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Abstract 

The capability of learning from accidents from different industrial sectors could prevent similar accidents to happen. 

With this aim, the Multi-attribute Technological Accidents Dataset (MATA-D) has been created, using a classification 

focused on the relation between human errors and their influencing factors (e.g., cognitive functions, organisational and 

technological factors). The process of collecting new data for this dataset should be constant, not only to decrease epistemic 

uncertainty in human reliability data but also to reflect changes in human behaviour due to evolving technology and 

organisational arrangements.  

However, reading an accident report is a time-consuming process, which delays the learning process. For this reason, 

this research proposes an automated approach to train the computer on a predefined classification scheme (taxonomy), 

which will be called the virtual human factors classifier. The virtual classifier should support human experts to analyse 

accident reports for organizational, technological, and individual factors that may trigger human errors. 

The proposed approach is based on classifying text according to previously labelled accident reports by human experts. 

Two case studies are used to demonstrate how data from different sectors can be used to train the machine, providing an 

efficient cross-discipline knowledge transfer. The accuracy of the results is promising and comparable to the classifications 

provided by human experts. The proposed work demonstrated to the industry the feasibility of the use of artificial 

intelligence to collect data and support risk and reliability assessments, and recommendations based on the study findings 

are suggested for investigation agencies.  
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1. Introduction 

One of the most acknowledged ways to prevent design errors in complex industries is to conduct risk 

assessment, where multi-disciplinary teams revise a design according to information from past accidents, 

components, and human reliability. There are industrial recommended practices on how companies should use 

lessons learnt from past accidents (CCPS, 2010), research on how they are actually using it (Drupsteen et al., 

2013) or how it could be used (Moura et al., 2017a; Moura et al., 2017b). The lessons learnt encompass not only 

hazards but also their frequency of occurrence, which are used to quantify risks in probabilistic risk analysis, or 

to estimate order of magnitude in semi-quantitative analysis (e.g. LOPA) and qualitative analysis when risk 

ranking is required (Baybutt, 2016). 

Regarding frequency, component failure databases play a central role in quantitative risk analysis, where 

data is majorly provided by components manufacturers and sometimes shared within groups of industry 

operators, such as the Maintenance Steering Group (MSG-3) in aviation (EASA; Gonçalves and Trabasso, 2018) 

and the Offshore and Onshore Reliability Data (OREDA) in upstream oil & gas (Lima et al., 2019; OREDA). 

However, there is still plenty of space for the development of databases to support system safety, which should 

be able to include systems and installations rather than only components’ parts, as well as the interaction 

between human, organizational and technological factors (Leveson, 2020).  
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To fill this information gap, a human reliability database has been created comprising major accidents from 

different industry sectors (with the same level of complexity), all classified with an established human reliability 

taxonomy (Moura et al., 2016). The database, known as MATA-D, has currently 238 accident events classified 

into 53 variables, including human erroneous actions and their influencing factors (Moura et al., 2020). 

Although it is already possible to use it for human reliability analysis (Morais et al., 2021 (in press); Morais et 

al., 2020), it would be desirable to reduce its uncertainty, leading to more precise risk estimates. To understand 

how to decrease its uncertainty, it is important to understand the different representation of the uncertainties 

within the dataset: aleatoric to model uncontrollable events, e.g. impairments and cognitive bias, or 

epistemic/reducible uncertainty due to missing data and theoretically reducible (Patelli et al., 2016). It is 

acknowledged in the human reliability field that human behaviour is dependent on the context, varying 

according to organizational and technological factors (Hollnagel, 1998). The lack of information on these 

factors’ interactions (seldomly observed and reported) is the major contribution to the epistemic uncertainty. 

Thus, to reduce epistemic uncertainty it would be desirable to expand the database, by collecting more accident 

reports and classifying them in order to increase the chance of describing more human-machine-organisation 

interactions. 

However, collecting empirical data is time-consuming and expensive, especially in human reliability field, 

where data collection and classification are usually done by other humans (experts in their fields). MATA-D 

database have been constructed through extensive reading and classifying 238 accident investigation reports 

(Moura et al., 2016), a task that have taken around one year to be completed. The classification also required 

specialised knowledge, as the assessors had to be minimally trained on the taxonomy used to pursue the 

classification.  

The present study proposes to enlarge a human reliability dataset by replacing (or supporting) human coding 

by automated classification of accident reports from any industrial sector using a pre-defined human factor’s 

taxonomy. In order to absorb lessons learnt from different industry sectors, the objective is to continually add 

to the dataset reports only from industries with the same level of complexity regarding the interaction of 

organisational structure, technology and humans (Moura et al., 2016). The work hereby presented is a substantial 

improvement and extension of the strategy proposed by some of the authors of this paper in a conference (Morais 

et al., 2019). Therefore, the aim of the present research is not only to expand MATA-D, but to do it faster and 

timely. The use of a machine-learning strategy for text recognition and classification is herein proposed because 

an experienced expert takes around 3 days to read and classify one accident report, which contains about two 

hundred pages. A machine-learning algorithm takes less than one minute. Thus, it would be interesting to 

develop a computer support, that could support risk specialists, or directly collect and update the database for 

every new accident report of interest. Caution would be needed on the acceptance criteria of this new data, as 

depending on the sample quality the uncertainty might increase (Siegrist, 2011). Therefore, a central research 

question of this study is whether a machine learning approach is capable of both accelerating the expansion of 

a human reliability database and maintaining the same data quality offered by human experts.  

 The approach, here called as virtual human factors classifier might be useful in other ways. For instance, 

it may be used to improve human reliability Bayesian and credal networks (Morais et al., 2021 (in press); Morais 

et al., 2020), or to support cross-learning from different industry sectors. It can also support incident 

investigators in an unbiased fashion to consider possible performance shaping factors, which might have 

triggered human errors (instead of focusing only on human errors). On the original aim of expanding MATA-

D, risk assessors should benefit for the provision of more data thus more possible combinations between 

performance shaping factors and human errors, minimising missing data problem in the use of data for 

probabilistic approaches. 

This paper has been divided into four parts. The first part gives a brief overview of the recent history of 

major accident data. The second section of this paper will examine the options of machine-learning strategies 

and performance metrics. The third section is concerned with the dataset, taxonomy and the methodology used 

for this study. The fourth section presents the findings of the research, focusing on the case study of including 

the analysis of two accident reports from aviation (Boeing 737 MAX) and oil & gas industry (FPSO CDSM, 

Cidade de Sao Mateus floating production storage and offloading unit). 



 

 

2. Theoretical background 

This section explores the literature regarding previous similar research regarding the investigation of 

accidents in different industry sectors, the selection of the most used machine-learning algorithms, and most 

appropriate performance metrics. 

 

2.1. Related work in similar industry sectors 

The present research has focused on previous studies that have used machine-learning strategies to classify 

textual narratives into safety and risk features. The sample also focused in industries with similar level of 

organisational and technological complexity as found in MATA-D, as well as those that have investigated at 

least one human factor as one of the features, such as  aviation (Robinson et al., 2015), railway (Heidarysafa et 

al., 2018; Hughes et al., 2017), oil & gas (Ribeiro et al., 2020), civil construction (Goh and Ubeynarayana, 2017) 

and maritime industries (Grech et al., 2002). A comprehensive review of the application of machine-learning 

techniques in occupational accident analysis, however, mixing many industries with lower level of complexity 

is provided in (Sarkar and Maiti, 2020). 

Despite large research and application of machine-learning approaches, gaps and needs for risk and 

reliability analysis remains. Previous studies have not classified full accident reports into a human reliability 

taxonomy – nor any attempts have been identified to expand databases of human reliability with the support of 

machine-learning, or within multiple industry sectors. For instance, only one specific human factor (situation 

awareness) has been analysed in maritime accident reports (Grech et al., 2002) while often the aim was to 

analyse near-misses or close call reports (daily basis reports that consist of small narratives from workers 

(Hughes et al., 2017), to support safety managers on having timely decisions upon risk controls (Goh and 

Ubeynarayana, 2017; Heidarysafa et al., 2018; Ribeiro et al., 2020; Robinson et al., 2015).  

The highest performance obtained are from the studies with texts sizes of around 200 words, and which 

have collapsed many classes into a few more frequent ones. However, the need to expand the MATA-D to 

support better risk analysis is to classify full major accident reports (with text sizes of around 200 pages) and to 

not discard nor collapse classes that are less labelled (sparse data). 

 

2.2. Human-categorized text  

Readers can easily categorize a document into its topic if they have the classification scheme in mind, an 

action that can be described as manual coding (Grech et al., 2002) and human-categorization (Goldberg, 2017). 

In cases where more than one coder or rater classifies the same documents, it is good practice to measure the 

interrater agreement with a coefficient, such as Cohen’s kappa (Kim et al., 2020).  

Although human categorization is considered the standard approach, it is time-consuming and resource 

demanding. It is also prone to error, in particular when involving large databases (Robinson et al., 2015). The 

manual assessment of accident reports has been used by Moura et al. to create the Mata-D, after reading 238 

accident reports and classifying them as Boolean values according to factors described in Table 1 (0 if a factor 

was not reported, 1 if a factor was reported), as represented in Figure 1. A step-by-step description of how the 

information has been classified is shown in (Moura et al., 2016) and the resulting dataset can be assessed in 

(Moura et al., 2020).  

 



 

 

 

Figure 1. Human categorization  analysis of accident reports issued for Fukushima nuclear accident (Daiichi, 2012; 

Fukushima Nuclear Accident Independent Investigation, 2012). 

2.3. Automated text analysis algorithms 

2.3.1. Extracting and representing text features  

Before classifying a document, the text features need to be extracted to generate a representation of the 

document, capturing the properties that are important for further classification (Goldberg, 2017). There are 

many feature extraction methods available, but the methods that can be used to extract features from text data 

are mainly bag-of-words (BoW), TF-IDF and word2vec (Waykole and Thakare, 2018). 

A bag-of-words model extracts features from the text, specifically the vocabulary of known words and their 

frequency of occurrence. The reason the model is called a ‘bag’ of words is that it does not consider any 

information about the order or structure of words. To use it on a set of documents, data is collected from text 

files and organised into a list, forming a vocabulary. To improve results and save computational time and 

memory the model ignores case, punctuation, and other frequent words that do not contain relevant information, 

such as stop words (e.g., ‘a’, ‘the’, ‘of’). To score the known words in each file (i.e. document), their presence 

is marked as Boolean values (0 and 1) – thus, using the list of words previously prepared, each new file is 

analysed and converted into a binary vector. To extract features from files, the order of words is discarded 

(Brownlee, 2017). Bag-of-bigrams is a special case of feature combinations that counts consecutive word 

sequences of a given length, which proves to be more powerful than bag-of-words, as word-bigrams are more 

informative than individual words. However, it is difficult to know a-priori which bigrams will be useful for a 

specific task, thus the modeller should assign the less important combinations previously with low weights. Bag 

of trigrams are also common, differently from 4-grams and 5-grams that are sometimes used for letters, but 

rarely for words due to sparsity issues (Goldberg, 2017). 

TF-IDF (Term Frequency – Inverse Document Frequency) accounts for the frequency of each word in a set 

of documents and its useful to give higher scores to domain specific words, something that is considered a 

drawback for bag-of-words (as domain specific words which does not have higher frequency within a document 

may be ignored). TF-IDF reduces the score of frequent words in a document that are also frequent among all 

the documents, highlighting the words that are unique (Hughes et al., 2017; Waykole and Thakare, 2018). 

Word2vec assumes that words that occur in the same contexts tend to have similar meanings (Goldberg, 

2017), thus models constructed by word2vec algorithms will place words with common contexts next to each 

other in a vector space (Heidarysafa et al., 2018; Waykole and Thakare, 2018). Word2vec models are two-layer 

neural networks, and depending on their architecture they are able to consider nearby context words more 

heavily than words with distant context (i.e. continuous skip gram), or to not account for context at all (i.e. 

continuous bag-of-words) (Waykole and Thakare, 2018).  



 

 

2.3.2. Classifying text features  

After the text relevant features are captured from the document and represented in a model, they are ready 

to be classified by a machine-learning technique. The most known and broadly tested techniques for automated 

text classification are the dictionary method, Naïve Bayes, support vector machines (SVM), latent Dirichlet 

allocation (LDA), latent semantic analysis (SMA), structural topic model (STM) (Kim et al., 2020). Aside from 

the dictionary method, they can be mostly divided into supervised and unsupervised learning methods (some 

authors further distinguish semi-supervised approaches, in which the training set contains a small amount of 

data with known categories and a large amount of data with unknown categories (Ratsaby and Venkatesh)). The 

method selection might be based on how texts are going to be classified, and if some documents have been 

previously classified by humans (allowing their use as examples to train the machine) (Goldberg, 2017; Kim et 

al., 2020). Figure 2 shows the main techniques for cases where the classification category is known and pre-

defined, whereas Figure 3 shows techniques which classification category is unknown.  
 

 

 

Figure 2. Most common automated text analysis techniques available when classification is known. 

In dictionary-based methods, the machine uses predefined set of words to infer particular features of a text, 

relying on the user defined dictionary. In such methods, the categories of interest are represented by single 

words, which are searched by an algorithm through large bodies of text (Iliev et al., 2015; Kim et al., 2020). In 

the classification of organisational factors in accidents, it would be equivalent to define into the algorithm that 

every time the words or the expressions work shift, jetlag, lack of sleep, circadian rhythm, are identified in the 

text, the algorithm classifies the feature as the organisational factor of irregular working hours.  

Naïve Bayes and support vector machines (SVM) are popular supervised learning methods for text 

classification. Naïve Bayes is a simple Bayesian classifier which assumes that all attributes are independent of 

each other, thus independent of the word context and position in the document (McCallum and Nigam, 1998; 

Žubrinić et al., 2013). Naïve Bayes classifiers is reported to have better resilience to missing data than SVM 

classifiers (Shi and Liu, 2011), what potentially makes Naïve Bayes better to analyse fragments of texts (e.g. 

few paragraphs) and SVM to classify whole documents (Goh and Ubeynarayana, 2017; Wang and Manning, 

2012). 

Support Vector Machine (SVM) is one of the most popular supervised machine-learning algorithms, due to 

its little need for adjustments (Matlab, 2019), and due to their excellent prediction and generalization capabilities 

(Arrieta et al., 2020; Goh and Ubeynarayana, 2017). They can be used for classification, regression, or other 

tasks such as outlier detection (Arrieta et al., 2020). The SVM algorithm constructs a hyper-plane (or a set of 

them) in a high-dimensional space, so that a good separation between classes is achieved by the hyperplane, 

that has the largest distance to the nearest training data point of any class (Arrieta et al., 2020). The simplest 

case, when data have only two classes, a SVM classifies data by finding the maximum-margin hyperplane which 

separates the data points of one class  from those of the second class (Matlab, 2019).  



 

 

The support vectors cross the data points that are closest to the hyperplane that separate the classes. As 

SVM is a supervised learning model, it has to be trained before it cross-validates the classifier. Only then, the 

trained machine can be used to predict or classify new data. SVM is usually suggested if features’ interaction 

might be important for classification, similar to a semantic space, as learned hyperplane separates documents 

belonging to different topics in the input space (Žubrinić et al., 2013). Although it is usually suggested in 

literature that for more complex problems, other SVM kernel functions can be used to obtain more satisfactory 

predictive accuracy (Matlab, 2019), previous studies show that the classification performance is not always 

better when non-linear polynomial kernel is applied, e.g. linear kernel outperforms non-linear when applied for 

multi-word classification (i.e. when the context information of individual words is captured) (Zhang et al., 

2008).  

When the classification category is unknown, a situation represented in Figure 3, unsupervised learning 

methods are usually chosen to infer latent categories.  

 

Figure 3. Most common automated text analysis techniques when classification is unknown. 

The latent semantic analysis (LSA) (Robinson et al., 2015) is a quantitative text-data analysis which employs 

singular value decomposition, which was a precursor of the latent Dirichlet allocation (LDA) (Blei et al., 2003), 

the first widely used topic model (Kim et al., 2020). LSA and LDA have similar methodologies, but LSA does 

not depend on rigorous statistical modelling. Statistical model estimates the categories or topics based on the 

pattern of word co-occurrences in the text. However, although unknown, the number of classes needs to be 

estimated before the analysis. Structural topic model (STM) (Roberts et al., 2016) is built upon LDA (Kim et 

al., 2020), thus both are topic models used to discover latent themes (i.e. thematic structures in documents), 

being able to reveal topic proportions in each document. STM has been designed to compensate LDA 

weaknesses, such as possibility of incorporating metadata (e.g. investigators’ nationality and year a report was 

issued), and modelling direct correlations among topics (instead considering them independent) (Kim et al., 

2020). 

2.3.3. Measuring the performance of automatic text classification 

The performance of a classifier is based on its capability to correctly assign new data to the correct class. 

This is often represented by the true and false positives, and true and false negatives. For a binary classifier, 1 

is used to represent an observed variable in a dataset while 0 represents a non-observed variable. Therefore: 

• true positives occur when the true value is 1 and the model correctly predicts 1;  

• false negatives occur if the true value is 1 but the model wrongly predicts 0;  

• true negatives occur when true value is 0 and the model correctly predicts 0;  

• and false positives occur when true value should be 0 but the model predicts 1. 
 

The selection of the best performance metrics to observe will vary according to how false positives and 

false negatives predictions will cost to the study’s objective. For example, the cost of false positive is higher if 

one is modelling how to identify spam emails (as someone can lose important information if an email is wrongly 



 

 

classified as spam). However, if the intention is to model the spread of a contagious disease, the cost of having 

a false negative is higher (as it is more impacting to public health if a person with a disease, an actual positive, 

does a test which wrongly classifies them as healthy, a false negative) (Ping Shun, 2018). A confusion matrix 

is used to depict the four possible outcomes by comparing the true classes expected by the classes predicted 

(Google, 2018). On the confusion matrix plot depicted in Table 1 the rows correspond to the true class (also 

known as target Class), and the columns correspond to the predicted class (also known as output Class). The 

diagonal cells (in green) correspond to observations that are correctly classified, and the off-diagonal cells (in 

red) correspond to incorrectly classified observations. Some confusion matrices also show the percentage of the 

total number of observations in each cell, with additional columns and rows showing accuracy, prediction and 

recall measures (Matlab and Mathworks, 2018). In the example provided in Table 1 the confusion matrix 

indicates only the observations: 6 true positives, 2 false negatives, 1 false positive and 30 true negatives. 

Confusion matrices are even more useful if many variables are being classified, as it provides handy information 

on which classes are mostly misclassified to what other classes (Heidarysafa et al., 2018). 

 
 

 
 

 

 

 

 

Table 1. Confusion matrix example. 

There are four main metrics to evaluate model performance according to true and false predictions: 

accuracy, precision, recall, and F-measures score (Goh and Ubeynarayana, 2017). Accuracy is the fraction of 

correctly predicted data points out of all predictions and defined as follows:   

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(true positives + true negatives)

(true positives + true negatives+false positives + false negatives)
 (1) 

 

The potential problem of relying solely in accuracy is that it can be largely contributed by a large number of 

true negatives (Ping Shun, 2018), such as when dealing with imbalanced data (a dataset which has many more 

instances of certain classes than others) (Sun et al., 2009). 

Precision is a good measure to indicate the proportion of positive identifications that are actually 

correct, or to monitor when the cost of a false positive is high (Google, 2018; Ping Shun, 2018). Precision is 

equal to 1.0 if the model produces no false positives and defined as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
(true positives)

(true positives + false positives)
  (2)  

When the cost of false negative is high, the Recall metric is a good measure to indicate if the proportion 

of actual positives are identified correctly (Google, 2018; Ping Shun, 2018). A model that produces no false 

negatives has a recall of 1.0. The recall metric is defined as: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
(true positives)

(true positives + false negatives)
  (3)  

 

F-measures are useful if a balance between precision and recall is needed (Ping Shun, 2018), as 

empirical studies of retrieval performance have shown a tendency for precision to decline as recall 

increases(Buckland and Gey, 1994). It is also a good measure if the true classes present an uneven distribution 

such as a large number of true negatives (Ping Shun, 2018). If false negatives and false positives are equally 

costly, 𝐹1 score represents the harmonic mean between recall and precision: 

T
ru

e 
cl

as
s 

 

0 30 1 

1 2 5 

 
 0 1 

 
 Predicted class 



 

 

𝐹1  =  2 ∙
(Precision ∙ Recall)

(Precision+ Recall)
   (4)  

 However, if false negatives and false positives are not equally costly, 𝐹𝛽 measure might be indicated as it 

is an abstraction of the F-measure where the balance of precision and recall are controlled by a coefficient 

called β. If false negatives cost more, β > 1; if false positives are more costly, β < 1 (He and Ma, 2013). 

 

𝐹𝛽  = (1 + β2) ∙
(Precision ∙ Recall)

(β2∙ Precision+ Recall)
 (5) 

  

Using the example given in the confusion matrix in Table 1, the accuracy of the model would be 92%, 

precision would be 86%, recall would be 75%, and using the results of precision and recall the 𝐹1 score would 

be 80%. 

Performance metrics may present different results depending on the size and on the randomised sample 

used for training and testing sets. To minimise the randomised sample effect many studies present the metrics 

by variable (or sets of variables) instead by overall indicators (Goh and Ubeynarayana, 2017; Grech et al., 2002; 

Heidarysafa et al., 2018; Zhang et al., 2019). The difference in performance metrics can be more transparently 

depicted by error estimates (Ribeiro et al., 2020). The need for smaller uncertainties between estimates can also 

define the size of training and testing sets. Some machine-learning practitioners even suggest to have larger 

testing sets than what is normally recommended, in order to increase the confidence in model predictions (not 

only because the error estimates of performance metrics decrease, but because the user can actually see how the 

model works for more samples) (Malato, 2015).    

3. Methodology 

 

Support vector machine was proposed to automatically read and classify accident reports into potential human 

factors, with the support of Bag-of-Words model for data collection. The model was trained and tested using 

data from MATA-D. This section better describes the dataset used and the procedures applied to train and test 

the models. 

3.1. Dataset  

The classification tool was trained using the data from Mata-D. The decision was based on the conceptual 

advantaged of potential cross-learning lessons from accidents in different sectors, but also brought two technical 

advantages regarding machine-learning techniques. Firstly, the majority of accident reports were available to 

train and test the machine against the opinion classified by experts. Secondly, the dataset had a specific 

taxonomy, which simplified the decision on the automated text technique to choose.  

The type of documents analysed were accident investigation reports, all in English, with an average size of 

two hundred pages. The accidents described in those reports had happened in different industry sectors with 

similar complexity regarding the interaction within humans, technology, and organization, such as: aviation, 

chemicals factory, construction, food, oil & gas (exploration, refinery, petrochemical), metallurgical, nuclear, 

terminals and distribution and waste treatment plant. The documents chosen were the same used to construct a 

dataset of 238 reports classified into a human reliability taxonomy as described in (Moura et al., 2016), known 

as MATA-D which can be assessed in (Moura et al., 2020).  

Table 2 shows the taxonomy used, the classification scheme developed for a human reliability method 

known as CREAM (cognitive reliability and error analysis method) (Hollnagel, 1998). This taxonomy 

comprises human errors and performance shaping factors (PSFs) such as organisational, technological, and 

individual factors. CREAM’s taxonomy has the benefit of serving both accident analysis and risk analysis 

purposes. Thus, by continuously updating the dataset with new accident investigation reports, the dataset will 

provide risk and reliability analysis with better predictions of which combinations of factors mostly trigger 

accidents. Although MATA-Dataset contained information on how 238 accident reports had been labelled 

against CREAM taxonomy, only the publicly available reports were used to train and test the virtual classifier 

in the present study: a total of 106 reports.  



 

 

Organisational Factors  Technological Factors  Individual factors  Human Execution 

Errors  

Communication failure  Equipment failure  Permanent related  Wrong time  

Missing information  Software fault  Functional impairment  Wrong type  

Maintenance failure  Inadequate procedure  Cognitive style  Wrong Object  

Inadequate quality control  Access limitations  Cognitive bias  Wrong place 

Management problem  Ambiguous information    

Design failure  Incomplete information  Temporary related  Cognitive function 

failures 

Inadequate task allocation  Access problems  Memory failure  Observation missed  

Social pressure  Mislabelling  Fear  False Observation  

Insufficient skills   Distraction  Wrong Identification  

Insufficient knowledge   Fatigue  Faulty diagnosis  

Temperature  Performance Variability  Wrong reasoning  

Sound  Inattention  Decision error  

Humidity  Physiological stress  Delayed interpretation  

Illumination  Psychological stress  Incorrect prediction  

Other   Inadequate plan  

Adverse ambient conditions   Priority error  

Excessive demand    

Inadequate workplace layout    

Inadequate team support    

Irregular working hours    

Table 2. Taxonomy of human factors adopted in MATA-Dataset based on CREAM classification scheme. 

 

As the reports in the MATA-Dataset addressed different industry sectors, they presented different formats 

and vocabularies. The format changed not only in terms of number of pages, but also in terms of reproduceable 

sections in a corpus. The vocabularies varied not only on specificity of the different industrial sectors, but also 

in terms of taxonomy applied usually connected to the investigation methodology. This research used three 

different datasets: the first contained 106 publicly available reports (public at the time of the research), the 

second was a subset of the first dataset with 57 CSB reports (U.S. Chemical Safety and Hazard investigation 

board), and the third was another subset of the first dataset with 20 reports issued by NTSB (U.S. National 

Transport Safety Board). CSB is an U.S. independent government agency that investigates mainly industrial 

chemical accidents, covering accidents not only in chemical factories, but also in its branches (e.g., oil & gas, 

food, and metallurgical industries). NTSB is also an independent U.S. government agency, which investigates 

accidents in transportation, such as aviation, and including terminals and distribution. CSB and NTSB were 

chosen due to their larger number of reports in MATA-Dataset and due to their systematically organised and 

repetitive format (e.g., similar chapters titles and same order of chapters), which is potentially positive 

considering the training of a supervised learning technique.  

The three datasets generated three different models: all reports, CSB and NTSB models. The reports 

were randomly split into a training-testing ratio of 80-20%, therefore generated a training set of 85 reports and 

a testing set of 21 reports for all reports model, 46 to train and 11 to test reports in CSB model, and 16 to train 

and 4 to test reports in NTSB model. The decision of choosing between an 80-20% split instead of a 90-10% 

was taken to increase the confidence in the results as suggested in (Malato, 2015). 

3.2. Machine-learning technique  

As the classification of the category is known (i.e., predefined taxonomy), and the dataset was previously 

labelled by experts, a supervised learning method is the most adequate, short-listing the decision to Naïve Bayes 

or Support Vector Machine. It has been proven that Naïve Bayes classifiers perform better with missing data 

(Shi and Liu, 2011), and therefore it might be a good choice to identify human factors interactions in major 

accidents that are considered rare and uncertain events (Morais et al., 2020). However, SVM has the potentiality 

to better capture features interactions (Žubrinić et al., 2013) and better classify larger documents (Wang and 

Manning, 2012). Therefore, as interaction patterns has been observed between MATA-D factors in (Moura et 



 

 

al., 2017b) and the aim is to apply the tool to accident reports with 200 pages on average, an SVM model with 

a linear kernel has been chosen for classification. Bag-of-words was selected as the feature extraction tool to 

pre-process the features to be classified by SVM. The choice was not only due to its recognised simplicity and 

flexibility (Waykole and Thakare, 2018), but also because the intention to classify accident reports with no 

specific sector or domain suggested that it was better not to use models that capture too much the context from 

the training set into account – to avoid giving much higher importance to sector specific words or set of words 

(Goldberg, 2017). 

The resulting automated text recognition and classification tool is referred to as the human factors’ virtual 

classifier.  A simplified workflow of the proposed approach is shown in Figure 4. 

 

 

Figure 4. Simplified workflow of the human factor’s virtual classifier. 

In the first module, accident investigation reports were analysed. The documents in portable document 

format (i.e., files with PDF extension) were processed to check if the text in pdf files were recognised by the 

machine and, if not, an optical character recognition software (OCR) was used to convert them to text files – an 

important step for relatively old accident reports. After this pre-treatment, the tool scanned the accident reports, 

and their texts were sent to the next module. In the implemented version, the semi-supervised approach gave 

the users the option to manually identify relevant sections, which was the option used in this study. Otherwise, 

the most likely start and end of the targeted sections, recommendation and lessons learned, would be identified 

by a confidence scoring system (a basic algorithm, tailored for this project, which defines a dictionary of the 

most likely start and end target words in major accident reports), and these sections would be the output to the 

next module. Finally, the text was pre-processed to clean punctuation, stop words, and reduce words to their 

stem (e.g., ‘testing’ was reduced to ‘test’).  

In the second module, using another confidence scoring system, the tool took each accident report’s file 

name and found the most likely corresponding entry in the MATA-D. For this reason, the accident reports had 

equally assigned names in dataset and correspondent PDF file. This gave the machine-learning component the 

desired output for each accident report, which was a combination of selected section texts and their known 

human factors. Then, the selected text was converted into bag-of-words objects (X in Figure 4, forming the 



 

 

input of the model), and the factors extracted from the MATA-D (Y in Figure 4, served as the output of the 

model). The module partitioned the data into a training set (80% of total) and a testing set (20% of total).   

In the third module, the model based on SVM was trained and tested using data input from the previous two 

modules. Finally, the parameters of the classifier were recorded and overall performance metrics (i.e., accuracy, 

precision, recall and 𝐹1 score) were calculated based on test sets in all categories, as well as a confusion plot 

generated. Only then, the tool was prepared to be used in the next module.  

The fourth and final module of the tool allowed users to add a new report that was not yet part of the MATA-

D. The result was a list of the human reliability factors identified by the tool (an array of the predicted positive 

factors), a small table with all positives and negatives predictions (the 53 factors of the chosen taxonomy), and 

a word cloud of the most relevant words in the report.  

3.3. Implementation 

All the computational work was carried out using MATLAB software, and supported by the text analytics 

toolbox, which used the bag-of-words model to extract text strings from files and prepare data for the machine-

learning algorithm. The MATLAB statistics and the machine-learning toolbox was used to transform text inputs 

into binary classification adopting the Support Vector Machine. Data was extracted from the Excel based 

MATA-Dataset, while the accident report were in portable document format (i.e., PDF extension). The text 

recognition software embedded in Adobe Acrobat Pro was used to convert text-images to text-strings in cases 

where original reports had been saved as images (e.g. relatively old accident reports, such as the Public Inquiry 

into the Piper Alpha Disaster (Cullen, 1993)). Computational times to evaluate a new report, including the 

machine training time, took around 63 seconds (using all reports), 28 seconds (using CSB reports), and 19 

seconds (using NTSB reports), using a laptop configured with Intel® Core™ i5-8265U CPU @ 1.60GHz and 

16.0 GB of RAM. 

The classification tool was implemented on a user-friendly web interface known as Virtual Raphael (after 

the name of the expert that had conceptualized and co-created MATA-D), where the reader can classify their 

own accident report online, without the need to save it to the database. Together with the results a message is 

displayed to remind that the human factors outputs are just an indication to support the user, and that they 

potentially present a similar accuracy, precision, recall and F1 score of the test set shown in this study.  

The classifier tool is freely available at the following web address: 

https://cossan.co.uk/private/incident_classification/. The web-interface, coded in JavaScript, links three main 

components: the MATA-D dataset, the public accident reports, and a collection of six Matlab scripts. The dataset 

and all the codes used in this work are also available to those readers and researchers that want to replicate the 

experiment or to do their own improvements:   

• The dataset MATA-D with labelled classifications of each report is available at University of 

Liverpool’s data repository, available at: https://doi.org/10.17638/datacat.liverpool.ac.uk/1018 (Moura 

et al., 2020).  

• The links and references to the public accident reports classified in the MATA-D and used for the 

training and testing sets by the Virtual Raphael classifier are available from the Cossan website. 

However, due to property issues, they are not shared in their pdf formats 

The source code of the methods is available from the GitHub repository of the Cossan software: 

https://github.com/cossan-working-group/VirtualRaphael/. 

 

  

https://cossan.co.uk/private/incident_classification/
https://doi.org/10.17638/datacat.liverpool.ac.uk/1018
https://github.com/cossan-working-group/VirtualRaphael/


 

 

3.4. Performance 

To measure the performance of the Virtual Human Factors classifier, the binary classifications available in 

MATA-D were used as target classes. Four performance metrics were selected: accuracy, precision, recall and 

F1 score. The selection took into consideration that a typical accident in MATA-D is largely contributed by a 

large number of true negatives (an average of 46 negatives out of 53 categories were identified among all the 

reports), which might be classified as an imbalanced dataset. In those cases, F1 score is considered a better metric 

than accuracy (if recall and precision are considered equally important). 

The metrics were used to evaluate and compare the three trained classifiers using all reports, using the CSB 

reports and using the NTSB reports, respectively. To calculate them, ten randomly selected reports from the 

database were taken, maintaining constant the size of the samples and the training-test split. For each random 

sample generated, the training and testing sets were the same for the 53 category models created. The confusion 

matrices used to compare the true classes from MATA-D with the predicted classes are presented in Table 3 

(all reports model), Table 4 (CSB reports) and Table 5 (NTSB reports). The green numbers represent the true 

positives and true negatives, while the red numbers are the false positives and false negatives – considering the 

cumulative sum of predicted results from 10 random training sets. The values in the tables indicate the counting 

of positive and negative classifications for all the reports. 

 
 

 
 
 
 
 
 
 

 

 

Table 3. Confusion matrix of all reports’ model predictions (cumulative sum of ten different samples). 

 

 
 
 
 

 

 

 

Table 4. Confusion matrix of CSB reports’ model predictions (cumulative sum of ten different samples). 

 

 
 

 

 

 

 

 

Table 5. Confusion matrix of NTSB reports’ model predictions (sum of ten different samples). 
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The performance metrics were calculated using Eqs (1)-(4) and summarised in  Table 6.  The classifier model 

trained and tested with CSB reports obtained the best performance in all four metrics. 

 

 
all 

reports 

CSB 

reports 

NTSB 

reports 

Accuracy 86% 89% 83% 

Precision 60% 69% 51% 

Recall 46% 49% 46% 

F1 score 52% 58% 48% 

Table 6. Performance metrics according to confusion matrices cumulative sum of 10 randomly selected report from the 

database. 

 

Instead of measuring the performance based in the predictions’ cumulative sums, it was also useful to 

analyse how the performance metrics had varied according to different training and testing sets. Therefore, 

Table 7 shows the minimum and maximum results achieved by the performance metrics, as well as their mean 

and standard deviation (SD) if the ten random samples were considered separately. It was possible to observe 

that the results in Table 6 matched almost completely with the performance metrics mean values in Table 7. 

  
  All reports  CSB reports NTSB reports 

  Min max mean SD min max mean SD Min max mean SD 

Accuracy  83% 89% 86% 2% 87% 91% 89% 1% 80% 88% 83% 3% 

Precision  51% 69% 60% 6% 64% 77% 69% 4% 37% 67% 51% 9% 

Recall  40% 53% 46% 4% 42% 55% 49% 5% 36% 72% 47% 10% 

F1 score  45% 60% 52% 4% 52% 61% 57% 3% 38% 57% 48% 5% 

Table 7. Performance metrics of ten randomly selected report from the database considered separately. 
 

In this study, the linear SVM model trained with all public reports achieved a mean of 86% in the accuracy, 

60% for the precision, 46% in the recall and 52% using the F1 score. Table 7 shows a slightly higher 

performance when the model was trained using only the CSB reports, which might be explained by their 

similarity of format and industry sectors. The results obtained had performed similarly to the benchmarked 

studies, as shown in the discussion section of this paper.  

Another important type of performance is the training time required by the machine-learning algorithm. The 

elapsed time taken for the linear SVM to train and test with all reports was 63 seconds, with CSB reports was 

28 seconds, and 20 seconds with the NTSB reports– all using the laptop configuration described in the 

methodology section. 

Word clouds were used in this research on an attempt to inspect the bag-of-words contents from the training 

and testing sets in the different models, in order to better understand their performance.  Figure 5,  Figure 6, and 

Figure 7 provide visualisation to the more frequent words in training and testing sets bag-of-words for all 

reports, CSB reports and NTSB reports. 



 

 

 

 

Figure 5. Word cloud for the trained model all reports. 

 

Figure 6. Word cloud for the CSB model. 

 

Figure 7. Word cloud for the NTSB model. 

  



 

 

4. Case studies  

 

In order to test the model in new accident reports (i.e., not yet on Mata-D), two investigation reports from 

different industry sectors (aviation and oil & gas) were chosen to be analysed and classified by the same expert 

that originated the dataset. The results of the automated classification were not shown to him before the task, to 

avoid him to get biased. Many tests were conducted prompting the automated tool to analyse different sections 

of each report, to see if the analysis of different chapters impacted the results in different ways. The results 

shown in Table 8 and Table 11 present the results when the tool analysed the full report.  

4.1. Aviation case study – 2018 Boeing 737 MAX 8 AIRCRAFT final accident report 

On October 2018, an accident with a Lion Airline aircraft,  led to 189 fatalities (KNKT, 2019). Five months 

later, in 2019, an Ethiopian Airlines plane crashed minutes after take-off, killing all 157 onboard (Marks and 

Dahir, 2020). The fact that both accidents involved the same aircraft model, a Boeing 737-8 MAX, had 

concerned civil society and safety regulators about the possible common flaws, which resulted in all 387 planes 

with same model grounded globally (BBC, 2019). The two events have been famously known by the potential 

design flaws of the Manoeuvring Characteristics Augmentation System (MCAS) which might have mislead the 

pilots’ actions (Chronopoulos and Guzman).  

Differently from the first test of the tool performed on the preliminary accident report (Morais et al., 2019), 

this research tested the machine-learning tool on the final accident report of the Lion Air Aircraft flight, issued 

on October 2019 (one year after the accident) (KNKT, 2019). Although the final accident report of Ethiopian 

airlines was reportedly issued (Marks and Dahir, 2020), the link was not accessible for unknown reasons until 

the date this paper was submitted to reviewers, thus not included in this research (Google, 2018; Zhang et al., 

2019). For the classification of the Lion Airline report, the three different training sets were also pursued (all 

publicly available reports, all CSB reports, and all NTSB reports). The final accident report was previously 

classified by the same experts which have classified MATA-Dataset within the CREAM human factors 

taxonomy, in order to compare their similarity in new reports. Table 8 shows the comparison between human 

factors classifications obtained with human coding and different training sets. The complete report was 

considered (from ‘SYNOPSIS’ to ‘6 APPENDICES’).  

The table was colour coded according to the legend below to help the reader understand how the model 

prediction metrics were calculated. It also helps to show what predictions the authors considered more important 

for this study (the darker the colour, the more important). 

(  ) True positives: dark green (expert classified as ‘1’ and machine predicted correctly as ‘1’) 

(  ) True negatives: light green (expert classified as ‘0’ and machine predicted correctly as ‘0’) 

(  ) False negatives: dark red (expert classified as ‘1’, but machine wrongly predicted as ‘0’) 

(  ) False positives: red (expert classified as ‘0’, but machine wrongly predicted as ‘1’) 

 

  



 

 

    

Expert 
all 

reports 

 CSB 

reports 

NTSB 

reports 

H
U

M
A

N
 

Action 

Execution 

(Error 

Modes) 

Wrong Time 1 0 0 0 
Wrong Type 0 0 0 0 
Wrong Object 0 0 0 0 
Wrong Place 1 1 0 1 

Specific 

Cognitive 

Functions 

Observation 

Observation Missed 0 0 0 0 
False Observation 0 0 0 0 
Wrong Identification 0 0 0 0 

Interpretatio

n 

Faulty diagnosis 1 1 0 1 
Wrong reasoning 0 0 0 0 
Decision error 0 0 0 0 
Delayed interpretation 1 0 0 0 
Incorrect prediction 0 0 0 0 

Planning 
Inadequate plan 1 0 0 0 
Priority error 1 0 0 0 

Temporary Person 

Related Functions 

Memory failure 0 0 0 0 
Fear 0 0 0 0 
Distraction 1 0 0 1 
Fatigue 0 0 0 0 
Performance Variability 0 0 0 0 
Inattention 0 0 0 0 
Physiological stress 0 0 0 0 
Psychological stress 0 1 0 0 

Permanent Person 

Related Functions 

Functional impairment 0 0 0 0 
Cognitive style 0 0 0 0 
Cognitive bias 0 0 0 0 

T
E

C
H

N
O

L
O

G
Y

 Equipment 
Equipment failure 1 1 0 0 
Software fault 0 0 0 0 

Procedures Inadequate procedure 1 1 1 1 

Temporary Interface 

Access limitations 0 0 0 0 
Ambiguous information 1 0 0 0 
Incomplete information 1 0 0 0 

Permanent Interface 
Access problems 0 0 0 0 
Mislabelling 0 0 0 0 

O
R

G
A

N
IS

A
T

IO
N

 

Communication 
Communication failure 1 0 0 0 
Missing information 1 1 0 0 

Organisation 

Maintenance failure 1 1 1 0 
Inadequate quality 

control 
1 

1 1 1 

Management problem 1 0 0 0 
Design failure 1 1 1 1 
Inadequate task 

allocation 
1 

1 1 1 

Social pressure 0 0 0 0 

Training 
Insufficient skills 1 1 1 1 
Insufficient knowledge 1 1 0 0 

Ambient Conditions 

Temperature 0 0 0 0 
Sound 0 0 0 0 
Humidity 0 0 0 0 
Illumination 0 0 0 0 
Other 0 0 0 0 
Adverse ambient 

conditions 
0 

0 0 0 

Working Conditions 

Excessive demand 1 0 0 0 
Inadequate workplace 

layout 
0 

0 0 0 

Inadequate team 

support 
1 

0 0 0 



 

 

Irregular working hours 0 0 0 0 
   Sum of true positives 11 6 8 

   Sum of true negatives 30 31 31 

   Sum of false positives 1 0 0 

   Sum of false negatives 11 16 14    

Accuracy 77% (79%) 70%  74%  

   
Precision 

92% 
(100%) 

100%  100%  
   

Recall (or true positive rate) 50%  27%  36%  

   F1 Score 65% (67%) 43%  53%  

 

Table 8. Virtual classifier trained using different report set vs. expert classification for Lion Airline accident report 

(Boeing 737-8MAX). 

 

According to Table 8, the model trained with all reports retrieved the best accuracy, recall and F1 score. 

Only the precision was slightly lower than those obtained using the CSB and NTSB reports. When the classifier 

is trained with all reports the following factors were observed in the Lion Air accident operating with the Boeing 

737 MAX: human error of execution of wrong place (i.e. action out of sequence); the cognitive function failure 

of faulty diagnosis; the technological factors of equipment failure and inadequate procedure; the organisational 

factors of missing information, maintenance failure, inadequate quality control, design failure, inadequate task 

allocation, insufficient skills, insufficient knowledge. The confusion matrices for the three models are presented 

in Table 9. 

 

  All reports model  CSB reports  NTSB reports 

T
ru

e 
cl
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0 30 1  31 0  31 0 

1 11 11  16 6  14 8 

  0 1  0 1  0 1 
  Predicted class  Predicted class  Predicted class 

 

Table 9. Confusion matrices for the Boeing 737 MAX accident report predictions. 

 

The report was also classified after selecting its potentially more important sections, which carried more 

information about the accident causes (the report initial information was discarded, as it contained overall info 

about the plane and not about the accident). For all three models, the performance metrics obtained are mostly 

similar to the analysis of the whole report, with slight improvement only for all reports model in terms of 

accuracy (79%), precision (100%) and F1 score (67%). Table 10 shows the results after grouping the model 

outputs for all the 53 factors into 4 main groups (i.e., human errors, individual factors, technological factors, 

and organisational factors).  

 
All 

reports 

Human errors and 

cognitive function 

failures 

Individual 

factors 

Technological 

factors 

Organisational 

factors 

Accuracy 71% 82% 75% 80% 

Precision 100% 0% 100% 100% 

Recall 33% 0% 50% 64% 

F1 Score 50% 0% 67% 78% 

Table 10. Model performance by sets of human factors for the Boeing 737 MAX report. 

 



 

 

The word cloud was included as it might serve as an additional support for the user to check if the 

information in the report is being correctly extracted or if there are problems that deserve any intervention to 

improve the prediction performance. It might be also important to compare the word cloud obtained with the 

new report (Figure 8) with the word clouds of the training and testing sets (Figure 5, Figure 6, and Figure 7). 

 

Figure 8. Word cloud for the Boeing 737 MAX accident report. 

To classify the Lion Air Accident report, the algorithm took 74 seconds with the model trained with all 

reports, 32 seconds with model trained with CSB reports, and 30 seconds with model trained with NTSB reports 

(considering the training time).  

 

4.2. Oil & Gas case study: FPSO Cidade de São Mateus (CDSM) accident report  

On February 2015, an explosion onboard FPSO Cidade de São Mateus killed nine, injured 26 workers, as 

well as caused damage to the installation, and production halt of two gas production fields up to this date (2021). 

The Brazilian Oil & Gas regulator (ANP) included in their investigation report root causes from the design 

phase to the emergency response. The FPSO (floating production, storage and offloading unit) was operated by 

BW Offshore in gas fields under concession to Petróleo Brasileiro S.A (Petrobras) in Brazilian waters (ANP, 

2015). 

The tool was also trained with the same training sets adopted to the aviation case study. The FPSO CDSM 

accident report was previously classified by the same experts as MATA-Dataset and Lion Airline report. Table 

11 shows the comparison between human factors classifications obtained with human coding and the different 

training sets. The complete report was considered (from its title to ‘Conclusion’ chapter).  
 

  

  

Expert  
All 

reports 

CSB 

reports 

NTSB 

reports 

H
U

M
A

N
 

Action 
Execution (Error 

Modes) 

Wrong Time 0 0 0 0 

Wrong Type 0 0 1 0 

Wrong Object 0 0 0 0 

Wrong Place 1 0 0 1 

Specific 

Cognitive 

Functions 

Observation 

Observation Missed 1 0 0 1 

False Observation 0 0 0 0 

Wrong Identification 0 0 0 0 

Interpretation 

Faulty diagnosis 1 0 0 1 

Wrong reasoning 1 0 1 0 

Decision error 0 0 0 0 

Delayed interpretation 0 0 0 0 

Incorrect prediction 0 0 0 0 

Planning 
Inadequate plan 1 0 0 0 

Priority error 0 0 0 0 

Memory failure 0 0 0 0 



 

 

Temporary Person Related 

Functions 

Fear 0 0 0 0 

Distraction 0 0 0 0 

Fatigue 0 0 0 0 

Performance Variability 0 0 0 0 

Inattention 0 0 0 0 

Physiological stress 0 0 0 0 

Psychological stress 0 0 0 0 

Permanent Person Related 

Functions 

Functional impairment 0 0 0 0 

Cognitive style 0 0 0 0 

Cognitive bias 1 0 1 0 

T
E

C
H

N
O

L
O

G
Y

 Equipment 
Equipment failure 0 0 0 0 

Software fault 0 0 0 0 

Procedures Inadequate procedure 1 1 1 1 

Temporary Interface 

Access limitations 0 0 0 0 

Ambiguous information 0 0 0 0 

Incomplete information 1 0 0 1 

Permanent Interface 
Access problems 0 0 0 0 

Mislabelling 0 0 0 0 

O
R

G
A

N
IS

A
T

IO
N

 

Communication 
Communication failure 1 0 0 1 

Missing information 1 0 0 0 

Organisation 

Maintenance failure 1 1 1 0 

Inadequate quality control 1 1 1 1 

Management problem 0 0 0 0 

Design failure 1 1 1 1 

Inadequate task allocation 1 1 1 1 

Social pressure 1 0 0 0 

Training 
Insufficient skills 1 0 0 1 

Insufficient knowledge 1 0 1 0 

Ambient Conditions 

Temperature 0 0 0 0 

Sound 0 0 0 0 

Humidity 0 0 0 0 

Illumination 0 0 0 0 

Other 0 0 0 0 

Adverse ambient 

conditions 
0 0 0 0 

Working Conditions 

Excessive demand 1 0 0 0 

Inadequate work place 

layout 
0 0 0 0 

Inadequate team support 0 0 0 0 

Irregular working hours 0 0 0 0 

   Sum of true positives 5 8 10 

   Sum of true negatives 35 34 35 

   Sum of false positives 0 1 0 

   Sum of false negatives 13 10 8 
   Accuracy 75% 79% 85% 

   Precision 100% 89% 100% 
   Recall (true positive rate) 28% 44% 56% 

   F1 Score 43% 59% 71% 

 

Table 11. Virtual classifier vs. expert classification for FPSO Cidade de Sao Mateus accident report classification. 

 

The model trained with NTSB reports retrieved the best accuracy, precision, recall and F1 score. If trained 

with NTSB reports the following factors were observed in the oil & gas installation, the FPSO Cidade de Sao 

Mateus: human errors of execution of wrong place (i.e. action out of sequence); the cognitive function failures 

of observation missed and faulty diagnosis; the technological factors of inadequate procedure and incomplete 

information (related to temporary interfaces); the organisational factors of communication failure, inadequate 

quality control, design failure, inadequate task allocation, and insufficient skills. For another visualisation of 

true and false predictions, the confusion matrices for the three models are presented in Table 12. 

 

 

 



 

 

  All reports model  CSB reports  NTSB reports 
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0 35 0  34 1  35 0 

1 13 5  10 8  8 10 

  0 1  0 1  0 1 
  Predicted class  Predicted class  Predicted class 

 

 

Table 12. Confusion matrices for FPSO Cidade de Sao Mateus accident report predictions. 

The report was also classified after selecting its potentially more important sections, which carried more 

information about the accident causes (the chapters 3, 4 and 5 were discarded as they had more information on 

how the installation should operate rather than what went wrong). For all three models, the performance metrics 

obtained were mostly similar to the analysis of the whole report, with slightly improvement only for all reports 

model in terms of accuracy (77%), recall (33%) and F1 score (50%). Table 13 shows the results after grouping 

the model outputs for all the 53 factors into 4 main groups (i.e., human errors, individual factors, technological 

factors, and organisational factors).  

 
All reports Human errors and 

cognitive function 

failures 

Individual 

factors 

Technological 

factors 

Organisational 

factors 

Accuracy 62% 91% 88% 70% 

Precision 0% 0% 100% 100% 

Recall 0% 0% 50% 40% 

F1 Score 0% 0% 67% 57% 

 

Table 13. Model performance for FPSO Cidade de Sao Mateus by sets of human factors. 

The word cloud in Figure 9 shows that the text extracted from the full report had some frequent words that 

were not related to any accident cause of human factor. The words brazilian, agency, biofuel, and ssm, are 

related to the name of the investigation body that was repeated at the footnote in every page – thus, if possible, 

it would be desirable to clean footer and headers.  

 
Figure 9. Word cloud for the full FPSO CDSM accident report. 



 

 

To classify the Lion Air Accident report, the algorithm took 66 seconds with the model trained with all 

reports, 34 seconds with model trained with CSB reports, and 24 seconds with model trained with NTSB reports 

(considering the training time).  

5. Discussion 

 

MATA-D has the potential to incorporate the information of human reliability into risk assessments. It 

needs more data to increase its accuracy and reduce uncertainty. However, the data collection process of reading 

and classifying reports is a time consuming and challenging task, prone to errors. Therefore, this study aimed 

at demonstrating the capability of a machine learning tool trained using previously classified accident reports 

in MATA-D database to classify new accident reports with sufficient accuracy, precision and recall. In other 

words, this research investigates if machine learning is capable of accelerating the expansion of this database 

while maintaining the same data quality obtained with human experts. The results have shown that the 

automated classification of new accident reports can accelerate the data collection process, as it can reduce the 

time from around 3 days (when the report is classified by an expert) to around 1 minute.  

5.1.  Performance and accuracy of the automatic classifier tool 

Four performance metrics were selected to investigate the differences between expert and machine-based 

classification. Table 14 benchmarks the performance metrics on this study against previous studies from 

literature. The results are summarised in Table 14 for the classifier trained using all reports. The classifier in 

this study and from previous studies were trained using all the human factors and the average performance 

among all the factors is reported in Table 14.  Additionally, only the best results available from the literature 

were considered. For instance, in the study of (Grech et al., 2002), when more reports were tested the precision 

of the method dropped from 84% to 48%, and the recall dropped from 89% to “not possible to measure”. 
 

Metric Test set  
Aviation 

case study  

Oil & gas 

case study  
Previous studies 

Accuracy 86% (SD = 2%) 77% 75% 

44% (Robinson et al., 2015) 

75% (Heidarysafa et al., 2018) 

90%  (Ribeiro et al., 2020) 

Precision 
60% (SD = 6%) 

 
92% 100% 

22%  (Robinson et al., 2015) 

73%  (Goh and Ubeynarayana, 2017) 

84% (Grech et al., 2002) 

Recall 
46% (SD = 4%) 

 
50% 28% 

63%  (Goh and Ubeynarayana, 2017) 

89%  (Grech et al., 2002) 

F1 score 52% (SD = 4%) 65% 43% 

53%   (Ribeiro et al., 2020) 

67%  (Goh and Ubeynarayana, 2017) 

71%  (Heidarysafa et al., 2018) 

Table 14. Average performance metrics for all the 53 factors versus results from literature.   

The availability of an acceptable threshold for each performance metric, which could help to decide when 

the data collected by an automatic classification could be added to a database without corrupting its quality, is 

not available. The comparison in Table 14 shows  that, from the four chosen metrics, only the recall is below 

the benchmark studies. 

To understand how the recall impacts the quality assurance of this project, it is important to understand the 

objectives of the classification. At a first sight the recall metric seems to be the best candidate for human 

reliability classifier, because a performance shaping factor that goes undetected prevents the allocation of 

resources for the risk reduction. However, a good precision is also important for resource allocation– for a risk 

assessment purpose it might be more detrimental, as resources are allocated to prevent an event that might not 

really contribute to the risk. In other words, both false negatives and false positives are detrimental for the 



 

 

decision of partially replacing experts in the data collection. As it is not possible to achieve a precision and a 

recall of 100% at the same time (Buckland and Gey, 1994), it is suggested that a balance between both is 

achieved using the F1 score. If at some part of the analysis, it is considered that the recall or the precision are 

not equally important, it is suggested to use Fβ with β > 1 (recall more important) or β <1 (precision more 

important).  

Although the test set already provided the metrics needed to benchmark the performance of the proposed 

automatic classifier against previous studies, the presented case studies offered additional insights into how the 

classifier performed. The case studies have demonstrated the applicability of the approach for different sectors 

(i.e., aviation and oil & gas) although the performance achieved was slightly out of the bounds established by 

the test set standard deviation, especially regarding the precision and the recall. Literature suggests that this 

difference might be decreased by using domains specific training sets (Brownlee, 2018) and this approach can 

be adopted  to improve the recall for a specific industry sector. However, in this study the aim is to learn from 

accident occurred in different sectors and therefore training a generic classifier.  

For the oil & gas case study trained with all reports, a perfect prediction (100%) has been obtained although 

with a low recall score (28%), meaning that only a few human errors and performance shaping factors were 

identified but no false positive.  

It has also been tested whether grouping all the 53 factors into 4 main groups (i.e., human errors, individual 

factors, technological factors, and organisational factors) would have been able to improve the classification 

when the classifier is trained using all reports. For the aviation case study, as shown in Table 10, the F1 score 

improved to 78% for organisational factors and only to 65% for technological factors (compared to the overall 

mean of 65% shown in Table 14). For the oil & gas case study, in Table 13, the F1 score of organisational and 

technological factors improved to 78% and 67%, respectively due to the use of an enriched training dataset with 

higher frequency of organisational and technological factors. For both case studies, the F1 score of human errors 

and individual factors performed worse when analysing the factors by groups. 
Surprisingly, the oil & gas case study has showed better results when the classifier was trained using only 

NTSB reports. Although this set contains some reports related to oil & gas terminals and distributions, the 

majority of reports are from the aviation sector. The expectation was that CSB reports would have provided a 

better training set. For the Lion Air accident report, the classifier trained with all reports performed better than 

those trained only with NTSB reports, which contains more aviation specific language (as can be seen by the 

word cloud presented in Figure 7). This result might be due to the different formats used for the reports tested, 

as they are from different investigation bodies. 

Observing the results of the case studies, it has been noted that the majority of categories detected by the 

machine-learning approach were inside the 26 most significant contributing factors per cluster identified in a 

previous research (Moura et al., 2017b). This might suggest training the classifier using only fewer frequent 

categories. However, tests were performed reducing the number of categories to the 13 most frequent ones, and 

the results did not present significant changes, e.g., an improvement of ~5% for precision, recall and F1 score, 

but with a deterioration of the same level in the accuracy. Therefore, it has been decided to keep all categories 

in the training set, as the main goal of this research is to expand the current MATA-D dataset using the same 

categories already available and therefore decrease the uncertainty associated to rare combinations of human 

error and performance shaping factors.  

This study had not found a significant difference between the automated classifications of full reports and 

of reports’ selected sections. Word cloud figures were provided to visualise frequent words and aided the task 

of inspecting which sections of the accident reports provided more relevant information.  

5.2. Future improvements and recommendations 

One of the limitations of the current classifier is its moderate capability to identify infrequent classes. One 

solution is to enrich the training set with accident reports where those infrequent classes had occurred (according 

to an analysis provided by human factor experts) – by training the model on these classes it is expected that the 

overall recall metric will increase as more data is used. Different resampling strategies might also be used (e.g., 

targeting infrequent classes to resample rather than sampling the training data set randomly). Finally, algorithms 

that maximise the recall while using the precision metric as a constraint should also be investigated (see e.g. 

(Bennett et al., 2017).   Solutions to strengthen learning with regards to the small class might be applied (e.g., 

adjusting the SVM class boundary based on kernel-alignment). Further research might also assume higher 



 

 

misclassification costs applied to samples in the infrequent classes and seek to minimize high cost errors 

(Brownlee, 2021; Sun et al., 2009). 

In addition, further development of the word cloud tool to inspect bags-of-words of each human factor 

category are suggested. This might also help to understand some infrequent classes. Additionally, adjustments 

or pre-processing on the format of accident investigation reports could potentially improve the predictions from 

automated classifiers. The availability of good quality accident reports will also improve the performance of 

automatic classifiers.  For instance, accident reports should have consistent chapter enumeration, only repeated 

in the summary, or referred in the body text.  Section titles should clearly state if the information explain the 

normal characteristics of the system and it should not mix important information about the accident within 

normal behaviour.   Key information should also be provided in textual format and not only as image. Finally, 

the public availability of accident reports even if not in English (as translating tools are steadily getting better) 

would significantly contribute to the knowledge of human error.  

6. Conclusions 

A virtual human factors classifier based on machine learning has been presented to provide an automatic 

classification of accident reports involving human error. The approach represents an efficient way of expanding 

existing human reliability databases based on accident reports analysed by a machine-learning algorithm. The 

approach has the potential to substitute, or at least support, the classification task normally conducted by a 

human expert (a time-consuming process that could take weeks, depending on the complexity of the event and 

on the number of reports or inquiries available). The developed tool provides nearly real-time classification into 

a specific taxonomy able to classify a two hundred pages report in a minute (an insignificant time compared to 

the time required for a person to complete the same task).  

The findings will be of interest for risk assessors of any industry sector that may need to learn more and 

faster from major accidents, as automated text analysis can help them to expand their datasets. The presented 

approach focused at collecting new data for the MATA-D, but the tool can easily be used with other human 

reliability taxonomy or to be applied to components’ reliability data, as long as a labelled dataset is provided 

together with the text sources. 

The case studies showed that the approach is robust and efficient. The performance metrics achieved are 

satisfactory when compared against human classification and previous studies. In addition, this is the only study 

which has been trained using reports from different industry sectors, and with a relatively large number of 

human reliability categories. The results have demonstrated the possibility of using machine-learning based 

approaches for helping the empirical data collection to improve human reliability analysis, and finally learning 

lessons from different industry sectors in an efficient and timely way.  
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