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From Traditional Warehouses to Physical Internet Hubs: a digital twin-based inbound 

synchronization framework for PI-order management 

 

ABSTRACT 

Physical Internet (PI) is a new concept to ensure global mobility of physical objects. Conventionally, 

logistics networks are closed and independent. Under the concept of PI, they are transformed into an 

open logistics network, providing an efficient way to relocate physical goods to a given place in a short 

period of time. A hyperconnected city logistics system is conceptualized as the final segment of a PI-

network. It uses regional and city hubs as the final leg of last-mile delivery. Inventory at PI-hubs has to 

be managed efficiently so as to maximize the benefits of PI. This paper proposes a digital twin-based 

inbound synchronization framework to streamline the operations of a PI-hub in a hyperconnected city 

logistics system. Digital twins and Internet of Things technologies are proposed for data acquisition and 

virtualization of real conditions of physical objects, followed by machine learning-integrated models to 

optimize a joint order fulfillment and replenishment operation in the PI-hubs. Adopting the proposed 

framework can formulate a Total Inbound Synchronization at three levels: order synchronization, 

process synchronization and information synchronization. Simulation results show a significant 

reduction of traveling distance in PI-hubs if the interdependent order fulfillment and replenishment 

operations are considered as a joint operation. In addition, this paper provides practical implications for 

logistics service providers to manage information flows within a PI-network driven by digital twins. 

 

Keywords Hyperconnected City Logistics, Physical Internet, Synchronization, Joint Order Fulfillment 

and Replenishment, Digital Twins, Internet of Things 

 

1. Introduction 

Physical Internet (PI) is a new solution to unsustainable operations of production and freight 

transport by interconnecting heterogeneous and independent logistic networks and leveraging them 

toward a common open logistics network (Ambra et al., 2019; Pan et al., 2015).  Under the PI paradigm, 

Hyperconnected City Logistics (HCL) utilizes the multitude of existing urban logistics facilities in 

supply chains, including distribution centers, warehouses, and vehicle depots (Crainic & Montreuil, 

2016). Amongst all facilities in HCL, regional and city distribution centers are the final leg of the 

distribution of goods (Pan et al., 2017). In addition, to facilitate an efficient flow of goods in HCL, goods 

are encapsulated in modularly dimensioned easy-to-interlock smart containers, called PI-containers 

(Montreuil et al., 2014; Landschützer et al., 2015). As defined by Sallez et al. (2016), PI-containers are 

composed of a three-layer hierarchy of container management – Transport container (T-container), 

Handling container (H-container) and Packaging container (P-container). Physical goods are stored in 

these PI-containers in their logistics cycle. With modularized dimensions, PI-containers are easily 

transported by PI-movers (e.g., delivery service providers including crowdsourced delivery fleet and 
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third-party delivery couriers), stored and handled by PI-handlers (e.g., material handling equipment 

including conveying systems, lifts and belts) in PI-hubs. Fig. 1 illustrates the PI-container flow in a HCL 

system which consists of a set of facilities such as factories, regional hubs, and city hubs, represented as 

PI-nodes. Regional PI-hubs receive T-containers from factories or other regional PI-hubs, and then 

deliver them to city PI-hubs. Upon arrivals of T-containers, city PI-hubs decompose them into H- and 

P-containers for storage.    

One of the existing challenges faced by city PI-hubs is the high throughput rate brought by e-

commerce businesses. To improve the efficiency of warehouse processing, configuring a PI-hub with a 

forward area and a reserve area is increasingly popular. The purpose of a forward-reserve (FR) hub is 

to store items, such as stock keeping units (SKUs) or PI-containers, in small quantities in the forward 

area and leave bulk storage in the reserve area. Such a configuration has been recognized as effective in 

speeding up the last-mile order fulfillment process in e-commerce (Yu & de Koster, 2010). Therefore, 

it is understandable that distribution centres or warehouses at the final leg of a supply chain, e.g. city 

PI-hubs, but not those at the middle mile of the supply chain which process transhipment orders in a 

much larger lot size, usually adopts a forward-reserve configuration. Fig. 2 depicts the operations 

involved in a city PI-hub with a forward area and a reserve area. After a city PI-hub receives T-containers 

from its upstream PI-hubs, put-away operations for storage in forms of H- and P-containers are 

performed in the reserve area, followed by internal replenishment of H- and P-containers from the 

reserve area to the forward area. Next, to fulfill downstream last-mile demand, H- and P-containers are 

picked up from the forward area. If H- and P-containers are absent from the forward area, they are picked 

up from the reserve area.  

While internal replenishment between forward and reserve areas are allowed, the effectiveness 

of a FR PI-hub lies in whether the benefits gained from picking up in the forward area outweigh the 

additional cost of internal replenishment (Jiang et al., 2020). Current literature addressed this issue by 

determining the appropriate size or ratio of forward and reserve areas (Van den Berg et al., 1998; Gu, 

2005), the static set of SKUs and their storage quantity in the forward area (Walter et al., 2013; Gu et 

al., 2010), and replenishment policies in the forward area (Bahrami et al., 2019; Emde, 2017). In 

addition, despite the importance and interdependence of order fulfillment and stock replenishment 

operations in FR hubs, prior studies considered the operations independently. Yet, optimizing order 

fulfillment and replenishment operations as two individual problems could be a significant drawback in 

the PI context because modularized PI-containers are designed for ease of handling and processing in a 

batch mode. Hence, order fulfilment and replenishment operations should be tackled together as a joint 

operation. This paper investigates a joint optimization of order fulfillment and replenishment operations 

in PI-hubs, synchronizing the inbound PI-container management operations within the hubs. This 

addresses the research call made by Yu et al. (2020) who identified an urgent need to synchronize 

internal operations, owing to the benefits of cost-saving and order transhipment efficiency improvement 

in the distribution center (Yu et al., 2020). Jiang et al. (2020) presented a synchronization approach to 

Jo
urn

al 
Pre-

pro
of



streamline order picking and replenishment operations in e-commerce robotic warehouses. Though their 

approach is limited only to SKUs in the robotic forward area experiencing frequent stock-outs, it 

provides a foundation to this study in designing the optimization model. This study is different from 

Jiang et al. (2020) in twofold. First, the warehouse configuration considered in this study is a traditional 

warehouse, which is different from the robotic one considered in Jiang et al. (2020). The motivation to 

consider a traditional warehouse instead of a robotic one is to increase the employability of our 

framework in industry, where not all warehouses are using robots transporting movable shelves. Second, 

this study addresses the inbound order fulfilment problem in PI hubs while there are no PI elements 

considered in Jiang et al. (2020). In view of the advancement in PI development, this study is amongst 

the first to propose synchronization of internal order fulfilment operations at PI-hubs.  

This study promotes the development of PI in traditional, manual warehouses. To introduce PI 

elements and terminologies into these warehouses, we develop internal synchronization strategies into 

managing material flows at manual warehouses, which serve as an effective mean of facilitating the 

transformation of traditional warehouses into city PI-hubs. A digital twin-based inbound 

synchronization framework (DTIS) is proposed, allowing logistics service providers to identify the 

essential configurations of a PI-hub. These configurations facilitate logistics service providers under the 

hyperconnected Physical Internet network to minimize the PI-container processing lead time, thereby 

maximizing the synergetic flow of PI-containers between PI-nodes. A Total Inbound Synchronization 

(TIS) strategy is designed to coordinate replenishment (i.e., Operation 3 in Fig. 2) and picking operations 

(i.e., Operations 4 and 5 in Fig. 2), achieving synchronization at three levels: 

(i) Order synchronization – postponement of last-mile delivery orders for consolidated order 

fulfillment at FR PI-hubs; 

(ii) Process synchronization – joint optimization of order fulfillment and replenishment operations 

within forward and reserve areas; and 

(iii) Information synchronization – real-time update and monitoring of all relevant operations and stock 

levels. 

This paper, to the best of our knowledge, is amongst the first to introduce synchronization 

strategies at inbound distribution hubs under the PI paradigm with both soft computing optimization, 

i.e., the joint PI-order fulfillment and replenishment optimization, and hardware technology integration, 

i.e., digital twin (DT) with Internet of Things (IoT) tracking functionalities. The rest of this paper is 

organized as follows. Section 2 reviews the recent development of PI, DT and IoT. Section 3 presents 

the three inbound synchronisation areas considered in the TIS strategy. Section 4 describes the DTIS 

framework for implementing the TIS strategy. Section 5 presents the simulation results. Section 6 is the 

discussion of results. Section 7 concludes this study. 
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Fig. 1. Logistics network of the Physical Internet concerning Regional and City PI-hubs 

 

Fig. 2. PI-container management in city PI-hubs 

 

2. Literature Review 

To provide a better understanding of the terminologies discussed in this paper, this section 

reviews the relevant literature in three major aspects: developments associated with the PI paradigm, 

cyber-physical and IoT systems in supply chains. 
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2.1 Physical Internet 

The sharing economy is a socio-economic system built around the sharing of resources (Cheng, 

2016). PI extends beyond the concept of sharing ecosystems into managing global supply chains. It 

serves as a solution to global sustainability issues (Montreuil, 2011). By analogizing to digital internet 

where messages are split into different pieces (packets) that travel over the internet via various routes to 

reach the receiver’s side, PI refers to a concept where physical objects are routed via different links from 

their origins to destinations (Ambra et al., 2019). In the logistics context, PI refers to encapsulating 

physical objects in modularly-dimensioned smart containers flowing in an open global logistics web 

(Montreuil, 2009). Modularity enables containers to complement each other and allows a better use of 

the means of transportation (Sallez et al., 2016). Under the concept of PI, conventionally closed and 

independent logistics networks are transformed into a HCL system. An HCL system is conceptualized 

as the final segment of the PI logistics and transport networks. It allows physical goods to be delivered 

in an openly consolidated way, improving the efficiency of urban freight movements and their 

environmental footprint (Benjelloun et al., 2010).   

The infrastructure of an open logistics network consists of three assets, namely PI-containers, 

PI-movers and PI nodes (Montreuil, Meller, & Ballot, 2010). PI-containers are the unit loads to be 

manipulated within the infrastructure of PI. PI-movers, such as vehicles and carriers, are responsible for 

transporting, handling and storing the PI-containers. PI-nodes are locations that are interconnected to 

the logistics activities for managing PI-containers. In the city logistics context, PI-nodes can be the city 

or regional distribution centers that offer crossdocking, consolidation and short-term storage 

functionalities for inventories (Crainic & Montreuil, 2016). 

In an openly shared network, however, inventory management is complex because 

replenishments between PI-nodes are allowed. In response to this, prior studies have been conducted to 

address the production and inventory management challenges brought by PI. Yang, Pan, and Ballot 

(2017) introduced PI focused inventory management models and assessed their impact on resilience. 

Marcotte et al. (2015) developed a deterministic optimisation model for planning make-to-order 

production operations and production module transhipment. Pan et al. (2015) defined new replenishment 

policies in the PI context. Their analysis considered multiple criteria for selecting sourcing points to 

fulfill a PI-order and their results show that source substitution was the most efficient and stable criterion 

according to various scenarios. In addition to operations between PI-nodes, operations within a PI-node 

are important topics in the field of PI because they directly affect logistics costs. To the best of our 

knowledge, there have not been any studies addressing the operations within a PI-node. Further, as 

proposed by Montreuil, Ballot and Tremblay (2015) and Pan et al. (2017), more smart crossbreeding 

with complementary game-changing threads such as the IoT and blockchain are expected to develop. 

This study thus makes an attempt to focus on synchronizing operations within a PI-node with the use of 

advanced technologies including IoT and DT, details of which are given in Section 2.2. 
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The PI-node considered in this study is a forward-reserve warehouse (hereafter FR PI-hub) that 

is a type of warehouses gaining popularity in the era of e-commerce due to its effectiveness in order 

fulfillment (Yu & de Koster, 2010). The storage area of a FR warehouse is subdivided into a reserve 

area and a forward area. The forward area is designed to store products in small quantities that can be 

easily retrieved while the reserve area stores products in bulk to replenish the forward area (Walter et 

al., 2013). In a FR PI-hub, T-containers arrived at the PI-hub are decomposed into H-containers (i.e., PI 

boxes) and P-containers (i.e., PI packs), before being stored in the reserve area. The operations within 

the PI-hub considered in this study are the inbound flows of H- and P-containers. The inbound operations 

involved in a FR PI-hub include internal replenishment (i.e., moving PI containers from reserve areas 

to forward areas) and order fulfillment (i.e., picking PI containers up from forward areas). In the current 

literature, a majority of studies deal with forward-reserve allocation problems, which determine the 

SKUs to be stored in forward area, the space allocated to each SKU, and the overall size of the forward 

area (Walter et al., 2013). Kübler, Glock and Bauernhansl (2020) presented a new iterative method for 

solving the joint dynamic storage location assignment, order batching and picker routing problem in 

manual picker-to-parts warehouses. Their results indicate that solving these problems jointly yields a 

significant improvement in terms of traveling distance of pickers, which proves the essence of 

optimizing highly interdependent warehouse operations jointly. In FR PI-hubs, models optimizing 

continuous flows of SKUs between reserve and forward areas for replenishment and order picking have 

been rare, hence the focus of this study. 

 

2.2 Digital twin and Internet of Things  

DT and IoT technologies are new emerging technologies for transforming logistics operations 

into the era of Industry 4.0. A DT is a digital replica of a physical object (Lu et al., 2020). It has been 

widely adopted as the core technology for realizing the functions of a cyber-physical system (CPS) 

through creating the virtual presentation of the physical asset (Zhao et al., 2021). A CPS can be described 

as a set of physical objects that interact with a virtual cyberspace through a communication network 

(Leng et al., 2019). As a DT cannot live without its twining asset in the physical space, it can also be 

viewed as a prerequisite for the development of a CPS (Uhlemann et al., 2017). Lim et al. (2020) 

reviewed digital twin in terms of the associated techniques, engineering product lifecycle management 

and business innovation perspectives. Bao et al. (2018) presented an approach of modelling and 

operations for the digital twin in the context of manufacturing. Tao et al. (2018) provided detailed 

application methods and frameworks of using DTs in product lifecycle management, covering product 

design, manufacturing, and service. From these applications, it can be seen that various activities in the 

entire product lifecycle can be simulated, monitored, optimized and verified in the virtual space of DTs. 

In a similar vein, Ding et al. (2019) adopted CPS and DT to build the interconnection and interoperability 

of a physical shop floor and corresponding cybershop floor to realize real-time monitoring, simulation 

and optimization of manufacturing operations. From a practical point of view, DTs not only enable 
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virtualization of real conditions of objects on a real-time basis, but also allow simulation of many options 

before taking real actions in the physical world (White et al., 2021). The use of DT is useful in PI-hubs 

because there could be a number of possible alternatives to choose from in a decision-making process, 

and fast and accurate decisions are demanded. 

In addition, IoT refers to connections between a network of physical assets through which data 

can flow between themselves. IoT technologies can be integrated into CPS to enable communication 

and data acquisition. Under an IoT environment, smart objects with integrating wireless communication 

technologies, sensors and actuators can connect to the internet and share their data, facilitating the real-

time acquisition of data in logistics and supply chain management (Yan et al., 2016). Tu et al. (2018) 

proposed an IoT-based CPS architecture framework for production logistics applications. Keung et al. 

(2020) proposed a cloud-based CPS architecture, providing a comprehensive understanding on conflict 

avoidance strategy in the multi-layers multi-deeps warehouse layout. Although the advancement of the 

IoT has streamlined the collection of data, the question remains if the data can be processed properly in 

order to provide the right information for the right purpose at the right time (Lee et al., 2013). Thus, 

machine learning models should be embedded in an IoT-based CPS to process such data. Leung et al. 

(2020) proposed machine learning models based on adaptive neuro-fuzzy inference systems. The 

prediction accuracy of their models in forecasting near-real-time arrivals of orders in warehouses and 

distribution centers was validated. Backed by their implementation results, this study designs a machine 

learning model to predict arrivals of PI-orders at PI-hubs under the HCL network.  

In summary, this study focuses on synchronizing operations within a FR PI-hub under a HCL 

network. In particular, a Total Inbound Synchronization strategy is designed to manage order fulfillment 

and replenishment as a joint process. A digital twin-based inbound synchronization framework is 

proposed to illustrate how PI data can be captured and used for prediction, formulating the TIS strategy. 

 

3. Total Inbound Synchronization Strategy 

Synchronization, firstly introduced at supply chain distribution networks and freight 

transportation level, aims to coordinates the production-logistics process chain. It helps to increase the 

overall throughput rate in a distribution center, thereby achieving a reduction of operating costs 

associated with storage and retrieval of goods (Xu et al., 2019; Baptiste & Maknoon, 2007). In logistics 

and manufacturing literature, Giusti et al. (2019, p.92) defined synchromodality as “the provision of 

efficient, reliable, flexible, and sustainable services through the coordination and cooperation of 

stakeholders and the synchronization of operations within one or more supply chains driven by 

information and communication technologies (ICT) and intelligent transportation system (ITS) 

technologies”.  There has been an increasing trend in the application of synchronization models. 

However, they are often generalized for production logistics. For example, Qu et al. (2016) developed 

a synchronization system integrating cloud manufacturing and IoT for managing the logistics operations 

in production and manufacturing. Pan et al. (2021) presented a multi-level cloud computing enabled 
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digital twin system for the real-time monitor, decision and control of a synchronized production logistics 

system. In distribution and transportation sector, Yu et al. (2020) developed an operation 

synchronization model tailored for scheduling operations in e-commerce distribution centers. 

Apparently, optimizing sequential operations through synchronization is proven to be one of the 

research directions for obtaining an optional solution for operations in warehouses and distribution 

centers. Nevertheless, synchronization models in managing internal coordinated flows of PI-containers 

have not been developed yet to date.  

In this study, the TIS strategy is defined as the integration of cyber-physical systems and internet 

of things for digitally visualizing and sharing all relevant internal information and decisions among 

stakeholders in a warehouse with operational decision support enabled by machine learning-based 

optimizations. In the PI-based logistics network, hereinafter referred to as PI-network, demand-driven 

order fulfillment operations, which are initiated from any city or regional PI-hubs, have revamped the 

entire processing and material flows within a PI-hub. To minimize the possibility of order delay and 

ensure the PI-network performs well as a whole, each PI-hub has the responsibility to maintain an 

adequate level of throughput. To achieve this, we introduce a three-dimensional synchronization in PI-

hubs – order synchronization, process synchronization and information synchronization. 

 

3.1 Order Synchronization 

Order synchronization is a concept of consolidating fragmented orders through intended 

postponement of actual processing. In Leung et al. (2018), they introduced a Warehouse Postponement 

Strategy (WPS) to proactively postpone the processing of logistics orders in a standard warehouse. One 

of the key operational benefits of executing the WPS in e-commerce distribution centers is streamlining 

order fulfillment operations through consolidation of small lot-sized orders. In this study, the idea of 

WPS is integrated into the proposed TIS strategy. Without order synchronization, as depicted in Fig. 3, 

a typical FR PI-hub performs order picking in the forward area once a PI-order is received. The absence 

of intended postponement implies that the storage locations in forward and reserve areas have to be 

repetitively visited every time when an order arrives. Order synchronization fits well in FR PI-hubs due 

to the fact that the forward area is designed to store popular, fast-moving PI-SKUs. In other words, these 

PI-SKUs are being ordered frequently throughout the operating hours. With order synchronization, PI-

orders are composed (aggregated) to reflect the total quantity of each PI-SKU required by the aggregated 

set of PI-orders from the PI-network. To evenly distribute the subsequent order picking operations, the 

aggregated PI-SKU set is decomposed into several order picking lists according to the storage location 

proximity among the PI-SKUs. 
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Fig. 3. PI-order synchronization 

 

3.2 Process Synchronization 

Order synchronization emphasizes the aggregation of PI-orders for batch processing, which 

only streamlines order fulfillment (picking) operations in FR PI-hubs. To maximize the value of FR PI-

hubs, process synchronization is introduced, which further synchronizes order fulfillment and stock 

replenishment operations. The “process synchronization” is inspired by recent developments of internal 

synchronization at production houses and distribution centres. Li and Huang (2021) presented a 

production-intralogistics synchronization, which demonstrate the merits of joint production and 

intralogistics optimization in production facilities. In the context of distribution centres, Jiang et al. 

(2020) validated the essence of jointly considering picking and replenishment operations. Although 

integrating two or more internal operations increase optimization complexity, both of the above 

literature confirms the need to synchronize in inter-related operations in facilities where heavy material 

flows exist inside the plant.  

Conventionally, replenishment operations are triggered to perform: (i) when the stock level of 

a particular SKU reaches the pre-assigned replenishment point, or (ii) when regular replenishment cycles 

are introduced. As order fulfillment and replenishment operations take place respectively in the forward 

and reserve areas, it is a common phenomenon to optimize these operations separately (Emde, 2017). 

However, although the forward area should sufficiently meet the demand of popular SKUs, there is still 

a chance of visiting the reserve area to complete orders that cannot be fully fulfilled in the forward area. 

In light of such circumstances of partial order fulfillment by visiting the reserve area, the TIS introduces 
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process synchronization for performing order fulfillment and replenishment operations in the reserve 

area at once. By so doing, the process synchronization avoids repetitive visits to the same storage 

location in reserve area, as demonstrated in Fig. 4. Instead of visiting the same location separately for 

order fulfillment and replenishment to the forward area, each order fulfillment batch takes into the 

consideration of the set of PI-SKUs and their respective quantities that need replenishment from the 

reserve area. A joint order fulfillment and replenishment (OFR) problem is therefore introduced and to 

be tackled by a machine learning-enabled OFR model discussed in Section 4. 

 

 

Fig. 4. Fulfillment-replenishment process synchronization 

 

3.3 Information Synchronization 

 The deployment of order synchronization and process synchronization requires synchronized 

information in a digital platform for decision-making. Without real-time resource availability and PI-

network demand information, PI-order and fulfillment-replenishment process synchronization are not 

possible. Therefore, the TIS strategy introduces information synchronization to facilitate order and 

process synchronization. In the era of Industry 4.0, digital twin and cyber physical systems play a vital 

role in visualizing physical activities in production and logistics facilities (Mörth et al., 2020). With 

state-of-the-art IoT devices capable of capturing and processing information, cyber physical systems 

also utilize the real time operational data to support daily decision-making (Lee et al., 2015). In the 
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logistics and warehousing sector, warehouse operations and resource allocation are managed through 

dedicated management systems, such as Warehouse Management Systems (WMS), Transportation 

Management System (TMS) and Order Management System (OMS). However, their track and trace of 

real-time resource and demand arrival mostly depend on human input or IoT automatic retrieval. In this 

regard, blockchain technology can further be integrated to enhance the traceability and trackability for 

order management (Ho et al., 2021). To fully reflect the physical environment and uncover more relevant 

information related to, for example, the current availability of resources, we develop a digital-twin-based 

synchronization framework which integrates digital-twin and IoT technologies into synchronizing all 

in-house data and information, as discussed in the next section. 

 

4. A Digital Twin-based Inbound Synchronization Framework 

This section proposes a digital twin-based inbound synchronization (DTIS) framework, as 

shown in Fig. 5, which facilitates the deployment of TIS strategy proposed in Section 3. Like most CPS, 

there are the physical space (PS) and the cyberspace (CS). First, data from the PS are collected using 

IoT technologies and transformed to the CS where DTs are created to represent the physical entities. 

The DTs are operationally dynamic because their status is based on the near-real-time data coming from 

the physical counterpart in the PS. As such, they are living models that are useful for monitoring, 

controlling, diagnosing, and predicting the actual status in the PS. Prescriptive analytics is embedded in 

the framework to determine the course of actions to be taken in the PS for (OFR) based on PI-order 

arrival prediction. Details of the framework are presented in the following sections. 

 

Fig. 5. A digital twin-based inbound synchronization framework  

4.1 Physical Space 

The PS consists of a physical environment, a physical system and physical processes. In this 

study, the physical environment is a PI-hub with a storage area subdivided into a forward area and a 
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reserve area. The physical system that resides in the physical environment is the order picking system. 

In general, there are two types of order picking systems: picker-to-parts and parts-to-picker systems. 

The former one requires workers to get the PI containers from the storage area to fulfill an order while 

the latter one uses mobile robots to bring the PI containers to the workers. This study focuses on a picker-

to-parts system because it is more commonly used in the industry due to its low costs, compared to parts-

to-picker systems. The physical processes that performed in a FR PI-hub include (i) order consolidation, 

(ii) internal replenishment and (iii) order fulfillment. Order consolidation refers to the aggregation of 

PI-orders in terms of T-containers and the determination of the required quantities per container for 

internal replenishment. It takes place at the reserve area where the T-containers are unpacked into H-

containers and P-containers for storage. Internal replenishment refers to replenishment from the reserve 

area to the forward area within the same warehouse. During order fulfillment, workers pick the 

containers up from the storage locations and bring them to the packing station where workers pack them 

into boxes for delivery. In a joint OFR process, requirements should be fulfilled using the minimum 

number of shelf visits.  

In the PS, IoT-enabling technologies are used to capture data from the warehouse. A wireless 

sensor network is established to collect three types of data: environmental data, product data, and handler 

data. Environmental data include temperature, humidity and light intensity of the PI hub. These data 

could be useful in decision making, depending on the types of PI containers stored in the warehouse. 

For instance, SensorTag CC2650 can be used to capture environmental data when perishable items are 

stored. Product data include the inventory levels and storage locations of the PI containers. For instance, 

Radio Frequency Identification (RFID) technologies can be used to keep track with the storage locations 

and quantities of PI containers. If the inventory level reaches the reorder point, an alert can be sent to 

the WMS for replenishment. Handler data include data related to both equipment and workers, such as 

their real-time locations. For instance, workers can be given with handheld devices that communicate 

with the sensors so that their locations can be captured. Besides, workers can indicate the start and end 

of each of their assigned tasks via the devices so that their workloads and productivities can be 

monitored. 

After the data are captured using IoT, they have to transfer to the CS where optimization is 

performed to formulate strategies for joint OFR. In the physical-to-cyber communication, they need to 

be decoded, otherwise they will lose the meaning and context. As such, the specifications of the physical 

entities including PI containers and workers have to be defined. In addition, changes to a physical entity 

are detected by sensors and transmitted to its digital twin in the CS. In this regard, industrial transmission 

protocols can help collect data from physical devices. Apart from the near real-time data collected by 

IoT, static data such as PI-orders are extracted from the WMS and sent to the CS. The virtual PI-orders 

contain necessary information for order consolidation. In this study, a dynamic-time window batching 

approach is used for order consolidation. 
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4.2 Digital Twins in Cyberspace 

DTs in the CS are the virtual representations of the physical entities such as PI containers. They 

abstract the features of a physical entity based on the heterogeneous IoT data streamed from the PS and 

PI-orders from WMS. Enabled by near real-time synchronization between the CS and the PS, a DT is a 

live representation of its physical counterpart. Depending on the chosen level of abstraction, the 

component of the virtual representations can be the virtual environment, the virtual system, or the virtual 

process. 

In the DTIS framework, an important feature of the cyber-to-physical communication is to allow 

direct feedback fed from the CS to the PS to achieve the TIS strategy. In particular, the TIS strategy 

supports the following decisions: 

• A set of PI-orders that should be consolidated for batch processing 

• The estimation of future PI-SKUs arrival 

• The joint OFR operations  

To formulate the TIS strategy effectively, machine learning-based models are constructed for 

three tasks: (i) order synchronization mechanism using a proactive lookahead scheme, (ii) order arrival 

prediction using an adaptive neuro-fuzzy inference system and (iii) optimization of joint OFR based on 

predicted order arrival. They can be performed on a cloud platform such as IBM Watson Studio, 

Microsoft Azure, Google Cloud Platform and Amazon Web Services. Cloud platforms are preferred in 

this framework because they offer infinitely scalable provisioning of computational and storage 

resources and users can thus scale up and down according to demand. 

Based on the TIS strategy, there can be necessary changes to be made in the PS. By comparing 

the optimal parameters and the near-real-time parameters in the PS, change requests are sent to the PS 

to reconfigure the parameters of the physical system (e.g., storage locations assigned to PI containers) 

or the parameters of physical processes (e.g., replenishment quantities of PI containers) if required. For 

instance, workers can receive notifications from their handheld devices about new order picking tasks 

assigned to them. Instructions of the tasks include the amounts of PI containers to be picked up from the 

reserve area, the amounts of PI containers to be put at various storage locations at the forward area, and 

the travelling route within the warehouse. The devices can record the time where the workers start a 

particular task, and the data are transmitted to the CS. As a result, the progress of the workers is 

digitalized in the CS on a near real-time basis.  

 

4.3 Prescriptive Analytics in Cyberspace 

Performing prescriptive analytics in the CS of the DTIS framework aims to generate informed decisions 

for managing PI-containers in the PS of a city PI-hub. A machine learning-based model is developed 

and integrated for optimizing the joint OFR in PI-hubs. A lookahead functionality is developed for PI-

hub decision makers to plan for OFR operations ahead of the actual arrival of network demand. The 

model is comprised of three modules: PI-network order sync module, PI-network order arrival 
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prediction module and Joint OFR optimization module. Each of which serves a particular purpose like 

how PI components collectively operate for each other.  

 

4.3.1 PI-network order synchronization (sync) module 

This module is responsible for the retrieval and pre-processing of PI-orders received at city PI-

hubs, which realized order synchronization suggested in Section 3.1. Order synchronization involves 

order decomposition and composition. Within the HCL network in PI, all PI-orders are submitted in the 

form of PI-containers. First, the order sync mechanism digitally decomposes PI-orders from H-

containers to P-container level. Each P-container consists of only one PI-SKU. At the end of each order 

fulfillment cycle, the mechanism calculates the demand of each PI-SKU from all the arrived PI-orders 

during the current cycle, as depicted in Table 1. The mechanism identifies if the PI-SKUs are stored in 

the forward area. PI-SKUs that are in the forward area are to be picked up from the reserve area directly. 

For PI-SKUs that are stored in the forward area, the mechanism provides a proactive lookahead feature 

by predicting their future arrivals in the next order fulfillment cycle t+1, i.e., column D in Table 1. The 

predicted demand of each PI-SKU in the forward area during the t+1 cycle is determined by the neuro-

fuzzy-based PI-network order arrival prediction module, hereafter the prediction module. Hence, the PI-

network order sync module identifies the set of PI-SKUs that need future demand prediction and triggers 

the prediction module for forecasting. Then, by identifying the current stock level (column E) in physical 

space, the actual picking quantity of each PI-SKU in the forward (column F) and reserve area (column 

G) is determined. It is worth noting that the picking quantity in the reserve area should satisfy both the 

current and the future demand, so as to reduce future efforts in visiting the reserve areas again in the 

next cycle. 

The above computations in the order sync module identifies the picking quantities of PI-SKUs 

in the forward and reserve area only. To save efforts in visiting the reserve area, replenishment 

operations are also integrated into considerations. The mechanism identifies the stock levels of each PI-

SKU after satisfying current demand (column H). PI-SKUs are required to be replenished at their 

specified quantity denoted in column J should their remaining stock level after satisfying the current 

demand (column H) is below the point of replenishment (column I). Therefore, by summing up the 

picking quantity for order fulfillment and replenishment, respectively computed in column G and 

column K, the order sync mechanism determines: (i) the set of PI-SKUs and their corresponding quantity 

to be picked from the forward area for order fulfillment, (ii) the set of PI-SKUs and their corresponding 

quantity to be picked from the reserve area for satisfying current and future demand, as well as for 

replenishment. 
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Table 1. PI-order decomposition in the order sync module 

Real-time PI-order retrieval at fulfillment cycle t with lookahead functionality: 

A B C D E F G H I J K 

Stored in 

forward 

area? 

PI-

SKU # 

Aggregated 

demand 

Predicted 

demand 

in t+1 

Current 

Stock level 

Picking Qty in 

forward area 

Picking Qty in 

reserve area for 

satisfying t and 

t+1 demand  

Stock level 

after order 

fulfillment 

Replenish 

point 

Preferred 

Stock level 

Additional Qty for 

replenishment 

from reserve area 

Y 001 20 10 30 20 0 0 5 40 40 

Y 003 30 7 5 5 32 0 5 40 40 

Y 011 35 20 10 10 45 0 3 30 30 

Y 015 21 20 57 21 0 16 10 50 0 

N 032 22 0 0 0 22 0 0 0 0 
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4.3.2 PI-network order arrival prediction module 

The joint OFR optimization is able to streamline material flows by combining the order 

fulfillment operation in the forward area and replenishment operation between the reserve and forward 

areas. However, to further maximize utilization of resources when performing the joint OFR operation, 

the proposed proactive lookahead scheme replenishes SKUs to the forward area at a quantity exceeding 

actual demand. Prior to the start of each OFR cycle t, a tailored neuro-fuzzy prediction model is used to 

predict the SKUs’ future demand during t and t+1. By so doing, the actual OFR operation performed in 

cycle t replenish SKU i at a quantity Qi,t given by: 

𝑄𝑖,𝑡 = 𝐷𝑖,𝑡 + 𝐹𝑖,𝑡+1     (1) 

where Di,t is the actual demand of SKU i aggregated from the order synchronization mechanism and 

𝐹𝑖,𝑡+1 is the predicted demand of SKU i during period t and t+1. To determine the 𝐹𝑖,𝑡+1, a forecasting 

method with a high level of accuracy for e-commerce order arrival prediction is required. This study 

adopts and tailors the neuro-fuzzy model developed by Leung et al. (2020) to forecast the future arrivals 

of PI-SKUs. A standard five-layer network architecture of two inputs a and b, and one output f, is shown 

in Appendix A.  

 

 Tailored inputs and output of the neuro-fuzzy model integrated in the DTIS framework 

 There are three inputs and one output for the predictive model introduced in this study. As the 

order sync mechanism aggregates the pending demand retrieved from downstream customers, such as 

retailers and online customer orders, the mechanism provides the actual demand figures of the 

aggregated SKUs. Therefore, for n aggregated SKUs exist in the order sync mechanism, n neuro-fuzzy 

models are used to individually forecast the future demand of these SKUs. In other words, demand for 

SKUs not existed in the current order sync pool will not be forecasted. In practice, this approach makes 

sense because the joint OFR governs how the aggregated SKUs are to be replenished in form of H- and 

P-containers from the reserve area and picked at the forward area. By only forecasting the future arrivals 

of the aggregated SKUs, PI-movers, typically the order pickers with the aid of material handling 

equipment, are not required to visit other storage locations at reserve and forward area which store SKUs 

not demanded at this moment. Instead, they are only required to visit the storage locations of the 

aggregated SKUs for replenishing to the forward area at a quantity the computation procedures presented 

in the order sync mechanism with the support of the predictive model. This approach practically aligns 

with our theoretical proactive lookahead scheme and rationale of “replenish only when it is needed” in 

FR warehouse management. 

 For the predictive models of each aggregated SKU, the single output f is their corresponding 

predicted demand during t and t+1. The three inputs are: 

(i) Actual arrival figures of the current period t – In time-series study, lag variables, i.e., 

previous actual figures, are one of the primary indicators for forecasting the next figure. A 

least square method is required to statistically identify the optimal number of lag variables 
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to be used as inputs. One lag variable, i.e., the current arrival figure, Qt, is required for 

forecasting the future demand of an SKU. 

 

(ii) Momentum of order arrival between t and t-1 – The volatility of previous demand figures 

of SKUs is considered as another indicator studying the trend of the time-series-based 

arrivals of orders in warehouses. A one-order momentum, Mt, is proved to be necessary 

for forecasting the future demand of an SKU, which is calculated by: 

 𝑴𝒕 = 𝑸𝒕 − 𝑸𝒕−𝟏 (2) 

(iii) Average arrival figures at t, t-1 and t-2 – Simple moving average (SMA) is another 

understandable factor for inclusion of a prediction model. Study by Leung et al. (2020) 

confirmed the suitability of choosing a three-period SMA, Qavg, as one of the inputs in 

future SKU demand arrival prediction, which can be computed by: 

 𝑸𝒂𝒗𝒈 =
𝟏

𝟑
(𝑸𝒕 + 𝑸𝒕−𝟏 + 𝑸𝒕−𝟐) (3) 

 

An illustrative example is shown in Fig. 6 to demonstrate the prediction of future demand of a set of 

SKUs. 

 
Fig. 6. Predicting future demand of a set of SKUs using the neuro-fuzzy model 

 

4.3.3 Joint OFR optimization module 

The objective of the joint OFR optimization model is to minimize the total traveling distance of visiting 

storage locations in both reserve and forward areas during fulfillment and replenishment operations. The 

model is described as follows. 

Assuming that there are n  SKUs in the depot indexed by i  and the first m  SKUs are stored in 

both forward and reserve areas. The associated inventory storage locations of SKU i  in reserve and 
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forward areas are denoted as i  and n i , respectively. Following the pick-to-parts systems, the PI-

handlers performing the joint PI-order OFR considered in this study are standardized multi-tier picking 

trolleys. These PI-handlers has a centralized, dedicated storage space denoted as 0. Next to the forward 

area, there is a packing station for SKU i  denoted as 2n i for packing and consolidating them so that 

they are ready for outbound delivery. Hence, {0,1,2,... , 1,...,2 ,2 1,...,3 }N n n n n n    is the set of all 

locations that PI-workers and PI-handlers can visit. It is noted that the actual size of a forward area is 

smaller than the reserve area, so that only places from 1n   to n m  really exist in the depot. 

Additionally, since all SKUs are packed at the same place, locations from 2 1n   to 3n  indicate an 

identical physical place. We further define a set  1,2,...,Pr n ,  1, 2,...,2Pf n n n   , 

 2 1,2 2,...,3Pk n n n    containing all PI-handlers visiting locations in the reserve area, forward area 

and packing area, respectively, and P Pr Pf Pk . 

At the start of each fixed fulfillment cycle, a pickup request with quantity ipq  or a delivery 

request with quantity idq  is placed for each SKU i P . A set of PI-handlers in the depot with identical 

capacity Q , which is denoted as {1,2,...,| |}K K , is used to fulfill these requests. One SKU i  captures 

a deterministic volume iq  and the traveling distance between place i N  with j N  is also 

deterministic and denoted as 
,i jd . 

There are three types of variables are considered in this joint OFR decision model, including 

binary variables 
, ,i j kx  ( ,i j N , i j , k K ), PI-handlers loading variables 

,i ky  ( i N , k K ), and 

visiting sequence variable 
,i kz  ( i N , k K ). Overall, the problem is how to determine 

, ,i j kx , 
,i ky  and 

,i kz  to minimize the overall PI-handlers traveling distance while the PI-SKU replenishment and PI-order 

fulfillment tasks are accomplished all at once in a same cycle. The model is presented as follows. 

 

Objective 

 , , ,min  i j k i j

k K i N j N

x d
  

   (4) 

Subject to 

 , , 1, i j k

k K j N

x i P
 

    (5) 

 , , ( ), i j k i i

k K j N

M x pq dq i P
 

      (6) 
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0, , 1, j k

j P

x k K


    (7) 

 
, , 1, i j k

i P j Pk

x k K
 

    (8) 

 , , , , ,2 ,( ) 1,  i j k i n j k i n j k

k K i P i P i P

f x x x j Pr

 

   

         (9) 

  , , , ,1 ,  ,  ,  i j k j k i k j j jx y y pq dq q i P j P k K           (10) 

 
, , , ,0 ,  ,  ,  i j k j k i kx y y i P j P k K        (11) 

  0, , , 0,1 ,  ,  j k j k k j j jx y y pq dq q j P k K          (12) 

 
0, , , 0,0 ,  ,  j k j k kx y y j P k K       (13) 

 
0, 0,  ky k K    (14) 

 
, ,  ,  i ky Q i N k K     (15) 

 
, , , ,1 1,  ,  ,  i j k j k i kx z z i P j P k K         (16) 

 
, , , ,0 ,  ,  ,  i j k j k i kx z z i P j P k K        (17) 

 
0, , , 0,1 1,  ,  j k j k kx z z j P k K        (18) 

 
0, , , 0,0 ,  ,  j k j k kx z z j P k K       (19) 

 
0, 1,  kz k K    (20) 

 
, , ,  i k n i kz z i Pr    (21) 

 
, 2 , ,  n i k n i kz z i Pr     (22) 

 
, , ,  ,  i k j kz z i Pr Pf j Pk     (23) 

where M  is a big number and function ( )f x  is formulated as follows: 

 
1  if 1

( )
0      else

x
f x


 


 (24) 

Constraint (5) and (6) ensure that one and only one PI-handler is assigned to SKU i  if a pickup 

or delivery demand is required on SKU i . Constraint (7) and (8) mean that all used PI-handlers begin 

their trips from their origin, that is, dedicated storage space denoted as 0, and finish their at the packing 
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station. Constraint (9) guarantee that the place of one type of SKU, i.e., , ,2i n i n i  , is visited by the 

same PI-handler. Constraint (10) – (15) describe that the volume of loaded SKUs shall not surpass the 

PI-handler capacity. Constraint (16) – (22) force that, for one type of SKU, its inventory storage location 

in the reserve area is visited before that in the forward area and its storage location in the forward area 

is visited before visiting the packing station. Constraint (23) forbids PI-handlers to return to the reserve 

or forward area when they complete the assigned, joint fulfillment and replenishment tasks. 

 

5. Simulated Experiments 

Simulations are conducted to evaluate the performance of the proposed model in optimizing the 

joint OFR operations. The benchmarking of the joint OFR operations with respect to replenishment and 

fulfillment operations performed separately is made through measuring the traveling distance and the 

number of repetitive visits to the reserve area. In this section, the parameter setting for simulations, the 

set of KPIs, and simulation results are presented.  

 

5.1 Experimental design and data sets 

A city distribution hub considered in the simulation manages PI-orders within its HCL network 

received from other regional and city PI-hubs. In a city PI-hub, orders received are initiated either by 

other city PI-hubs within the network, or retailers and end consumers. The section simulates the 

fulfillment operations of retailers’ and end consumers’ orders, as well as the internal replenishment 

operations of transporting PI-SKUs from the reserve to forward areas. Due to the nature of these orders, 

SKUs are picked at piece level, rather than pallet level. In other words, the city PI-hub stores and 

transports PI-SKUs at the P-container level, not the H-container level. Assuming that there is a total of 

600 PI-SKUs in the PI-hub, based on the Pareto principle, 20% of them, i.e. 120 PI-SKUs, are fast-

moving, popular SKUs. Hence, the standard, rectangular-shaped forward-reserve city PI-hub considered 

in this study has dedicated storage locations for the 600 PI-SKUs in the reserve area, of which 120 PI-

SKUs are also stored in the forward area, as illustrated in Fig. 7. To maintain the designated stock levels 

of each popular PI-SKU in the forward area, PI-SKU replenishment operations are performed by 

replenishing stocks from the reserve area. The proposed joint OFR operations are regularly performed 

at a fixed 60-minute cycle, implying that PI-orders are consolidated for 60 minutes and are to be picked 

from either the reserve or forward area to the packing station in batch mode under the picker-to-parts 

system. Simultaneously, the trip of each PI-handler to visit the reserve, forward area and packing station 

under each cycle also takes care of replenishment tasks. To effectively evaluate the performance of the 

joint OFR operations against OFR operations performed in a standalone manner, parameters for the 

simulation study are defined, as summarized in Table 2.  
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Fig. 7. A standard, rectangular-shaped facility layout of a FR city PI-hub for simulation  

 

Table 2. A summary of the parameter setting for the simulation  

Parameter Configuration 

PI-SKU attributes 

Number of PI-SKUs stored in reserve area 600 PI-SKUs 

Number of PI-SKUs stored in forward area 120 PI-SKUs 

PI-SKU replenishment point and quantity Each PI-SKU has its pre-defined 

replenishment point and quantity 

PI-SKU storage location in reserve area Dedicated storage system 

PI-SKU storage location in forward area Dedicated storage system 

  

PI-handler attributes 

Number of PI-handlers 20 

PI-handler capacity 600 kg 

  

PI-order attributes 

PI-order arrival rate 0.5 min per order 

Number of PI-SKUs in each PI-order Average: 2 (min: 1, max: 3) 

Quantity of each PI-SKU required by a PI-order Average: 2 (min:1, max: 3) 

Weight of each PI-SKU Average: 0.7 kg (min: 0.1 – 3 kg) 

  

Experiment attributes 

OFR cycle time Every 60 minutes 

Opening hours of the city PI-hub 8:00 – 20:00 

Simulation duration 20 days 

 

5.2 Simulation results 

To facilitate the actual deployment of proposed joint OFR operations in city PI-hubs in real 

business environment, comprehensive decision flows of the conventional practice and the proposed joint 

OFR operations are presented in Fig. 8 and 9 respectively. The conventional order fulfillment (i.e., order 

picking) operation in a typical FR distribution hub does not feature order lookahead functionality. In 

other words, at each order batching cycle, i.e. decision epoch in this simulation study, SKUs are picked 

for to exactly fulfill the existing orders only. In a FR warehouse, popular SKUs are to be picked from 

forward area. However, they will also be picked together with non-popular SKUs in the reserve area if 
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stock-out of these SKUs in the forward area occurs. To compare the performance of the joint OFR 

against the conventional practice, we assume that stock replenishment operations are also initiated at 

each decision epoch. As depicted in Fig. 8, at each decision epoch, SKUs stored in the forward area will 

be assessed to identify if they require replenishment from the reserve area. Any SKUs requiring 

replenishment will be summarized into a stock replenishment list, which serves as the input of the 

decision algorithm in the simulation to generate trips for PI-handlers to pick the required PI-SKUs from 

the reserve area to the forward area. 

 

 

Fig. 8. Conventional order fulfillment and stock replenishment operations in forward-reserve PI-hubs 

  

For the joint OFR operations, the simulation also integrates the proposed PI-order lookahead 

scheme by adding a function that forecasts the quantity of the popular PI-SKUs possibly to be arrived 

in the next decision epoch. The stock replenishment quantities of PI-SKUs are aggregated with the 

quantity to be picked from the reserve area, as depicted in Fig. 9. In this sense, repetitive visits to the 

reserve area would potentially be reduced. It is therefore suggested to deploy the joint OFR DT and IoT 

technologies proposed in Section 4 to re-engineer the operational flow in FR PI-hubs for streamlining 

the handling procedures of PI-containers in PI-hubs. 
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Fig. 9. Joint order fulfillment and replenishment operations in forward-reserve PI-hubs 

 

5.2.1 Traveling distance reduction 

 The potentials of the joint OFR with order arrival lookahead functionality is evaluated in terms 

of the traveling distance and the number of repetitive visits to reserve areas. Table 3 summarizes the 

traveling distance reductions with our joint OFR operations taken place in city PI-hubs. Even without 

the lookahead functionality, the standalone PI-order fulfillment and PI-SKU stock replenishment 

operations require in total 27.61 km per day for the PI-handlers to transport PI-SKUs from one storage 

area to another. A drastic reduction (80.9%) of traveling distance is achieved with the introduction the 

joint OFR operations, which gives only 5.27 km of traveling distance on a daily basis. To further 

evaluate the operational efficiency of the joint OFR approach, the daily required number of trips is also 

measured during the simulation study. With the 60-minute OFR cycle in place, each working day has a 

total of 12 cycles for order fulfillment and replenishment. Results reveal that our synchronized approach 
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yields over 85% of the reduction in terms of the number of trips per cycle. When receiving a large 

number of orders on a minute-and-minute basis as configured in this experiment, our approach only 

generated on average 9.36 trips in each cycle, not to mention that these trips are formulated to pick PI-

SKUs for fulfilling both the existing and future PI-orders due to the inclusion of the order arrival 

lookahead scheme powered by the machine learning algorithm. Such drastic reduction allows 

practitioners to save huge manpower to repetitively travel between the reserve, forward area and packing 

station. Nevertheless, since the number of trips under the deployment of the TIS has been drastically 

minimized, the average traveling distance of a trip is increased by 34%, from 35.03 to 46.96 metre. 

However, such slight increase, i.e., around 10m per trip is totally worthwhile considering the impressive 

reduction of the number of trips per cycle. 

 

Table 3. Simulation results in terms of traveling distance 

 Standalone OFR Joint OFR 

 (Without order arrival 

prediction) 
(With order arrival prediction) 

 20-day mean value 20-day mean value Improvement 

Total daily traveling distance 27.61 km 5.27 km 80.9% 

Average daily number of trips 788 112  

Average number of trips per cycle 61.78 9.36 85.5% 

Average traveling distance per trip 35.03 m 46.96 m -34% 

 

5.2.2 Number of visits to the reserve area 

 The simulation, also compares the number of visits to the reserve area with and without 

deployment of the joint operations. Results summarized in Table 4 reveal that on average the total 

number of visits per day has been reduced from 461 to 93 times. In other words, statistically the reserve 

area is visited by the PI-handlers for 7.75 times in each cycle, experiencing a 79.8% improvement as 

compared to the standalone OFR. Moreover, considering the average number of trips in a cycle, this 

figure indicates that 7.75 out of 9.36 trips have to visit the reserve area. There is a 20.6% increase in the 

percentage of trips required to visit the reserve area. However, such 20% rise in the chance to visit the 

reserve aera in fact only increase 10m of the traveling distance. 

 

Table 4. Simulation results in terms of the number of repetitive visits to reserve area 

 Standalone OFR Joint OFR 

 (Without order arrival 

prediction) 
(With order arrival prediction) 

 20-day mean value 20-day mean value Improvement 

Total daily no. of visits 461 93 79.8% 

No. of visits per cycle 38.42 7.75 79.8% 

   Differences 

% of trips visiting reserve area 62.2% 82.8% +20.6% 
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6. Implications 

A joint OFR operation performed in the reserve area and forward area is modelled in this study. 

Integrated with DT technologies, an inbound synchronization framework is designed to achieve a multi-

dimensional synchronization for synergizing the inbound processing of PI-containers at city PI-hubs. 

Simulation results revealed three underlying problems brought by optimizing replenishment operations 

without taking order fulfillment into account: waste of replenishment efforts, ineffectively use of 

forward area space, and diminishing the value of forward reserve warehouse configuration. Yet, these 

problems can be alleviated through the optimization of the joint problem defined in this study. The 

significance of managing the interdependencies of the operations of OFR can be observed in strategic, 

methodological and practical perspective: 

(i) Strategically maximizing the value of forward-reserve configuration in Physical Internet – This 

study realizes internal synchronization in terms of order, process and information synchronization. 

The combinational benefit of the three-dimensional synchronization lies in the potentials of 

maximizing the value of configuring a traditional warehouse into a FR PI-hub. The underlying 

concept of “replenish only when it is needed”, realized in the proposed joint OFR optimization, 

replenishes an SKU from the reserve area to the forward area in the current replenishment cycle 

only if the PI-hub receives real-time demand from last-mile end customers. This strengthens the 

coordination among the forward area and the reserve area as replenishment efforts are saved for 

actual needs. 

 

(ii) Methodologically integrating soft and hard technology for a streamlined PI-hub environment  – 

The proposed methodology not only facilitates the deployment of TIS, but also serves as a generic, 

conceptual architecture of how ML, DT and IoT collectively operate to build a smarter, 

streamlined, and more favourable PI environment in the era of Industry 4.0. Further, a novel 

perspective of how synchronization could be made possible in the interdependent internal 

operations among reserve, forward and order packing area is presented. The TIS streamlines 

material flows in FR PI-hubs, particularly among reserve, forward and packing area when fulfilling 

orders and replenishing SKUs in the forward area. Essentially, streamlined processing of PI-

containers allows re-allocation of idle resources to handle PI-operations others than PI-order 

fulfillment and replenishment (Roy et al., 2019; Leung et al., 2018), such as PI-order receiving and 

inspection activities at the inbound dock, put-away operations for bulk storage of H-and P-

container at the reserve area, and etc. This study motivates future research in the field of forward 

reserve warehouse management to explore the potentials of synchronizing warehouse operations 

with high levels of interdependency and interrelationship, given a vast amount of operational data 

being available for improved decision-making in the era of Industry 4.0 (Witkowski, 2017). 
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(iii) Practically minimizing repetitive visits to reserve area – In the absence of the proposed operational 

synchronization, repetitive visits to reserve area for replenishment and direct order fulfillment are 

anticipatable. In the face of frequent arrivals of fragmented, time-sensitive orders within the PI-

network, effort in monotonous order picking and replenishment from reserve area, a huge storage 

area storing large number of SKUs, is tedious and time-consuming (Bahrami, Aghezzaf, and 

Limère, 2019). The proposed mechanism is therefore designed to reduce replenishment efforts by 

minimizing the number of traveling trips of PI-handlers. In other words, the operating efficiencies 

for both operations are improved. In long run, even a minimal improvement in terms of operating 

efficiencies is able to strengthen the core competence of a firm in terms of internal order handling, 

as the travelling trips undertaken during the entire working hours governs the material flows within 

the reserve area and the forward area. 

 

7. Conclusion and Directions for Future Research 

The COVID-19 pandemic has made many consumers switch to e-commerce. It is expected that 

such a paradigm change in consumer behaviour will continue affect the retail environment. In the 

delivery sector, there have been innovations such as air drones and driverless cars for last-mile delivery, 

to minimise human-to-human contact. However, their adoption is in the infancy stage. Human still plays 

a leading role in the management and execution of both the inbound and outbound order fulfillment 

process in the coming decade (Pasparakis, de Vries, & de Koster, 2021). It is of prime importance to 

continuing the assessment of the potential integration of the state-of-the-art technologies in warehouses, 

such as DT and IoT technologies, in order to minimize human efforts in the OFR while maintaining an 

adequate level of throughput for satisfying the ever-increasing demand for last-mile delivery in e-

commerce.  

 This paper studies the internal operations in manual picker-to-parts systems, which account for 

a majority of order picking systems in warehouses worldwide (De Koster et al., 2007). The proposed 

TIS Strategy supports the picker-to-parts material handling system in city PI-hubs by synchronizing: the 

actual and predictive arrivals of last-mile PI-orders, internal order fulfillment and replenishment 

operations, and relevant internal information and decisions among stakeholders under the PI framework. 

After all, streamlining the internal flows of PI-orders within a PI-hub improves the throughput of not 

only a single PI-node, but the entire hyperconnected PI logistics network. To extend the applicability of 

the proposed synchronization in a wider spectrum, there are several avenues for future research. First, 

some assumptions in this work could be relaxed, such as order fulfillment cycle time, replenishment 

policy, and others. Another research direction would be to deploy the TIS strategy in a robotic parts-to-

picker warehouse environment under the era of PI. This could further validate the essence of integrating 

DT, ML and IoT for synergized OFR operations in Industry 4.0.  
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Appendices 

Appendix A – Network structure of a standard neural network model 

The network structure of ANFIS consists of two parts – premise and consequence parts. For a typical 

first-order two-rule Takagi-Sugeno type fuzzy inference system, the two fuzzy if-then rules are 

expressed as follows (Takagi-Sugeno, 1983). 

Rule 1: If a is J1, and b is K1, then f1 = p1a+q1b+r1 

Rule 2: If a is J2, and b is K2, then f2 = p2a+q2b+r2 

 

where Ji and Ki are the fuzzy sets, fi is the output set within the fuzzy region specified by the fuzzy rule, 

and p, q and r are linear output parameters determined during the training process.  

 

Layer 1. This is a fuzzification layer, in which O1,i represents the output of the ith node from this layer, 

an input to node i is denoted as x, Ji is the linguistic label for the input, and µJi(x) is the membership 
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function in a particular shape. For a membership function with a given parameter set {xi, yi, zi}, each 

node i in this layer is a square node with a function of: 

O1, i = µJi(a) =  
1

1+(
𝑎−𝑧𝑖

𝑥𝑖
)2𝑦𝑖

  for i = 1, 2 

 

Layer 2. Every node in this layer is a circle node labelled Π so as to multiply the incoming signals and 

send the product out. ωi serves as the output of this layer, which denotes the firing strength of each rule. 

It is calculated by: 

O2, i = ωi = µJi(a) µKi(b)  for i = 1, 2 

 

Layer 3.  Symbolized by an N notation, each fixed node in this layer is a circle node. The output of this 

layer, ω̅i, denotes the ratio of the ith node firing strength to the sum of the firing strength of all rules. The 

output of this layer is known as normalized firing strength, which is expressed as: 

O3, i = ω̅i = 
ωi

∑ ωi
=  

ωi

ω1+ω2
  for i = 1, 2 

 

Layer 4.  Each adaptive node in this layer is a square node calculating the contribution of the ith node 

towards the overall output. Parameters in this layer are referred to as consequent parameters, fi represents 

the fuzzy if-then rules with {pi, qi, ri} being the parameter set. It is represented as: 

O4, i = �̅�𝑖fi = �̅�𝑖(𝑝𝑖𝑎 + 𝑞𝑖𝑏 + 𝑟𝑖)  for i = 1, 2 

 

Layer 5.  The final layer has a single fixed circle node symbolized by a Ʃ notation. It computes the 

overall output of the network by calculating the summation of the contribution of all rules: 

O5, i = ∑ �̅�𝑖𝑓𝑖 = 
∑ 𝜔𝑖𝑓𝑖

∑ 𝜔𝑖
 = f = final output  for i = 1, 2 

 

Appendix B – List of abbreviations used in this paper 

Abbreviation Definition 

CPS Cyber-Physical System 

CS Cyber Space 

DT Digital Twin 

DTIS framework Digital twin-based inbound synchronization framework 

FR Forward-reserve 

H-container Handling Container in Physical Internet 

HCL Hyperconnected City Logistics 

ICT Information and Communication Technologies 

IoT Internet-of-things 

ITS Intelligent Transportation System 

ML Machine learning 

P-container Packaging Container in Physical Internet 

PI Physical Internet 

PI-container Containers handled in Physical Internet 

PI-handler Material handlers in Physical Internet 

PI-hub Distribution hubs in Physical Internet 
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PI-mover Vehicles and carriers responsible for transporting, handling and storing the PI-containers 

PI-order Orders in Physical Internet 

PI-network Logistics network of the Physical Internet 

PI-node A node in the logistics network of the Physical Internet 

PI-SKU Stock Keeping Units handled in Physical Internet 

PS Physical Space 

RFID Radio Frequency Identification 

SKU Stock Keeping Units 

T-container Transportation Container in Physical Internet 

TIS Total Inbound Synchronization 

TMS Transportation Management System 

OFR Order fulfillment and replenishment 

OMS Order Management System 

WMS Warehouse Management System 

WPS Warehouse Postponement Strategy 
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Highlights 

 

 This is the first study to develop operating strategies streamlining PI-container handling 

 A Total Inbound Synchronization Strategy is proposed for multi-level synchronizations 

 A joint PI-SKU replenishment and PI-order fulfilment problem at city PI-hubs is formulated 

 Digital-twin, IoT and machine learning algorithms are integrated into the proposed framework 

 Results reveal significant reduction in traveling distance and number of visits to storage areas 
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