
On Efficient Connectivity-Preserving Transformations in a GridI

Abdullah Almethen∗, Othon Michail, Igor Potapov

Department of Computer Science, University of Liverpool, Liverpool, UK

Abstract

We consider a discrete system of n devices lying on a 2-dimensional square grid and forming an initial
connected shape SI . Each device is equipped with a linear-strength mechanism which enables it to move a
whole line of consecutive devices in a single time-step, called a line move. We study the problem of trans-
forming SI into a given connected target shape SF of the same number of devices, via a finite sequence of
line moves. Our focus is on designing centralised transformations aiming at minimising the total number of
moves subject to the constraint of preserving connectivity of the shape throughout the course of the transfor-
mation. We first give very fast connectivity-preserving transformations for the case in which the associated
graphs of SI and SF contain a Hamiltonian path. In particular, our transformations make O(n log n) moves,
which is asymptotically equal to the best known running time of connectivity-breaking transformations. Our
most general result is then a connectivity-preserving universal transformation that can transform any initial
connected shape SI into any target connected shape SF , through a sequence of O(n

√
n) moves.

Keywords:
Line movement, Discrete transformations, Shape formation, Reconfigurable robotics, Time complexity,
Programmable matter

1. Introduction

Over the past few years, many fascinating systems have been developed, leveraging advanced technology
in order to deploy large collections of tiny monads. Each monad is typically a highly restricted micro-
robotic entity, equipped with a microcontroller and some actuation and sensing capabilities. Through its
collaborative complexity, the collection of monads can carry out tasks which are well beyond the capabilities
of individual monads. The vision is the development of materials that will be able to algorithmically change
their physical properties, such as their shape, colour, conductivity and density, based on transformations
executed by an underlying program. These efforts are currently shaping the research area of programmable
matter, which has attracted much theoretical and practical interest.

The implementation indicates whether the monads are operated centrally or through local decentralised
control. In centralised systems, there is an external program which globally controls all monads with full
knowledge of the entire system. On the other hand, decentralised systems provide each individual monad
with enough autonomy to communicate with its neighbours and move locally. There are an impressive
number of recent developments for collective robotic systems, demonstrating their potential and feasibility,
starting from the scale of milli or micro [2, 3, 4, 5] down to nano size of individual monads [6, 7].

Recent research has highlighted the need for the development of an algorithmic theory of such systems. An
apparent lack of a formal theoretical study of this prospective, including modelling, possibilities/limitations,

IA preliminary version of the results in this paper has appeared in [1].
∗Corresponding author (Telephone number: +44 (0)151 795 4275, Postal Address: Department of Computer Science, Uni-

versity of Liverpool, Ashton Street, Liverpool L69 3BX, UK).
Email addresses: A.Almethen@liverpool.ac.uk (Abdullah Almethen), Othon.Michail@liverpool.ac.uk (Othon Michail),

Potapov@liverpool.ac.uk (Igor Potapov)

algorithms and complexity has been emphasised in, e.g.,[8] and [9]. The development of a formal theory
is a crucial step for further progress in those systems. Consequently, multiple theoretical computer science
sub-fields have appeared, such as metamorphic systems [10, 11, 12], mobile robotics [13, 14, 15, 16, 17],
reconfigurable robotics [18, 19, 20, 21, 22], passively-mobile systems [23, 24, 25, 8], DNA self-assembly
[26, 27, 28, 29], and the latest emerging sub-area of “Algorithmic Foundations of Programmable Matter”
[30].

Consider a system deployed on a two-dimensional square grid in which a collection of spherical devices
are typically connected to each other, forming a shape SI . By a finite number of valid individual moves, SI

can be transformed into a desired target shape SF . In this prospective, a number of models are designed
and introduced in the literature for such systems. For example, Dumitrescu and Pach [31], Dumitrescu et al.
[32, 10] and Michail et al. [9] consider mechanisms where an individual device is capable to move over and
turn around its neighbours through empty space. Transformations based on similar moves being assisted by
small seeds, have also been considered in [33].

A new linear-strength mechanism was introduced by Almethen et al. in [34], where a whole line of
consecutive devices can, in a single time-step, move by one position in a given direction. That model comes
as a natural generalisation of other existing models of reconfiguration with a particular focus on exploiting
the power of parallelism for fast global reconfiguration. Apart from the pure theoretical interest of exploring
fast transformations on a grid, this model also provides a practical framework for efficient reconfigurations
of real systems. For example, this framework could be applied to reconfigurable robotic systems in which
the individual devices are equipped with linear-strength locomotion mechanisms.

Since any two shapes with an equal number of elements can be transformed into each other with line
moves [34], the central question remains about understanding the bounds on reachability distances between
different shapes (configurations) via line moves. Proving exact reachability bounds can influence the design
and analysis of both centralised and distributed algorithms. Our hypothesis is that the reachability distances
between any two shapes with n elements can be bounded by O(n log n), and the bound cannot be improved
for a simple pair of shapes such as diagonal and horizontal lines.

In this paper, we embark from the line-pushing model of [34], which provided sub-quadratic centralised
transformations that may, though, arbitrarily break connectivity of the shape during their course. As our
main goal is to investigate the power of the line-pushing model, we focus solely on centralised transformations,
as a first step. That is because distributed are model-dependent (e.g., knowledge, communication, etc.), while
centralised show what is in principle possible. Moreover, some of the ideas in centralised might prove useful
for distributed and of course lower bounds also transfer to the distributed case. The only connectivity-
preserving transformation in [34] was an O(n

√
n)-time transformation for a single pair of shapes of order

n, namely from a diagonal into a straight line. All transformations that we provide in the present study
preserve connectivity of the shape during the transformation.

We first give very fast connectivity-preserving transformations for the case in which the associated graphs
of SI and SF contain a Hamiltonian path. In particular, our transformations make O(n log n) moves, which
is asymptotically equal to the best known running time of connectivity-breaking transformations. Our
most general result is then a connectivity-preserving universal transformation that can transform any initial
connected shape SI into any target connected shape SF , through a sequence of O(n

√
n) moves.

1.1. Related Work

For the models of individual moves where only one node moves in a single time-step, [31, 9] show
universality of transforming any pair of connected shapes (A,B) having the same number of devices (called
nodes throughout this paper) to each other via sliding and rotation mechanisms. By allowing only rotation,
[9] proves that the problem of deciding transformability is in P. It can be shown that in all models of
constant-distance individual moves, Ω(n2) moves are required to transform some pairs of connected shapes,
due the inherent distance between them [9]. This motivates the study of alternative types of moves that are
reasonable with respect to practical implementations and allow for sub-quadratic reconfiguration time in the
worst case.

2

There are attempts in the literature to provide alternatives for more efficient reconfiguration. The first
main approach is to explore parallel transformations, where multiple nodes move together in a single time-
step. This is a natural step to tackle such a problem, especially in distributed systems where nodes can
make independent decisions and move locally in parallel to other nodes. There are a number of theoretical
studies on parallel and distributed transformations [20, 35, 16, 10, 9, 36] as well as practical implementations
[5]. For example, it can be shown that a connected shape can transform into any other connected shape, by
performing in the worst case O(n) parallel moves around the perimeter of the shape [9].

The second approach aims to equip nodes in the system with a more powerful mechanism which enables
them to reduce the inherent distance by a factor greater than a constant in a single time-step. There are a
number of models in the literature in which individual nodes are equipped with strong actuation mechanisms,
such as linear-strength mechanisms. Aloupis et al. [18, 37] provide a node with arms that are capable to
extend and contract a neighbour, a subset of the nodes or even the whole shape as a consequence of such an
operation. Further, Woods et al. [29] proposed an alternative linear-strength mechanism, where a node has
the ability to rotate a whole line of consecutive nodes.

Recently, the line-pushing model of [34] follows a similar approach in which a single node can move
a whole line of consecutive nodes by simultaneously (i.e., in a single time-step) pushing them towards
an empty position. The line-pushing model can simulate the rotation and sliding based transformations of
[31, 9] with at most a 2-factor increase in their worst-case running time. This implies that all transformations
established for individual nodes, transfer in the line-pushing model and their universality and reversibility
properties still hold true. They achieved sub-quadratic time transformations, including an O(n log n)-time
universal transformation which does not preserve connectivity and a connectivity-preserving O(n

√
n)-time

transformation for the special case of transforming a diagonal into a straight line.
Another relevant line of research has considered a single moving robot that transforms an otherwise static

shape by carrying its tiles one at a time [14, 38, 39]. Those models are partially centralised as a single robot
(usually a finite automaton) controls the transformation, but, in contrast to our perspective, control in that
case is local and lacking global information.

1.2. Our Contribution

In this work, we build upon the findings of [34] aiming to design very efficient and general transformations
that are additionally able to keep the shape connected throughout their course.

We first give an O(n log n)-time transformation, called HamiltonianToLine, that works for all pairs of
shapes (SI , SF) that have the same order and belong to the family of Hamiltonian shapes. A Hamiltonian
shape is any connected shape S whose associated graph G(S) has a Hamiltonian path (see also [40]). At
the heart of our transformation is a recursive successive doubling technique, which starts from one endpoint
of the Hamiltonian path and proceeds in log n phases (where n denotes the order of the input shape SI ,
throughout this paper). In every phase i, it moves a terminal line Li of length 2i a distance 2i higher on the
Hamiltonian path through a LineWalk operation. This leaves a new terminal sub-path Si of the Hamiltonian
path, of length 2i. Then the general procedure is recursively called on Si to transform it into a straight line
L′i of length 2i. Finally, the two straight lines Li and L′i which are perpendicular to each other are combined
into a new straight line Li+1 of length 2i+1 and the next phase begins.

A core technical challenge in making the above transformation work is that Hamiltonian shapes do not
necessarily provide free space for the LineWalk operation. Thus, moving a line has to take place through
the remaining configuration of nodes while at the same time ensuring that it does not break their and its
own connectivity, including keeping itself connected to the rest of the shape. We manage to overcome this
by revealing a nice property of line moves, according to which a line L can transparently walk through any
configuration S (independently of the latter’s density) in a way that: (i) preserves connectivity of both L
and S and (ii) as soon as L has gone through it, S has been restored to its original state, that is, all of its
nodes are lying in their original positions. This property is formally proved in Proposition 1 (Section 2).

Finally, we develop a universal transformation, called UC-Box, that within O(n
√
n) moves transforms

any pair of connected shapes of the same order to each other, while preserving connectivity throughout its
course. Starting from the initial shape SI , we first compute a spanning tree T of SI . Then we enclose the

3

shape into a square box of size n and divide it into sub-boxes of size
√
n, each of which contains at least

one sub-tree of T . By moving lines in a way that does not break connectivity, we compress the nodes in a
sub-box into an adjacent sub-box towards a parent sub-tree. By carefully repeating this we manage to arrive
at a final configuration which is always a compressed square shape. The latter is a type of a nice shape (a
family of connected shapes introduced in [34]), which can be transformed into a straight line in linear time.
We provide an analysis of this strategy based on the number of charging phases, which turns out to be

√
n,

each making at most n moves, for a total of O(n
√
n) moves.

Section 2 formally defines the model and the problems under consideration and proves a basic proposition
which is a core technical tool in one of our transformations. Section 3 presents our O(n log n)-time transfor-
mation for Hamiltonian shapes. Section 4 discusses our universal O(n

√
n)-time transformation. Finally, in

Section 5 we conclude and discuss interesting problems left open by our work.

2. Preliminaries

All transformations in this study operate on a two-dimensional square grid, in which each cell has a
unique position of non-negative integer coordinates (x, y), where x represents columns and y denotes rows
in the grid. A set of n nodes on the grid forms a shape S (of the order n), where every single node u ∈ S
occupies only one cell, cell(u) = (ux, uy). A node u can be indicated at any given time by the coordinates
(ux, uy) of the unique cell that it occupies at that time. A node v ∈ S is a neighbour of (or adjacent to) a
node u ∈ S if and only if their coordinates satisfy ux − 1 ≤ vx ≤ ux + 1 and uy − 1 ≤ vy ≤ uy + 1 (i.e., their
cells are adjacent vertically, horizontally or diagonally). A graph G(S) = (V,E) is associated with a shape
S, where u ∈ V iff u is a node of S and (u, v) ∈ E iff u and v are neighbours in S. A shape S is connected
iff G(S) is a connected graph. We denote by T (S) (or just T when clear from context) a spanning tree of
G(S). In what follows, n denotes the number of nodes in a shape under consideration, and all logarithms
are to base 2.

In this paper, we exploit the linear-strength mechanism of the line-pushing model introduced in [34]. A
line L is a sequence of nodes occupying consecutive cells in one direction of the grid, that is, either vertically
or horizontally but not diagonally. A line move is an operation of moving all nodes of L together in a
single time-step towards a position adjacent to one of L’s endpoints, in a given direction d of the grid,
d ∈ {up, down, right, left}. A line move may also be referred to as step, move, or movement in this paper.
Throughout, the running time of transformations is measured in total number of line moves until completion.
A line move is formally defined below.

Definition 1 (A Permissible Line Move). A line L = (x, y), (x+ 1, y), . . . , (x+ k − 1, y) of length k, where
1 ≤ k ≤ n, can push all its k nodes rightwards in a single move to positions (x+1, y), (x+2, y), . . . , (x+k, y)
iff there exists an empty cell at (x + k, y). The “down”, “left”, and “up” moves are defined symmetrically,
by rotating the whole shape 90◦, 180◦ and 270◦ clockwise, respectively.

A configuration of the system is defined as a mapping C : Z×Z→ {0, 1}, where C(x, y) = 0 if cell(x, y) is
empty or C(x, y) = 1 if cell(x, y) is occupied by a node. Equivalently, a configuration can be defined as a set
{(x, y) : x, y ∈ Z and C(x, y) = 1}. Let C0 denote the initial configuration of the system. We say that C ′ is
directly reachable from C and denoted C → C ′, if C can be transformed into C ′ in one line move. Moreover,
C ′ is reachable from C, denoted C →∗ C ′, if there is a sequence of configurations C = C1, C2, . . . , Ct = C ′

such that Ci → Ci+1 holds for all i ∈ {1, 2, . . . , t − 1}. We next define a family of shapes that are used in
one of our transformations.

Definition 2 (Hamiltonian Shapes). A shape S is called Hamiltonian iff G(S) = (V,E) contains a path
starting from a node u ∈ V , visiting every node in V exactly once and ending at a node v ∈ V , where v 6= u.
H denotes the family of all Hamiltonian shapes, see Figure 1.

We define a rectangular path P over the set of cells as P = [c1, c2, c3, . . . , ck], where ci, ci+1 ∈ Z × Z
are two cells adjacent to each other either vertically or horizontally, for all i ∈ {1, 2, . . . , k − 1}. Given any
rectangular path P , let CP be the configuration of P , which is the subset of C (configuration of the system)

4

(a) A double-spiral shape (b) A shape of two different Hamiltonian paths
in yellow.

Figure 1: Examples of Hamiltonian shapes.

restricted to the cells of P . The following proposition proves a basic property of line moves which will be a
core technical tool in our transformation for Hamiltonian shapes.

The following proposition proves a basic property of line moves which will be a core technical tool in one
of our transformation for Hamiltonian shapes.

Proposition 1 (Transparency of Line Moves). Let S be any shape, L ⊆ S any line and P a rectangular
path starting from a position adjacent to one of L’s endpoints. There is a way to move L along P , while
satisfying all the following properties:

1. No delay: The number of steps is asymptotically equal to that of an optimum move of L along P in
the case of CP being empty (i.e., if no cells were occupied). That is, L is not delayed, independently
of what CP is.

2. No effect: After L’s move along P , C ′P = CP , i.e., the cell configuration has remained unchanged.
Moreover, no occupied cell in CP is ever emptied during L’s move (but unoccupied cells may be tem-
porarily occupied).

3. No break: S remains connected throughout L’s move.

Proof. Whenever L walks through an empty cell (x, y) of P , a node u ∈ L fills in (x, y). If L pushes the
node u of a non-empty cell of P , a node v ∈ L takes its place. When L leaves a non-empty cell (x, y) that
was originally occupied by node v, L restores (x, y) by leaving its endpoint u ∈ L in (x, y). Finally, Figure
3 shows how to deal with the case in which L turns at a non-empty corner-cell (x, y) of P , which is only
connected diagonally to a non-empty cell of S and is not adjacent to any cell occupied by L. Figure 2 shows
an example of configuration CP .

LP

Empty cell

Occupied cell

corner cell (x, y)

Figure 2: A path P of a given configuration CP . A line L will pass along P .

5

Now assume that L turns at a non-empty corner cell (x, y) of P (say without loss of generality, from
horizontal to vertical direction). Typically the node occupying the corner cell(x, y) moves vertically one step
along P , and then L pushes one move to fill in the empty cell (x, y) by a node u ∈ L. Unless (x, y) is being
only connected diagonally to a non-empty cell that is not a neighbour of any node u ∈ L. Figure 3 shows
how to deal with the case in which L turns at a non-empty corner-cell (x, y) of P , which is only connected
diagonally to a non-empty cell of S and is not adjacent to any cell occupied by L.

LP

Empty cell

Occupied cell

u
v

(a)

u
v

u
v

u
v

u
v

(b)

Figure 3: A line L moving through a path P and arriving at a turning point of P . u occupies a corner cell of P , and v occupies
a cell of S and is only connected diagonally to u while not being adjacent to any cell occupied by L. L pushes u one position
horizontally and turns all of its nodes vertically. Then u moves back to its original position in P . All other orientations are
symmetric and follow by rotating the shape 90◦, 180◦ or 270◦.

Therefore, it always temporarily maintain global connectivity and restores all of those nodes to their
original positions. Hence, L’s move takes a number of moves to pass through any CP equal to or even
less than its optimum move in the case of empty CP . Therefore, L can transparently walk through any
configuration S (independently of the latter’s density) in a way that: (i) preserves connectivity of both L
and S and (ii) as soon as L has gone through it, S has been restored to its original state, that is, all of its
nodes are lying in their original positions.

We now formally define all problems considered in this work.

HamiltonianConnected. Given a pair of connected Hamiltonian shapes (SI , SF) of the same order,
where SI is the initial shape and SF the target shape, transform SI into SF while preserving connectivity
throughout the transformation.

DiagonalToLineConnected. A special case of HamiltonianConnected in which SI is a diagonal line
and SF is a straight line.

UniversalConnected. Given any pair of connected shapes (SI , SF) of the same order, where SI is the
initial shape and SF the target shape, transform SI into SF while preserving connectivity throughout the
transformation.

3. An O(n log n)-time Transformations for Hamiltonian Shapes

In this section, we present a strategy for HamiltonianConnected, called HamiltonianToLine. It trans-
forms any pair of shapes SI , SF ∈ H of the same order to each other within O(n log n) moves while preserving
connectivity of the shape throughout the transformation. Recall that H is the family of all Hamiltonian
shapes. Our transformation starts from one endpoint of the Hamiltonian path of SI and applies a recursive
successive doubling technique to transform SI into a straight line SL in O(n log n) time. By replacing SI

with SF in HamiltonianToLine transformation and reversing the resulting transformation, one can then go
from SI to SF in the same asymptotic time.

6

3.1. Transforming Diagonal shape into Line shape

We first demonstrate the core recursive technique of this strategy in a special case which is sufficiently
sparse to allow local reconfigurations without the risk of affecting the connectivity of the rest of the shape.
In this special case, SI is a diagonal of any order and observe that SI , SF ∈ H holds for this case. We then
generalise this recursive technique to work for any SI ∈ H and add to it the necessary sub-procedures that
can perform local reconfiguration in any area (independently of how dense it is), while ensuring that global
connectivity is always preserved.

u1

L1 = 2

push 1 step

un

(a) First phase.

L
2
=

2i
=

4

L1 = 2i−1 = 2

D 2
=
2

(b) Second phase.

Figure 4: First and second phase of HamiltonianToLine transformation on the diagonal shape.

Let SI be a diagonal of n nodes un, un−1, . . . , u1, occupying cells (x, y), (x+1, y+1), . . . , (x+n−1, y+n−1),
respectively. Assume for simplicity of exposition that n is a power of 2; this can be dropped later. As argued
above, it is sufficient to show how SI can be transformed into a straight line SL. In phase i = 0, the top
node u1 moves one position to align with u2 and form a line L1 of length 2, as depicted in Figure 4 (a). Next
phase, L1 moves and turns to align with u4, then repeat whatever done in phase i = 0 again on nodes u3 and
u4 (where both form a diagonal segment D2 to create a line L′1, and then combine the two perpendicular
line L1 and L′1 into a line L2 of length 4, as shown in Figure 4 (b).

3.2. Transforming Hamiltonian shapes into Line shape

In any phase i, for all 1 ≤ i ≤ log n, a line Li occupies 2i consecutive cells in a terminal subset of SI

(see an example in Figure 5 (a)). Li moves through a shortest path towards the far endpoint of the next
diagonal segment Di of length 2i (Figure 5 (b)). Note that for general shapes, this move shall be replaced
by a more general Line-Walk operation (defined in the sequel). By a recursive call on Di, Di transforms
into a line L′i (Figure 5 (c)). Finally, the two perpendicular lines Li and L′i are combined in linear time into
a straight line Li+1 of length 2i+1 (Figure 5 (d)). Observe that connectivity might be broken as L′i moving
up and Li pushing left in Figure 5 (d); hence, this case can be resolved in many ways, such as Figure 3 in
Proposition 1. By the end of phase log n, a straight line SL of order n has been formed.

A core technical challenge in making the above transformation work in the general case, is that Hamilto-
nian shapes do not necessarily provide free space, thus, moving a line has to take place through the remaining
configuration of nodes while at the same time ensuring that it does not break their and its own connectivity.
In the more general LineWalk operation that we now describe, we manage to overcome this by exploiting
transparency of line moves, according to which a line L can transparently walk through any configuration S
(independently of the latter’s density); see Proposition 1.

LineWalk. At the beginning of any phase i, there is a terminal straight line Li of length 2i containing
the nodes v1, . . . , v2i , which is connected to an Si ⊆ SI , such that Si consists of the 2i subsequent nodes,
that is v2i+1, . . . , v2i+1 . Observe that Si is the next terminal sub-path of the remaining Hamiltonian path
of SI . We distinguish the following cases: (1) If Li and Si are already forming a straight line, then go to
phase i+ 1. (2) If Si is a line perpendicular to Li, then combine them into a straight line by pushing Li to
extend Si and go to phase i+ 1. Otherwise, (3) check if the (Manhattan) distance between v2i and v2i+1 is
δ(v2i , v2i+1) ≤ 2i, then Li moves from v2i = (x, y) vertically or horizontally towards either node (x, y′) or

7

Li

D i

(a) A line Li and a diagonal segment Di

both of length 2i.

Li

(b) Li moves through a shortest path to-
wards the far endpoint of Di.

D i

L′
i

Li

(c) Di recursively transforms into a line L′i.

push Li

Li+1

(d) A line Li+1 of length 2i+1 formed by com-
bining Li and L′i.

Figure 5: A snapshot of phase i of HamiltonianToLine transformation applied on a diagonal. Light grey cells represent the
ending positions of the corresponding moves depicted in each sub-figure.

(x′, y) in which Li turns and keeps moving to v2i+1 = (x′, y′) on the other side of SI . If not, (4) Li must first
pass through a middle node of SI at v2i+2i−1 = (x′′, y′′), therefore Li repeats (3) twice, from v2i to v2i+2i−1

and then towards v2i+1 .
Note that cases (3) and (4) ensure that Li is not disconnected from the rest of the shape. Moreover,

moving Li must be performed in a way that respects transparency (Proposition 1), so that connectivity of
the remaining shape is always preserved and its configuration is restored to its original state. These details
are described later in this section.

Algorithm 1, HamiltonianToLine, gives a general strategy to transform any Hamiltonian shape SI ∈ H
into a straight line in O(n log n) moves. In every phase i, it moves a terminal line Li of length 2i a distance
2i higher on the Hamiltonian path through a LineWalk operation. This leaves a new terminal sub-path Si

of the Hamiltonian path, of length 2i. Then the general procedure is recursively called on Si to transform it
into a straight line L′i of length 2i. Finally, the two straight lines Li and L′i which are perpendicular to each
other are combined into a new straight line Li+1 of length 2i+1 and the next phase begins. The output of
HamiltonianToLine is a straight line SL of order n.

8

Algorithm 1: HamiltonianToLine(S)

S = (u0, u1, ..., u|S|−1) is a Hamiltonian shape
Initial conditions: S ← SI and L0 ← {u0}

for i = 0, . . . , log |S| do
LineWalk(Li)
Si ← select(2i) // select the next terminal subset of 2i consecutive nodes of S
L′i ← HamiltonianToLine(Si) // recursive call on Si

Li+1 ← combine(Li, L
′
i) // combines Li and L′i into a new straight line Li+1

end
Output: a straight line SL

3.3. Correctness and runtime analysis

Now we are ready to show correctness of HamiltonianToLine transformation, which is capable of trans-
forming any Hamiltonian shape S ∈ H into a line shape of the same order, while preserving connectivity
during its course. Next, we show that the strategy takes a total of O(n log n) moves to complete the trans-
formation.

Lemma 1. Starting from an initial Hamiltonian shape SI ∈ H of order n, HamiltonianToLine forms a
straight line SL ∈ H of length n.

Proof. By the beginning of the final phase, the shape configuration consists of two parts, a straight line L
of length 2logn−1 and a shape S of 2logn−1 nodes. During this phase, L performs a LineWalk operation,
S transforms recursively into L′ and then L combines with L′ into a straight line SL of length 2logn = n.
Consequently, SL shall occupy n consecutive cells on the grid, either vertically or horizontally.

Lemma 2. The operation of Line-Walk preserves the whole connectivity of the shape during phase i, where
1 ≤ i ≤ log n.

Proof. Let SI ∈ H be a Hamiltonian shape of order n in phase i, which terminates at a straight line Li

of length 2i nodes, starting from v1 to v2i . During phase i, this transformation doubles the size of Li by
merging its nodes with the subsequent 2i nodes on the Hamiltonian path from v2i+1 to v2i+1 .

We now show case (1) and (2) of the Line-Walk operation on a horizontal Li (the other cases are
symmetric by rotating the shape 90◦, 180◦ or 270◦ clockwise). In case 1, Li and Si are already forming a
straight line Li+1 of length 2i+1, hence the whole configuration of the shape left unchanged. In case (2), Li

and Si are forming two perpendicular straight lines in which Li can easily push into Si and extend it by 2i.
As Li pushes and Si extends to form Li+1, they are replacing and restoring any occupied cell along their
way through any configuration (independently of how density is) by exploiting transparency of line moves in
Proposition 1. As a result, the Line-Walk operation preserves connectivity of Li, Si and the whole shape.

Now, let Li and Si be of the same configuration of case (3) or (4) described above, where Li has
length of 2i and Si consists of 2i nodes v2i+1, . . . , v2i+1 that occupy multiple rows and columns. Due to
symmetry, assume Li is horizontal and occupies (x, y), (x+ 1, y), . . . , (x+ 2i, y) and Si is the next terminal
sub-path of the remaining Hamiltonian path. Then, the Manhattan distance between v2i = u and v2i+1 = v,
δ(u, v) = |ux − vx|+ |uy − vy|, determines the path that the line Li will go through in order to reach the far
endpoint of Si. There are two possible paths of a single move from u to v. The first path starts horizontally
from cell (ux, uy) then turns at (vx, uy) continuing vertically towards (vx, vy), and the second one starts from
(ux, uy) then turns at (ux, vy) continuing horizontally towards (vx, vy).

In case (3), the distance between v2i and v2i+1 is δ(v2i , v2i+1) ≤ 2i, thus Li moves horizontally from
v2i = (x, y) through (x′, y) at which Li changes its direction towards v2i+1 = (x′, y′). In a worst-case
configuration, a path may consist of at least 2i empty cells Li goes through to reach the destination cell
(x′, y′). Recall that Li already consists of 2i nodes, which guarantees connectivity all the way until arriving
at (x′, y′). Once Li has arrived there, it can safely change its direction to line up with v2i+1 and occupy the

9

column x′, while preserving connectivity. Further, any non-empty cells of the path are eventually restored
due to the transparency of line moves shown in Proposition 1.

Finally, the same argument holds for (4) by applying (3) twice. Figure 6 shows an example of case (3)
and (4). Thus, Line-Walk always keeps the whole shape connected during any phase i of the transformation.

L = 2i

v2i

v1 2iu1 u2 u2i

(a) The case when δ(v2i , v2i+1) ≤ 2i.

L = 2i
u1 u2 u2i

v1

v2i

2i+1

(b) The case when δ(v2i , v2i+1) > 2i.

Figure 6: Two cases of Line-Walk operation.

Now, we are ready to analyse the running time of HamiltonianToLine transformation.

Lemma 3. Given an initial Hamiltonian shape SI ∈ H of order n, HamiltonianToLine transforms SI into
a straight line SL in O(n log n) moves, while preserving connectivity during the course of the transformation.

Proof. The bound O(n) trivially holds for case (1) and (2). We then analyse a worst-case of (3) and (4)
in which the transformation matches its maximum running time. Let Ti denote the total number of moves
from phase 1 up to i for all 0 ≤ i ≤ log n. In phase i, a straight line Li of length 2i traverses along a path of
at most 2 · (2i − 2) = 2i+1 − 4 cells in which Li changes its direction twice paying a cost of at most 2i+2 − 4
moves. There is an additive factor of 2 for the special-case when Li is turning at a non-empty corner as
depicted in Figure 3. Then the operation of Line-Walk takes total moves k′i of at most:

k′i = (2i+1 − 4) + (2i+2 − 4) + 2 = 6(2i − 1).

By the end of phase i, Li and L′i combine together into a straight line Li+1 of length 2i+1, in a total cost
k′′i of at most:

k′′i = 2(2i − 1),

moves. Hence, the operation of Line-Walk and combination of Li and L′i requires at most ki in phase i
given by:

ki = k′i + k′′i

= 6(2i − 1) + 2(2i − 1) = 8(2i − 1)

≈ (2i − 1)

≤ O(2i).

10

Now, let Ti−1 denote a total number of moves for a recursive call of HamiltonianToLine transformation
on Si (of 2i nodes) to transform it into a straight line L′i, then the transformation in phase i requires at
most:

Ti = 2 · Ti−1 + ki,

moves. Given that the first phase i costs T1 = 1, we compute the recursion as follows:

Ti = 2 · Ti−1 + ki = 2Ti−1 + 2i

= 2(2Ti−2 + 2i−1) + 2i = 4 · Ti−2 + 2
2i

2
+ 2i = 22 · Ti−2 + 2 · 2i

= 4(2 · Ti−3 + 2i−2) + 2 · 2i = 8 · Ti−3 + 4
2i

4
+ 2 · 2i = 23 · Ti−3 + 3 · 2i

= . . .

= 2i · T1 + i · n
= 2i + i · n.

Therefore, phase i of the transformation costs at most:

Ti ≤ O(2i + i · n).

Thus in the final phase i = log n, we conclude that HamiltonianToLine transformation performs a
total cost Tlogn of at most:

Tlogn ≤ 2logn + n log n

= n+ n log n

= O(n log n).

By Lemmas 2 and 3, any Hamiltonian shape S ∈ H can be transformed into a straight line SL ∈ H of
the same order within O(n log n) moves, while preserving connectivity. By reversibility of line moves [34],
any pair of Hamiltonian shapes SI , SF ∈ H of the same order can be transformed to each other by first
transforming SI into SL and then reversing the transformation of SF into SL, within the same asymptotic
time of O(n log n) moves. Thus we have arrived at the following theorem:

Theorem 1. For any pair of Hamiltonian shapes SI , SF ∈ H of the same order n, SI can be transformed
into SF (and SF into SI) in O(n log n) moves, while preserving connectivity of the shape during the course
of the transformation.

4. An O(n
√
n)-time Universal Transformation

In this section, we develop a transformation that solves the UniversalConnected problem in O(n
√
n)

moves. It is called Compress and transforms any pair of connected shapes (SI , SF) of the same order to
each other, while preserving connectivity during its course.

Starting from the initial shape SI of order n with an associated graph G(SI), compute a spanning tree
T of G(SI). Then enclose the shape into an n× n square box and divide it into

√
n×
√
n square sub-boxes.

Each occupied sub-box contains one or more maximal sub-trees of T . Each such sub-tree corresponds to a
sub-shape of SI , which from now on we call a component. Pick a leaf sub-tree Tl, let Cl be the component

11

with which it is associated, and Bl their sub-box. Let also Bp be the sub-box adjacent to Bl containing the
unique parent sub-tree Tp of Tl. Then compress all nodes of Cl into Bp through line moves, while keeping
the nodes of Cp (the component of Tp) within Bp. Once compression is completed and Cp and Cl have been
combined into a single component C ′p, compute a new sub-tree T ′p spanning G(C ′p). Repeat until the whole
shape is compressed into a

√
n ×
√
n square. The latter belongs to the family of nice shapes (a family of

connected shapes introduced in [34]) and can, thus, be transformed into a straight line in linear time.
Given that, the main technical challenges in making this strategy work universally is that a connected

shape might have many different configurations inside the sub-boxes it occupies, while the shape needs to
remain connected during the transformation. In the following, we describe the compression operation, which
successfully tackles all of these issues by exploiting the linear strength of line moves.

4.1. Universal transformation by compression approach

Let Cl ⊆ SI be a leaf component containing nodes v1, . . . , vk inside a sub-box Bl of size
√
n×
√
n, where

1 ≤ k ≤ n, and Cp ⊆ SI the unique parent component of Cl occupying an adjacent sub-box Bp. If the
direction of connectivity between Bl and Bp is vertical or horizontal (for an example see Figure 7), push
all lines of Cl one move towards Bp sequentially one after the other, starting from the line furthest from
Bp. Repeat the same procedure to first align all lines perpendicularly to the boundary between Bl and Bp

(Figure 7 (d)) and then to transfer them completely into Bp (Figures 7(e)). Hence, Cl and Cp are combined
into C ′p, and the next round begins.

The above steps are performed in a way which ensures that all lines (in Cl or Cp) which are being
pushed by this operation do not exceed the boundary of Bp (Figure 8(d)). While Cl compresses vertically
or horizontally, it may collide with a component Cr ⊆ SI inside Bl. In this case Cl stops compressing and
combines with Cr into C ′r. Then the next round begins. If Cl compresses diagonally towards Cp (vertically
then horizontally or vice versa) via an intermediate adjacent sub-box Bm and collides with Cm ⊆ SI inside
Bm, then Cl completes compression into Bm and combines with Cm into C ′m. Figure 8 shows how to compress
a leaf component into its parent component occupying a diagonal adjacent sub-box.

Algorithm 2: Compress(S)

S = (u1, u2, ..., u|S|) is a connected shape, T is a spanning tree of G(S) repeat

Cl ← pick(Tl) // select a leaf component associated with a leaf sub-tree

Compress(Cl) // start compressing the leaf component

if Cl collides then
C ′r ← combine(Cr, Cl) or C ′m ← combine(Cm, Cl) // as described in text

else
C ′p ← combine(Cp, Cl) // combine Cl with a parent component

end
update(T) // update sub-trees and remove cycles after compression

until the whole shape is compressed into a
√
n×
√
n square

Output: a square shape SC

Algorithm 2, Compress, provides a universal procedure to transform an initial connected shape SI of
any order into a compressed square shape of the same order. It takes two arguments: SI and the spanning
tree T of the associated graph G(SI). In any round: Pick a leaf sub-tree of Tl corresponding to Cl inside
a sub-box Bl. Compress Cl into an adjacent sub-box Bp towards its parent component Cp associated with
parent sub-tree Tp. If Cl compressed with no collision, perform combine(Cp, Cl) which combines Cl with Cp

into one component C ′p. If Cl collides with another component Cr inside Bl, then perform combine(Cr, Cl)
into C ′r. If not, as in the diagonal compression in which Cl collides with Cm in an intermediate sub-box
Bm, then Cl compresses completely into Bm and performs combine(Cm, Cl) into C ′m. Once compression is
completed, update(T) computes a new sub-tree and removes any cycles. The algorithm terminates when T
matches a single component of n nodes compressed into a single sub-box.

12

Bl Bp

Push one step

(a)

Bl Bp

Push one step

(b)

Bl Bp

Push one step

(c)

Bl Bp

align to boundary
Until all lines

(d)

Bl Bp

Transfer all lines
completely into Bp

(e)

Figure 7: A leaf component Cl in blue compressing from the left sub-box Bl towards its parent component Cp in black inside
a horizontal adjacent right sub-box Bp. Cl first pushes all lines to align all of them perpendicularly to the boundary between
Bl and Bp then compresses into Bp. All other orientations are symmetric and follow by rotating the shape 90◦, 180◦ or 270◦

clockwise.

(a) (b) (c) (d)

Figure 8: A leaf component Cl in blue compressing from the top-left sub-box towards its parent component Cp in black inside
a diagonal adjacent bottom-right sub-box. Cl compresses first horizontally towards an intermediate top-right sub-box, then
vertically into the bottom-right. All other orientations are symmetric and follow by rotating the shape 90◦, 180◦ or 270◦

clockwise.

4.2. Correctness and runtime analysis

In this section, we prove correctness of Compress transformation. First, we show that the it is able
to transform any pair of connected shapes (SI , SF) of the same order to each other, while preserving

13

connectivity during its course. We then discuss its running time, which takes total cost of at most O(n
√
n)

moves to compress any pair connected shapes having the same number of n nodes.

Given an initial connected shape SI holding n nodes enclosed into an n × n square that is divided into√
n×
√
n square sub-boxes, we provide the following definitions that are used in the rest of this section.

Definition 3 (Connectivity of sub-boxes). By the above partitioning, two occupied sub-boxes, B1 and B2,
are connected iff there are two distinct nodes u, v ∈ SI , such that u occupies B1 and v occupies B2 where u
and v are two adjacent neighbours connected vertically, horizontally or diagonally.

Definition 4 (Connectivity of components). By the above partitioning, two connected components, C1 and
C2, are connected iff there are two distinct elements u ∈ C1 and v ∈ C2, such that u and v are two adjacent
neighbours connected vertically, horizontally or diagonally.

Then we show that each sub-box holds at most 2
√
n components.

Lemma 4. Any
√
n×
√
n square box can contain at most 2

√
n components.

Proof. Observe that any component Cl ⊆ SI inside a sub-box Bl must be connected, via a path, to one of√
n/2 cells at a length-

√
n boundary of Bl, resulting in 2

√
n for the four boundaries, see Figure 9. Hence, it

can contain at most 2
√
n disconnected components.

√
n
2

√
n
2

√
n
2

√
n
2

Figure 9: A square box of four length-
√
n boundaries, each of 2

√
n cells.

Then, the following lemma proves that any connected shape S of n nodes can be compressed into a square
box of dimension

√
n.

Lemma 5. Let S be a connected shape of order n occupies
√
n sub-boxes of size

√
n×
√
n each. Then, it is

always possible to compress all n nodes into a single sub-box.

Proof. The number of cells inside any sub-box is
√
n ×
√
n = n, then it is sufficient to be filled by at most

n nodes.

Next, the following lemma shows that Compress transformation eventually forms a nice shape, belongs
to a family of connected shapes introduced in [34] and can be transformed fast into a straight line in linear
time.

Lemma 6. Starting from an initial connected shape SI of order n, Compress transformation eventually
forms a nice shape SNICE of order n.

Proof. Regardless of which sub-box the shape will compress into, the resulting final shape will form a square
of size

√
n, which satisfies all conditions of nice shapes.

14

Given an initial connected shape SI of n nodes with an associated graph G(SI), compute a spanning
tree T of G(SI). Then enclose SI into an n × n square box and divide it into

√
n ×
√
n square sub-boxes.

Each occupied sub-box contains one or more maximal sub-trees of T . Each such sub-tree corresponds to
a component. Pick a leaf sub-tree Tl, let Cl be the component with which it is associated, and Bl their
sub-box. Let also Bp be the sub-box adjacent to Bl containing the unique parent sub-tree Tp of Tl. We then
provide the following lemma:

Lemma 7. Compress transformation compresses a leaf component Cl ⊆ SI of k ≥ 1 nodes, while preserving
the global connectivity of the shape.

Proof. We shall discuss all possible cases of compressing all lines k ∈ Cl from Bl towards Bp vertically,
horizontally and diagonally, where 1 ≤ k ≤

√
n. Due to symmetry, we present only one direction as all other

directions hold by rotating the shape 90◦, 180◦ and 270◦ clockwise. Assume Bl is a left sub-box horizontally
adjacent to right sub-box Bp. All k horizontal lines (rows) of Cl start to move towards Bp sequentially one
after the other, starting from the furthest line from the boundary between Bl and Bp. Given a single line
l ∈ k of length i, 1 ≤ i ≤

√
n, push l horizontally from Bl into Bp follows one of these cases:

• Case 1. A line l of length
√
n occupies cells (x, y), . . . , (x +

√
n, y) starting from the left to right

boundary of Bl. Then l moves one step right to occupy (x+ 1, y), . . . , (x+
√
n+ 1, y) in a way similar

to a simple position permutation of l’s nodes to their right neighbour positions. Regardless of the shape
configuration, l consequently creates an empty cell at (x+ 1, y) and at the same time stays connected
to any other nodes occupying cells (x, y ± 1), . . . , (x+

√
n, y ± 1). Therefore, connectivity is preserved

in this case. See an example in Figure 10 (a) and (b).

√
n

√
n

Bl Bp

(a)

√
n

√
n

Bl Bp

(b)

Figure 10: A line l of length
√
n occupies the whole dimension of a sub-box in (a) is pushing one step right in (b).

• Case 2. A line l of length less than
√
n. It is similar of Case 1 in which l moves one position right;

thus connectivity is still preserved. See Figure 11.

• Case 3. Two horizontal lines l1 and l2, both of length less than
√
n, are occupying the same row

separated by one empty cell. Say l1 starts from the leftmost column x and ends at x + i, empty cell
at (x + i + 1, y) and l2 occupies (x + i + 2, y), . . . , (x +

√
n, y). This is similar of Case 2 in which l1

pushes one step towards cell (x + i + 1, y), then both lines combines into a single line creating a new
empty cell at (x, y), see an example in Figure 12. Still, connectivity is preserved in this case.

As mentioned earlier, when a leaf component Cl occupying Bl compresses towards its parent Cp occupying
Bp, we now show that no line exceeds the boundary of Bp while preserving connectivity.

• Case 4. A line l of length i <
√
n, starting from the left boundary and ending at cell x + i of Bp, is

adjacent to an empty cell to the right at (x+ i+ 1, y). Once l is pushed one move right, it fills in that

15

√
n

√
n

Bl Bp

(a)

√
n

√
n

Bl Bp

(b)

Figure 11: A line l of length i <
√
n in (a) is pushing one step right in (b).

√
n

√
n

Bl Bp

(a)

√
n

√
n

Bl Bp

(b)

Figure 12: (a) Two lines occupy a row separated by one empty cell inside Bl, both of length less than
√
n. The left line is

pushing one step right, then both combined into a single line in (b).

empty cell and occupies positions (x+ 1, y), . . . , (x+ i+ 1, y) with length i+ 1. This is similar of Case
2 in Figure 11.

• Case 5. A line l of length
√
n starts from the left to right boundary of Bp. Once l is pushed towards

the right, it turns to fill in empty cells at the right boundary of Bp, starting from the rightmost column
to the left. Figures 13 and 14 depicts two different examples of filling Bp boundary. This case also
preserves connectivity of the whole shape.

In all above cases, the horizontal line l pushes one move towards the right while preserving connectivity
of SI . As an immediate observation: whenever a line l ⊂ SI inside a sub-box Bl can push one move towards
the boundary between (Bl, Bp) while the global connectivity of the whole shape is preserved. This holds
also for all k lines that are moving one step from Bl towards Bp, sequentially one after another at any order,
starting from the furthest-to-nearest line from Bp. Thus, this must hold for any finite number of line moves
required to compress a leaf component Cl towards its parent Cp.

Now, let us analyse the running time of this transformation. The compression cost could be very low
taking only one move or very high up to linear moves in some cases. To simplify the analysis, we divide
the total cost into charging phases. We then manage to upper bound the cost of each charging phase
independently of the sequential order of compression. Below we provide a rough upper bound for all possible
shape configurations.

16

√
n

√
n

Bl Bp

(a)

√
n

√
n

Bl Bp

(b)

√
n

√
n

Bl Bp

(c)

Figure 13: (a) A line l of length
√
n occupies a whole dimension of a parent sub-box Bp where there is an empty cell above its

right end node. As l pushing right, the end node moves up towards that empty cell (b), then in (c) l moves one step right.

√
n

√
n

Bl Bp

(a)

√
n

√
n

Bl Bp

(b)

Figure 14: (a) A line l of length
√
n occupies a whole dimension of Bp in which the rightmost column is fully occupied. In this

case, l fills in the nearest empty cell at the second column from the right (b).

Given a uniform partitioning of any initial connected shape S1 of order n, we first show the total cost
required to compress a leaf component Cl inside Bl into a parent Cp occupying an adjacent sub-box Bp.

Lemma 8. Given a pair of components Cl and Cp of kl and kp nodes, 1 ≤ kl + kp ≤ n, occupying two
adjacent sub-boxes Bl and Bp of size

√
n ×
√
n each, receptively. Then, Cl requires at most O(n) moves to

compress into Cp inside Bp, while preserving connectivity.

Proof. Assume a worst-case configuration when Bl and Bp are connected diagonally. In this case, the

17

compression needs to go through an intermediate sub-box Bm first then carry on towards Bp. Each line
kl ∈ Cl moves at most distance

√
n to cross the boundary between Bl and Bp; hence, all kl lines need to

pay at most n moves to completely transfer into Bm and another n moves to compress into Bp. Further, we
give an extra 2n moves for filling in a boundary at Bp (as depicted in Figure 14). Thus, the transformation
pays at most t moves to compress Cl into Cp; that is,

t = n+ n+ 2n = 4n

= O(n).

Given some partitionings, there is a family of connected shapes that can be divided into n connected com-
ponents deployed on

√
n sub-boxes. This family seems to achieve a worst-case complexity where Compress

transformation meets its maximum cost due to several reasons. First, it splits the shape into the maximum
possible number of components n. Moreover, the diameter of the shape, which is the distance between the
two furthest nodes of the shape, is in a maximum length of n. Unlike other dense connected shapes of shorter
diameters, the compression cost of these shapes can be very high due to the lack of long lines which requires
additional work for individuals and short lines. We provide this observation which closely follows Corollary
1 from [34].

Observation 1. Given a connected shape S of order n enclosed in a square box of dimension n that is
divided by some uniform partitioning into

√
n sub-boxes of dimension

√
n, then there are a finite number of

connected shapes denoted C, such that an instance S ∈ C can have n components occupying the
√
n sub-boxes.

Figure 15 and 16 show partitioning examples of two shapes belonging to C. Since S ∈ C is connected,
each occupied sub-box contains at most O(

√
n) connected components of size 1 each.

√
n

√
n

n

Figure 15: A zigzag line with a partitioning positioned to cross the middle through every two nodes.

Then, we aim to upper bound the cost that any connected shape S pays at most to compress based on
the number of occupied sub-boxes, apart from of the sequential order of the transformation.

Lemma 9. Compress transformation compresses any connected shape S of order n into a
√
n×
√
n square

shape, in O(n
√
n) moves while preserving connectivity during its course.

Proof. We analyse the compression cost of these shapes based a worst-case scenario. To simplify the analysis,
we divide the total cost T into

√
n charging phases t1, . . . t√n, where each phase corresponds to an occupied

sub-box. Then we upper bound the cost in each phase independently of the compression order. In any
charging phase ti, for all 1 ≤ i ≤

√
n, the strategy compresses at most O(

√
n) lines distance of O(

√
n),

incurring a cost of n moves, while preserving connectivity. In a worst case (see Lemma 8), the compression
may go through diagonal sub-boxes occurring at most 2n moves and pay an additional cost of 2n moves for
boundary rearrangements. Thus, the cost phase ti is bounded by:

ti = 4n,

18

√
n

√
n

Figure 16: A diagonal zigzag line with a partitioning positioned to cross the middle through every two nodes.

moves, which is mostly sufficient for an occupied sub-box to be emptied of its lines during the transformation.
Then, paying all

√
n charging phases are sufficient for all

√
n occupied sub-boxes to be emptied of all lines

inside them over the transformation, in a maximum total cost T :

T = 4n ·
√
n = 4(n

√
n)

≤ O(n
√
n),

moves.

By Lemmas 7 and 9, any connected shape S of order n can be transformed into a nice shape SNICE of the
same order n within O(n

√
n) moves while preserving connectivity. By reversibility, any pair of connected

shapes SI and SF of the same order can be transformed to each other within the same asymptotic time
of O(n

√
n) moves by first transforming SI into SNICE and then reversing the transformation from SF into

SNICE . Finally, we have arrived at the following theorem:

Theorem 2. For any pair of connected shapes SI , SF of the same order n, SI can be transformed into SF

(and SF into SI) in O(n
√
n) moves, while preserving connectivity during the course of the transformation.

5. Conclusions and Open Problems

We have presented efficient transformations for the line-pushing model introduced in [34]. Our first
transformation works on the family of all Hamiltonian shapes and matches the running time of the best
known O(n log n)-time transformation while additionally managing to preserve connectivity throughout its
course. We then gave the first universal connectivity preserving transformation for this model. Its running
time is O(n

√
n) and works on any pair of connected shapes of the same order. This work opens a number

of interesting problems and research directions. An immediate next goal is whether it is possible to develop
an O(n log n)-time universal connectivity-preserving transformation. There are also a number of interesting
variants of the present model. One is a centralised parallel version in which more than one line can be moved
concurrently in a single time-step. Another, is a distributed version of the parallel model, in which the nodes
operate autonomously through local control and under limited information.

Further, we establish Ω(n log n) lower bounds for two restricted sets of transformations, which have been
shown in our full report [41]. For example, it can be shown that any such transformation has a labelled tree
representation, and by restricting the consideration to the sub-set of those transformations in which every
leaf-to-root path has length at most 2, this captures transformations in which every node must reach its final
destination through at most 1 meeting-hop and at most 2 hops in total. Interestingly, by disregarding the

19

fact that our initial and target instances have specific geometric arrangements, it is known that computing
a 2-HOPS MST in the Euclidean 2-dimensional space is a hard optimisation problem and the best known
result is a PTAS by Arora et al. [42] (cf. also [43]). Our second lower bound is also Ω(n log n) time, for an
alternative set of one-way transformations in which all nodes move towards only a one direction and do not
spilt once they combined during the transformation.

These are the first lower bounds, under restrictions, for this model and are matching the best known
O(n log n) upper bounds. If true, the existence of lower bound above linear is not known, then a natural
question is whether a universal transformation can be achieved in o(n log n)-time (even when connectivity
can be broken) or whether there exists a general Ω(n log n)-time matching lower bound. As a first step, it
might be easier to develop lower bounds for the connectivity-preserving case.

References

[1] A. Almethen, O. Michail, I. Potapov, On efficient connectivity-preserving transformations in a grid,
in: Algorithms for Sensor Systems - 16th International Symposium on Algorithms and Experiments for
Wireless Sensor Networks, ALGOSENSORS, Vol. 12503, 2020, pp. 76–91.

[2] J. Bourgeois, S. Goldstein, Distributed intelligent MEMS: progresses and perspective, IEEE Systems
Journal 9 (3) (2015) 1057–1068.

[3] K. Gilpin, A. Knaian, D. Rus, Robot pebbles: One centimeter modules for programmable matter
through self-disassembly, in: Robotics and Automation (ICRA), 2010 IEEE International Conference
on, IEEE, 2010, pp. 2485–2492.

[4] A. Knaian, K. Cheung, M. Lobovsky, A. Oines, P. Schmidt-Neilsen, N. Gershenfeld, The milli-motein:
A self-folding chain of programmable matter with a one centimeter module pitch, in: 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IEEE, 2012, pp. 1447–1453.

[5] M. Rubenstein, A. Cornejo, R. Nagpal, Programmable self-assembly in a thousand-robot swarm, Science
345 (6198) (2014) 795–799.

[6] S. Douglas, H. Dietz, T. Liedl, B. Högberg, F. Graf, W. Shih, Self-assembly of dna into nanoscale
three-dimensional shapes, Nature 459 (7245) (2009) 414.

[7] P. Rothemund, Folding dna to create nanoscale shapes and patterns, Nature 440 (7082) (2006) 297–302.

[8] O. Michail, P. Spirakis, Elements of the theory of dynamic networks, Commun. ACM 61 (2) (2018)
72–81.

[9] O. Michail, G. Skretas, P. Spirakis, On the transformation capability of feasible mechanisms for pro-
grammable matter, Journal of Computer and System Sciences 102 (2019) 18–39.

[10] A. Dumitrescu, I. Suzuki, M. Yamashita, Motion planning for metamorphic systems: Feasibility, decid-
ability, and distributed reconfiguration, IEEE Transactions on Robotics and Automation 20 (3) (2004)
409–418.

[11] A. Nguyen, L. Guibas, M. Yim, Controlled module density helps reconfiguration planning, in: Proc. of
4th International Workshop on Algorithmic Foundations of Robotics, 2000, pp. 23–36.

[12] J. Walter, J. Welch, N. Amato, Distributed reconfiguration of metamorphic robot chains, Distributed
Computing 17 (2) (2004) 171–189.

[13] M. Cieliebak, P. Flocchini, G. Prencipe, N. Santoro, Distributed computing by mobile robots: Gathering,
SIAM Journal on Computing 41 (4) (2012) 829–879.

20

[14] J. Czyzowicz, D. Dereniowski, A. Pelc, Building a nest by an automaton, in: M. A. Bender, O. Svensson,
G. Herman (Eds.), 27th Annual European Symposium on Algorithms, ESA, 2019.

[15] S. Das, P. Flocchini, N. Santoro, M. Yamashita, Forming sequences of geometric patterns with oblivious
mobile robots, Distributed Computing 28 (2) (2015) 131–145.

[16] G. A. Di Luna, P. Flocchini, N. Santoro, G. Viglietta, Y. Yamauchi, Shape formation by programmable
particles, Distributed Computing.

[17] M. Yamashita, I. Suzuki, Characterizing geometric patterns formable by oblivious anonymous mobile
robots, Theoretical Computer Science 411 (26-28) (2010) 2433–2453.

[18] G. Aloupis, N. Benbernou, M. Damian, E. Demaine, R. Flatland, J. Iacono, S. Wuhrer, Efficient recon-
figuration of lattice-based modular robots, Computational geometry 46 (8) (2013) 917–928.

[19] Z. Butler, K. Kotay, D. Rus, K. Tomita, Generic decentralized control for lattice-based self-
reconfigurable robots, The International Journal of Robotics Research 23 (9) (2004) 919–937.

[20] J. Daymude, Z. Derakhshandeh, R. Gmyr, A. Porter, A. Richa, C. Scheideler, T. Strothmann, On the
runtime of universal coating for programmable matter, Natural Computing 17 (1) (2018) 81–96.

[21] Z. Derakhshandeh, R. Gmyr, A. Richa, C. Scheideler, T. Strothmann, Universal shape formation for
programmable matter, in: Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and
Architectures, ACM, 2016, pp. 289–299.

[22] M. Yim, W. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins, G. Chirikjian, Modular self-
reconfigurable robot systems [grand challenges of robotics], IEEE Robotics & Automation Magazine
14 (1) (2007) 43–52.

[23] D. Angluin, J. Aspnes, Z. Diamadi, M. Fischer, R. Peralta, Computation in networks of passively mobile
finite-state sensors, Distributed Computing 18 (4) (2006) 235–253.

[24] D. Angluin, J. Aspnes, D. Eisenstat, E. Ruppert, The computational power of population protocols,
Distributed Computing 20 (4) (2007) 279–304.

[25] O. Michail, P. Spirakis, Simple and efficient local codes for distributed stable network construction,
Distributed Computing 29 (3) (2016) 207–237.

[26] D. Doty, Theory of algorithmic self-assembly, Communications of the ACM 55 (2012) 78–88.

[27] P. Rothemund, E. Winfree, The program-size complexity of self-assembled squares, in: Proceedings of
the 32nd annual ACM symposium on Theory of computing (STOC), ACM, 2000, pp. 459–468.

[28] E. Winfree, Algorithmic self-assembly of dna, Ph.D. thesis, California Institute of Technology (June
1998).

[29] D. Woods, H. Chen, S. Goodfriend, N. Dabby, E. Winfree, P. Yin, Active self-assembly of algorithmic
shapes and patterns in polylogarithmic time, in: Proceedings of the 4th conference on Innovations in
Theoretical Computer Science, ACM, 2013, pp. 353–354.

[30] S. Fekete, A. Richa, K. Römer, C. Scheideler, Algorithmic foundations of programmable matter
(Dagstuhl Seminar 16271), in: Dagstuhl Reports, Vol. 6, 2016, also in ACM SIGACT News, 48.2:87-94,
2017.

[31] A. Dumitrescu, J. Pach, Pushing squares around, in: Proceedings of the twentieth annual symposium
on Computational geometry, ACM, 2004, pp. 116–123.

21

[32] A. Dumitrescu, I. Suzuki, M. Yamashita, Formations for fast locomotion of metamorphic robotic sys-
tems, The International Journal of Robotics Research 23 (6) (2004) 583–593.

[33] H. Akitaya, E. Arkin, M. Damian, E. Demaine, V. Dujmovic, R. Flatland, M. Korman, B. Palop,
I. Parada, A. van Renssen, V. Sacristán, Universal reconfiguration of facet-connected modular robots
by pivots: The O(1) musketeers, in: 27th Annual European Symposium on Algorithms, ESA, Vol. 144
of LIPIcs, 2019, pp. 3:1–3:14.

[34] A. Almethen, O. Michail, I. Potapov, Pushing lines helps: Efficient universal centralised transformations
for programmable matter, Theoretical Computer Science 830-831 (2020) 43 – 59.

[35] Z. Derakhshandeh, R. Gmyr, A. Porter, A. Richa, C. Scheideler, T. Strothmann, On the runtime of
universal coating for programmable matter, in: International Conference on DNA-Based Computers,
Springer, 2016, pp. 148–164.

[36] Y. Yamauchi, T. Uehara, M. Yamashita, Brief announcement: pattern formation problem for syn-
chronous mobile robots in the three dimensional euclidean space, in: Proceedings of the 2016 ACM
Symposium on Principles of Distributed Computing, ACM, 2016, pp. 447–449.

[37] G. Aloupis, S. Collette, E. Demaine, S. Langerman, V. Sacristán, S. Wuhrer, Reconfiguration of cube-
style modular robots using O(logn) parallel moves, in: International Symposium on Algorithms and
Computation, Springer, 2008, pp. 342–353.

[38] S. Fekete, R. Gmyr, S. Hugo, P. Keldenich, C. Scheffer, A. Schmidt, Cadbots: Algorithmic aspects of
manipulating programmable matter with finite automata, CoRR abs/1810.06360.

[39] R. Gmyr, K. Hinnenthal, I. Kostitsyna, F. Kuhn, D. Rudolph, C. Scheideler, T. Strothmann, Forming
tile shapes with simple robots, Natural Computing (2019) 1–16.

[40] A. Itai, C. Papadimitriou, J. Szwarcfiter, Hamilton paths in grid graphs, SIAM Journal on Computing
11 (4) (1982) 676–686.

[41] A. Almethen, O. Michail, I. Potapov, On efficient connectivity-preserving transformations in a grid,
CoRR abs/2005.08351. arXiv:abs/2005.08351.

[42] S. Arora, P. Raghavan, S. Rao, Approximation schemes for euclidean k-medians and related problems,
in: Proceedings of the thirtieth annual ACM symposium on Theory of computing, 1998, pp. 106–113.

[43] A. E. Clementi, M. Di Ianni, M. Lauria, A. Monti, G. Rossi, R. Silvestri, On the bounded-hop mst
problem on random euclidean instances, Theoretical computer science 384 (2-3) (2007) 161–167.

22

http://arxiv.org/abs/abs/2005.08351

	Introduction
	Related Work
	Our Contribution

	Preliminaries
	An O(n logn) -time Transformations for Hamiltonian Shapes
	Transforming Diagonal shape into Line shape
	Transforming Hamiltonian shapes into Line shape
	Correctness and runtime analysis

	An O(n n)-time Universal Transformation
	Universal transformation by compression approach
	Correctness and runtime analysis

	Conclusions and Open Problems

