). The SSAPs mainly aim to improve the efficiency of the container stacking process with efficient 
use of the terminal resources (e.g., Zhang et al., 2003; Lee et al., 2007; Zhen, 2016; Jiang et al., 2012, 
2013; Zhou et al., 2020). The SLAP deals with the assignment of individual containers to exact storage 
locations – which is specified by a bay number, a row number, and a tier - in blocks. The number of 
relocations during the future retrieval process is an important performance measure in the SLAPs when 
the container retrieval efficiency is the focus (e.g., Kim et al., 2000; Zhang et al., 2010; Saurí and Martín, 
2011; Zhu et al., 2020). This paper falls into the SLAP, in which we determine the exact storage location 
of each import container in a given storage area of a block.  

The SLAP may be classified into two broad categories according to the planning approaches: online 
planning and offline planning. The online planning approach allocates containers to slots in a real-time 
way by considering the dynamic characteristics of the problem and the uncertain information on 
containers. For example, online-rule-based heuristics are used to determine the stacking position of each 
container separately in real-time (e.g, Park et al., 2011; Lin et al., 2017; Petering et al., 2017; He et al., 
2019). Simulation-based methods have been used to optimize and evaluate performance measures (e.g., 
Dekker et al., 2006; Borgman et al., 2010; Guldogan, 2011). Moreover, facing the uncertainties and 
disturbances in the container stacking environment (e.g., equipment breakdown, breakage of machines, 
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and a fault in a container placing), decentralized approaches such as case based reasoning (Rekik et al., 
2018) and multi-agent approach (Rekik and Elkosantini, 2019) are developed for the reactive container 
stacking systems.  

The offline planning approach focuses on finding an optimal plan at the beginning of the planning 
period for an offline environment where the input data of the defined problems are known. This paper 
follows this research stream.  

2.2.1 Offline SLAP 

One of the challenges for addressing the offline SLAP of import containers is the presence of 
uncertainties in the retrieval sequence. To tackle the uncertainties, different assumptions on the 
containers’ retrieval times have been made. Assuming that containers are retrieved with a certain 
probability distribution, Kim and Kim (1999) develop mathematical models to determine the optimal 
average stacking height to minimize the expected total number of relocations over a planning horizon. 
Assuming that import containers are arriving with constant rates and are retrieved with different 
probability of departure time, Saurí and Martín (2011) propose a probabilistic distribution-based 
mathematical model to estimate the number of relocations for the whole block under specific stacking 
strategies. The stacking strategies define the rules of mixing different groups of containers and clearing 
containers to reduce unproductive moves. A few studies assume that the exact retrieval time/sequence 
is known so that the number of relocations can be measured exactly (Chang and Zhu, 2019; Wang et al., 
2020) or relocations can be completely avoided (Razouk et al., 2016). Under this assumption, Chang 
and Zhu (2019) develop a two-stage model for the storage space assignment of inbound containers in 
rail–water intermodal container terminals, which selects the optimal block for containers to balance the 
workload in different blocks at the first stage and assigns containers into the optimal slots to reduce the 
amount of overlapping (number of relocations) at the second stage. Wang et al. (2020) develop a multi-
objective optimization model to minimize container overlapping amounts and crane moving distance 
for stacking both inbound and outbound containers in a rail-truck transshipment terminal. Razouk et al. 
(2016) develop a MIP model for the slot assignment of inbound containers, where the traveling distance 
between the berth and the storage bay is minimized and relocations are avoided. In addition, by assuming 
group retrieval priorities given by the truck arrival time windows, Zhu et al. (2020) combine the 
container stacking problem with the ship unloading problem - the inbound containers unloading and 
stacking problem (ICUSP) - to optimize both the container unloading sequence from the vessel and the 
container storage locations in the yard with the objective of minimizing the expected number of 
relocations during the container retrieval process.  

We remark that, in reality, due to the dynamic and random arrivals of external trucks, the exact 
retrieval sequence of import containers is difficult to know when containers are stacked. For terminals 
that are equipped with a truck appointment system, relative retrieval priorities may be obtained from the 
truck appointment information, but only after the containers have been stacked in the yard. This is 
because the fact that, in most cases, appointments are not bookable until the container has already been 
customs cleared for pick‐up, which can be days after the container have been stacked in the terminal 
(e.g., DP World London Gateway; The Port of Long Beach and Port of Los Angeles, 2017). In this study, 
we do not assume the information about the container retrieval sequence.  

In the offline SLAP that deals with export containers, the container loading sequence is pre-
determined to some extent by certain criteria, which makes the optimization problem relatively well 
defined. Optimization models including (mixed) integer programming model (Preston and Kozan, 2001; 
Gharehgozli and Zaerpour, 2018), dynamic programming model (Kim et al., 2000; Zhang et al., 2010; 
Zhang et al., 2014), and simulated annealing algorithm (Kang et al., 2006) have been proposed. 

2.2.2 Objective functions 

Some of the SLAPs aim at improving the efficiency of the future retrieval process (e.g., Kim et al., 
2000; Saurí and Martín, 2011; Zhu et al., 2020), while some others focus on the efficiency of the stacking 
process (e.g., Luo et al., 2016) or the efficiency of both the stacking process and the future retrieval 
process (e.g., Razouk et al., 2016; Rekik and Elkosantini, 2019; Wang et al., 2020). This paper focuses 
on the efficiency of the future retrieval process.  

In the recent decade, many terminals have been driven towards automated container terminals (ACTs) 
due to their low labor cost, low energy consumption, high safety, etc (Zhou et al., 2018; Wang et al., 
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2019). However, the container stacking problems at the ACTs are not yet adequately studied in the 
literature. This paper addresses the SLAP at ACTs. The components of the objective functions of the 
SLAP at ACTs are different from those at the convention terminals due to the yard layout difference 
between the two types of terminals.  

In conventional terminals, the yard blocks are typically positioned parallel to the quay, and containers 
are transferred between the yard crane and trucks at the empty lane at the side of each block. For export 
containers, this type of block layout can reduce the travel distance of the yard crane during the container 
retrieval process by storing export containers of the same group in the same bay to avoid the yard crane 
traveling across different bays. This is because export containers of the same group are usually loaded 
onto a ship consecutively (Kim and Park, 2003). However, for import containers, there is little chance 
to reduce such distance by optimizing their storage locations because the retrieval sequence of import 
containers is unknown. Therefore, the objective functions of the SLAPs concerning the retrieval 
efficiency of import containers at conventional terminals mainly focus on the performance metric of the 
number of relocations (e.g., Kim and Kim, 1999; Saurí and Martín, 2011; Zhu et al., 2020).  

In ACTs, the yard blocks are typically positioned perpendicular to the quay, and containers are 
transferred between the Automated Stacking Crane (ASC) and trucks at the ends of each block. Under 
this type of block layout, regardless of the retrieval sequence, to retrieve a container, the ASC needs to 
travel across a number of bays from the location of the container in the block to the transfer point at the 
end of the block. There is a trade-off between the ASC travel time and the number of relocations, which 
both contribute to container retrieval times and truck waiting times. The following works address the 
container stacking problems at ACTs. For import containers, Yu and Qi (2013) propose three 
optimization models under the non-segregation and segregation strategies to determine the number of 
import containers allocated to each bay. The objective function is to minimize the total retrieval time 
that is the sum of the expected relocation time and the ASC travel time. Yu et al. (2021) propose an 
integer programming model to allocate import containers to a given yard space so as to minimize the 
total waiting time of the automated guided vehicle in the stacking process and the external truck waiting 
time in the future retrieval process. Park et al. (2011) propose an online search algorithm to first select 
the yard block with the lowest workload and then the yard stack with the minimum weighted sum of 
four criteria including the stacking cost, the retrieval cost, the relocation cost, and the waste of storage 
space. For export containers, Zhao et al. (2015) propose a simulation-based optimization method for 
allocating outbound containers to yard bays aiming to minimize the quay crane waiting time. 
Gharehgozli and Zaerpour (2018) propose an integer programming model to determine the storage 
locations of outbound barge containers under a shared stacking strategy with the objective of minimizing 
the total travel time of the ASC. Preston and Kozan (2001) develop a mixed integer programming model 
to determine the storage locations of export containers in a multimodal container terminal, in which it 
is implicitly assumed that the yard block is perpendicular to the quay. The objective is to minimize the 
total transfer time of each yard machine that is the sum of the travel time and the relocation time. In 
addition, a couple of studies consider both import and export containers. For example, Dekker et al. 
(2006) determine the container storage locations by several variants of category stacking rules and use 
a detailed simulation program to measure the workload of the ASC, the number of containers that cannot 
be stacked, and the number of relocations. Xia et al. (2016) determine the yard stacks allocated to each 
container group by a meta-heuristic to maximize the vessel handling efficiency by a weighted sum 
objective function involving the work balance among blocks and the travel distance between vessels 
and blocks. 

It can be concluded that it is appropriate to use the total retrieval time (i.e. the sum of the crane travel 
time and the expected relocation time) as the objective function of the SLAP for import containers at 
ACTs (see e.g., Yu and Qi 2013). Moreover, minimizing the total retrieval time is also a good proxy for 
truck waiting times (see e.g., Gharehgozli and Zaerpour, 2018). In the next sub-section, we will discuss 
some studies on estimating the number of relocations.  

2.3 Container relocation estimation 

Due to the uncertainty in the containers’ retrieval sequence, the number of relocations during the 
retrieval process cannot be easily determined in advance (Bruns et al., 2016). Given an initial stacking 
configuration, the minimum number of relocations needed to retrieve all the containers depends on the 
retrieval sequence and the locations of the relocated containers. Such a problem is studied in the 
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(Stochastic) Container Relocation Problem (c.f. Ku and Arthanari, 2016a, b, Galle et al., 2018a, Feng 
et al., 2020). Another relevant stream of research is to estimate the number of relocations based on input 
parameters such as the stack dimensions, the number of containers, the container arrival and departure 
rates. In this stream, a few studies assume that new arrival containers are added to the stacks during the 
container retrieval process. For example, Sculli and Hui (1988) are among the first to explore the impacts 
of the store dimensions, the stacking policies, and the number of different types of containers on the 
relocation ratio by a simulation model, in which the arrival and departure rates of containers are assumed 
to be equal and random. De Castilho and Daganzo (1993) derive general formulas, which are functions 
of the total number stacks and the retrieval rate, to estimate the expected number of moves per container 
under the segregation and non-segregation stacking policies. On the other hand, some studies only 
consider retrievals. Kim (1997) are among the first to estimate the number of relocations by assuming 
that the probability for a container to be picked up next is the same among all the containers. They 
develop an exact evaluation procedure and a regressive equation to estimate the expected number of 
relocations for an arbitrary pickup and an approximated formula to estimate the expected total number 
of relocations. Yu and Qi (2013) improves the accuracy of the approximated formula in Kim (1997) 
when there are fewer than two tiers of containers. In addition, under the assumption that containers are 
retrieved batch by batch in a random order, Zhou et al. (2020) derive the number of relocations to 
retrieve all containers from a yard segment, which is based on the storage space, the number of 
containers, and the number of container classes, by a discrete event simulation.  

All the above studies in the estimation stream estimate the number of relocations based on a 
prescribed relocation strategy that is used to select the stack for the relocated container. On the other 
hand, the expected number of blocking containers can also be a good proxy of the number of relocations, 
which can be derived without assuming any relocation strategy. In this respect, Galle et al. (2016) 
theoretically prove that the expected minimum number of relocations to retrieve all containers in a bay 
in a uniformly random order converges to a simple and intuitive lower bound when the number of stacks 
in a bay is large. The lower bound represents the expected number of blocking containers, which 
depends on only the number of containers in each stack. This lower bound is used in a recent study on 
yard crane scheduling by Galle et al. (2018b) to approximate the number of relocations to retrieval all 
the containers in a single stack when no information is assumed on the retrieval requests. In this paper, 
we do not assume any information on the retrieval sequence of non-smart containers, that is, they are 
retrieved in a uniformly random order, and no containers are added to the stacking area during the 
retrieval process. Such a problem setting is considered in Kim (1997), Yu and Qi (2013), and Galle et 
al. (2016). Given the advantage of the simplicity and the acceptable accuracy of the lower bound in 
Galle et al. (2016), we use this lower bound, i.e., the expected number of blocking containers, to 
approximate the expected number of relocations for retrieving the containers in a non-smart stack (see 
Section 3.4.2).  

2.4 Research gap 

There are only two most relevant studies that have investigated grouped-based stacking strategies for 
import containers, aiming at minimizing the expected number of relocations (Jang et al. 2013) or the 
total retrieval time (Yu and Qi 2013) during the retrieval process. In Jang et. al (2013), the unit loads 
(including inbound containers) are classified into multiple groups and the retrieval order is issued for a 
specific group. Each stack can store multiple groups of containers, and there is no decision on which 
groups should be relocation-free. In Yu and Qi (2013), import containers are categorized by the arrival 
times of incoming vessels. The emphasis is to analyze the long-term performance of various segregation 
and non-segregation strategies models by considering the dynamic of container arrivals and departures. 
There has been no research on allocating import containers to exact storage slots by utilizing customer 
information alone while not relying on the container retrieval time. Motivated by the IFF program in 
practice, our work is the first academic research in this area. We propose a smart stacking strategy that 
explicitly differentiates smart stacks and non-smart stacks. A smart stack can only store containers from 
a single customer to guarantee zero relocation, while a non-smart stack can accept containers from 
multiple customers. Different from the existing stacking strategies, the smart stacking strategy 
incorporates intelligence into the stacking decision-making by simultaneously optimizing the customers 
or containers that are allocated to smart stacks and non-smart stacks and the locations of these stacks, 
by making use of the customer information of the containers. Specifically, we focus on the short-term 
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operational decisions to allocate a batch of import containers to specific locations in a given storage area 
of a yard block under the smart stacking strategy, with the objective of minimizing the total retrieval 
time including the ASC travel time and the relocation time.  

3. Problem Description 

In this section, we describe the SLAP under consideration in the following aspects: the problem 
geometry, the problem definitions, two smart stacking policies, and the objective function.  

3.1 Problem geometry 

At an ACT, a yard block is oriented perpendicular to the quay, as shown in Fig. 1. The configuration 
of a block consists of M bays, R rows, and K tiers. Bays are indexed by b from landside to seaside, 
1 b M  , rows by r from left to right, 1 r R  , and tiers by k from bottom to top, 1 k K  . R is 
limited by the width of the ASC and K by the height of the ASC, which represents the maximum stacking 
height. Typically, R ranges from 6 to 13, K from 3 to 6, and M from 40 to 60. A stack is a vertical 
column located in a bay and a row, which can be characterized by a two-dimensional vector (b, r) 
representing its location on the ground. A slot is an unit space for storing a Twenty-Foot Equivalent 
Unit (TEU) container located in a bay, a row and a tier, which can be characterized by a three-
dimensional vector (b, r, k).  

 

 
Fig. 1. A stacking area in a yard block with a single ASC. Adapted from Gharehgozli and Zaerpour 

(2018) 

At each end of the block, i.e., landside and seaside, there are several input/output (I/O) points where 
vehicles park waiting for the service of the ASC. During the import container retrieval process, an 
external truck with a retrieval request parks at one of the I/O points at the landside. The ASC picks up 
the required container in the block and then drop off it onto the truck at the I/O point. The location of 
the I/O point where the truck parks may affect the travel distance of the ASC along the row direction 
when serving the request. In this paper, we assume that all trucks park at the middle I/O point, i.e., the 
middle point in front of the first bay, which is considered to be located at bay 0, row (1+R)/2 and tier 1. 
We name this delivery point as the depot, denoted by o. This assumption is in line with the literature 
(Gharehgozli and Zaerpour, 2018). It is also reasonable statistically because on average a truck can be 
regarded as being served in the middle I/O point. Moreover, we will show in Section 3.4 that after a 
certain bay, the travel time of the ASC is determined only by the gantry crane travel time along the bay 
direction whereas the travel time along the row direction has no impact.  

3.2 Problem definitions  

We make the offline operational-level decision-making in a single planning period, in which we 
assign each import container to a slot in a given storage area in a single block. At the beginning of the 
planning period, we are given a batch of N incoming import containers to be stacked and a storage area 
where these containers are to be stored. The given storage area is composed of B empty bays (i.e., B R  
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empty stacks) in a block. Let   denote the set of the B bays, B  . Let b, b , denote both a 

bay and its bay index. Note that the B bays do not necessarily need to be located consecutively in the 
block. A smaller b corresponds to a bay closer to the landside and a greater b corresponds to a bay closer 
to the seaside. It is worth noting that the models and solution approaches proposed in this paper can be 
easily extended to a non-empty storage area where some stacks have been occupied by existing 
containers.  

As the yard is a scarce resource at container terminals (de Melo da Silva et al., 2018), terminal 
operators tend to make high utilization of the yard storage space. Therefore, the number of available 
bays B should be limited depending on the yard utilization rate. Usually, terminal operators would set 
an average utilization rate for the yard space. Let u denote the utilization rate of a bay, which is defined 
as the percentage of all its slots being occupied by the containers stored in the bay. In our experiments, 

given N, R and u, B is given by /B N R K u       , which represents the required number of empty bays 

to store N containers when each bay is utilized at its pre-set utilization rate u. 
The batch of N containers to be stacked belong to C customers. The containers are grouped by 

customers. Let  1,...,c C  denote the index of customers or groups, and the number of containers in a 

group c is called group size, denoted by vc. When all the containers in a stack are in the same group and 
the stack is not allowed to be used for relocation, no relocations are needed when retrieving the 
containers in this stack as containers are ‘peeled off’ from the top of the stack. We refer to such 
containers as smart containers (i.e., free-flow containers) and such stacks as smart stacks. In another 
situation, when the containers in a stack are from more than one group or all the containers in a stack 
are in the same group but the stack can be used for relocation, relocations may be needed for retrieving 
the containers in this stack. We refer to such containers as non-smart containers (i.e., non-free-flow 
containers) and such stacks as non-smart stacks. Accordingly, we refer to a bay in which all the stacks 
are smart as a smart bay, in which all the stacks are non-smart as a non-smart bay, and in which both 
smart and non-smart stacks exist as a mixed bay.  

A smart stack occupies the entire K slots of the stack regardless of how many containers are allocated 
to it. This is because a smart stack is dedicated to a single group and is not allowed to be used for 
relocation. If a bay is a smart bay, the capacity of the bay is equal to RK; otherwise, its capacity is equal 
to RK-(K-1) because at least (K-1) empty slots need to be reserved for relocation in order to avoid 
deadlock (Tang et al., 2015; Chang and Zhu, 2019). To ensure the B bays are sufficient to store all the 
containers, the bay utilization rate u must satisfy the condition ( 1)R K u R K K        . 

The following assumptions are made for formulating the problem. 
A1. Each container is associated with a customer. The containers belonging to the same customer 

form a group. If the customer information of a container is unknown, this container forms a group on 
its own.  

A2. The containers in a smart stack are retrieved from the top to the bottom without requiring any 
relocation.  

A3. The containers in a non-smart stack are retrieved in uniformly random order and relocations are 
needed.  

A4. The container weight is not considered by assuming it will not influence its stacking location and 
all import containers to be stacked are of standard 20 ft.  

A4 can be explained as follows. The weight attribute of a container is less important for the import 
container stacking than the export container stacking, because the retrieval sequence of import 
containers is not constrained by their weights. Although the weight of a container may raise the safety 
issue in stacking (e.g., Razouk et al., 2016; Güven and Eliiyi, 2019), the majority of studies on import 
containers ignore the weight constraints (e.g., Dekker et al., 2006; Guldogan, 2011; Wang et al., 2020; 
Zhu et al., 2020). We, therefore, make this assumption by focusing on the smart stacking strategy for 
import containers. This will help us better demonstrate the value of customer information. 

3.3 Two smart stacking policies 

Since a customer may have multiple containers and the capacity of a stack is restricted by the 
maximum stacking height K, more than one stacks may be needed to store the containers from a single 
customer. Two variants of the smart stacking strategy could be designed, depending on whether all or 
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part of the containers of a customer are smart. Accordingly, we propose two smart policies, non-split 
policy and split policy.  

Under the non-split policy, a group of containers is not allowed to be split between smart and non-
smart stacks. In other words, they are either wholly allocated to smart stacks or wholly allocated to non-
smart stacks; and we are concerned with which groups/customers should be smart. Under the split policy, 
a group of containers can be split between smart stacks and non-smart stacks; and we determine how 
many containers from a group should be smart. Under either policy, we need to determine where these 
smart stacks and non-smart stacks should be located in the block. 

Fig. 2 provides an example solution under the two policies respectively for a single bay to illustrate 
the influence of splitting on the number of relocations. Under both policies, the maximum stacking 
height K=4 forces the groups that have more than K containers to be divided and allocated to different 
stacks (e.g., group A). In Fig. 2(a), under the split policy, the five containers of group A are split between 
smart stack 1 and non-smart stack 5 where one container of group A is mixed with one container from 
group F. In Fig. 2(b), under the non-split policy, to make all the containers of group A smart, which are 
allocated to smart stacks 1 and 5, stacks 3 and 4 are determined to be non-smart stacks. Note that 
although the two containers in stack 3 are from the same group C, they are non-smart containers and 
stack 3 is a non-smart stack because stack 3 has to be used for accommodating relocations from stack 4 
in order to avoid deadlock. Besides, one more container is added to stack 4 compared to that under the 
split policy, which increases the possibilities of relocation for stack 4. It can be seen that the split policy 
can save more relocations than the non-split policy.  

 
                    (a) split policy                                (b) non-split policy 

Fig. 2. Illustration of the solutions under two smart policies for a single bay 

In this paper, we optimize and evaluate the effects of smart stacking under both two policies. We 
focus more on analyzing the non-split policy because it is closer to the current practice of container 
terminals and easier to implement from the perspective of customer administration. In Section 4, we 
develop mathematical models under each policy, and then we compare the two models both theoretically 
(section 4.2) and computationally (section 6.5).  

3.4 Objective function 

The objective of our SLAP is to minimize the total retrieval time that is the sum of the ASC’s travel 
time and relocation time. In the following two sub-sections, we present how the two components in the 
objective functions are measured. 

3.4.1 ASC’s travel time  

We first introduce the ASC’s working pattern, and then we give the mathematical expression of the 
travel time. In the end, we present the properties of the ASC’s travel time.  

The container retrieval operations are performed by a single ASC at the landside of the block. To 
serve a retrieval request, the ASC needs to perform both horizontal travel and vertical travel activities. 
During horizontal travels, the ASC moves its gantry along bays and its trolley along rows simultaneously 
in Chebyshev distance. During vertical travels, the ASC moves its spreader up and down. These travel 
activities can be divided into four phases as shown in Fig. 3. Firstly, the crane performs an empty drive 
from its current position to the target stack where the requested container is stored (horizontal). Secondly, 
the crane lowers its spreader to pick up the container and then hoists the spreader up (vertical). Thirdly, 
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the crane performs a loaded drive from the target stack to depot o (horizontal). Finally, the crane lowers 
its spreader to set down the container on the truck at the depot and then hoists the spreader up (vertical).  

 
Fig. 3. Pattern of typical yard crane movements for a retrieval cycle. Solid grey box indicates variable 

parts, dotted grey box indicates constant parts, and striped grey box indicates irrelevant parts. (Adapted 
from Galle et al. (2018b)) 

Based on this pattern, we now analyze the travel time spent in each phase and derive the relevant part 
that will be included in the optimization model.  

(1) Empty drive. The empty drive time depends on which stack the ASC currently stops when a 
retrieval request arrives, that is, where the ASC ended its previous request. This is usually optimized in 
the yard crane schedule problem (see e.g. Galle et al., 2018b) when multiple types (stacking and retrieval) 
of requests are considered and their stacking positions and service sequences are to be determined 
simultaneously. In this paper, since we only focus on the retrieval requests, the empty travel time is not 
relevant and thus is not included in the objective function. 

(2) Loaded drive. The loaded drive time depends on the stack (b, r) where the requested container is 
stored, which is a variable part. Let Tb be the gantry moving time from bay b to bay zero (i.e., the 
artificial bay in front of bay 1), and Tr be the trolley moving time from row r to the middle I/O point, 
which is located at the middle of bay zero. As the ASC moves along bays and rows simultaneously in 
Chebyshev distance, the ASC’s loaded drive time is calculated as Tbr = max{Tb, Tr}. If Tb > Tr, the travel 
time along the bay Tb is dominant (Tbr = Tb); otherwise, the travel time along the row Tr is dominant (Tbr 
= Tr). We call a bay b with Tbr = Tb for any 1 r R   a dominant bay; otherwise, it is called a non-
dominant bay. We call a stack (b, r) with Tbr = Tr a dominant stack. It should be noted that if we assume 
that external trucks will be parked in positions [1, R] randomly with a uniform distribution, then the 
ASC’s loaded drive time (i.e., the horizontal travel time along the bays and the rows) on average will 
have a different expression. However, this does not affect the arguments of our study. In addition, 
Appendix C compares the ASC’s horizontal travel time between the assumptions of middle I/O point 
and random I/O point, which demonstrates the reasonability of assuming the middle I/O point. 

(3) Pick up. The time spent in this phase consists of three parts: the spreader’s lowering time (without 
a container), the time to handle and stabilize the container, and the spreader’s hoisting time (with a 
container). Among them, the time to handle and stabilize the container is constant (e.g., 20 seconds), 
and thus it is not included in the objective function. The times of the other two parts depend on the tier 
k where the requested container is stored, which is a variable part. Let E

kT  denote the time spent in 

lowering the spreader from the crane height (i.e., tier K) to tier k, and L
kT  the time spent in hoisting the 

spreader from tier k to tier K. Then, the variable part for the pick-up phase is expressed by E
k kT T  + L

kT . 
(4) Set down. Containers are dropped off onto trucks at the depot. Since the locations of the trucks 

are fixed, the set-down time is constant and thus it is not included in the objective function.  
To sum up, the variable part of the ASC’s travel time to retrieve a container stored at slot (b, r, k) is 

expressed by Tbrk = max{Tb, Tr} + E
kT  + L

kT . This variable part Tbrk will be included in our objective 

function. Namely, only the relevant travel time of the ASC when retrieving a container is considered in 
the optimization model.  

In the following, we present the structural properties of the ASC’s travel time in Property 1. The 
properties will be utilized in the rest of the paper, including designing the heuristic algorithm and 
analyzing the results of the experiments. Property 1 states that (i) for the stacks in the same row, the 
ASC’s horizontal travel time increase with the bay index; (ii) after a certain bay b̂ , the ASC’s 
horizontal travel time depends only on the bay index regardless of the row index, and for the stacks in 
any rows after bay b̂ , the ASC’s horizontal travel time increases with the bay index. According to our 
definition, all the bays b that satisfy ˆb b  belong to dominant bays, and we say bay b̂  is the 
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minimum dominant bay. In our experiment in which a block has twelve rows, ˆ 3b  , indicating that the 
ASC’s horizontal travel for retrieving a container located in a bay b, 3b  , is determined only by the 
bay index. The point (iii) in Property 1 indicates that the ASC’s vertical travel time decreases with the 
tier where the container is stored. The proof of Property 1 is provided in Appendix A. 

Property 1. Let lx and ly be the length and width of a 20-ft (twenty-foot equivalent unit) standard 
container, respectively. Let vx be the ASC gantry moving speed with load and vy be the ASC trolley 
moving speed with load. For a block with R rows and M bays: (i) for any r (1 r R  ), br b rT T   for 

1 b b M   ; (ii) if there exists a bay b̂  ( ˆ1 b M  ) that satisfies 
ˆ ( 1) / 2x y

x y

b l R l

v v

  
  and 

ˆ( 1) ( 1) / 2x y

x y

b l R l

v v

   
 , then br bT T  for ˆ1 b b M    and 1 r R  , and br b rT T    for 

b̂ b b M   , 1 r R   and 1 r R  ; (iii) k kT T   for 1 k k K   . 

3.4.2 Relocation time 

Relocation moves are often inevitable when retrieving the containers from non-smart stacks since 
containers in these stacks are requested by external trucks in random order. As in the literature (Zhao 
and Goodchild, 2010; Yu and Qi, 2013), we assume that the number of relocations and the time needed 
to perform one relocation is independent, and thus the total relocation time is estimated by the expected 
number of relocations and the average time to relocate one container.  

Since the exact number of relocations cannot be easily determined in advance, this part of the 
objective function is often replaced by a lower bound on the number of relocations (Bruns et al., 2016). 
When no information is available on the container retrieval sequence, the lower bound of the expected 
number of blocking containers is regarded as a good proxy for the expected number of relocations when 
the number of stacks in a bay is large (Galle et al., 2016). We use the lower bound in Galle et al. (2016) 
to approximate the expected number of relocations given that it depends only on the number of 
containers in a stack which can make the model tractable. In our preliminary study, we have also 
examined the alternative method from Kim (1997) and Yu and Qi (2013) to estimate the number of 
relocations. The numerical results show that the new model using the alternative estimation method 
produce quite similar solutions, especially in terms of the percentage of the smart containers and the 
total ASC travel time, but the new model is more computationally expensive because it involves more 
variables and constraints. 

We define kα  to be the expected number of blocking containers in a stack of k containers in the case 

when no information on the containers’ retrieval sequence is available. From Galle et al. (2016), we 
have 0 0α   and 

1

1k

k
i

α k
i

  , {1, ..., }k K                                                              (1) 

The expected number of relocations for a non-smart stack of k containers is calculated by Eq. (1). 
Let T  be the average time of relocating a container. Then, the total expected relocation time for a non-
smart stack of k containers can be expressed by the product of kα  and T .  

4. Mathematical models 

In this section, we present the mathematical models under the non-split policy and the split policy 
respectively. The notations used in both models as given as follows. The unique notations used in each 
model will be introduced when introducing the corresponding models.  

Parameters: 
N: the total number of containers to be stacked.  
 : the set of empty bays, B  .  

R: the number of rows (stacks) in a bay.  
K: the maximum stacking height.  
T : the average time needed to perform a relocation (in seconds).  

kα : the expected number of relocations in a non-smart stack of k containers, which is defined by Eq. 
(1). 
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brkT : the ASC’s travel time to retrieve a container located at slot (b, r, k) (in seconds).  
Auxiliary Variables: 

bz : equals zero if all the stacks in bay b are smart stacks, and one otherwise; 

brh : the number of non-smart containers in stack (b, r); 

bw : the expected number of relocations in bay b, which is a continuous variable;  

brkf : equals one if there are k non-smart containers stored in stack (b, r), and zero otherwise; 

brky : equals one if there is a container stored at tier k of stack (b, r), and zero otherwise. 

4.1 Non-split model 

We now present the mathematical model under the non-split policy, that is, a group of containers is 
either wholly allocated to smart stacks or wholly allocated to non-smart stacks. We first develop an 
original formulation, and then we develop an improved formulation by enhancing the variable 
representation of the original one. Both formulations are mixed-integer programming (MIP) models. 
The key decision variables in the non-split model include which groups (customers) should be selected 
as smart groups, how the containers from a smart group should be distributed to multiple smart stacks, 
and where these smart stacks should be located in the block. Note that all the containers in a smart group 
should be allocated to some smart stacks.  

4.1.1 Original formulation 

The newly defined parameters and decision variables in the original formulation are as follows.  
Parameters: 

cv : the size of group c.  
Decision Variables: 

ck
brx : equals one if stack (b, r) is a smart stack that is allocated to k containers of group c, and zero 

otherwise;  

cs : equals one if group c is a smart group, and zero otherwise; 
The original formulation (denoted by M1) is presented below:  

[M1]:                                      min
1 1

R K

brk brk b
b r k b

T y w T
   

                                                                (2) 

s.t.  
1 1

1
C K

ck
br

c k

x
 

 , b ,  1, ...,r R                                                            (3) 

1 1

R K
ck
br c c

b r k

x k s v
  

   ,  1,...,c C                                                         (4) 

1 1 1

R C K
ck
br br

b r c k

x k h N
   

 
   

 
                                                                   (5) 

1 1 1

R C K
ck

b br
r c k

z R x
  

  , b                                                                    (6) 

1 1 1

R C K
ck

b br
r c k

z R R x
  

   , b                                                                 (7) 

1 1 1

( 1)
R C K

ck
br br b

r c k

x K h RK K z
  

 
      

 
  , b                                     (8) 

1 1

1
C K

ck
br br

c k

h x K
 

 
   
 

 , b ,  1, ...,r R                                            (9) 

1 1 1

K C K
ck

brk br br
k c k

y x k h
  

    , b ,  1, ...,r R                                       (10) 

, 1brk br ky y  , b ,  1, ...,r R  ,  2,...,k K                                    (11) 

1 1

R K

b k brk
r k

w α f
 

  , b                                                                      (12) 

1

1
K

brk
k

f


 , b ,  1, ...,r R                                                            (13) 
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1

K

brk br
k

k f h


  , b ,  1, ...,r R                                                      (14) 

 0,1brky  ,  0,1brkf  , b ,  1, ...,r R  ,  1,...,k K                        (15) 

 0,1bz  , 0bw  , b                                                                        (16) 

brh Z  , b ,  1, ...,r R                                                              (17) 

 0 , 1cs  ,  1,...,c C                                                                        (18) 

 0,1ck
brx  , b ,  1, ...,r R  ,  1,...,c C  ,  1,...,k K                    (19) 

The objective function (2) is to minimize the total retrieval time, which is the sum of the total ASC 
travel time and the total relocation time. Constraints (3) ensure that each smart stack is allocated to a 
specific number of containers of at most one group. Constraints (4) guarantee the non-split policy, that 
is, for a smart group, all the containers in the group are allocated to smart stacks. Constraints (5) ensure 
that all given containers are stored in the given storage area. Constraints (6) and (7) define the auxiliary 
decision variables bz  that indicate if all the stacks in a bay are smart. bz  is forced to equal zero if all 
the stacks in bay b are smart and equal one if there are non-smart stacks in bay b. Constraints (8) 
guarantee the capacity feasibility of each bay. For a smart bay (i.e, 0bz  ), the capacity of the bay is 
equal to RK; otherwise, its capacity is equal to RK-(K-1) because at least (K-1) empty slots need to be 
reserved for relocation in order to avoid deadlock. Constraints (9) guarantee that the height of a non-
smart stack is not more than K. Constraints (9) also ensure that there is no non-smart container in a smart 

stack. If stack (b, r) is a smart stack, i.e., 
1 1

1
C K

ck
br

c k

x
 

 , brh  is forced to equal zero. Constraints (10) and 

(11) determine the height of each stack and guarantee that containers are stacked from the ground and 
are stacked on top of one another. Constraints (12) calculate the total relocation time for retrieving the 
containers in a bay. Constraints (13) and (14) define the auxiliary decision variables brkf  by brh . If 0brh  , 

0brkf  ,  1,...,k K ; otherwise, , 1
brbr hf   and 0brkf  ,  1,..., / brk K h  . Finally, Constraints (15)-(19) 

specify the domains for the decision variables.   

4.1.2 Properties of optimal solutions 

We now propose two propositions regarding the properties of optimal solutions of the original 
formulation, based on which we will develop an improved formulation in the next sub-section.  

First, we define a pile as the set of containers stacked in the same stack. We refer to a pile that is 
stacked to the maximum stacking height as a full pile. A smart pile is implied by the smart stack.  

Proposition 1. Let 
iph  be the height of pile pi. In the optimal solution to M1, for any two smart piles 

pi and pj which are located at stacks ( , )i ib r  and ( , )j jb r  respectively, if 
i jp ph h  , then 

i i j jbr b rT T . 

Sketch of the proof. The proof is proved in Appendix A. We suppose by contradiction that 
i jp ph h

and 
i i j jbr b rT T  in the optimal solution *σ . We construct a feasible solution σ   such that 

i jp ph h  and 

i i j jbr b rT T , and we show that σ   leads to a smaller objective value than *σ  which provides a 

contradiction to *σ  being an optimal solution. 
Proposition 2. Let Pc be the number of piles of a smart group c in the optimal solution, then /c cP v K    , 

and the Pc piles are composed of Pc -1 full piles and one pile whose height equals  1cc Pv K   . 

Sketch of the proof. The proof is provided in Appendix A. Let us rank the Pc piles in ascending order 
of the ASC’s horizontal travel time needed to retrieve a container from the stack where the pile is located. 

According to Proposition 1, the Pc piles can be ordered as 1 2, ,...,
cP

p p p  with 
1 2

....
Pc

p p ph h h    and 

1 1 2 2
....

P Pc c
b r b r b rT T T   . There are two cases depending on the size of cv , i.e., cv K  and cv K . In the 

case of cv K , it is sufficient to suppose by contradiction that in the optimal solution there is at least 
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one non-full pile in the first Pc -1 piles. Let pi be the highest non-full pile in the first Pc -1 piles. We can 
construct a feasible solution such that the height of pi is increased by one by moving one container from 

pile 
cP

p  to pile pi. In the case of cv K , it is sufficient to suppose by contradiction that in the optimal 

solution 
1p ch v . We can construct a feasible solution by moving one container from pile 

cP
p  to pile p1. 

In both cases, the feasible solution we construct can lead to a lower objective value than the optimal 
solution, which provides a contradiction to the supposing.  

4.1.3 Improved formulation 

Based on the propositions of the optimal solution in Section 4.1.2, we can propose an improved 
formulation, which is easier to solve than [M1].  

To simplify the narrative, we introduce the concept of optimal partition. The idea of the new 
formulation is to make decisions on which customers and partitions should be smart without the need 
of associating the smart partitions with specific smart customers. Proposition 2 indicates that in the 
optimal solution of the original formulation, each group is partitioned into /c cP v K     piles such that Pc 

-1 piles have K containers and one pile has  1cc Pv K   containers. We define the optimal partition 

of a group as the pattern that divides the group into the partitions each corresponding to a pile of the 
group in the optimal solution. Let { | [1, ..., ]}c i cπ p i P   denote the set of partitions of group c by using 

the optimal partition, where /c cP v K     is the number of partitions of group c, pi is the number of 

containers in partition i. Without the loss of generality, we let pi =K, {1, . . . , / 1}ci v K    , and 

 / 1
c ccv K KPp v  

    .  

We partition each group by using the optimal partition. With such pre-processing, the improved 
formulation is developed based on the unit of partition. The newly defined parameters and decision 
variables in the improved formulation are as follows. 

Parameters: 

cku : the number of partitions with k containers for group c, {1, ..., }c C ,  1,...,k K , which is defined 

by  
1,

1, ( 1)
0, {1,..., } / { , ( 1) }

c

ck c c

c c

P k K
u k v P K

k K K v P K

     
   

 

Decision Variables: 
k
brx : equals one if stack (b, r) is a smart stack that is allocated to a partition with k containers, 

 1,...,k K , and zero otherwise. 

The improved formulation (denoted by M2) is presented below: 

[M2]:                                      min
1 1

R K

brk brk b
b r k b

T y w T
   

                                                                (2) 

s.t.  
1

1
K

k
br

k

x


 , b  ,  1, ...,r R                                                          (20) 

1 1

R C
k
br c ck

b r c

x s u
  

  ,  1,...,k K                                                            (21) 

1 1

R K
k
br br

b r k

x k h N
  

 
   

 
                                                                      (22) 

1 1

R K
k

b br
r k

z R x
 

  , b                                                                     (23) 

1 1

R K
k

b br
r k

z R R x
 

   , b                                                                (24) 

1 1

( 1)
R K

k
br br b

r k

x K h RK K z
 

 
      

 
  , b                                      (25) 

1

1
K

k
br br

k

h x K


 
   
 

 , b  ,  1, ...,r R                                           (26) 
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1 1

K K
k

brk br br
k k

y x k h
 

    , b  ,  1, ...,r R                                      (27) 

 0,1k
brx  , b  ,  1, ...,r R  ,  1,...,k K                                      (28) 

                                                    Constraints (11) – (18) 
The objective function (2) is the same as in [M1]. Constraints (20) ensure that each smart stack is 

allocated to a partition with a specific number of containers. Constraints (21) guarantee the non-split 
policy by forcing the total number of partitions with k containers for all the smart groups equals the total 
number of smart stacks each storing k containers. Constraints (22) ensure that all given containers are 
stored in the given storage area. Constraints (23) and (24) define the auxiliary decision variables bz  
that indicate if all the stacks in a bay are smart. Constraints (25) guarantee the capacity feasibility of 
each bay. Constraints (26) guarantee that the height of a non-smart stack is not more than K and there is 
no non-smart container in a smart stack. Constraints (27) determine the height of each stack. Constraints 
(11) – (18) inherit from [M1].  

Proposition 3 states that the optimization problem defined by [M1] and the optimization problem 
defined by [M2] are equivalent problems. 

Proposition 3. [M1] and [M2] are equivalent problems.  
Sketch of the proof. The proof is provided in Appendix A and is in three parts. In order to prove the 

equivalence between [M1] and [M2], we first show there is an implied constraint for [M1] that can be 
derived by the definition of cku . By using this implied constraint, we can reformulate [M1] into an 
equivalent counterpart [M1-1]. Secondly, by using the transformation between ck

brx  and k
brx , we can 

reformulate [M1-1] into an equivalent counterpart [M1-2]. Lastly, we show that [M1-2] and [M2] are 
equivalent.   

4.2 Split model 

In this section, we develop the mathematical model under the split policy, that is, a group of containers 
can be split between smart stacks and non-smart stacks. Intuitively, selecting a full pile to be a smart 
stack is more beneficial than selecting a non-full pile to be a smart stack because of more reduction on 
relocations and better utilization of the stack space. The split policy offers the opportunities to increase 
the number of full smart piles and decrease the number of non-full smart piles. We restrict the split 
policy to the cases that all smart piles must be selected from the optimal partitions defined in Section 
4.1.3. This treatment makes the split model easy to compare with the non-split model.  

We pre-process each group by the optimal partition as that in Section 4.1.3, and as a result, we get a 

total of 
1 1

C K

ck
c k

u
 
  partitions for all the containers. We define a new parameter 

1

C

k ck
c

n u


  that denotes the 

total number of partitions with k containers, {1, ..., }k K , in which cku  is defined in Section 4.1.3. The 
decisions of the split model focus on which partitions should be smart. The newly defined parameters 
and decision variables in the split model are as follows. Note that k

brx  has been defined for [M2], we 
introduce it here again for the purpose of differentiating it from the decision variable ck

brx  in [M1].  

Parameters: 

kn : the total number of partitions with k containers, {1, ..., }k K , which is defined by 
1

C

k ck
c

n u


 , 

{1, ..., }k K .  
Decision variables: 

k
brx : equals one if stack (b, r) is a smart stack that is allocated to a partition with k containers, 

{1, ..., }k K , and zero otherwise. 
The split model (denoted by M3) is presented below:   

[M3]:                                    min
1 1

R K

brk brk b
b r k b

T y w T
   

                                                                 (2) 

s.t.  
1

R
k
br k

b r

x n
 

 , {1, ..., }k K                                                             (29) 

                                                        Constraints (11) – (18), (20), and (22) – (28) 
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Constraints (29) ensure that the number of smart stacks allocated to the partitions with k containers is 
not more than the total number of partitions with k containers. The other constraints inherit from [M2].  

The following two lemmas compare the split model and the non-split model theoretically. Lemma 1 
states that the objective value of [M3] is not greater than that of [M2]. Lemma 2 states that [M2] and 
[M3] have the same objective value when the maximum group size is no more than the maximum 
stacking height K. The proofs of Lemma 1 and Lemma 2 are provided in Appendix A.  

Lemma 1. Let (M 2)f  and (M 3)f  be the objective functions of the optimization problems defined 

by [M2] and [M3], respectively, then (M3) (M2)f f . 

Lemma 2. Let 
{1,..., }
max { }m

c
c C

V v


 , then (M2) (M3)f f  when mV K . 

4.3 Complexity of the SLAP 

The SLAP is NP-hard in general. This can be proved by reducing the Set Partitioning Problem to a 
special instance of the SLAP. We define a ‘bay profile’ as a feasible assignment of containers to a bay, 
and each bay profile is associated with a total time for retrieving all the containers in this bay profile. 
For all available bays, a finite set of all feasible bay profiles can be defined in advance, denoted by P. 
Consider a special case of the SLAP, in which we are given only a subset of P, denoted by P . Then, 
the remaining task of the SLAP is to find a subset of bay profiles from P  with the minimum total 
retrieval time subject to that it covers all of the containers and no two of the bay profiles share the same 
container. This instance is equivalent to the Set Partitioning Problem. Therefore, we have reduced the 
Set Partitioning Problem to a special case of the SLAP. Because the Set Partitioning Problem is known 
to be NP-hard (Rasmussen and Larsen, 2011), the SLAP is NP-hard. 

Due to the NP-hardness of the SLAP, the proposed MIPs are computationally expensive to solve for 
large-scale problems, which is not realistic for real-world decision-making (c.f. the results in Section 
6.3). Therefore, in the next section, we will develop an efficient heuristic algorithm that is able to find 
near-optimal solutions within several seconds for the SLAPs of practical scales.  

5. Divide-and-conquer heuristic 

In this section, we develop a heuristic algorithm for the non-split variant by employing the divide-
and-conquer strategy. The framework of the heuristic is introduced in Section 5.1 and the details are 
presented in Sections 5.2-5.5. 

5.1 Framework  

Divide-and-conquer is an important paradigm to design computationally efficient algorithms in 
computer science (Li et al., 2009). The principle underlying divide and conquer algorithms is that: the 
original problem is decomposed into two or more subproblems until they become sufficiently simple to 
be solved directly; the subproblems are solved independently and their solutions are composed to give 
a solution to the original problem (Smith et al., 1985). The divide-and-conquer paradigm has become a 
commonly used strategy to design efficient algorithms for complicated combinatorial optimization 
problems (e.g., Reimann et al., 2004; Jin et al., 2016; Wei et al., 2019).  

The structure of the non-split model [M2] motivates us to employ the divide-and-conquer strategy to 
decompose the original problem into several subproblems and solve them sequentially and iteratively. 
It is observed that in [M2], the decision vector x about the smart stacks and the decision vector h about 
the non-smart stacks are coupled only by Constraints (22) and (25) - (27). By relaxing these constraints, 
the original problem can be decomposed into two smaller subproblems: one involving only the smart 
stack decisions and the other only concerning the non-smart decisions, which are much easier to solve. 
The solution to the original problem can be obtained by solving a third subproblem in which the 
solutions to the first two subproblems are combined.  

Fig. 4 provides the framework of the divide-and-conquer (D&C) heuristic. At each iteration, three 
subproblems are solved sequentially based on the updated number of available bays. Initially, all the 
given B empty bays are taken into account; then at each later iteration, the number of available bays is 
reduced by one. Subproblem 1 is first solved to determine the smart piles. Here, we use “smart piles” 
rather than “smart stacks” because subproblem 1 only concerns the heights of smart stacks but does not 
determine their locations; instead, the smart piles are considered to be temporarily stacked in a certain 
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area in the block to guarantee the feasibility of the capacity constraint. After that, the number of non-
smart containers and the remaining storage space for non-smart containers can be obtained and passed 
to subproblem 2 where the non-smart piles are determined subsequently. Finally, the smart piles and the 
non-smart piles resulted from subproblems 1 and 2 are passed to subproblem 3, in which the locations 
of each pile are determined and the objective function is updated. The algorithm terminates at the 
iteration with Bmin bays, which is the minimum number of required bays supposing each bay can be fully 
utilized, or the iteration where the objective function stops improving.  

 

Fig. 4 The framework of the divide-and-conquer algorithm 

5.2 Updating scheme and stopping criteria 

Let i  denote the set of available bays at the ith iteration, and iB  the size of i . 0  is initialized as 

  and B0 is initialized as B. After solving the three subproblems at each iteration, 1i  is updated by 
removing the bay closest to the seaside in i , and accordingly, the number of available bays is updated 
by Bi+1=Bi – 1. The idea behind this updating scheme is to minimize the objective function through the 
trade-off mechanism between the ASC travel time and the relocation time. When the available storage 
space gets larger, the number of relocations tends to decrease but the retrieval time tends to increase. 
The objective function is minimized at a certain point where the number of occupied stacks is optimal. 
Therefore, by scanning the number of available stacks, we are able to minimize the objective function. 
However, instead of scanning the number of stacks, we can reduce the number of iterations and thus 
save the solution time by scanning the number of bays. Although this does not guarantee optimality, it 
is expected that the optimality gap is small because of the property of the ASC travel time stated in 
Property 1. Let 1  denote the set of bays in i  located before bay b̂  (recall that b̂  is the minimum 
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dominant bay that satisfies 
ˆ ˆbr b

T T  for any 1 < r < R), and 2  the set of bays in i  located after bay b̂  

(including bay b̂  if b̂  is in i ). According to Property 1, for the bays in 1 , the ASC’s horizontal travel 
time for retrieving a container depends on both the row index and the bay index of the stack where the 
container is stored; and for the bays in 2 , it only depends on the bay index. In the realistic situation, in 

most cases, 
1  is much smaller than B, which means that the bays in 1  must be occupied. Since for 

the bays in 2 , the ASC’s horizontal travel time depends only on the bay index, there would be not 
much difference among the solutions with one more stack available or one less stack available in such 
bays.  

On solving the three subproblems at each iteration, the total retrieval time can be obtained. The search 
process terminates either if the iteration reaches the minimum number of required bays Bmin or if the 
objective function does not improve. Bmin is calculated by Bmin = / ( )N R K   , supposing each bay 

can be fully utilized.  

5.3 Subproblem 1: smart piles 

Subproblem 1 deals with the selection of smart piles. The objective of subproblem 1 is to maximize 
the number of smart containers. By considering the constraints associated with only smart containers, 
subproblem 1 for the ith iteration can be formulated as an integer programming model denoted by [Sub1] 
in Appendix B.1. 

In [Sub1], the decisions on the heights of smart piles and the locations of smart piles are bound 
together by the decision variable x. As the locations of smart piles will be determined in subproblem 3, 
here, we only need to determine smart groups s. With s, we can obtain the heights of each smart pile. In 
order to guarantee the feasibility of the original problem, we need to make sure that a feasible solution 
can be found in subproblem 2, and thus the feasibility of Constraints (22), (25) and (26) in [M2] should 
be maintained when solving [Sub1]. Therefore, smart groups should be determined such that there are 
as many smart containers as possible and the remaining storage space is still enough to accommodate 
the non-smart containers. For this purpose, we design a heuristic rule to select smart groups.  

The basic idea of the heuristic rule is to give priority to the groups who can make more contribution 
to reducing the number of relocations and meanwhile can utilize the storage space more efficiently. For 
this purpose, we introduce a group score dc to represent the average height of each pile of group c, which 
is defined by /c c cd v P . Groups with higher dc are given priority over those with lower dc when selecting 
smart groups. For the groups with the same value of dc, the groups with a greater number of partitions 
(Pc) are given priority. The rationality behind this is that a group with a higher dc has a higher utilization 
rate of the stacks and thus more space can be saved for storing other smart containers, and a group with 
a greater number of partitions can bring more smart containers and thus can lead to fewer relocations. 
Therefore, these groups are more promising to become smart groups in the optimal solution.  

The details of the heuristic rule used for determining the smart groups are provided in Appendix B.2.  

5.4 Subproblem 2: non-smart piles 

After solving subproblem 1, suppose there are Nn non-smart containers, Ss stacks for storing smart 
containers and Sn stacks for storing non-smart containers. Subproblem 2 determines the heights of non-
smart piles. The objective is to minimize the total retrieval time of the Nn non-smart containers. 
Subproblem 2 can be formulated as a MIP model denoted by [Sub2] in Appendix B.3. As [Sub2] only 
involves the decisions of non-smart containers, it can be solved by CPLEX efficiently.  

[Sub2] is developed under the assumption that a specific storage area in the block has been pre-
allocated to the non-smart containers. We temporarily divide the given storage area into smart bays, 
non-smart bays and mixed bays. The purpose of the division is to construct a set of bay profiles that will 
not violate the capacity Constraints (25) in Subproblem 3. A bay profile is defined as a feasible 
assignment of containers to a bay. The division method is described below, and an example illustrating 
the pre-allocated storage area is provided in Appendix B.4.  

The bays in i  are divided into three subsets, which are 1
i , 2

i  and 3
i . Let K  denote the set of 

full smart piles output from subproblem 2, that is, the smart piles with K containers. First, the first 
/K R     bays near the landside in i , denoted by 1

i , are allocated to K , which are smart bays. Second, 
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the next /nS R    bays in i , denoted by 2
i , are allocated to all the non-smart containers, which are 

non-smart bays. Note that the last bay in 2
i , denoted by B , can be a mixed bay depending on the value 

of %nS R . Let ˆ %nR S R . Recall that we refer to a bay shared by both smart stacks and non-smart stacks 

as a mixed bay. If ˆ 0R  , bay B  is a non-smart bay. If ˆ 0R  , bay B  will be a mixed bay and R̂  

represent the number of non-smart stacks in this bay. In this case, a part of the stacks of bay B  are 
reserved for smart containers and thus are not allowed to store non-smart containers. We suppose that 
the (R- R̂ ) number of stacks at the right side of bay B  are reserved for smart piles and the R̂  number 
of stacks at the left side are allocated to non-smart piles. Last, the last 1/s iS R      bays in i , 

denoted by 3
i , are reserved for the remaining smart piles that are neither in 1

i  nor in the mixed bay, 

which are smart bays. Note that n s iS S B   and 1 2 3
i i i iB      . If ˆ 0R  , 2

i nR S    and 

1 3
i i sR R S      ; otherwise, if ˆ 0R  ,  2 ˆ1i nR R S      and 1 3ˆ( )i i sR R R R S        .  

The rationale behind this pre-allocation is that in the optimal solution, according to Proposition 1, a 
higher stack would be allocated to a bay with a smaller index. Since the height of a non-smart pile will 
be no greater than K, it is reasonable to pre-allocate the first 1

i  bays to full smart piles. In addition, 

the purpose of solving subproblem 2 is to obtain the heights of non-smart piles rather than their locations 
which will be determined in subproblem 3. Pre-allocating 2

i  to non-smart containers makes the non-
smart piles have competitive heights to compete with the smart piles for the bays near the landside in 
subproblem 3.  

5.5 Subproblem 3: location allocation 

After solving subproblems 1 and 2, we have obtained smart piles and non-smart piles, and the 
relocation time has been determined. Subproblem 3 is to determine the locations of the smart piles and 
non-smart piles to minimize the ASC travel time, which can be formulated as an integer programming 
model denoted by [Sub3] in Appendix B.5.  

After conducting a preliminary experiment by CPLEX, we found that [Sub3] is still computationally 
expensive for larger instances. Therefore, we design a heuristic rule to solve [Sub3]. The basic idea 
behind the heuristic rule is to allocate higher piles to the stacks near the landside. The rationale is that 
generally, the ASC’s horizontal travel time tends to increase with the bay index as stated in Property 1. 
In the heuristic, first, we construct a set of bay profiles given the set of smart and non-smart piles 
obtained from Subproblems 1 and 2. The smart and non-smart piles are allocated to the smart and non-
smart storage areas respectively which are pre-allocated in subproblem 2. Second, we allocate these bay 
profiles to the block based on the unit of bays by taking advantage of Property 1. These bay profiles are 
first sorted in descending order according to the total number of containers in each bay profile and then 
the sorted bays are assigned to the bays in i  from the landside to the seaside in increasing order of the 

bay index. If the travel time of the ASC depends only on the bay index, this assignment rule is optimal 
given a set of bay profiles (see the warehouse layout model in Tompkins et al. (2010)). However, in our 
problem setting, it cannot promise optimality because the ASC’s travel time is measured by Chebyshev 
distance. Last, we re-allocate the piles in 1  based on the unit of piles to seek possible savings on the 
travel time since for 1b   , Tbr also depends on r. A higher pile is re-allocated to a stack with greater 
Tbr. The advantage of the heuristic is that we do not need to consider the capacity feasibility since all the 
bays meet the capacity constraints. The details of the heuristic rule used for allocating the locations of 
the smart piles and non-smart piles are provided in Appendix B.6. 

Based on the locations of each pile, the total ASC travel time can be obtained. Then, the total retrieval 
time is returned by the sum of the relocation time obtained by [Sub2] and the ASC travel time obtained 
in subproblem 3.  

6. Computational experiments 

In this section, we present extensive computational experiments to validate the effectiveness and 
efficiency of the proposed solution approach. CPLEX 12.9 is used as the MIP solver to solve [M1], 
[M2], [M3] and [Sub2]. All the experiments are programmed in C++ (VS2015) and are performed on a 
desktop with Intel® Core ™ i5-7500 3.40 GHz CPU, 8 GB of RAM, and 64-bit Windows 10 Enterprise.  
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6.1 Experiment design and instance generation 

We present four sets of experiments, which are illustrated in Fig. 5. Firstly, we compare the 
computational efficiency of the two formulations of the non-split model, by which we show the 
superiority of the improved formulation over the original one. Secondly, we verify the effectiveness and 
efficiency of the proposed heuristic algorithm by comparing it with the improved formulation solved by 
CPLEX. Thirdly, we evaluate the effectiveness of the smart stacking strategy by comparing the proposed 
heuristic with a commonly used rule in practice. We also examine the impacts of customer information 
and bay utilization rates on the performance and the effectiveness of the smart stacking strategy. Lastly, 
we compare the performances of the two variants of models to evaluate the benefit of the split policy.  

 

Fig. 5 The diagram of the experiment design 

Table 1 lists the sets of parameters used in the experiments. To evaluate the performance of our 
proposed models and heuristic algorithm under different cases, each parameter is varied within a range 
of scenarios. Such variations can cover the dimension of a yard block in most of the modern ACTs 
(Galle et al., 2018b) and the practical scales of containers to be stacked into a block in a planning period 
(Yu and Qi, 2013). We also set a base instance that represents the dimension and the utilization rate of 
a bay at a typical ACT. Given N, R, K, and u, the number of available bays (B) in the storage area is 

obtained by /B N R K u       . In the experiments, for the convenience of analyzing and interpreting the 

results, the B bays are located consecutively in the block, that is, from bay 1 to bay B. We use three-
tuple, “the number of containers to be stacked (N) | the dimension of the bay (R×K) | the number of bays 
(B)”, to represent the problem class. We do not distinguish the scales of the problem classes strictly 
because all the relevant factors – N, R×K, and B – have an influence on the computational times of the 
exact solution. Instead, we regard a problem as a larger problem if it has a larger N while other factors 
are the same. The parameters associated with the operating speed of the ASC are based on Galle et al. 
(2018b). The relocation time per container is set to be 120 seconds according to the literature (Zeng et 
al., 2019) and the terminal practice.  

 

Table 1. Parameters setting for the experiments.  
Parameter Base Range of scenarios Fixed parameters 
Number of containers (N)  [144, 1296]  
Dimension of bay (R×K) 10×6 [5, 12] × [3, 8]  
Utilization rate (u) 0.8 {0.67, 0.8, 0.85}  
Distribution of group sizes U[1,10] Introduced in corresponding 

sub-sections 
 

Relocation time per container    120 seconds 
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ASC speed: 
Trolley speed with load 
Gantry speed with load 
Hoisting speed without load 
Hoisting speed with load 

   
1.17 meter/second 
1.17 meter/second  
0.93 meter/second  
0.47 meter/second 

Container size: 
Container width 
Container length 
Container height 

   
2.35 meter  
5.90 meter  
2.39 meter 

Regarding the distribution of the group sizes, we consider three scenarios of complete information in 
which the customer information of all containers is known, and three scenarios of incomplete 
information in which only the customer information of a part of the containers is known. Details will be 
given in the corresponding sub-sections. Let V denote the size of a group. In the base instance, the group 
sizes are uniformly distributed in [1,10], which is represented by V~U[1,10]. For a problem class with 
the same number of containers and the same distribution of the group sizes, random instances are 
generated to vary the size of each group. The experiments in Section 6.2 are based on thirty instances 
for each problem class and the experiments in the other sections are based on ten instances for each 
problem class, which is adequate to produce the findings.  

6.2 Comparison of two formulations of the non-split model  

In this section, we verify the superiority of the computational efficiency of the improved formulation 
over the original formulation. The number of containers N takes the values in the set of {144, 336, 528, 
720, 912}, which is sufficient to demonstrate the significant differences between the solution capacity 
of the two models. Other parameters are the same as the base instance, that is, R = 10, K =6, u = 0.8, and 
the group sizes follow the uniform distribution U[1,10]. Each problem class includes thirty random 
instances. Both models are solved using CPLEX given a time budget of one hour. The results of the two 
models are reported in Table 2. “%Opt” reports the percentage of instances solved to optimum within 
one hour. “Time (s)” reports the average computation time for the instances solved optimally by both 
models. “#Var” and “#Con” report the average number of variables and constraints for the instances 
solved optimally by both models, respectively.  

As shown in Table 2, both models obtain optimal solutions for all instances in the problem class with 
144 containers, but the original model requires a longer computational time. With the increase in the 
number of containers, the problem becomes more difficult to solve and some instances cannot be solved 
to optimum within the one-hour time limit. For the problem classes with 336, 528 and 720 containers, 
the improved model only takes 0.7% to 2.8% of the time taken by the original model for the instances 
that can be solved to the optimum. In Table 2, the problem class “912|10×6|19” is the most difficult to 
solve as shown by that the original model fails to verify the optimum for all the instances within the 
time limit. For this problem class, the improved model can obtain the optimal solution for 93.3% of the 
instances in 419 seconds on average per instance. As can be seen from the “#Var” and “#Con” columns, 
the improved model substantially reduces the number of variables and reduces the number of constraints 
to some extent, and thus the computational efficiency is improved. Given the superiority of the 
computational efficiency of the improved model, it is used as a benchmark to evaluate the performance 
of the proposed heuristic algorithm in Section 6.3.  

 

Table 2. Results of two formulations of the non-split model. 
Problem class 

N|R×K|B 
 Original formulation [M1]  Improved formulation [M2] 
 %Opt Time(s) #Var #Con  %Opt Time(s) #Var #Con 

144|10×6|3  100 12.5 5262 340  100 3.8 600 319 
336|10×6|7  66.7 843 26345 789  100 23.7 1397 735 
528|10×6|11  30.0 1331.9 65117 1241  100 14.9 2197 1151 
720|10×6|15  6.7 1707.9 113239 1685  93.3 12.4 2989 1567 
912|10×6|19*  0 - 193302 2144  93.3 419.2 3796 1983 
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Note. For the problem class “912|10×6|19”, the results of [M1] are the average of all the instances, 
and the results of [M2] are the average of the instances that are solved to optimality.  

6.3 Comparison of the improved model and the heuristic 

To validate the efficiency and effectiveness of the proposed D&C heuristic for solving the non-split 
model, we compare the performance of the heuristic with that of the improved formulation [M2] solved 
by CPLEX. CPLEX is given a time limit of one hour and returns the best solutions found so far, i.e., 
upper bounds when reaching the time limit. We use the default relative MIP gap of CPLEX that is 0.01%, 
which means CPLEX will stop as soon as it has found a feasible solution proved to be within 0.01% of 
optimal. Table 3 reports the results of the base instances with a range of batch sizes (N). “LB” and “UB” 
report the lower bound and upper bound obtained by CPLEX within the time limit, respectively. “Gapc” 
reports the average gap (in percentage) between the upper bound (UB) and the lower bound (LB) 
obtained by CPLEX. The solutions obtained by the heuristic are reported in “Obj”. “LB”, “UB” and 
“Obj” are all reported in seconds. “Gaph” reports the average gap (in percentage) of the solutions 
obtained by the heuristic against the lower bound obtained by CPLEX. “CPU(s)” reports the average 
computational time for the ten instances in each problem class. 

From Table 3, it can be seen that CPLEX can obtain optimal solutions when the number of containers 
is small. As the number of containers increases, the solution time of CPLEX increases dramatically. 
However, the gaps between the lower bound and upper bound are negligible, which indicates that the 
improved model can provide near-optimal solutions for practically sized problems. As for the heuristic 
algorithm, it is much more efficient in that it can produce solutions that are very close to that of CPLEX 
within just one second.  

Table 3. Comparison between CPLEX and the D&C heuristic for the base instances.  
Problem class  CPLEX  Heuristic 
u=0.8  LB UB CPU(s) Gapc  Obj CPU(s) Gaph 

144|10×6|3  8127 8127 3.7 0.004  8179 0.1 0.644 
336|10×6|7  21833 21835 15.8 0.010  21912 0.2 0.361 
528|10×6|11  37448 37452 46.5 0.010  37479 0.5 0.084 
720|10×6|15  56421 56427 638.7 0.010  56525 0.5 0.184 
912|10×6|19  81336 81345 971.3 0.010  81523 0.6 0.229 
1104|10×6|23  107811 107850 1069.6 0.036  108050 0.7 0.222 
1296|10×6|27  137376 137407 1611.3 0.023  137515 0.7 0.101 
Average    622.4 0.015   0.4 0.261 

Note. Gapc = (UB - LB)/LB×100%, Gaph = (Obj - LB)/LB×100%. 

In order to show the effectiveness of our heuristic under varying scenarios, we conduct more 
experiments with varying bay structures and ranges of group sizes. In these experiments, we focus on 
the problem classes with 1296 containers, which takes the longest solution time by CPLEX as shown in 
Table 3. The results are reported in Tables 4-6. The effectiveness of our heuristic is confirmed by the 
small gaps that are less than 0.6% across all the instances in Tables 4-6, as shown in the column “Gaph”. 
Besides, the running times of the heuristic for all these instances are less than six seconds, which 
confirms its efficiency. The efficiency of the heuristic owes to the decoupling of the decisions of smart 
stacks and non-smart stacks, and the high solution efficiency of the sub-problems.  

 

Table 4. Comparison between CPLEX and the D&C heuristic for instances with large-scale containers, 
u=0.8 and V~U[1,10]. 

Problem class  CPLEX  Heuristic 
u=0.8  LB UB CPU(s) Gapc  Obj CPU(s) Gaph 
1296|10×3|54  169060 169071 1.8 0.007  169077 0.4 0.010 
1296|10×4|41  141608 141622 10.8 0.010  141632 0.2 0.017 
1296|10×5|33  128170 128182 64.9 0.009  128229 0.2 0.046 
1296|10×6|27  137376 137407 1611.3 0.023  137515 0.7 0.101 
1296|10×7|24  135920 136124 2749.6 0.150  136194 1.3 0.202 
1296|10×8|21  136445 136530 1821.4 0.062  136881 1.8 0.320 
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1296|6×6|47  181529 181575 1215.2 0.025  182215 0.5 0.378 
1296|8×6|35  150179 150233 1204.1 0.036  150470 0.6 0.194 
1296|12×6|23  120467 120483 1615.7 0.013  120608 0.6 0.117 
Average    1143.8 0.037   0.7 0.154 

Note. Gapc = (UB - LB)/LB×100%, Gaph = (Obj - LB)/LB×100%. 

Table 5. Comparison between CPLEX and the D&C heuristic for instances with large-scale containers, 
u=0.85 and V~U[1,10]. 

Problem class  CPLEX  Heuristic 
u=0.85  LB UB CPU(s) Gapc  Obj CPU(s) Gaph 
1296|10×3|52  169060 169071 1.6 0.007  169072 0.3 0.007 
1296|10×4|39  144856 144870 74.6 0.010  144918 0.2 0.043 
1296|10×5|31  134490 134504 162.3 0.010  134608 0.4 0.088 
1296|10×6|26  145167 145280 2761.0 0.078  145418 0.6 0.173 
1296|10×7|22  154631 154830 3600.0 0.129  155187 2.3 0.360 
1296|10×8|20  145723 145942 3270.3 0.150  146079 2.2 0.244 
1296|6×6|44  197361 197528 1460.7 0.085  197995 0.7 0.321 
1296|8×6|33  161959 162056 1498.3 0.060  162154 0.6 0.120 
1296|12×6|22  128507 128520 494.2 0.010  128548 1.1 0.032 
Average    1480.3 0.060   0.9 0.154 

Note. Gapc = (UB - LB)/LB×100%, Gaph = (Obj - LB)/LB×100%. 

Table 6. Comparison between CPLEX and the D&C heuristic for instances with large-scale containers, 
u=0.85 and V~U[1,5]. 

Problem class  CPLEX  Heuristic 
u=0.85  LB UB CPU(s) Gapc  Obj CPU(s) Gaph 
1296|10×3|52  183838 183854 7.7 0.009  183854 0.4 0.009 
1296|10×4|39  166948 166964 444.0 0.010  167068 0.4 0.072 
1296|10×5|31  147366 147380 181.2 0.010  147445 0.5 0.054 
1296|10×6|26  164986 165004 2421.2 0.011  165055 1.0 0.042 
1296|10×7|22  180942 180998 3600.0 0.031  181886 4.3 0.522 
1296|10×8|20  185912 185970 3600.0 0.031  186913 5.7 0.538 
1296|6×6|44  226370 226392 103.0 0.010  226525 1.2 0.068 
1296|8×6|33  185231 185286 3088.8 0.030  185420 0.9 0.102 
1296|12×6|22  147294 147309 143.0 0.010  147398 0.8 0.071 
Average    1509.9 0.017   1.7 0.164 

Note. Gapc = (UB - LB)/LB×100%, Gaph = (Obj - LB)/LB×100%. 

There is an interesting observation from the comparison of Tables 4 and 5. The problems with higher 
utilization (0.85) are generally more computationally expensive than those with lower utilization (0.8), 
although the former problems have fewer bays and thus a smaller number of variables and constraints. 
One possible reason is that the smart groups are determined in such a way that the groups whose average 
partition height is larger than K*u are more likely to be smart groups, which we call “advantageous 
groups”. Therefore, the greater the percentage of advantageous groups, the less the number of nodes that 
will be explored during the CPLEX branch-and-bound process, as those nodes that do not include the 
advantageous groups will be cut with a high probability. When the utilization rate increases, the 
percentage of advantageous groups decreases, and thus more nodes need to be explored to reach 
optimality. The heuristic performs robustly, which can be seen by the very similar optimal gaps in 
columns Gaph between Table 4 and Table 5.  

Overall, the improved model solved by the standard commercial solver CPLEX performs well when 
the computational efficiency is not a concern. However, in realistic situations, the dynamic changing of 
the yard status and the uncertainties of the incoming containers may require the terminal operators to 
make more frequent decisions quickly according to the dynamically updated information. Our proposed 
heuristic algorithm can generate near-optimal solutions with fairly comparable accuracy in substantially 
reduced time. From the application point of view, the heuristic algorithm is more readily available for 
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real-time decision-making because it is able to provide high-quality and robust solutions within very 
short running times (in seconds).  

Given the high solution quality and efficiency of the proposed heuristic algorithm, the algorithm will 
be used to conduct the experiments of sensitivity analysis in Section 6.4.  

6.4 The effectiveness of smart stacking 

In this section, we evaluate the effectiveness of smart stacking by comparing the proposed heuristic 
algorithm with the random stacking strategy. The random stacking strategy is commonly used in practice 
when no information can be used to support stacking decision-making (Dekker et al., 2006). In random 
stacking, the containers are evenly spread over the stacks in the storage area to reduce the number of 
relocations. Various instances with different scenarios of group information (Section 6.4.1) and yard 
utilization rates (Section 6.4.2) are tested to investigate their impacts on the performance and the 
effectiveness of the smart stacking strategy.  

6.4.1 Impact of group information 

We first analyze the impact of the amount of group information and then the impact of the range of 
group size.  

6.4.1.1 Impact of the amount of group information 

In reality, terminal operators might have incomplete information when only a part of the containers 
are provided with the information of customer identities or only a part of the customers are willing to 
participate in the IFF program. To describe the amount of group information, we assume a certain 
percentage of containers (20%, 50%, and 80%) without group information. For these containers, each 
one forms a group on its own. For example, “U[1, 10]_20%” represents that for 20% of the containers, 
each one forms a group, while for the remaining 80% containers, their group sizes obey uniform 
distribution U[1,10]. 

Table 7 presents the results of the scenarios with varying amounts of group information. “U[1,10]” 
represents the scenario of complete information where all the group sizes are generated from the uniform 
distribution [1,10]. The columns “Obj1” and column “Obj2” report the total retrieval time for the smart 
stacking and random stacking respectively. The columns “Gap(%)” report the relative difference (in 
percentage) between the two stacking strategies. The results show that the performance of smart stacking 
measured in total retrieval time depends on the amount of group information. The total retrieval time 
increases as the amount of information decreases, which is consistent with intuition. Moreover, the less 
the amount of information, the smaller the gap is between the smart and random stacking strategies. 
Obviously, with limited storage space, containers without group information are very unlikely to be 
allocated to smart stacks (Fig. 6), leading to an increasing percentage of relocation time (Fig. 7), and 
thus the benefit of smart stacking is decreasing. Nevertheless, smart stacking can still lead to an 
improvement of around 12% compared with random stacking even when only 20% of containers are 
provided with group information, as shown in the column of U[1,10]_80% in Table 7.  

 

Table 7. The results of smart stacking under different amounts of group information.  

Problem 
class 

Smart stacking  Random 
stacking U[1,10]  U[1,10]_20%  U[1,10]_50%  U[1,10]_80%  

u=0.8 Obj1 Gap(%)  Obj1 Gap(%)  Obj1 Gap(%)  Obj1 Gap(%)  Obj2 

144|10×6|3 8179 46.1  9211 39.4  11045 27.3  13367 12.0  15187 
336|10×6|7 21912 43.3  24028 37.8  28123 27.2  33961 12.1  38624 
528|10×6|11 37479 43.0  41665 36.7  48980 25.6  57969 11.9  65803 
720|10×6|15 56525 41.6  62325 35.6  71920 25.6  85304 11.8  96724 
912|10×6|19 81523 38.0  87437 33.5  98739 24.9  115914 11.8  131396 
1104|10×6|23 108050 36.4  113645 33.1  129424 23.8  149845 11.8  169811 
1296|10×6|27 137515 35.1  145424 31.4  162873 23.2  187219 11.7  211967 

Note. Gap(%) = (Obj2- Obj1)/ Obj2×100%.      
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Fig. 6. The percentage of smart containers in smart stacking Fig. 7. The percentage of relocation time in 
the total retrieval time in smart stacking 

6.4.1.2 Impact of the range of group size 

We now analyze the impact of the range of group size on the performance and the effectiveness of 
smart stacking. Table 8 compares the smart stacking with the random stacking for three scenarios of the 
range of group size, where the maximum group size is 5, 10, and 20 respectively. We also report the 
average relocation time per container and the ASC’s average travel time per container (in seconds) in 
smart stacking, which are depicted in Fig. 8 and Fig. 9, respectively. The performances of smart stacking 
measured in terms of the total retrieval time (columns Obj1) and average relocation time (Fig. 8) improve 
as the range of group size enlarges. This is intuitive because a wider range of group size can bring more 
full partitions (the partitions whose heights equal K) and thus more smart containers. The more 
interesting observation is that the ASC’s average travel time shows a slightly improved trend (Fig. 9) 
with the enlarging of the group size. This indicates that smart stacking can also help in saving travel 
time. This observation can be understood from the properties of the ASC travel time (Property 1). When 
the range of group size gets larger, the heights of smart stacks increase, and thus a greater number of 
higher stacks will occupy the stacks closer to the landside. Since a higher slot needs less hoisting time 
and the bays closer to the landside need less gantry moving time, the ASC’s total travel time will 
decrease.  

Furthermore, when comparing the results of the smart stacking with the random stacking (columns 
Gap(%)), the wider the range of group size, the larger the gap is between the two stacking strategies. 
This observation can also be explained by the increased percentage of smart containers.    

 

Table 8. The results of smart stacking under different ranges of group size. 
Problem 
class 

Smart stacking  Random 
stacking U[1,5]  U[1,10]  U[1,20]  

u=0.8 Obj1 Gap(%)  Obj1 Gap(%)  Obj1 Gap(%)  Obj2 

144|10×6|3 10171 33.0  8179 46.1  5828 61.6  15187 
336|10×6|7 26115 32.4  21912 43.3  15913 58.8  38624 
528|10×6|11 45071 31.5  37479 43.0  29460 55.2  65803 
720|10×6|15 68832 28.8  56525 41.6  45419 53.0  96724 
912|10×6|19 95927 27.0  81523 38.0  64672 50.8  131396 
1104|10×6|23 125965 25.8  108050 36.4  87874 48.3  169811 
1296|10×6|27 159364 24.8  137515 35.1  113606 46.4  211967 

Note. Gap(%) = (Obj2- Obj1)/ Obj2×100%.  
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Fig. 8. The average relocation time in smart stacking Fig. 9. The average travel time in smart stacking  

6.4.2 Impact of utilization rate 

The utilization rate of the yard storage space varies in terminals and over time. Some terminals have 
adequate space and may prefer a lower utilization rate because this reduces the risk of relocation. In 
contrast, others may prefer to make the best use of the stack height to accommodate more containers 
(Bruns et al., 2016). Table 9 compares the smart stacking and the random stacking under three utilization 
rates.  

As the utilization rate increases, the total retrieval time of smart stacking (column “Obj1”) increases, 
and the gap between the smart and the random stacking strategies (column “Gap(%)”) decreases. This 
is mainly due to the decreasing percentage of smart containers (column “Sm(%)”). With the increase of 
the utilization rate, groups with lower average partition heights are less possible to become smart groups 
because that will result in wasted space. Thus, the percentage of smart containers decreases as the 
utilization rate increases. As a result, the average relocation time (column “Avg_r”) increases. However, 
the average travel time (column “Avg_t”) decreases. This is because the higher the utilization rate, the 
higher the average stacking height is, and the fewer the bays near the seaside are occupied. According 
to the properties of the ASC travel time, a higher slot needs less hoisting time, and the bays closer to the 
landside need less gantry moving time. Therefore, the ASC travel time decreases.  

In addition, with the utilization rate increasing, the two stacking strategies show similar changing 
trends in the average relocation time and the average travel time. However, the changing trends of the 
total retrieval time under the two strategies are different. This is because of the trade-off effect of the 
two components in the objective function. When the utilization rate increases, under the random stacking, 
the reduction in the average travel time is sufficient (in most of the cases) to cancel out the increase in 
the average relocation time, whereas, under the smart stacking, the increase in the average relocation 
time is much more than the reduction in the average travel time.  

 

Table 9. The results of smart stacking under different bay utilization rates for instances with V~U[1,10]. 
Utilization 

rate 
Problem class 

Smart stacking  Random stacking 
Gap(%) 

Obj1 Avg_r Avg_t Sm(%)  Obj2 Avg_r Avg_t 
 912|10×6|23 70430 0.5 76.8 95.4  138480 57.2 94.6 49.1 

0.67 1104|10×6|28 95082 0.3 85.8 96.8  180887 57.0 106.8 47.4 
 1296|10×6|33 123346 0.6 94.6 94.8  227963 56.9 119.0 45.9 
 912|10×6|19 81523 16.3 73.1 76.2  131396 63.9 80.2 38.0 

0.80 1104|10×6|23 108050 16.3 81.6 76.3  169811 63.9 89.9 36.4 
 1296|10×6|27 137515 15.9 90.2 76.9  211967 63.9 99.6 35.1 
 912|10×6|18 89850 26.6 71.9 61.3  130817 65.7 77.8 31.3 

0.85 1104|10×6|22 116051 24.7 80.5 64.1  169709 65.3 88.4 31.6 
 1296|10×6|26 145418 23.2 89.0 66.2  212156 65.1 98.6 31.5 

Note. Gap(%) = (Obj2- Obj1)/ Obj2×100%. 

6.5 Computational comparison of the non-split model and the split model 
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In this section, we compare the performances of the two variants of smart stacking models to evaluate 
the benefit of allowing splitting a group between smart stacks and non-smart stacks. Table 10 presents 
the results of the two models under two scenarios of the range of group size. Both models are solved by 
CPLEX given a time limit of one hour, and their best objective functions found within the time limit are 
reported in columns “Obj1” and “Obj2” respectively. Columns “Sm(%)” report the average of the 
percentage of the smart containers for the instances that are solved to optimality by both models so that 
the two models are comparable by this performance. Columns “Gap(%)” report the relative difference 
between the objective functions of the two models.  

Table 10. Comparison of the two variants of smart stacking models under two scenarios of group size.  

Problem class 
U[1,10]  U[1,20] 

Non-split Split Gap 
(%) 

 Non-split Split Gap 
(%) u=0.8 Obj1 Sm(%) Obj2 Sm(%)  Obj1 Sm(%) Obj2 Sm(%) 

144|10×6|3 8127 74.4 6624 89.7 18.5  5821 96.3 5608 98.0 3.7 
336|10×6|7 21835 73.7 18185 90.3 16.7  15900 98.2 15710 98.5 1.2 
528|10×6|11 37452 77.6 32765 91.2 12.5  29451 97.9 29122 98.3 1.1 
720|10×6|15 56427 83.4 50880 93.1 9.8  45383 99.3 45311 98.8 0.2 
912|10×6|19 81345 75.0 72717 90.4 10.6  64620 99.5 64620 98.8 0.0 
1104|10×6|23 107850 76.7 97350 90.6 9.7  87834 99.1 87711 98.5 0.1 
1296|10×6|27 137407 78.5 125073 91.0 9.0  113552 99.4 113486 98.3 0.1 

Note. Gap(%)= (Obj1 - Obj2)/ Obj1×100%. 

Based on Table 10, we have two observations. First, the superiority of the spit model over the non-
split model is verified. The benefit of allowing splitting is highly related to the range of group size and 
is less sensitive to the problem class. For the scenarios of U[1,10], the relative difference between the 
two models is in the range of 9% and 18.5%, which is quite significant. For the scenarios of U[1,20], 
the difference is much smaller (less than 4%). This is because the non-split scenarios of U[1,20] have a 
very high percentage of smart containers, which leaves not much space to improve by allowing splitting.  

Second, the reduction in the total retrieval time when allowing splitting (column “Gap(%)”) is the 
result of an increase in the percentage of smart containers (comparing the columns “Sm(%)” of the two 
models). This is because, in the split model, the smart container decision is not bound to groups but 
partitions. Such flexibility enables more containers to merit smart stacks. When comparing the columns 
“Sm(%)” of the two models under the scenarios of U[1,20], it is observed that in the last four problem 
classes, the percentage of smart containers for the split model is even smaller than that of the non-split 
model. This counterintuitive phenomenon can be explained as follows. The experiments’ results show 
that there exist some stacks that are assigned with only one container. These stacks can be regarded 
either as non-smart stacks by hbr=1 or as smart stacks by 1

brx =1, which essentially leads to multiple 
optimal solutions with different “Sm(%)” performances.   

7. Conclusions 

This paper addresses the Storage Location Assignment Problem (SLAP) for import containers at an 
automated container terminal. We proposed a new container stacking strategy, the Smart Stacking (SS) 
strategy. The SS strategy is motivated by a practical container delivery program, import free flow (IFF), 
aiming at eliminating the need for relocations and realizing rapid retrieval flow. Under the SS strategy, 
the smart (free-flow) containers of a customer are stored at dedicated stacks to guarantee zero relocation 
in the future retrieval process, while the non-smart (non-free-flow) containers share stacks. We focus on 
the offline operational-level decision making, in which a batch of import containers are to be assigned 
to exact slots in a given storage area in a single block to minimize the total retrieval time that is the sum 
of the relocation time and the crane travel time.   

Two policies, non-split policy and split policy, are proposed under the SS strategy, depending on 
whether a single customer’s containers are allowed to be split between smart stacks and non-smart stacks. 
For the non-split policy, we develop two MIP models: original formulation and improved formulation. 
The improved formulation utilizes the structural properties of the optimal solution to enhance the 
representation of certain variables. As a result, the number of variables can be significantly reduced and 
the solution efficiency is improved. To further improve the solution efficiency, a divide-and-conquer 
heuristic algorithm is designed that can solve the non-split model in several seconds with an accuracy 
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within 0.6% for practical scale problems. For the split policy, we develop a MIP model assuming that 
all smart piles must be selected from the optimal partitions of the non-split model. The objective function 
value of the split model is proved to be not greater than that of the non-split variant both theoretically 
and computationally. Extensive computational experiments demonstrate the effectiveness of the 
proposed SS strategy, models and algorithm. 

This paper is the first to propose the concept of smart stacking that enables the terminal operator to 
incorporate the customer information to optimize import container stacking so that the total retrieval 
time can be minimized. On the theoretical side, the proposed SS strategy and the SLAPs advance the 
methods and solutions of import container stacking, and more importantly, bring about novelty in 
developing research opportunities in this field. On the practical side, this paper produces useful 
managerial implications. Firstly, the SS strategy can significantly reduce the total retrieval time 
compared with the traditional practice. The effectiveness of the SS strategy is more significant in the 
following situations: a larger amount of customer information, a wider range of group sizes, and a lower 
utilization rate. It is thus recommended that terminal operators should seek collaboration with the 
customers to access the customer information of the import containers so that port congestion can be 
mitigated in the retrieval processes, especially with those high-volume customers. Secondly, the 
proposed heuristic algorithm is fast enough to produce high-quality solutions, which can be applied in 
practice to support the operational-level decision-making of smart stacking. Thirdly, the retrieval time 
could be further reduced if the same customers’ containers are allowed to be split into smart and non-
smart under certain conditions. The proposed models can help terminal operators evaluate the trade-off 
between the additional benefit and the extra administration cost when adopting the split policy. 

Future research may be conducted in the following directions. Firstly, the split policy deserves more 
research, e.g. investigating the optimality of the split variant and examining the relationship between 
the characteristics of a specific problem environment (e.g., the distribution of customer volumes/group 
sizes, the maximum stacking height and the utilization rate) and the reduction in retrieval time compared 
with the split variant. Secondly, more information about containers could be incorporated into our 
models such as container retrieval time and customer priority. By incorporating predictive retrieval 
times or advanced appointments (e.g. via vehicle booking system/truck appointment system), the smart 
stacking strategy can be further enhanced as there are more opportunities to save storage space because 
containers of different customers can share stacks according to their retrieval times. It is therefore 
interesting to incorporate the temporal information of containers into the models and evaluate its value. 
Thirdly, the SLAP studied in this paper is oriented toward a short-term operational problem. It is 
interesting to study the long-term storage space allocation problems that concern the storage and 
allocation of import containers from multiple vessels to different blocks in the yard over a planning 
horizon. The models and solution method developed in this paper will function as a building block for 
this higher-level decision. Fourthly, the model can be extended to consider more realistic constraints, 
such as the weight constraint, which may require light-weighted containers to be stacked above heavy 
ones for safety reasons. The last meaningful research direction is to apply the smart stacking strategy at 
rail-water intermodal container terminals. Note that a single rail carrier could have hundreds of 
containers from each vessel and these containers may go for the same rail head; this makes such 
intermodal terminals suitable for smart stacking. 
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