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Abstract. Charged particle acceleration using solid-state nanostructures is attracting new
attention in recent years as a method of achieving ultra-high acceleration gradients in the order
of TV/m. The use of carbon nanotubes (CNTs) has the potential to overcome limitations of
using natural crystals, e.g. channelling aperture and thermo-mechanical robustness. In this
work, we present preliminary particle-in-cell simulation results of laser and beam interaction
with a single CNT, modelled as 20 parallel plates of Carbon ions and electrons. This is the
equivalent to a 10-layers tube in 3D. We further discuss simulation of anisotropic particles to
model 2D quasi-free electrons in CNT walls. Further research ideas are outlined along with the
presentation of a possible proof-of-principle experiment.

1. Introduction
Since it was originally proposed over three decades ago [1, 2], there has been a renewed interest in
the development of solid-state based particle accelerators. Several schemes have been considered
for such an accelerator, including beam-driven [3] and x-ray-driven [3, 4] variants. In particular,
it has recently been proposed that charged particle beams channelled through metallic carbon
nanotubes (CNT) may be used to excite a number of propagating modes which could in turn
be utilised as wakefields for acceleration of further beams [5]. Such modes range from surface
plasmon polaritons [6] to highly non-linear electrostatic oscillations [3] involving the quasi-free
valence electron gas of the cylindrical graphene layer that makes up the nanotube walls. As
opposed to hollow-channel gaseous plasma based accelerators, the very high density of the
electron gas, up to 1024 cm−3 in such solid state media has been predicted to allow ultra-high
accelerating gradients of up to 1 TV/m. CNTs are generally multi-walled tubular structures
with a typical diameter of 1.35 nm and a C-C bond length of 0.14 nm, sitting between the solid-
and plasma-state in terms of achievable charge density. For instance, with an average CNT mass
density of 1.6 g/cm3 the maximum ion density is ∼1022 cm−3, namely 2-3 orders of magnitude
higher than plasma densities currently available in supersonic gas jets. Single-wall CNTs have
thermal conduction coefficients of up to 6 kW/(m K) and can sustain current densities of up to
109 A/cm2 [7]. In addition to their reported tensile strength of ≈45 GPa, these features make
CNTs a very robust target for interactions with laser and charged-particle beams. It has been
shown theoretically [2] that TV/m accelerating gradients are possible in a crystal lattice if it
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is radiated by a laser of 109 W/cm2 power density and 5 ps pulse length at Bragg angle, as
this stimulates the Bormann anomalous transmission [8]. However, laser beams of such X-ray
wavelengths cannot be produced in a controllable manner up to date. In this work we present a
proposal for a proof-of-principle experiment to demonstrate channelling acceleration in an array
of parallel CNTs and report preliminary particle-in-cell (PIC) simulations of laser and beam
interaction with single CNTs. Ongoing work in the testing and implementation of a new model
of radially bound CNT wall electrons is discussed.

2. Experimental Proposal
Uncontrolled acceleration of charged particles in CNTs following laser irradiation was already
demonstrated [9] but controlled synchronous acceleration has not been achieved yet. Thus, based
on the future outcome of the simulations, an experiment is planned in order to complete the
proof-of-principle acceleration mechanism. Currently operational beam test facilities in Europe,
such as the Versatile Electron Linear Accelerator (VELA) and the Compact Linear Accelerator
for Research and Applications (CLARA) [10, 11] at Daresbury in the UK and the CERN Linear
Electron Accelerator for Research (CLEAR) [12, 13] at CERN in Switzerland, may offer the
necessary beam conditions and infrastructure to carry out an experimental demonstration of
this concept. A tentative experimental beamline layout is shown in figure 1, where typical beam
diagnostics devices to characterise the beam before and after crossing the CNT sample, and a
magnetic chicane to modulate the bunch length are shown.

Figure 1. Proposed experimental layout with typical beam diagnostics equipment shown.

Beams will be focused into the experimental CNT sample by upstream quadrupole magnets.
The CNT sample will be placed in a support/goniometer which will allow vertical and horizontal
motion, as well as rotation in the horizontal plane. The sample can thus be centred with respect
to the electron beam, and allows optimisation with respect to the incidence angle. Then, an
initial laser pulse or electron beam driver may be used to excite plasmon and plasmon-polariton
modes, which will be used to accelerate a suitably-timed trailing witness beam. Further, the
CNT array will be irradiated by a tabletop femtosecond UV laser. Taking into account that
metallic CNTs effectively behave as hollow plasma channels, if the photon-plasmon coupling
condition is fulfilled, electromagnetic waves in the hollow channel can be excited. This will
induce betatron oscillations in the electrons crossing the channels and will give rise to coherent
radiation in X-ray regimes. This part of the experiment will also allow us to investigate the
suitability of a photo-excited CNT array to be used as compact X-ray source.
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3. Interaction with laser pulses
Particle-in-cell (PIC) simulations have been carried out using the PIConGPU code [14] with a
temporally Gaussian, linearly polarised laser pulse. The laser parameters are: wavelength 55 nm,
FWHM pulse length 5 fs and intensity 2.83 × 1015 W/cm2, corresponding to the normalised
vector potential a0 = eA/mec = 2.5 × 10−3. The intensity is restricted so as to avoid quick
ionisation and ensure target survival. First, a 2D structure made of 10 layers of C+ ions and
electron pairs was generated with transverse dimensions shown in figure 2. This was extruded
for 300 nm to be the size of a few laser wavelengths while remaining within the available
computational resources. The mesh resolution was about 0.01 nm (10 mesh cells per layer
thickness). Using the arrangement of the Carbon atoms in a typical graphene cell, the initial
electrons density was set to 3.7 × 1023 cm−3. The corresponding plasma frequency and plasma
wavelength are 5.46 PHz and 55 nm, respectively.

Figure 2. Transverse dimensions of the simulated structure: inner tube radius 0.675 nm, layer
thickness 0.1 nm and gap between layers 0.34 nm. Numerically, the structure corresponds to 20
infinitely deep parallel plates. Only a side of the tube is shown.

Enabling tunnelling, barrier-suppression and collisional ionisation as implemented in
PIConGPU, the effect of tuning the laser intensity was explored. Working with a simplified
model, where the carbon ions move freely as in a gas, it was necessary to find an upper and
lower bound to the laser intensity in order to both preserve target integrity and stimulate charge
density modulation by ionisation. This effectively creates a separation from the virtually fixed
carbon ions, driving electric fields along the tube. As shown in figure 3, the region between the
cyan and green lines appears to be favourable. The results shown below are obtained for the
cyan line.
Further increase of the laser intensity, such as that described by the orange curve, would lead
to unrealistically large oscillations of the carbon ions. The simulation starts with a free electron
for each C+ ion. This electron stands for that in the delocalised π orbital, which accounts for
electrical and thermal conduction in CNTs. In these simulations, all electrons and carbon ions
are free to move longitudinally and transversely. The CNTs receive only a transverse electric field
component Ey during the full pulse length of 15 fs. The electrons are set in periodic transverse
(y) motion with elongations in the order of 0.1 nm, which co-propagate with the laser phase
along the tube. In addition, due to ionisation there is electron gas between the layers, trapped
in periodic motion around the carbon ions. The density of this inter-layer electrons gas bears the
footprint of the fast passage of the laser pulse, and remains larger at places where the laser pulse
acts at peak intensity; at every half-wavelength along the tube. A representation of the electric
fields is shown in figure 4. The longitudinal (z) component of the electric field takes over its
transverse (y) component at about t = 18.025 fs (98 laser periods). By this time, the inter-layer
electrons gas is significantly bunched in transverse structures which advance as a density wave
along the tube. However, there is a π phase lag between the two sides of the tube. Accordingly,
the longitudinal (z) electric field is in anti-phase.
An enhancement of the longitudinal (z) electric field and electrons charge density plots is shown
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Figure 3. Various ionisation rates achieved within a very narrow range of a0. The value
N/N0 = 6 indicates complete ionisation.

Figure 4. (top) transverse in-plane electric field, (bottom) longitudinal in-plane electric field
in the layers region at t = 18.025 fs. The laser pulse moves to the right.

in figure 5. The plasmon resonates at a wavelength of about 1.5 nm and propages rightwards
even after the laser pulse has passed.

Figure 5. Zoom of the longitudinal in-plane electric field (left) and electrons charge density
(right) at t = 18.025 fs. The laser pulse moves from left to right and its end is 1.1 µm away.

Although not shown here, the region around z = 80 nm is one in which the electron gas density
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reaches a maximum, following the ionisation, long before (∼10 fs) the plasmon builds up. The
passage of the plasmon through this region is strongly perturbed, as it can be seen around
z = 85 nm, but established back, further to the right. Following the charge density wave, the
plasmon field pattern moves from left to right in the trail of the laser pulse. Further numerical
studies will explore conditions in which the longitudinal electric field can resonate long enough
to be useful for acceleration behind the laser pulse. A few parameters such as the pulse length
and the number of layers will be studied and the most favourable combinations will be used for
more sophisticated 3D models.

4. Beam driven anisotropic model
Since their discovery [15] numerous works have modelled the electronic and electromagnetic
properties of single- and multi-walled carbon nanotubes. The 2D thin-shell hydrodynamic model
of hybrid electrostatic plasmon-phonon modes of [16, 17, 6] is of particular interest to charged
particle acceleration. It has been adapted for electromagnetic surface plasmon polaritons (SSPs)
propagating within (and leaking outside) the CNT by [18] for relativistic phase velocities,
providing results consistent with experimentally measured properties. However, while these
modes may be excited by propagating charged particle beams, such 2D thin-shell models are
incapable of supporting the longitudinal oscillations (‘volume’ plasmon modes) driven directly by
beam charge as presented in [19]. They also cannot provide the radial charge separation required
to drive the highly nonlinear surface oscillations such as that proposed for a high-density plasma
medium [5], or a general solid-state hollow channel accelerator [20] unless the CNT walls are
pre-ionised, for example with a laser.

Here we present preliminary particle-in-cell simulations of thick CNT walls with
orthotropically free electrons on a uniform positive (jellium) background. Analogously to
graphene, such ‘conduction band’ electrons are immobile in the radial direction, r, but free
to move in the axial, z, and azimuthal, φ directions. Modelled as a dielectric medium, this
corresponds to a tensor dielectric function

εa =

εr 0 0
0 ε‖ 0
0 0 ε‖

 (1)

in (r, φ, z) coordinates, where εr = 1 − sω2
p/ω

2 and ε‖ = 1 − ω2
p/ω

2, for conductivities in
the ratio s between the r and z-φ directions (s = 0 for radially immobile electrons). Here,

ωp =
√
n0e2/ε0me is plasma frequency of quasi-free electrons of mass me, charge e, number

density n0, with vacuum permittivity ε0.

4.1. Particle-in-cell code modifications
The particle push, as implemented [21] in the open-source 3D-Cartesian PIC code EPOCH [22],
reads:

(i) advance position by half-step (first order), ~rn+1/2 = ~rn + ∆t~un/(2γn);

(ii) advance momentum by half-step (first order), ~un+1/2 = ~un + e ~En+1/2∆t/2;

(iii) Boris push of momentum to ~un+1 using ~En+1/2 and ~Bn+1/2;

(iv) advance position by half-step using ~un+1, ~rn+1 = ~rn+1/2 + ∆t~un+1/(2γn+1).

In the above, ~rn, ~un, γn, ~En, and ~Bn, are the position, momentum and Lorentz factor of the
particle, and the electric and magnetic field experienced by the particle at the nth timestep,
respectively. In order to simulate orthotropically free electrons, the above algorithm must be
modified to ensure that particles do not leave their initial radius. However, when using a
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finite time step, simply projecting the velocity onto the local to local φ-z plane causes the
radial position to grow by ∆r2 ≈ ∆t2u2

φ/γ
2 > 0 at each step. Similarly, adding a first-order

centripetal acceleration correction to ~un+1 using ~rn+1/2 and ~un+1 also leads to a radial increment

∆r2 & ∆t4u4
⊥n+1/γ

4r2
n+1/2 even if ~un+1 has no radial component. As the simulation progresses,

this leads such particles to spuriously spiral outwards as they move azimuthally within the
nanotube wall. Therefore, to avoid such outward motion, the push was modified so as to enforce
constant radial position. Specifically, ~En+1/2 is projected on to the local z-φ plane after step
(i), and the magnetic torque used in step (iii) is projected on to the local r- direction after step
(ii). Further, the transverse components of the position updates in (i) and (iv) are recast as
rotations on the particle’s cylinder. That is, a Cartesian drift to (xm+, ym+) from (xm, ym)
over time δt of the form ~rm+ = ~rm +~u∆t/γ, as found in (i) and (iv), is changed to the following
update, giving the new position (x∗m+, y∗m+), and a rotated momentum (ux,m+, uy,m+):(

x∗m+ ux,m+

y∗m+ uy,m+

)
=

(
cos ∆φ − sin ∆φ
sin ∆φ cos ∆φ

)(
x∗m ux,m
y∗m uy,m

)
(2)

Here, ∆φ = | ~un|∆t
2γn|~rn| for step (i), and ∆φ = | ~un+~un+1|∆t

2γn+1|~rn| for step (iv). Note that due to the

projection of the field quantities, ~u does not gain an r-component at any stage of the Boris
push or overall process. The drift in step (iv) is done using the average of the initial and Boris-
pushed momenta, which ensures a consistent, overall 2nd-order ‘midpoint’ scheme. Figure 6
shows preliminary 3D PIC simulation of implementation into a CNT driven by a (toy) beam
in EPOCH with radius σr = 10 nm in a grid of 258 × 258 × 1690 cells. The 20 nm thick

Figure 6. Comparison of electron density in EPOCH simulations of the interaction of a narrow
electron bunch with a single CNT without (a) and with (b) radial confinement of electrons in
the nanotube walls. Slice shown is across diameter of nanotube.

CNT wall around a 20 nm-radius hollow was modelled with pseudoparticles in a 1:1 ratio with
physical electrons at a number density of 1025 m−3, on a uniform jellium background with
transverse resolution of 1 cell/nm. It is seen that opposed to previous simulations of non-linear
perturbation in [19] where the CNT walls are strongly deformed, here a density perturbation is
excited within the nanotube walls but remains confined.

5. Conclusions and Outlook
We presented 2D simulation results achieved for the interaction of UV laser pulses with a typical
CNT structure. The appearance of an accelerating electric field resonating 1.5 nm with intensities
in the order of a few hundreds of GV/m was demonstrated. This is notable due to the fact
that the laser intensity was as low as 1015 W/cm2. We have found also a peculiar damping
phenomenon due to the larger-scale (10 nm) variation of the electron gas density along the
tube. Preliminary implementation of radially bound particles into a particle-in-cell simulation
is presented to model bound CNT-wall electrons. Further studies will improve the resonance of
the fields behind the laser pulse and a multi-pulse operation mode could be found such that the
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laser and electron bunch hit the target successively. Work on comprehensive testing of the PIC
code modifications and implications on electromagnetic mode properties is ongoing. Finally,
such models will be used to model and explore accelerating modes in a CNT array, which stands
to inform the proposed proof-of-principle experiment.
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