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C E L L  B I O L O G Y

Cellular costs underpin micronutrient  
limitation in phytoplankton
J. Scott P. McCain1,2*, Alessandro Tagliabue3*, Edward Susko2,4, Eric P. Achterberg5,  
Andrew E. Allen6,7, Erin M. Bertrand1,2*

Micronutrients control phytoplankton growth in the ocean, influencing carbon export and fisheries. It is currently 
unclear how micronutrient scarcity affects cellular processes and how interdependence across micronutrients 
arises. We show that proximate causes of micronutrient growth limitation and interdependence are governed by 
cumulative cellular costs of acquiring and using micronutrients. Using a mechanistic proteomic allocation model 
of a polar diatom focused on iron and manganese, we demonstrate how cellular processes fundamentally underpin 
micronutrient limitation, and how they interact and compensate for each other to shape cellular elemental stoichiometry 
and resource interdependence. We coupled our model with metaproteomic and environmental data, yielding an 
approach for estimating biogeochemical metrics, including taxon-specific growth rates. Our results show that 
cumulative cellular costs govern how environmental conditions modify phytoplankton growth.

INTRODUCTION
Marine phytoplankton are responsible for approximately half of 
global net primary productivity, supporting key ecosystem services 
(1). Micronutrients, such as iron, are often depleted in the ocean, 
limiting phytoplankton growth and therefore affecting fisheries 
productivity and carbon export globally (2–4). These resources are 
cofactors for enzymes that catalyze intracellular reactions, and 
unlike the macronutrients nitrogen and phosphorus, they comprise 
a negligible fraction of biomass. Cellular micronutrient stoichiome-
try is highly variable (5), and elements can conditionally substitute 
for one another (6). Therefore, traditional approaches that simply 
link growth rate to resource scarcity may not apply.

Growth is the emergent outcome of a range of internal cellular 
processes competing for shared resources (7) that are governed by 
costs [e.g., number of amino acids per protein or energetic require-
ments (8–10)] and constraints [e.g., limits of protein density in a 
membrane (11)]. Protein synthesis capacity has been identified as 
a key growth-limiting process in model heterotrophic organisms 
with various carbon sources (12, 13). Only recently have other non-
carbon macronutrients been considered and additional complexi-
ties been revealed (14) [e.g., transcriptional limitation under low 
phosphorus (7)]. Currently, we lack knowledge regarding which 
internal processes limit growth under micronutrient deficiency. 
Furthermore, while we know that multiple nutrients can simultane-
ously affect growth rate (15), the mechanisms by which they interact 
appear to vary for each nutrient pair (6).

The overriding conceptual view in oceanography is not suffi-
cient to mechanistically represent micronutrient limitation and 
resource interdependence. Currently, external resource scarcity 

(e.g., bioavailable forms of nitrogen, phosphorus, iron, etc.), relative 
to fixed requirements, is assumed to control growth and carbon 
fixation rates (16,  17). However, this ignores the role of internal 
processes in limiting growth. It also prevents general mechanisms 
of resource interdependence, which may arise because different 
internal processes compete for shared cellular resources from being 
included in large-scale ocean models. While external resource scarcity 
is clearly the ultimate cause of limitation, the proximate causes drive 
the sensitivity to environmental change. For example, temperature- 
driven changes in ribosomal translation rates might influence cellular 
nitrogen-to-phosphorus ratios because ribosomes are a large por-
tion of phosphorus quotas (18). Currently, ocean models used for 
climate change projections parameterize growth as a simple func-
tion of the single most limiting resource (17), which introduces sub-
stantial uncertainties in a changing environment (3). While some 
phytoplankton models have leveraged quantitative, mechanistic 
insights into cellular processes (18–23), none have examined inter-
actions between micronutrients or used in situ gene expression data 
to resolve cellular processes.

In this study, we quantify the proximate costs and constraints 
associated with micronutrient limitation via a novel coupling of 
cellular modeling and metaproteomics from the Southern Ocean. 
By deriving a phenomenological model, we identify key factors con-
trolling interdependence across micronutrients. Last, we demon-
strate a framework for inferring critical biogeochemical metrics, 
such as growth rates, by coupling in situ gene expression and 
geochemical data with cellular modeling. Together, this framework 
quantifies cellular costs and constraints to examine the mechanistic 
underpinnings of phytoplankton growth in the ocean.

RESULTS AND DISCUSSION
Estimating cellular costs and constraints with a diatom 
proteomic allocation model
We estimated the cellular costs and constraints of micronutrient 
limitation in phytoplankton by developing a mechanistic, proteomic 
allocation model for the polar diatom Fragilariopsis cylindrus 
(24, 25). Our model considers the essential micronutrients iron and 
manganese, which both influence primary productivity in the 
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Southern Ocean (4, 26–28), and represents the various processes 
underlying cellular growth, such as photosynthesis and translation 
(25, 29–31). The model is composed of several “coarse-grained” 
protein pools (i.e., proteins grouped together with related functions; 
Fig. 1A): iron- and manganese-specific transporters, photosystem 
units, nitrogen uptake and metabolism (from nitrate to amino 
acids), and antioxidants [represented here by manganese super-
oxide dismutase (MnSOD)]. Each protein pool has an associated cost, 
which is proportional to the number of amino acids per pool [esti-
mated using the F. cylindrus genome (24)]. Ribosomes are assumed 
to be allocated to maximize the steady-state specific growth rate, 
and each protein pool, metabolite, and internal free pool of Fe and 
Mn is described by an ordinary differential equation (ODE). The 
system of ODEs is connected by various stoichiometric coefficients 
obtained from the literature, for example, Mn atoms per MnSOD or 
the total number of Fe atoms within all proteins involved in con-
verting nitrate into amino acids. We then integrated the system of 
ODEs forward in time to obtain steady-state estimates of each state 
variable, from which we calculate the specific growth rate. In our 
model, we define the specific growth rate as the rate of biosynthesis 
of amino acids relative to the average protein per cell (25). We used 
Bayesian optimization to determine the optimal ribosomal allocation 
under a given set of dissolved Mn (dMn), Fe (dFe), and light conditions 
(Materials and Methods). Iron and Mn interact via oxidative stress, 
where under low dFe, electrons leak more frequently from electron 
transport (32), thus increasing the requirement for the Mn-containing 
antioxidant SOD (33). Under low antioxidant availability, the cell 
must replace proteins damaged by reactive oxygen species (ROS) by 
increasing protein synthesis. Accordingly, the mismatch between 
superoxide production and its consumption via MnSOD leads to 

a protein synthesis rate penalty in our model (see Materials and  
Methods).

We then leveraged proteomic and metaproteomic data to esti-
mate three key costs and constraints: (i) internal Fe and Mn protein 
cost, (ii) available membrane space for transporters (34), and (iii) 
catalytic efficiency of MnSOD (Materials and Methods). (i) refers to 
all proteins required for acquiring, shuttling, and storing Fe within 
the cell [e.g., ferritin (35)], which is dynamic such that Fe protein 
cost increases with Fe quota (an identical cost is applied for Mn; see 
Supplementary Discussion). (ii) refers to the proportion of mem-
brane space available for metal transporters (11, 34), for which we 
extended a mechanistic nutrient uptake model (36–38), accounting 
for competition for membrane space between iron and manganese 
transporters. (iii) represents the effectiveness of a single MnSOD unit.

Model parameters were estimated using Approximate Bayesian 
Computation (ABC) in a novel combination with diatom proteomes 
inferred from a metaproteomic time series (39). The metaproteome 
characterization coupled peptide mass spectrometry with meta-
transcriptomics (40) to examine protein expression over time at the 
Antarctic sea ice edge, where concurrent bottle incubations indicated 
a transition into micronutrient stress [cobalamin, Mn, and Fe (28, 41)]. 
Coarse-grained diatom protein pool biomass was estimated using 
the sum of diatom-specific peptide intensities (fig. S1) (42). Coarse- 
graining is necessary to prevent biases in peptide detectability and 
quantification across complex samples (43). Last, we combined the 
inferred diatom proteome observations with two previously pub-
lished diatom proteomic datasets to estimate each parameter 
(Materials and Methods; fig. S2) (44, 45). We have assessed various 
forms of biases and developed methods for connecting environmen-
tal gene expression data to quantitative models of cellular processes 
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Fig. 1. A polar diatom-based proteomic allocation model combined with metaproteomic observations reproduces expected cell behavior. (A) Schematic of 
proteomic allocation model. Micronutrients are taken up via nutrient-specific protein transporters (left). Internal pools of Mn and Fe (black boxes) are then accessible for 
protein synthesis. Photosystems require both Fe and Mn and are the source of energetic equivalents (“e”; black box), which are then used by protein synthesis, micronutrient 
uptake, and nitrogen metabolism (the latter two are not shown with arrows). Protein pools are synthesized via ribosomes and represented with circle-ended lines. All 
model runs were conducted with nitrate at saturating levels. (B) Growth rates across a range of Fe and Mn concentrations are quantitatively similar to growth rates in 
culture (fig. S4). (C) Fe transporters decrease with increased Fe concentrations (dMn = 500 pM), a commonly observed phenomena in cultures (49, 70).
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(Materials and Methods), providing a path forward to leverage 
large-scale datasets in this way.

Our model reproduces expected cellular behavior across a range 
of dFe and dMn concentrations (Fig. 1, B and C, and fig. S3; using 
posterior modes for estimated parameters, fig. S2). For example, the 
model quantitatively reproduces growth rates (46), Mn and Fe 
cellular quotas (33, 47), and dFe uptake rates within observational 
constraints (48), despite no prescribed parameterization or model 
training on these data types (figs. S4 to S7). We are also able to re-
produce the observed increase in transporters under low dFe and 
dMn (Fig. 1C and fig. S8) (20, 49), the expected interaction between 
light and Fe quota (fig. S9 and Supplementary Discussion) (50), and the 
increase in ribosomes with growth rate (Fig. 2 and fig. S8) (13, 51). 
Our analysis suggests that dMn and dFe interactively influence 
growth more at high dFe, rather than at low dFe, and a reframing of 
previous results supports this conclusion (fig. S10, Supplementary 
Discussion). Overall, these results show that our model is able to 
represent how diatom cells respond in different environments and 
is consistent with a variety of empirical observations.

Multiple internal processes, governed by cellular costs 
and constraints, control growth
Internal processes, which are a function of cellular costs, are the 
proximate causes of limitation. We conducted a set of computational 

experiments by systematically increasing each model parameter, 
which allowed us to examine the effect of different internal processes 
on growth (Fig. 2A and figs. S11 and S12). As expected, increasing 
stoichiometric coefficients for micronutrients (e.g., Fe per photo-
system unit) had large, negative impacts on growth rates (Fig. 2A). 
However, protein costs (in terms of amino acids), internal rates, 
and energetic costs also had similarly large impacts (Fig. 2A). More-
over, the magnitude by which a given process affected growth dif-
fered depending on both dMn and dFe concentrations, illustrating 
the inadequacy of a simple “single-resource scarcity” view that 
underpins many ocean models. Our results highlight the need to 
reframe growth as the emergent outcome of internal cellular pro-
cesses (Fig. 2B). This concept is well known in cell systems biology 
[e.g., (7)], but it is rarely represented in oceanography (52). In our 
model, growth rate is proportional to the number of biosynthetic 
pathway units per cell (25) (i.e., all proteins involved in converting 
nitrate into amino acids; Fig. 1A), which is, in turn, controlled by (i) 
available Fe for incorporation as cofactors, (ii) available ribosomes, 
(iii) sufficient amino acids for protein synthesis, and (iv) sufficient 
energy (Fig. 2C and fig. S13). This suite of internal processes simul-
taneously control growth rate, and the strength of their influence 
varies under different dFe and dMn concentrations.

The multiplicity of internal processes controlling growth can 
have significant consequences for cellular stoichiometry and gene 
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Fig. 2. Cellular costs and constraints influence growth rate across a range of Fe and Mn concentrations. (A) Model experiments showing how a fivefold increase in 
each parameter value influences growth rate, relative to the base model. Note that the parameter Fixed Proteome Percentage is divided by 5. (B) Micronutrient-controlled 
growth is the outcome of a range of internal processes, simultaneously controlling growth rate (proximate processes controlling growth rate are shown with black ar-
rows). These internal processes are a function of cellular costs and constraints. (C) One internal, modeled process directly controlling growth is the number of ribosomes 
per cell, shown across iron and manganese concentrations.
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expression. For example, under low Mn conditions, synthesis of 
Mn-containing antioxidants was impeded, leading to more oxida-
tive stress (Fig.  3A). In our model, the consequence of oxidative 
stress is damaged proteins. This resulted in increased ribosomes per 
cell, which maintains total protein synthesis under high oxidative 
stress (Fig.  3A). Ribosomes are a large portion of phytoplankton 
phosphorus quotas (53), and they increase by ∼150% as Mn is 
lowered from 3 to 1 pM, suggesting that antioxidant allocation and 
the dynamics of oxidative stress can influence cell macronutrient 
demands and cellular stoichiometry. This interaction between Fe, Mn, 
and phosphorus around oxidative stress arises because our model is 
able to explicitly represent the internal processes that compensate 
for each other under micronutrient limitation, which, in turn, influ-
ences the cellular stoichiometry of Fe, Mn, and phosphorus.

Under certain conditions (i.e., low dFe and low dMn; Fig. 3B), a 
diversity of protein allocation strategies to counteract oxidative 
stress still resulted in similar growth rates in our model. We ob-
served two sources of variation across predictions. First, under 
low dFe (e.g., at or below 50 pM dFe), there was a trade-off between 
allocating ribosomes to synthesize ribosomes or antioxidants (Fig. 3B). 
Either approach maintains similar total protein synthesis and 
growth rates. Second, cells sometimes allocate more ribosomes to 
Fe transporters and therefore increase the total Fe quota, alleviating 
electron leakage. This led to a bimodal distribution of Fe quota 
across these low dFe and dMn conditions (Fig. 3C). We predicted a 
range of strategies with similar growth rates, despite explicitly using 
an optimization model to explore adaptive hypotheses about pro-
tein expression (54). We speculate that this range of strategies may 
underlie the diversity of antioxidant systems seen across microbes 
(55). Furthermore, some variation in microbial metabolic strategies 
may be due to different configurations of gene expression (with 
similar cellular costs), yielding similar cellular level outcomes.

Nutrient interdependence is influenced by both  
nutrient-specific and background costs
We quantified how different cellular processes contribute to inter-
dependence between Mn and Fe, in addition to the explicit inter-
action via oxidative stress (described above; Materials and Methods). 
Resources such as micronutrients can be considered independent if 
only a single nutrient controls growth rate, and altering the avail-
ability of another resource has no impact on the growth rate (in 
accordance with Liebig’s Law of the Minimum). In contrast, inter-
dependence between resources occurs when there are multiple, 
simultaneously limiting nutrients whose availability affects growth. 
We used the parameter perturbation experiments conducted at 
different concentrations of dMn and dFe (as above) and quantified 
how every parameter influences the strength of interactivity be-
tween Fe and Mn (see Materials and Methods). Two parameters 
that exhibited high interactivity were amino acids per ribosome and 
internal Mn protein cost (fig. S14). A higher protein cost per ribo-
some decreases the growth rate across all conditions, while internal 
Mn protein cost is only directly related to Mn.

We derived a simple model of an idealized proteome to examine 
mechanisms of resource interdependence related to these parame-
ters. In this idealized proteome, there are only ribosomes and 
Mn- and Fe-related proteins (Materials and Methods) wherein dFe 
and dMn control growth by regulating how much of the proteome 
can be allocated to ribosomes (rather than the micronutrient-specific 
components). This revealed two mechanisms of interdependence: 
(i) the global background cost and (ii) the ratio of Fe and Mn cellu-
lar costs. By only increasing the global background cost (analogous 
to the amino acids per ribosome parameter), interdependence 
across nutrients is strongly altered by depressing the growth rate 
across all conditions (Fig. 4, A to C). In our proteomic allocation 
model, increasing the amino acids per ribosome parameter led to 

Fig. 3. Internal processes rearrange to maximize growth rate. (A) Depletion of dMn leads to fewer antioxidants. To maintain a sufficient pool of undamaged proteins, 
the number of ribosomes consequently increased (with constant dFe = 1000 pM). (B) Examining the distribution of multiple optimization runs revealed a diversity of 
strategies with similar growth rates (with constant dMn = 1000 pM, n = 20 replicate model runs, and variable dFe displayed as shapes). (C) Bimodal distributions of total 
Fe quota per cell, generated from the same optimization runs shown in (B), demonstrate another dimension of this antioxidant-allocation strategy (kernel density of 
distribution shown).
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lower available cellular resources overall, resulting in more inter-
dependence between Fe and Mn. Similar to an ecosystem, when 
resource availability decreases, competition for this smaller pool of 
resources increases. In addition to protein synthesis capacity, we 
hypothesize that this extends to other shared cellular resources (e.g., 
available membrane space).

Examining the ratio of cellular costs for Mn and Fe showed that 
maximum interdependence occurs when the cellular costs of Fe and Mn 
are equal (Fig. 4, D and F; Materials and Methods). For example, the 

internal Mn protein cost parameter had a high interaction index 
(fig. S14); when increased, it led to more similar protein costs be-
tween Fe and Mn. When cellular costs are similar across resources, 
they place similar demands on the pool of shared resources, which 
consequently increases their interdependence. These two mecha-
nisms provide a tractable means to include interdependence in 
global ocean models because it suggests that estimating cellular 
costs for individual nutrients is sufficient to parameterize the over-
all interaction strength. We speculate that considering relative costs 
across resources may also apply to other nutrient pairs and help to 
explain previously observed patterns of interdependencies. For 
instance, the independent relationship between cobalamin and phos-
phorus (56) implies large differences in their cellular costs, whereas 
similar cellular costs between nitrogen and phosphorus may con-
tribute to their interdependence (57).

Inferring in situ rates and quotas by coupling cellular 
modeling with metaproteomics
While our modeling framework can be combined with proteomic 
data to estimate the costs and constraints associated with micro-
nutrients, this coupled approach can also be used to predict in situ 
biogeochemical metrics (Fig. 5A). In this way, our model is able to 
quantitatively reproduce growth rates under high and low dFe from 
a diatom culture (despite no model training on growth rate data; 
Fig. 5B). Using in situ dMn and dFe concentrations and metapro-
teomes from field samples at the Antarctic sea ice edge, in situ 
diatom-specific growth rates (Fig. 5C), Fe cellular quotas (Fig. 5D), 
and Fe uptake rates (Fig. 5E) can be estimated. These metrics are 
typically difficult or impossible to measure from in situ microbial 
communities directly but have important consequences for ocean 
biogeochemistry and ecosystem services. Our approach connects 
these rates and quotas directly with resource allocation strategies 
used by diatoms, highlighting a decrease in protein allocated to 
photosynthesis and an increase in protein allocated to iron acquisi-
tion in the transition into micronutrient stress (fig. S15), resulting 
in decreased growth rates and iron quotas (Fig. 5, C and D). These 
process-based insights are critical for characterizing the role of 
micronutrients in Southern Ocean phytoplankton bloom progres-
sion and fate (58).

Outlook
We combined mechanistic, proteomic modeling with metaproteomics 
to estimate the costs and constraints associated with micronutrient- 
controlled growth in a polar diatom. Our results highlight the role 
of cellular costs rather than environmental scarcity in shaping growth, 
with two key factors: the internal protein cost associated with 
micronutrient use and the available membrane space for trans-
porters. Identifying the differences in protein cost for vacuolar 
versus ferritin-based Fe storage and other micronutrient-associated 
costs would further connect ecological strategies with gene expres-
sion. Available membrane space has an established temperature 
dependence and is an important constraint on nutrient uptake 
kinetics [via membrane saturation (34, 59, 60)], making it critical 
to quantify in a changing ocean. Our approach relied on rich in situ 
gene expression datasets to estimate parameters, highlighting a means 
to quantify cellular costs and constraints.

Parameterizations of phytoplankton growth in global ocean 
models can have dramatic consequences for projections of ecosystem 
services in the context of changing upper ocean resource availability 
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Fig. 4. Interdependence across micronutrients arises from background cellu-
lar costs and the ratio of nutrient-specific costs. (A) A phenomenological model 
of a three-component proteome composed of ribosomes (R), Mn-related proteins 
(Mn), and Fe-related proteins (Fe). Growth rate is proportional to dFe and dMn 
concentrations, and micronutrients influence growth rate by removing potential 
resources allocated to ribosomes (see Materials and Methods for equations). (B and 
C) The background cost of growth (independent of Fe or Mn) can influence the 
apparent interaction between Mn and Fe (Fe equal to 0.5; see Materials and Methods 
for equations). Growth rate is lower overall in (B) compared with (C) because the 
pie charts represent ribosomal mass fraction (total protein mass in ribosomes), not 
number of ribosomes, and this corresponds to the parameter perturbation “amino 
acids per ribosome” (fig. S14). (D) The ratio of micronutrient-specific protein costs 
affects the apparent interaction between micronutrients (K equal to 5), as shown in 
(E) and (F). In (B) and (C) and (E) and (F), units are given as relative concentrations, 
arbitrarily ranging from 0 to 50.
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(3). Embedding a mechanistic representationof resource limitation 
within global ocean models will leverage rapidly expanding “omics” 
datasets to improve predictions of growth responses to environ-
mental change. Developing phenomenological models to represent 
the outcomes of mechanistic cellular models is a tractable next step. 
In this way, mechanistic modeling can provide the biological flexi-
bility and realism (61) necessary for predicting potential tipping 
points in ecosystem services. Mechanistic cellular models, in con-
junction with in situ gene expression measurements and biogeo-
chemical models, will improve projections of ecosystem services 
and further characterize the biological underpinnings of nutrient 
limitation in the changing ocean.

MATERIALS AND METHODS
Model description
We developed a coarse-grained model of intracellular protein 
allocation in the polar diatom F. cylindrus (24), extending coarse-
grained kinetic models previously developed for a range of prokaryotes 
(25, 29–31). Uniquely, we considered micronutrient controls on 
proteomic allocation and applied these principles to a eukaryotic 
phytoplankton. We used Bayesian optimization to determine the 
optimal proportion of ribosomes synthesizing different coarse-grained 
proteomic pools to maximize the steady-state specific growth rate. 
The cost of producing a given coarse-grained pool is a function of 
the protein length or the sum of protein lengths (in units of amino 
acids) within a pool. Specifically, the rate of synthesizing one unit of 

a protein pool is inversely related to the number of amino acids per 
pool. The units of each intracellular variable (metabolites, proteins, 
and free metal pools) are in molecules per cell. As in (25, 31), we 
used a photosynthetic model (62) to parameterize energy produc-
tion rate and similarly calculated a biosynthesis-specific growth rate. 
We first provide a high-level overview of the model structure and 
then give detailed descriptions of parameterizations.
System of equations
The dynamics of each internal metabolite and protein pool are 
described using a differential equation, all with growth rate as a loss 
term (25). The internal free manganese pool (Mni) increases with Mn 
uptake rate (VMn) and decreases with PSU protein synthesis (photo-
system unit, P) at a fixed stoichiometry (φMn,P) and antioxidant protein 
synthesis (A) at a fixed stoichiometry (φMn,A). We solve this system of 
equations by integrating them forward in time to a pseudo-steady state 
(described in more detail in the Supplementary Materials)

    d  Mn  i   ─ dt   =  V  Mn   −  φ  Mn,P      P   −  φ  Mn,A      A   −  [  Mn   i ]  (1)

The internal free iron pool (Fei) is controlled by protein synthe-
sis of Fe-containing protein pools: PSUs and nitrogen metabolism. 
The fixed stoichiometric coefficient for PSUs is larger for Fe com-
pared with Mn, reflecting the higher Fe demand for photosynthesis 
(φFe,P). Also, the nitrogen metabolism pathway (N) requires a fixed 
Fe stoichiometry per pathway (φFe,N)

Fig. 5. By combining cellular modeling with metaproteomic data, we inferred in situ rates and quotas. (A) Schematic for combining environmental parameters (e.g., 
light and dFe), cellular modeling, and metaproteomic observations, to infer rates and elemental quotas. (B) We first demonstrated that the proteomic allocation model 
quantitatively reproduces growth rates from the cultured diatom T. pseudonana (45) under low and high Fe (culture data do not correspond to a posterior probability, 
error bars represent the standard deviation across four replicate cultures). (C to E) Coupling the metaproteome-derived diatom proteome with the cellular model, we can 
quantitatively infer the growth rates, iron quotas, and iron uptake rates of diatoms in these two time points from a complex microbial community. Week 1 corresponds 
to higher dFe and dMn, and week 3 corresponds to lower dFe and dMn [concentrations shown in (C)].
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    d  Fe  i   ─ dt   =  V  Fe   −  φ  Fe,P      P   −  φ  Fe,N      N   −  [  Fe   i ]  (2)

The internal free energy pool e increases with photosynthetic en-
ergy production ve, multiplied by a stoichiometric coefficient that 
implies a fixed number of ATP (adenosine 5´-triphosphate) and 
NADPH (reduced form of nicotinamide adenine dinucleotide phos-
phate) molecules produced per photosynthetic activation (φe). There 
is a small amount of energy required for Mn and Fe uptake (φTMn, φTFe) 
and a large energetic requirement for nitrogen metabolism (φN). 
The total rate of conversion of nitrate into amino acids, Vn, is sub-
sequently used to calculate a biosynthesis-specific growth rate, 
where Vn is the product of TNO3 and kcat,TN. Energy is also con-
sumed through protein synthesis. We used the sum of protein 
synthesis rates for each protein pool multiplied by the amino acids 
per pool (j) and multiplied the entire sum by m, the energetic 
requirement per amino acid elongation

   de ─ dt   =  φ  e    v  e,adjusted   −  φ  TMn    V  Mn   −  φ  TFe    V  Fe   −  φ  N    V  N   −  m      ∑ 
j
        j      j   −  [ e]  

( 3)

Amino acids are produced via nitrogen metabolism (Vn); we 
multiplied this rate by the inverse of the average number of nitrogen 
atoms within each amino acid. Amino acids are then consumed by 
protein synthesis and diluted by growth

    daa ─ dt   =  m  n    V  n   −  ∑ 
j
        j      j   −  [ aa]  (4)

All protein pools are governed by similar dynamics, such that an 
increase can only arise from protein synthesis (j) and a decrease 
can only arise from dilution by growth

    
 dProtein  j   ─ dt   =    j   −  [ j]  (5)

  j ∈ A, P,  T  M   n,  T  F   e,  T   NO  3    , R  (6)

Internal protein cost of iron and manganese
We represented the internal cost of iron and manganese by dynam-
ically changing the Fe uptake cost per transporter (nTFe) as a func-
tion of dFe uptake rate, scaled by growth rate (i.e.,    V  Fe   _    ) and multiplied 
by a constant coefficient (). This approach was similarly applied to 
Mn uptake and Mn transporter cost. nTFe and nTMn are the uptake 
and internal management protein costs

   n  TFe   =  n  TFe,unadjusted   +     V  Fe   ─      (7)

   n  TMn   =  n  TMn,unadjusted   +     V  Mn   ─      (8)

Nutrient uptake kinetics
We modeled nutrient uptake rates of dFe and dMn to include 
both a variable maximum uptake rate and a diffusion layer 
(36–38, 63, 64). A flexible maximum uptake rate (i.e., Vmax) has been 
observed experimentally (49) and predicted theoretically (36, 65), 
and the diffusion layer affects the total diffusive flux to the cell sur-
face at low bulk substrate concentrations. At high substrate concen-
trations (i.e., nutrient replete), the nutrient uptake rate approaches 

the total transporters divided by the “handling time” (h). Note that 
handling time (seconds per substrate) is equivalent to the inverse 
of the maximum turnover rate (kcat)—a commonly measured pa-
rameter in enzyme kinetics.

As the substrate concentration decreases (i.e., nutrient deplete), 
the uptake rate approaches the product of cellular affinity () and 
substrate concentration (S). Affinity is a function of cellular radius, 
the molecular diffusivity coefficient, and the proportion of cellular 
area covered by transporters (37). We assumed that Fe and Mn 
uptake can only be from the dissolved phase and used a molecular 
diffusivity coefficient of 0.9 × 10−9 m2 s−1 for both (66). For nitrate, 
we used a molecular diffusivity coefficient of 1.17 × 10−8 m2 s−1 (67), 
with a transporter radius of 1 × 10−9 m (36).

For modeling multiple nutrient uptake rates simultaneously, we 
adjusted the nutrient uptake model above by multiplying the diffu-
sive flux term (4Dr) by the proportion of surface area covered by 
other transporters not corresponding to nutrient i (), where D is 
the diffusivity coefficient and r is the cellular radius. Given that 
approximately 50% of a lipid membrane must consist of phospho-
lipids to maintain membrane integrity (68), and there is a signifi-
cant requirement for macronutrient transporters, we also restrict 
the “available” area for iron and manganese transporters, hypothe-
sizing that a subset of membrane area is available (). To model the 
proportion of membrane space available, we modified the diffusive 
flux term using the original derivation (63). Below, S is the bulk 
concentration of nutrient i, ni is the number of transporters for 
nutrient i, and s is the radius of the transporter for nutrient i. Trans-
porters are modeled as circular planes with constant radii on a 
sphere (69). In addition to the uptake model (37), we included an 
additional Michaelis-Menten term of energy dependence

  Nutrient Uptake Rate =  V  i   =   b ─ 2a   (  1 −  √ 
_

 1 −   4a ─ 
 b   2 

     )   (     [e] ─  K  e   + [e]   )     (9)

  b =   1 ─ 
S   +   h ─  n  i      (10)

   a =   h ─ 4  DrSn  i  
    (  1 −   

rp
 ─  n  i   s   )     (11)

  p =    n  i     s   2  ─ 
4  r   2 

    (12)

    =  (  1 −  ∑ 
j≠i

       
 n  j     s   2 

 ─ 
4  r   2 

   )     (13)

    =  {   1 ×  10   −5 ,  if  < 0   
,

  
otherwise

    (14)

   = 4Dr    n  i   s ─   n  i   s + r(1 − p)    (15)

  i ∈ [Mn ] , [Fe]  (16)

Iron speciation
At low concentrations, dFe uptake is bound by physical limits of 
diffusion to a cell membrane (70, 71). Under these conditions, cells 
are under “diffusion limitation,” as dFe uptake rates are close to the 
diffusive flux. These studies considered Fe uptake when only Fe′ 
(free, inorganic Fe) was bioavailable and Fe-EDTA is not signifi-
cantly taken up by eukaryotic phytoplankton (72). Yet, in the ocean, 
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most of the dissolved Fe is organically complexed (FeL) (73), which 
is, to some extent, bioavailable for uptake. We therefore included 
both sources of iron for uptake. While a large portion of the dFe 
pool is likely bioavailable, not all dFe species are equally bioavailable 
(74, 75). Ligand-bound Fe has maximum uptake rates roughly three 
orders of magnitude lower than Fe′ (48, 72, 74). We modeled dFe 
uptake by splitting the dFe pool into subcomponents of Fe′ and FeL, 
and then summing the uptake rates. This formulation assumes that 
phytoplankton in the ocean are simultaneously under diffusion and 
“ligand exchange” limitation (71). This can be extended to any 
number of distinct dFe pools with corresponding uptake rate charac-
teristics. Fe′ would primarily be controlled by diffusion limitation 
and is limited by the chemistry and physics of diffusion to the cell 
surface and, therefore, only affected by  (which is a function of the 
cell radius, r, diffusivity coefficient of dFe, D, and the proportion of 
cell surface area covered by transporters). FeL uptake (ligand ex-
change limitation) is limited by the rate constants of uptake (i.e., the 
handling time) and the number of transporters.

We first split the dFe pool into Fe′ and FeL, by multiplying the 
bulk concentration of dFe by 2 and 98%, respectively (71). We then 
use separate kinetic constants, where the maximum turnover rate 
per transporter of the FeL pool is kcat, Fe′ × 10−3.
Consequences of reactive oxygen species
ROS can hamper photosynthesis by negatively affecting protein 
synthesis (76). We aimed to capture an overrarching consequence of 
ROS in phytoplankton cells in this model—damaged proteins. Cells can 
combat ROS production by producing antioxidants, such as superoxide 
dismutase (e.g., Mn/FeSOD), or alternatively manage the consequences 
by resynthesizing damaged proteins. We represented this trade-off in 
the model by “leaking” a proportion of energy synthesis from PSUs into 
superoxide. Superoxide is represented implicitly in the model structure 
and not as an internal pool. Superoxide is produced from electrons 
leaked by photosynthetic energy production and consumed by 
MnSOD. Excess superoxide that is not consumed by SOD then penal-
izes the maximum protein synthesis rate, while overinvestment in SOD 
diverts protein synthesis away from other protein pools. We also model 
the relationship between electron leakiness and Fe quota (proportion of 
electrons leaked is ϵp below), as previous work suggests that the tenden-
cy of an electron to be donated to molecular oxygen increases under 
Fe stress.

Oxidative stress can result from a mismatch between ROS 
consumption rate (via antioxidants) and production rate (electron 
transport). We modeled ROS consumption rate as the product of 
the maximum turnover rate of MnSOD (kcatROS, MnSOD) and the 
number of MnSOD copies per cell (A). The rate of ROS production 
is a proportion (ϵp, see below) of energy production (ve). Higher 
rates of energy production require increased investment in MnSOD.  
The ϵa parameter represents the efficacy per MnSOD and is empir-
ically estimated (described below)

   v  ROS   =  k  catROS   ⋅ [A]  (17)

     u   =   
 ϵ  p    v  e   −  ϵ  a    v  ROS  

  ─  
 ϵ  p    v  e   +  ϵ  a    v  ROS  

    (18)

    =  {      u    if    u   > 0  
0

  
if    u   < 0

    (19)

An imbalance between production of ROS and available MnSOD 
() decreases the maximum protein synthesis. We represented this 
phenomenologically by multiplying the protein synthesis rate by a 
value ranging from 0 to 1 (pw). A phenomenological variable R0 is 
used here with a value of 10

   p     = 2   
 R 0  − 

 ─ 
 R 0  −2  + 1

    (20)

Electrons that are leaked not only produce ROS but also decrease 
energy production (fewer electrons can be used to create ATP or 
NADPH). We therefore modified the photosynthetic electron pro-
duction term above by the proportion of leaked electrons

   v  e,adjusted   = (1 −  ϵ  p   ) ·  v  e    (21)

Photosynthetic energy production
We used a previously published photosynthetic model (25, 62). This 
model assumes a two-state configuration of photosystem units. We 
obtained an expression for energy production [as in (25)], by writing 
this model as a system of two ODEs, where the inactivated PSUs 
are synthesized (P), and both inactivated (P0) and activated PSUs 
(P*) are diluted via growth (). The rate of PSU activation is v1, and 
the rate of switching back to an inactive PSU is ve

    d P   0  ─ dt   =    P   −  v  1   +  v  e   −  ⋅ [ P   0 ]  (22)

    d P   *  ─ dt   =  v  1   −  v  e   −  ⋅ [ P   * ]  (23)

The rate of PSU activation is a function of the absorption cross 
section (), the amount of irradiance (I), and the amount of inactivated 
PSUs. The rate of conversion from activated to inactivated PSUs is 
a function of electron turnover rate ()

   v  1   =  ⋅ I ⋅ [ P   0 ]  (24)

   v  e   =  [  P   * ]  (25)

We can then assume a pseudo-steady state between the inactivated 
and activated PSUs and solve for the energy production rate (ve)

   v  e   = [P ] ⋅  ⋅   ( ⋅ I) ─  ⋅ I +  +     (26)

Calculating growth rate
We calculated growth rate as in (25) with some slight modifications. 
We calculated a biosynthesis-specific growth rate (13, 25, 30) by cal-
culating the rate of biosynthesis relative to the average protein mass 
per cell. We assumed a fixed average protein mass per cell (Mcell), 
using data from (77) [from file S1 in (77)] for the median picograms 
of protein per cell from Pseudonitzschia, which is converted to ami-
no acids per cell. In our model, biosynthesis rate is represented as 
the conversion of nitrate into amino acids. Total biosynthesis rate 
(Vn) is equal to the number of biosynthetic pathways multiplied by 
rate-limiting enzyme maximum turnover rate (see the “Model 
parameterization” section)

   V  n   =  T  N O  3     ·  k  cat, T  N      (27)
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A proportion of the proteome is considered growth rate inde-
pendent (78). We included a fixed proteomic pool () in our model 
that represents “maintenance metabolism”—respiration, lipid bio-
synthesis, etc. This is modeled by multiplying the total protein per 
cell by a constant proportion. We assumed that 20% of the pro-
teome is growth rate independent (79), although future research is 
required to determine this value in eukaryotic phytoplankton

   =    V  N   ⋅  m  n   ─   M  cell   ⋅ (1 − )    (28)

Relationship between Fe quota and electron leakage
Previous research suggests that the tendency of an electron to be 
donated to molecular oxygen increases under Fe stress (32). We 
represented this increased leakiness by designating the proportion 
of electrons leaked to molecular oxygen, ϵp, as a function of the total 
cellular Fe quota. We constrained this from 5 to 30% using observa-
tions of total Fe to carbon ratios observed in the SOFEX cruise (47), 
with a range of 5.5 to 30 mol Fe:mol C. Then, by using carbon- 
to-volume ratios from (80), we converted the lower and upper 
bounds of mol Fe:mol C to a total cellular quota (Fe atoms per 
model cell). A linear relationship between ϵp and total Fe quota was 
assumed when the Fe quota is within these observationally con-
strained bounds. Below the minimum Fe cell quota, ϵp is fixed at 
30%; above the maximum Fe cell quota, ϵp is fixed at 5%. This cor-
responds to the following relationship

   ϵ  p   =  
{

   
0.3

  
if  Fe  i   ≤ 7, 173, 653

     0.05  if  Fe  i   ≥ 39, 129, 014      
3.561 ×  10   −1  − 7.823 ×  10   −9  ⋅  Fe  i  

  
else

     (29)

Protein synthesis
Protein synthesis connects the internal pools of metabolites and 
free micronutrients to proteins

 Temperature Adjusted Protein Synthesis =    T   =    max   ·  Q 10   T−20 _ 10     (30)

  ROS Adjusted Protein Synthesis =    ROS   =    T   ·  p      (31)

 Protein Synthesis =    j   =    j      
   ROS   ─    j      [ R ]    [e] ─  K  e   + [e]      [aa] ─  K  aa   + [aa]    (32)

     N   =    j      
[F e  i  ] ─  K  Fei   + [F e  i  ]

    (33)

     P   =    j      
[F e  i  ] ─  K  Fei   + [F e  i  ]

      [M n  i  ] ─  K  Mni   + [M n  i  ]
    (34)

     A   =    j      
[M n  i  ] ─  K  Mni   + [M n  i  ]

    (35)

  j ∈ A, P,  T  Mn  ,  T  Fe  ,  T  N O  3    , R  (36)

In the equations above, max refers to the maximum protein 
synthesis rate, which is a function of temperature (degrees Celsius) with 
a Q10 value of 2 (18). We calculate a ROS-adjusted protein synthesis 
rate, ROS, by multiplying the temperature-adjusted protein synthesis 
rate by p (ranging from 0 to 1). Protein synthesis to protein pool j 

(j) is a function of the proportion of ribosomes allocated (j), the 
protein cost (j; larger protein pools have a slower rate of synthesiz-
ing one unit), the number of ribosomes (R), and the availability of 
energy (e) and amino acids (aa). Furthermore, those protein pools 
that have cofactor requirements have an additional Michaelis- 
Menten term. All half-saturation constants (Ke, Kaa, KFei, and KMni) 
used for internal metabolites were set to an arbitrarily low value of 
104 molecules per cell (implying efficient allocation of resources 
within the cell).

Model parameterization
We used the BRENDA database to search for kinetics constants. For 
the protein lengths, we examined the F. cylindrus genome (24) and 
searched for protein coding genes with Gene Ontology (GO) terms 
corresponding to our coarse-grained pools. Generally, the protein 
cost reflected the length of all proteins within a coarse-grained 
protein pool. Photosynthetic-specific parameters were taken from 
previously published datasets.
Ribosomal proteins
To estimate the total proteomic cost per ribosome, we used data 
from the model alga Chlamydomonas reinherdtii. In C. reinherdtii, 
96 proteins were estimated for cytosolic ribosomes (81). These pro-
teins ranged in size from 12 to 54 kDa. Assuming an average size of 
33 kDa, this converts to a protein cost of 3168 kDa (3,168,000 Da), 
or 28,800 amino acids (using the average molecular mass per amino 
acid, 110 Da). We therefore used 28,800 amino acids per ribosome 
as the fixed protein cost.
Photosynthetic proteins
Our protein cost per photosystem unit was taken as 12,177 amino 
acids per PSU (82), assuming a 1:1 architecture of PSII:PSI. We 
used the reported approximate molecular mass per photosystem 
unit (1339.5 kDa) and converted that to amino acids using the aver-
age molecular mass per amino acid (110 Da).
Fe and Mn transporters
We searched the F. cylindrus genome for the GO term “iron ion 
transport” (GO:0006826). We used the sum of unique proteins 
identified with this search, excluding ferritin, as we explicitly model 
that protein (see above). We acknowledge that this approach crudely 
approximates the protein requirements for Fe uptake, as the exact 
protein stoichiometry and the specific combination of proteins 
required are still unclear. We also included the average of the four 
copies of FBP1 identified in F. cylindrus (83). The total cost per 
transporter for Fe uptake was 4028 amino acids.

Four natural resistance-associated macrophage proteins (NRAMPs) 
were identified as manganese transporters in the F. cylindrus ge-
nome (84). The average protein length per NRAMP was 372 ami-
no acids.
Nitrate uptake and amino acid biosynthesis
We represented the transformation pathway from nitrate to amino 
acids as the core iron-dependent biosynthetic cellular pathway. This 
pathway is represented in our model as a single unit with high protein, 
energetic, and iron costs. We combined the protein lengths of nitrate 
transporters (NRT2 transporters), nitrate reductase (represented as 
a homodimer), nitrite reductase, glutamine synthetase, and glutamate 
synthase, which sum to 5893 amino acids per pathway.

At substrate saturating conditions assuming fixed pathway stoi-
chiometry, the enzyme in a pathway with the lowest maximum 
turnover rate (kcat) determines the upper bound on pathway flux. 
We used this “kinetic bottleneck” approximation to describe the 
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conversion of nitrate into glutamine. For the enzymes described 
above, we found that glutamine synthetase had the lowest kcat for 
NH4 [2.96 s−1 , Enzyme Commission no. 6.3.1.2 (85)], and we there-
fore use this value to represent the rate-limiting step.

We approximated the energetic requirement for the entire con-
version by summing up the ATP and NADPH cofactors required 
for each step in the synthesis of glutamine from imported nitrate. 
We accounted for one ATP from nitrate uptake, one NADPH for 
nitrate reduction, one NADPH for nitrite reduction, one ATP for 
glutamine synthetase, and one NADPH for glutamate synthase. 
Assuming an interconversion ratio of 2.6 ATP to 1 NADPH, the 
total energetic cost was 9.8 e.

For the Fe requirement in this pathway, we summed up the 
per-enzyme atoms of Fe. We accounted for two Fe atoms in nitrate 
reductase (one per subunit, but it exists as a homodimer), five Fe 
atoms in nitrite reductase in total (one siroheme cofactor and four 
in the 4Fe-4S cluster), and three Fe atoms in glutamate synthase. 
Thus, the total stoichiometric coefficient for this pathway is 10 Fe 
atoms (φFe, N).
Uptake rate kinetic constants
To obtain kinetic constants for Fe transporters, we leveraged previ-
ously published data and methods for inferring maximum uptake 
rate per transporter. Hudson and Morel (70) derive a kinetic con-
stant for the maximum turnover rate per transporter, equivalent to 
the inverse of the handling time, by using pulse chase experiments 
with labeled Fe. They assume that the whole-cell response of uptake 
kinetics approximates that of the kinetic constant of the transporter, 
which, in other words, means that there is no downstream regula-
tion of Fe uptake beyond that of the transporter (i.e., internalization 
kinetics and saturation). Yet, enzyme kinetics can be regulated at 
the pathway level (86); therefore, we challenge the assumption of no 
downstream regulation from Fe uptake. Comparing the magnitude 
of the maximum turnover rate per transporter reported in (70) to 
other nutrient transport kinetics, but derived differently (38), 
suggests that using pulse chase experiments to estimate transporter 
kinetic constants underestimates these constants because of down-
stream inhibition. However, (70) still provides invaluable measure-
ments of cell-specific uptake rates that can be used to infer kinetic 
constants.

We leveraged published uptake rate data (70) and recalculated 
the maximum turnover rate using a method described in Eq. 16 
(38). This resulted in a kin value approximately three orders of mag-
nitude higher than inferred in (70), which was much more similar 
to values estimated for macronutrient transporters (38). We used 
the following values from (70) to recalculate the handling time: a 
maximum uptake rate (Vmax) of 180 amol cell−1 hour−1, a half 
saturation constant (Km) of 3.1 nM, a diffusion coefficient (D) of 
5.4 ×10−8 m2 min−1, a cell radius (r) of 5.6 ×10−6 m, and a transporter 
size (s) of 1−9 m.
Protein synthesis parameters
We used the translation rate from Thalassiosira weissflogii at 20°C of 
1.9 amino acids per ribosome per second (18). Assuming a temperature 
dependence given by a factor of Q10 equal to 2 (18), protein synthe-
sis rate is adjusted in the model according to the input temperature 
(−1°C for the metaproteomic conditions). For the energy required 
per amino acid elongation, we used the equivalent of 3 e units (25).

Photosynthetic parameters
We needed two parameters for the photosynthetic energy pro-

duction model: the absorption cross section and the rate of returning 

from an activated PSU to an inactivated PSU (). For the absorption 
cross section, we used a value of 0.01 m2 E−1 (87), and for the PSU 
turnover rate, we used a value of 6000 min−1 (88).

Culture diatom comparison
We used two published diatom datasets that examined how Fe 
influences the proteome (44, 45). The observed protein data from 
both datasets were manually binned into our corresponding model 
coarse grains. For (45), we used the sum of spectral counts per pep-
tide as an approximation for the mass per protein group. For (44), 
we used the reported normalized spectral abundance factor values 
per protein. Note that while both of these datasets used diatoms 
(44,  45), the studied diatoms were Thalassiosira pseudonana and 
P. granii, and our model is based off of the polar diatom F. cylindrus.

To compare the model predictions under these laboratory con-
ditions, we also modified the temperature and light level inputs to 
the model to reflect the culture conditions. The Fe levels in culture 
were set with EDTA, and most Fe taken up in culture with FeEDTA 
is inorganic free Fe. Therefore, we changed the Fe speciation input 
to reflect this, such that there is only a small available FeL pool (1%), 
while the inorganic free Fe pool was set to 99% of total dFe.

Southern Ocean Mn, Fe, and light conditions
FISH data
Surface seawater (approximately 3-m depth) was pumped from a 
tow FISH into a clean container using a Teflon diaphragm pump 
(Almatec A15) connected to a clean oil-free air compressor (JunAir) 
and GEOTRACES cruise JR274 (89).

Concentrations of trace metals were determined by isotope dilu-
tion inductively coupled mass spectrometry (ICP-MS), while the 
monoisotopic elements Co and Mn were analyzed using a standard 
addition approach followed by ICP-MS detection, all according to 
methods described in (90). The ICP-MS analyses were conducted 
following an off-line preconcentration/matrix removal step (90) on 
a Wako chelate resin column (91).
GEOTRACES data
We used the GEOTRACES intermediate data product (92) to deter-
mine average Mn and Fe concentrations within the mixed layer for 
cruise stations in the Southern Ocean. To calculate the mixed layer 
depth, we calculated the potential density at 10 m and determined 
the depth at which this 10-m potential density is 0.03 kg m−3 more 
dense (93). For each station, we used the discrete data product and 
averaged the Fe and Mn concentrations above the mixed layer depth.

We also calculated the median light level (photosynthetically 
active radiation, PAR) within the mixed layer. We used monthly 
climatology of surface PAR and diffuse attenuation coefficient 
(Kd490) from the Ocean Color database from 2002–2018. The 
median mixed layer light levels were determined using the surface 
PAR, Kd490 and mixed layer depth (94)

   I  g   =  I  0   · exp(−  K  d   490 · MLD / 2)  (37)

where MLD is the inferred mixed layer depth and I0 is the surface 
irradiance.

Metaproteomic sampling and LC-MS/MS
We sampled the microbial community at the sea ice edge in 
McMurdo Sound, Ross Sea at the same location (−77.62S, 165.41E) 
for 4 weeks [as described in (28)]. We had four sampling dates 
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corresponding to weeks 1 to 4: 28 December 2014 and 6, 15, and 
22 January 2015. Large volumes of water (150 to 250  liters) were 
filtered from 1-m depth at the sea ice edge and passed through three 
filters sequentially (3.0, 0.8, and 0.1 m, each 293 mm Supor filters). 
Filters with collected biomass were then placed in tubes with a 
sucrose-based preservative buffer [20 mM EDTA, 400 mM NaCl, 
0.75 M sucrose, and 50 mM tris-HCl (pH 8.0)] and stored at −80°C 
until sample processing. We extracted proteins after buffer ex-
change into a 3% SDS solution as previously described (28).

To prepare samples for liquid chromatography tandem mass 
spectrometry (LC-MS/MS), the precipitated protein was resus-
pended in 100 l of 8 M urea, and then we ran a Pierce bicinchoninic 
acid protein assay kit (Thermo Fisher Scientific) to quantify the 
protein concentration in each sample. We then reduced the protein 
sample using 10 l of 0.5 M dithiothreitol and incubated the sample 
for 30 min at 60°C. Samples were then alkylated using 20 l of 0.7 M 
iodoacetamide in the dark for 30 min, diluted with 50 mM ammo-
nium bicarbonate, and digested with trypsin using a 1:50 trypsin:protein 
ratio. We then acidified [1.5 l of trifluoroacetic acid (TFA) and 5 l 
of formic acid added] and desalted samples. We desalted the sam-
ples by first conditioning the solid-phase columns with methanol 
(1 ml), then 50% acetonitrile (ACN) and 0.1% TFA, and then 2× 
1  ml of 0.1% TFA. Samples were loaded onto columns that were 
subsequently washed 5× with 1 ml of 0.1% TFA. Last, peptides were 
eluted from the columns with 2× 0.6 ml of 50% ACN and 0.1% TFA, 
and 1× 0.6 ml of 70% ACN and 0.1% TFA.

We used a one-dimensional LC-MS/MS to characterize the 
metaproteome. For the largest filter size (3.0 m), we used three 
injections per sample and two injections per sample for the 0.8- and 
0.1-m filters. We ensured that the protein concentration in each 
urea-resuspended sample was equivalent across sampling weeks 
and within each filter size. We used an LC gradient from 0 to 
10.5 min with 0.3 l/min flow of 5% solution B; from 10.5 to 60 min, 
the flow was 0.25 l/min, and solution B increased to 25.0%; from 
60 to 90 min, %B increased to 60%; from 90 to 97 min, %B increased 
to 95%; from 97 to 102 min, %B remained at 95%; from 102 to 105 min, 
the flow rate increased to 0.3 l/min and %B decreased to 5% 
for 20 min. Solution A is 0.1% formic acid in water, and solution B is 
0.1% formic acid in ACN. Peptides were injected onto a 75 m × 30 cm 
column (New Objective, Woburn, MA) self-packed with 4 m, 
90 Å, Proteo C18 material (Phenomenex, Torrance, CA), and then 
online LC was performed using a Dionex Ultimate 3000 UHPLC 
(Thermo Fisher Scientific, San Jose, CA).

We used a data-dependent acquisition approach with a VelosPRO 
Orbitrap mass spectrometer (MS; Thermo Fisher Scientific, San Jose, 
CA) to characterize the metaproteome for each sample. We used an 
MS method with the following parameters: dynamic exclusion 
enabled, with an exclusion list of 500 and an exclusion duration of 
25 s; a mass/charge ratio (m/z) precursor mass range from 300 to 
2000 m/z; and a resolution of 60,000. MS2 scans were collected with 
a TopN method (N = 10), using collision-induced dissociation with a 
normalized collision energy of 35.0, an isolation width of 2.0 m/z, a 
minimum signal of 30,000 required, and a default charge state of 2. 
Ions with charge states less than 2 were rejected, and those above 2 
were not rejected. Last, we used polysiloxane as a lock mass.

For a database of potential proteins present, we used a metatran-
scriptome obtained from a nutrient incubation experiment con-
ducted using water collected during week 2 of protein sampling 
(40). Before database searching, we removed all redundant protein 

sequences (P. Wilmarth, fasta-utilities) and appended the cRAP 
(Global Proteome Machine Organization common Repository of 
Adventitious Proteins) database of common laboratory contami-
nants. We then applied a Savitzky-Golay noise filter, a baseline 
filter, and applied a high- resolution peak picking approach to cen-
troid the MS data (95). To identify peptides, we conducted a data-
base search with MSGF+ (96). We used a 1% false discovery rate at 
the peptide-spectrum match level. Once we had identified peptides 
within each MS injection, we quantified these peptides at the 
MS1 level using the “FeatureFinderIdentification” approach (97), 
where peptides identified in one injection can aid identifying pep-
tides in a different injection without corresponding MS2 spectra. In 
this approach, the user must identify a group of samples across 
which peptides can be cross-mapped. We grouped our samples by 
filter sizes, with replicate injections also within each group for cross- 
mapping. Mass spectrometry mzML files within each group were 
then aligned using MapAlignerIdentification (95), and then we ap-
plied FeatureFinderIdentification to obtain peptide-specific MS1 
intensities. Once peptides were quantified for each injection, we 
then obtained a sample-specific peptide quantity, which was the av-
erage peptide- specific intensity across injections. We only used this 
quantity if a given peptide was observed across all injections.

We then mapped peptides to taxa and to protein functions. 
Peptides were mapped to taxa only if they uniquely correspond to a 
given taxonomic group. Coarse taxonomic groups (presented at the 
phylum level) were chosen because coarse-graining is robust to 
various MS-induced biases (43). We suggest that the sum of taxon- 
specific peptide abundances (MS1 intensities in this case) can be 
used as a proxy for biomass. To evaluate this approach, we used a 
previously published, artificially assembled metaproteome (42). In 
this dataset, we identified all taxon-specific peptides and then ex-
amined the correlation between the amount of protein used for a 
taxonomic group and the sum of peptide intensities that correspond 
to that taxa. We found a high correlation between the sum of 
peptide intensities and the total protein (fig. S1). In addition, we 
examined different MS chromatographic methods [data files 
“Run1and2_U1.pep.xml” and “Run4and5_U1.pep.xml” from (42)]. 
We show that there is a high correlation between the amount of 
protein and the sum of peptide intensities across three orders of 
magnitude (fig. S1), and this correlation is higher in the longer 
chromatographic run.

Mapping peptides to taxon-specific functional groups has addi-
tional challenges because there can be multiple functional labels for 
a given protein, and the functional label can differ on the basis of 
the annotation used. To address this issue, we used five different 
functional annotations [KEGG (Kyoto Encyclopedia of Genes and 
Genomes), KO (KEGG Orthology), KOG (Eukaryotic Orthologous 
Groups), Pfam, and TIGRFAM annotations (98–102)] and mapped 
coarse-grained functional associations by matching a list of strings, i.e., 
keywords (which were identified in the construction of the model). In 
addition, we manually examined the matched proteins to ensure we 
were not capturing incorrectly mapped proteins to coarse grains.

ABC for parameter estimation
Metaproteomic-to-model data comparison
To infer parameters of the model given the proteomic data, we need 
to determine how similar the observations are to the model predic-
tions. However, there are several challenges associated with com-
paring the proteomic data with the protein allocation model output. 
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The main challenge with doing a direct comparison of model 
output (i.e., with protein mass fraction) is the components of the 
observed proteome that we are not modeling. For example, we do 
not include DNA synthesis proteins in our cellular model, yet we 
anticipate this protein mass fraction to vary with growth rate. The 
consequence of this issue is a poor model fit, which can hamper 
parameter inference.

We propose a general approach to address this challenge using 
the ratio of the protein pool abundance from the two conditions 
observed. By using this ratio, we can still capture the change in pro-
tein expression across conditions, but we bypass the issue of the 
nonmodeled proteome. Specifically, we used the ratio of protein 
group abundance from the low Fe to high Fe condition in the cul-
ture diatom proteomes, and the third sampling point to the first 
sampling point from the metaproteomic time series. This general 
approach for model-to-metaproteome comparisons might be use-
ful in other contexts, as we anticipate this issue would be pervasive, 
because no proteomic allocation model can explicity include all 
proteins synthesized.

There are also several transformations and considerations re-
quired to make comparisons between the model and the observa-
tions. The first transformation is to calculate protein mass fraction 
from the model. The true mass fraction from our model considers 
the free amino acid pool, yet this pool would not be observed using 
typical proteomic methods. Thus, we first recalculate the total ob-
servable protein mass from the model. This is done by multiplying 
all protein abundances by the amino acids per protein pool. For Fe 
and Mn uptake, this cost is dynamic, so we recalculate the dynamic 
cost per transporter and internal machinery first. Once we have 
recalculated protein mass, the next consideration is the observed 
proteins. This is straightforward for all the protein pools except for 
Fe and Mn uptake and internal cost. This is because the observed 
proteins for this protein pool can be considered part of the internal 
or external protein pool (or both). For each of the datasets, we 
examined the Fe transporters and internal Fe cost proteins and 
determined whether it is appropriate to use the external or internal 
protein pool from the model as a comparison. We did not ob-
serve ferritin in any dataset; the main protein observed for this 
protein pool was phytotransferrin (ISIP2a). We considered phy-
totransferrin to be both an internal and an external cost, given that 
the protein is endocytosed (48). These transformations for each 
dataset enabled a careful comparison between the data and the 
observations.
ABC for parameter inference
We used ABC to draw inferences about the three unconstrained 
parameters in the model: the efficacy per MnSOD, ϵa; the available 
space on the membrane for Mn and Fe transporters, ; and the 
internal Fe and Mn cost coefficient, . Note that we assumed that 
 is constant for both Mn and Fe, although with additional data, we 
would be able to further discriminate across these costs.

We used ABC to obtain a posterior distributions for parameters 
and predictive distributions for observed data. The stochastic 
model was combined with our cellular model to allow for errors in 
approximation. To obtain a posterior distribution for each parameter, 
we accounted for error in the model and observations. Specifically, 
our cellular model (f) generates observations (yi) from a vector of 
parameters [i = (ϵai, i, i)]. We included an error term (ei), which 
we assume is normally distributed with a common standard 
deviation (h)

   y  i   = f(   i   ) +   e  i    (38)

   e  i   ∼ N(0,  h   2 )  (39)

We treated the standard deviation h as fixed, and estimation 
of the posterior distribution is described below. The priors for 
the elements of  = (ϵa, , ) were independently uniform, ϵa ∼ 
U(0.00001,0.1),  ∼ U(0.001,16), and  ∼ U(0.001,0.15). For ϵa, we 
drew from a uniform bounded by 0.00001 and 0.1, because initial 
tests suggested that this range resulted in a Mn:Fe ratio and a 
Mn-PSU:Mn-SOD ratio consistent with empirical observations 
(45). For , we drew from a uniform bounded by 0.001 and 16. The 
upper bound assumes that all internal Fe is stored in ferritin, which 
would result in a very high internal Fe cost. The lower bound rep-
resents an arbitrarily low protein cost. For , we used a lower bound 
of 0.001 and an upper bound of 0.15. We hypothesized that the pro-
portion of membrane space available for Fe and Mn transporters is 
likely within these bounds, considering that only approximately 50% 
of the membrane can even have transporter proteins (68), and there 
must be a large proportion dedicated to macronutrient transporters.

We used an ABC algorithm to approximate the exact posterior 
(39, 103). The approach simulates 1, …, B from the uniform priors 
and then generates y1 = f(1), …, yB = f(B) from the cellular model. 
For each yi, a weight wi(h) ∈ {0,1} is generated from a Bernoulli 
distribution [ai(h)] where

    a  i  (h ) = exp [     
−  ‖ y  i   −  y  0  ‖   2 

 ─ 
2  h   2 

   ]     (40)

For any function g(), its posterior expectation is approximated by

  E [ g( ) ∣  y  0   ] ≈   
 ∑ i=1  B   g(   i   )  w  i  (h)

  ─ 
 ∑ i=1  B     w  i  (h)

    (41)

We can determine P(j ≤ t∣y0) at each point along the grid and 
then convert these estimates from a cumulative distribution to a 
probability density. We do so by calculating the height of the kth 
bin [tk − 1, tk] as

  P(   j   ≤  t  k   ∣  y  0   ) − P(   j   ≤  t  k −1   ∣  y  0  )  (42)

Intuitively, if the Euclidean distance of a simulated dataset yi to 
y0 is very low, then it is very likely that the parameter vector i would be 
included in the posterior. This approach gives an approximation of 
E[g()∣y0] with a fixed and known h. We then conducted the pos-
terior sampling M times to infer the approximate posterior distri-
bution at fixed intervals (i.e., the posterior as a histogram, with 
M = 400,000). Overall, this method allows for a probabilistic sam-
pling of the posterior, as we transform our deterministic model out-
put to a stochastic model, with the stochasticity coming from the 
error term (39). Without this step, our posterior variance estimates 
would solely be a function of the tolerance that we use for inclusion 
in an approximate posterior (104).

After sampling from the prior distribution (182,171 samples 
drawn), we ran the cellular model and generated a set of model out-
puts for each of three datasets: the metaproteome-derived diatom 
proteome at two time points with corresponding in situ dMn and 
dFe concentrations, T. pseudonana proteome under high and low 
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Fe (45), and P. granii diatom proteome under high and low Fe (44). 
We then compared the model output with each of these datasets, 
and the success probabilites given above are calculated by combining 
observations and model predictions across all three datasets. We 
combined these datasets to estimate the first-order effects; however, 
it is possible that the parameters included are environment depen-
dent. For example, the temperature is different across each dataset, 
yet we assume that the membrane space parameter () is from a 
single distribution. Numerical integration and optimization param-
eters were adjusted to enable faster sampling of parameter space; 
specifically, we shortened the integration time to a length of 1 × 
106 (with steps of 10). Optimization settings are given in the Sup-
plementary Materials.
Estimating standard deviation of the error term: h
The standard deviation of the error term, h, is an important param-
eter for conducting ABC. This error term encompasses error from 
mass spectrometry, sample processing, and natural biological 
variability. We empirically estimated this parameter by using cul-
ture replicates from (45). We calculated the average standard devia-
tion of the ratio of protein pools across replicates. To do so, we 
randomly paired biological replicates and determined the sample 
standard deviation

  h =  √ 

___________

    
 ∑ i=1  N     ( y  i   − y)   2 

 ─ N − 1      (43)

We inferred an average sample standard deviation (across all 
pairs of biological replicates) of 0.007. However, with such a low 
standard deviation, our ABC approach was not feasible because the 
probability of acceptance was so low across all parameter vectors. 
We therefore increase the value of h to a conservative value of 2, 
likely overestimating the standard deviation of the error distribution.

Model settings, parameter perturbation experiments, 
and interaction index
We generated model output for a range of dFe and dMn values: 1, 
50, 100, 500, 1000, 2000, and 3000 pM in a full factorial combination, 
with light levels set to 50 E m−2 s−1. For the three unconstrained 
parameters (described above), we used the modes of their posterior 
probability distributions for the inferred parameter value. We then 
conducted 20 replicate model runs for each unique combination of 
dFe and dMn with the following settings: nitrate at saturating 
conditions (input nitrate set to arbitrarily high concentration of 
1 × 109 nM; note that our kinetic bottleneck approximation is 
satisfied only under saturating conditions) and an integration 
time 3 × 106 for the second stage of optimization (with steps of 
10; see the Supplementary Materials for additional details on op-
timization settings).

We multiplied every parameter individually by 5 and examined 
the change in growth rate (except the “Fixed Proteome Percentage” 
parameter, which was divided by 5 because the base value was 20%). 
Each perturbation experiment was conducted three replicate times, 
and the average growth rate of these three was then divided by the 
base model (i.e., with no parameters altered, also run three times). 
Four environmental conditions were chosen for parameter perturbation 
experiments, corresponding to high and low dFe and dMn (all com-
binations of these conditions). The high dFe and dMn conditions were 
set to 3000 pM. The low conditions were determined by fitting a 
Monod-style growth function to modeled growth rates (figs. S11 and 

S12) and then using the half-saturation constants. For dMn, this corre-
sponded to 1.42 pM, and for dFe, this corresponded to 88.9 pM.

We used the parameter perturbation experiments and the fol-
lowing equation to obtain a quantitative metric of how different 
cellular processes contribute to interdependence between dFe and 
dMn ( corresponds to the growth rate)

 Interaction index = min(   HighFe,LowMn  ,    LowFe,HighMn   ) −     LowFe,LowMn   
(44)

A phenomenological model of nutrient interdependence
Scott et al. (13) develop a phenomenological model connecting growth 
rate with gene expression. We extended a similar framework to 
micronutrients and explored interdependence across elemental metab-
olisms using this framework. Consider a three-component pro-
teomic model, R (ribosomal mass fraction), Fe (Fe-metabolism 
protein mass fraction), and Mn (Mn-metabolism protein mass 
fraction). Scott et al. (13) suggest that

   ∝    R    (45)

Under high micronutrient concentrations, we anticipate that the 
proteomic mass fraction required to acquire these nutrients decreases, 
such that Fe and Mn are inversely proportional to the amount of 
dFe and dMn

     Fe   ∝   1 ─ dFe    (46)

     Mn   ∝   1 ─ dMn    (47)

It follows that the increased mass fraction required for process-
ing and obtaining Fe and Mn negatively influences the growth rate 
via decreasing the ribosomal mass fraction (R)

   ∝ 1 −    Fe   −    Mn    (48)

If we then assume a saturating function of the proteomic mass 
fractions (Fe,Mn) dependent on the micronutrient concentration

     Fe   = 1 −   dFe ─ dFe + K    (49)

where K is the half saturation constant for Fe and is equivalent (for 
simplicity) to the half saturation for Mn. We then obtain an expres-
sion for the growth rate

    ∝ 1 −  (  1 −   dFe ─ dFe + K   )   −  (  1 −   dMn ─ dMn + K   )     (50)

However, the expression above requires some proteomic cost 
weighting factor; otherwise, the expression could result in negative 
growth rates. If we define the proteomic cost weight for Mn and Fe 
to be Mn and Fe, we obtain

    ∝ 1 −    Fe   (  1 −   dFe ─ dFe + K   )   −    Mn   (  1 −   dMn ─ dMn + K   )     (51)

     Mn   +    Fe   = 1  (52)

We found that when protein costs have similar values for Fe and 
Mn (i.e., Fe is 0.5), the apparent amount of interdependence is 
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greatest. This is demonstrated by looking at the gradient of the 
growth rate function with respect to dMn and dFe

   ∇  =  
⌈

    
  d ─ d(dFe)  

  
  d ─ d(dMn)  

  
⌉

   =  
⌈

    
  K    Fe   ─ 
 (dFe + K)   2 

  
  

− 1   K(   Fe   − 1) ─ 
 (dMn + K)   2 

  
  
⌉

     (53)

If we then assume that both dFe and dMn are at concentrations 
equivalent to their half-maximal growth (i.e., K), the gradient func-
tion then simplifies to

   ∇  =  
⌈

    
     Fe   ─ 4K  

  
− 1   (   Fe   − 1) ─ 4K  

  
⌉

     (54)

From this function, we can then show that the direction that cor-
responds to the most elemental interdependence is when the slope 
is closest to 1, or that the elements of the gradient with respect to 
dFe and dMn are equivalent. When we equate the elements of the 
gradient, evaluated when dFe and dMn are at half-maximal growth, 
we find that the iron cost parameter is equivalent to 0.5, and there-
fore, so is the manganese cost parameter. This phenomenological 
model suggests that when the ratios of proteomic costs are similar, 
the extent of elemental interdependence is greatest. Note that 
“proteomic” cost in this case can be extended to other cellular costs, 
for example, available membrane space.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/32/eabg6501/DC1
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