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Abstract

We consider a random process on recursive trees, with three types of events. Ver-
tices give birth at a constant rate (growth), each edge may be removed independently
(fragmentation of the tree) and clusters are frozen with a rate proportional to their size
(isolation of connected component). A phase transition occurs when the isolation is
able to stop the growth fragmentation process and cause extinction. When the process
survives, we characterize its growth and prove that the empirical measure of clusters
a.s. converges to a limit law on recursive trees. We exploit the branching structure as-
sociated to the size of clusters, which is inherited from the splitting property of random
recursive trees. This issue is motivated by the control of epidemics and contact-tracing
where clusters correspond to subtrees of infected individuals that can be identified and
isolated.
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Figure 1: An illustration of the growth-fragmentation-isolation process with 62 active ver-
tices (in red) and 77 inactive vertices (in blue).
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1 Introduction

The evolution of random trees is motivated by various fields : algorithmic, queuing systems,
population modeling... The random deletion of edges of a tree has been studied in particular
by [20, 8]. Initially, Meir and Moon [20] were interested in the number of steps needed to
isolate a distinguished vertex in a random Cayley tree, when the deleted edge is chosen
uniformly. Bertoin [9] and Marzouk [19] have then studied processes where sets of vertices
can be fired. More precisely, a connected component of the graph is removed (i.e. isolated)
at each step. This component is determined by a uniform choice among the vertices. Such
dynamics combine the fragmentation of the tree (when an edge is deleted) and the isolation
of connected components of the tree (when a vertex provokes a fire).

In this work, we are interested in the long time behavior of such dynamics when the
random recursive tree grows, following a binary branching process. Our original motivation
is the description of control policies of an epidemic. The growth of the infected population
is modeled by a Yule process in this work, i.e. a binary Markov branching process. The
discrete structure of the Yule tree is a random recursive tree. The newly connected vertices
are the new contamination that can be detected. The fragmentation occurs when one edge
is removed, interpreted as the loss of infector-infectee information, in the tracing of infected
individuals along time. Growth and fragmentation will generate connected components,
called here clusters. Each cluster is a set of connected infected individuals that can be iden-
tified, and isolated all together as soon as one individual among the cluster is detected. An
isolated cluster is frozen, in the sense that no more event happen to it. Indeed, the individ-
uals found in the tracing system are supposed to stop contamination’s. The second author
has studied a similar model with numerical simulations in [13] to estimate the propagation
of Covid-19. For similar motivations, we mention [17, 7], which also exploit a branching
structure. But the models and the approaches differ. In particular the family of connected
components is not described in these papers and the approach in [17] does not allow for
backward tracing (i.e. tracing of an ancestor when the descendant is tested), while more
general regarding the characteristics of epidemics.

Our growth-fragmentation-isolation model (GFI) is thus interpreted as a simple branch-
ing process to study the effect of identification-tracing-isolation strategy in the context of
pandemic, with loss of contact information along time. The approximation of the outbreak
by a branching process is classical in the first stages of an epidemic, when the whole pop-
ulation is large and the infected individuals can be neglected, see for instance [3]. We also
control in this work the speed of convergences of the number of infectees and the empirical
measure and thus check that our asymptotic profile can indeed describe the outbreak at
the ”beginning” of the epidemics. Besides, more epidemiological and control features could
be incorporated to reflect the current reality in subsequent works. No recovery happens in
our setting and we consider large homogeneously mixing population. We expect extensions
of our results on the long time behavior to take into account these features, even if the
probabilistic structure at a fixed time seem to be less tractable.

Random recursive trees (RRT) have a nice splitting property that allows us to charac-
terize a cluster by its size in this model. More precisely, considering the collection of the
active (non-isolated) clusters, the size process is a branching process with a countable set of
types. At fixed time, conditionally on the size of the clusters, the collection of clusters are
independent RRTs. We can then study the ergodic properties of first moment semigroup of
this branching process and obtain a phase transition depending on the value of the maximal
eigenvalue (Malthusian growth rate). We describe the a.s. behavior of the process when the
active clusters survive, proving a strong law of large numbers for distribution of types and
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Kesten-Stigum type result for the growth of the population. We can also characterize the
a.s. behavior of the process of isolated clusters when the active clusters survive, which is by
itself non-Markovian. The fact that the number of types is infinite and the loss of Markov
property for the isolated clusters poses mathematical difficulties, in particular to get strong
convergence. We refer to [2, 1, 12] for classical references on strong law of large numbers
of some classes of multitype branching processes. For the asymptotic analysis of the mean
behavior and weak convergences and estimation of the speed of convergence, we follow a now
well developed for branching processes with infinite number of types. Roughly, it relies on
the ergodic properties of the size of a typical cluster and the fact that the common ancestor
of two samples at large time is found at small times. We refer e.g. to [10, 11, 5, 18, 23, 14]
and references therein for related works on the asymptotic analysis of growth fragmentation
processes. We exploit here the fact that large clusters fragment fast and give one small clus-
ter and one large cluster with high probability. Together with isolation, it allows to control
the size of a typical cluster and eigenelements. In particular, we prove that the harmonic
function is bounded and large clusters have no major impact on the growth of epidemics.
Indeed, large clusters are isolated before creating too many small clusters, since isolation
occurs here at the same scale as fragmentation. Once active clusters are well described, we
can treat the isolated clusters using an additive functional.

Let us give an informal description of our model. Starting from the patient zero, the
virus infects individuals one after another and forms a tree in the course of infection, which
is called the cluster. We suppose that one-to-one spread is the only way of infection. At
this step, there is a unique cluster which connects everyone in the chain of infection. But
for various reasons, including memory and storage of information, links of infection can be
lost along time and become inaccessible when needed. Therefore, the identifiable infected
tree is actually fragmented in clusters. In each cluster, there is a root and everyone else
was infected by someone in the cluster. Each infected individual is detected at a fixed
rate. Then all people in the same cluster as this detected individual are put into isolation
instantaneously to slow down the epidemic.

We describe now the model more formally. We introduce a stochastic process on a
dynamic tree Gt = (Vt,Et) with two functions Ψt ∶ Vt → {0,1}, ηt ∶ Et → {0,1}.

• We identify the vertex set Vt as the set of patients (individuals infected so far), and
label them with the infection time v ∈ R+. The function Ψt represents the state of a
vertex, where vertex v is active if Ψt(v) = 1 and v is inactive if Ψt(v) = 0. Only active
vertices can infect new ones.

• We identify the edge set Et as the set of infection links between patients, and the
function ηt indicates the information on this edge. For an edge e, we say e is open
if ηt(e) = 1 which means the infection link can still be retrieved (i.e. it can be found
who infected the infectee), otherwise ηt(e) = 0 and it is closed (i.e. no one knows who
infected the infectee). A set of vertices connected by open edges is called a cluster.

The GFI process (Gt,Ψt, ηt)t≥0 is a Markov jump process, starting from an active vertex as
patient zero V0 = {0},Ψ0(0) = 1, governed by three positive parameters (β, γ, θ) ∈ R3+ which
represent three types of events:

• Infection (growth): every active vertex v independently attaches a new vertex in an
exponential time with parameter β. When a new vertex u is created and attached, it
is active (i.e. Ψt(u) = 1) and the edge {u, v} is open (i.e. ηt({u, v}) = 1).

• Information decay (fragmentation): every open edge e independently becomes closed
in an exponential time with parameter γ.
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• Confirmation and contact-tracing (isolation): every active vertex independently gets
“confirmed” in an exponential time with parameter θ, then its associated cluster is
isolated and every vertex on this cluster becomes inactive.

See Figure 2 for an illustration of this model. If γ = θ = 0, this is the well-known Yule tree
process; for a static model without isolation, it is the percolation model on the tree. As
every vertex is indexed by its infection time, every cluster is a labeled recursive tree (see
Section 3.2 for rigorous definition).

(a) Growth: starting from vertex 0, the ver-
trices are attached one by one, and it forms
a recursive tree.

(b) Fragmentation: the information of some
links is no longer available after a while, for
example the links {0,6},{1,4},{2,8} in the
tree.

(c) Isolation: the vertex 2 is confirmed,
then all the vertices in the same clusters
are isolated. These are the vertices in blue
{0,1,2,3,5,7} in the tree.

(d) The isolated vertices are no longer active,
while the other active vertices continue to at-
tach new vertices.

Figure 2: An illustration of GFI process.

Because the vertices on a cluster have the same state, it is very natural to decompose the
dynamic tree Gt into clusters of individuals connected by open edges: for an isolated cluster,
we call it inactive cluster ; otherwise, it is an active cluster. In this paper, we use isolated and
inactive interchangeably for clusters and also for vertices/patients/infected individuals. We
denote by (Xt,Yt)t≥0 the associated cluster process, where Xt is the set of active clusters
and Yt is the set of inactive clusters

Xt = {C ∣ C is a cluster in Gt; ∀v ∈ C,Ψt(v) = 1},
Yt = {C ∣ C is a cluster in Gt; ∀v ∈ C,Ψt(v) = 0},
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The process (Gt,Ψt, ηt)t≥0 stops when Xt is empty. We denote by τ the corresponding
stopping time :

τ ∶= inf{t ∣Xt = ∅}, (1.1)

and the event {τ < ∞} is called extinction, while {τ = ∞} is called survival.

In this paper, we are motivated by the following questions. For which values of the pa-
rameters (β, γ, θ) does the propagation of the epidemic stop (extinction of active clusters) ?
If the epidemic propagates (outbreak), what is the long time behavior of the population of
active and inactive clusters ? We give some answers to these questions by first determining
the asymptotic behavior of the first moment semigroup and show exponential convergence of
the renormalized semigroup. The asymptotic behavior is driven by the maximal eigenvalue
of the first moment semigroup associated to the active clusters, which yields the Malthusian
exponent. When this value is negative (subcritical case) or zero (critical case), the popu-
lation of active clusters becomes extincted in finite time. It corresponds to the fact that
the isolation process is strong enough to stop the epidemic. When this maximal value is
positive, the population of active clusters tends to infinity a.s. on the survival event, with an
exponential speed given by the Malthusian exponent. We shed some light on the genealogi-
cal structure of clusters and describe the asymptotic behavior of the empirical distribution.
We prove that a.s. we get a collection of recursive trees whose sizes are distributed follow-
ing the left eigenvector associated to the maximal eigenvalue of the semigroup. Besides, at
conditionally on their size, these clusters are independent RRT.

2 Main results

We obtain first the classification for branching structures, where extinction occurs in the
subcritical and critical cases. As mentioned above and classically for branching processes,
this is related to the Malthusian exponent which describes the (mean) exponential growth
(or decrease). This growth rate coincides for active and inactive clusters.

Theorem 1 (Malthusian exponent). The following limits exist and coincide and are finite

λ ∶= lim
t→∞

1

t
log(E[∣Xt∣]) = lim

t→∞
1

t
log(E[∣Yt∣]) ∈ (−∞,∞).

Here ∣Xt∣ (resp. ∣Yt∣) is the number of active (resp. inactive) clusters at time t. If λ ≤ 0, then
extinction occurs a.s. : P[τ < ∞] = 1. Otherwise, survival occurs with positive probability
P[τ = ∞] > 0.

The Malthus exponent λ corresponds to the maximal eigenvalue of the first moment
semigroup and is also called Perron’s root. The fact that the cluster size can be any positive
integer leads us to using techniques for ergodic behavior in infinite dimension, where the
control of large sizes is involved. As usual, irreducibility on the state of sizes ensures that
the value λ does not depend on the initial state. The diagram of these different phases is
illustrated in Figure 3, for fixed β > 0. Note that θ ≥ min(β, γ) implies a.s. extinction since
in the case θ ≥ β, individuals are detected faster that they contaminate and in the case θ ≥ γ,
isolation is faster than fragmentation.

To study the asymptotic increment of ∣Xt∣ and ∣Yt∣, we introduce the following size process
(Xt, Yt)t≥0, where two empirical measures count the clusters of different sizes

Xt = ∑
C∈Xt

δ∣C∣, Yt = ∑
C∈Yt

δ∣C∣. (2.2)
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Figure 3: An illustration of different phases.

Here we denote by ∣C∣ the number of vertices in the cluster C, and we call it the size of cluster.
This reduction of the state space of the empirical measure is simplifying the analysis of the
process.

The process (Xt)t≥0 is still a branching Markov process with respect to its natural filtra-
tion. This comes from the fact that every cluster in (Xt)t≥0 is a random recursive tree and
its nice splitting property (see Proposition 1 in Section 3.2), which says that the subclus-
ters after fragmentation are still random recursive trees. Up to the times of infection, we
can thus replace the study of our GFI process (Gt,Ψt, ηt)t≥0 by the study of the branching
process of sizes (Xt, Yt)t≥0 ; see Figure 4.

We prove the following strong law of large numbers in the supercritical case. This provides
the asymptotic behavior of ⟨Xt, f⟩ = ∑C∈Xt

f(∣C∣), where f has at most polynomial growth,
i.e. ∃p ∈ N+ such that lim supn→∞ ∣f(n)∣/np < ∞. In particular, f = 1m yields the number of
active clusters of size m, while f(n) = n ≥ 1 for all n provides the number of infected active
individuals.

Theorem 2 (Law of large numbers for (Xt)t≥0). Assume that λ > 0. Then there exists a
probability distribution π on N+ and a random variable W ≥ 0, such that for any function
f ∶ N+ → R of at most polynomial growth, we have

e−λt⟨Xt, f⟩
t→∞ÐÐ→W ⟨π, f⟩, a.s. and in L2. (2.3)

Besides, {τ = ∞} = {W > 0} a.s. and on this event

⟨Xt, f⟩
⟨Xt,1⟩

t→∞ÐÐ→ ⟨π, f⟩ a.s.. (2.4)

Using the previous theorem about active clusters and the eigenelements of the first mo-
ment semigroup, we can derive the asymptotic behavior of isolated clusters. They are
created from the active clusters by a size biased rate and we introduce

π̃(n) ∶= π(n)n
∑∞
j=1 π(j)j

. (2.5)

Corollary 1 (Law of large number for (Yt)t≥0). For any function f ∶ N+ → R of at most
polynomial growth, we have that

e−λt⟨Yt, f⟩
t→∞ÐÐ→W ( θ

λ
)
⎛
⎝
∞
∑
j=1

π(j)j
⎞
⎠
⟨π̃, f⟩, almost surely and in L2,
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and
⟨Yt, f⟩
⟨Yt,1⟩

t→∞ÐÐ→ ⟨π̃, f⟩, almost surely on {τ = ∞}.

Regarding our motivations for tracing in epidemics, the data of inactive clusters are
observable, while the active clusters are not. The equation (2.5) enlightens a size biased
phenomenon in observations and sampling, which is a direct consequence of the modeling.
Indeed, each active vertex becomes inactive at the same rate and every active cluster gets
isolated at rate proportional to its size. The size-biased sampling results in the size-biased
transformation of π to π̃.

Figure 4: An illustration of the main idea to study GFI process (Gt,Ψt, η)t≥0. We can
decompose the graph into clusters and study the cluster process (Xt,Yt)t≥0, where every
cluster is a RRT whose law only depends on the size. At the end we only need to study size
process (Xt, Yt)t≥0 which captures essential information.

Finally, we can also describe the typical genealogical structure of infections in clusters.
Recall that every vertex v ∈ R is labeled by its infection time and every cluster is a recursive
tree. We consider these clusters up to an equivalence relation, which consists in keeping the
order between vertices but forgetting the their infection times, see Section 3.2 for a rigorous
definition. We denote by T the space of equivalent classes of all sizes and Tπ the random
recursive tree with size distribution π. With a slight abuse of notations, for any recursive
tree t, we write t ∈ T its equivalent class and for any function f ∶ T ↦ R, we let f(t) = f(t).
We also write ∣t∣ for the number of vertices in the equivalent class t. We prove the following
counterpart of the asymptotic result for the empirical measure of clusters.

Theorem 3 (Limit of empirical measure of clusters). Consider any p > 0 and f ∶ T → R
such that

sup
t∈T

∣f(t)∣
∣t∣p < ∞.

Then on the event {τ = ∞}
1

∣Xt∣
∑
C∈Xt

f(C) t→∞Ð→ E[f(Tπ)],
1

∣Yt∣
∑
C∈Yt

f(C) t→∞Ð→ E[f(Tπ̃)] a.s..

The rest of the paper is organized as follows: in Section 3 we introduce some notations
in this paper, and also recall the key splitting property of the random recursive tree. The
existence of Perron’s root λ is proved in Section 4 using Lyapunov functions. We then prove
Theorem 1. Section 5 is devoted to the strong convergences and we will prove Theorem 2,
Corollary 1 and Theorem 3. Finally, we give some further discussions in Section 6.
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3 Preliminaries

In this part, we introduce notations and the key reduction of the study. Our model is a
tree-type branching process and can be seen “a branching within branching”. We reduce
the study of this branching process (Gt,Ψt, ηt)t≥0 to that of its sizes (Xt, Yt)t≥0, so types
are now integers.

We denote by C a positive constant and its value may change in different contexts in the
paper. We use the notation [xp] for the polynomial function such that [xp](n) = np, n ≥ 1.
When p = 1 it is just the identity function and we omit the index, i.e. [x](n) = n. We
introduce B the set of functions from N+ to R with at most polynomial growth:

B ∶= {f ∶ N+ → R, ∃p ≥ 1 such that sup
n≥1

∣f(n)∣/np < ∞} . (3.6)

Let Bp be the set of normalized functions as above with p ≥ 1 fixed

Bp ∶= {f ∶ N+ → R, sup
n≥1

∣f(n)∣/np ≤ 1} . (3.7)

3.1 UHN labelling of clusters

We introduce the notation for the genealogical tree of the clusters. Recall that every vertex
is labeled by the infection time. For any cluster C (active or inactive), we call the vertex
with the minimum label the root of C, and denote it by root(C). We can also label every
cluster by the Ulam-Harris-Neveu notation that

U = ⋃
n≥0

{1,2}n,

where an element u ∈ U is called label or word. For the initial cluster, we use the label ∅ as
a convention for it. Then by induction, for any cluster C labeled by a word u ∈ U : this label
is unchanged during the growth of the clusters (infection); this label dies (it does not belong
to set of active clusters any longer) when it isolated; this label is replaced by two labels u1
and u2 when it is fragmentation. By convention, u1 is the label containing root(C) and is
called the first child, while u2 is for the second child.

Every cluster except the initial cluster has a parent and this latter is unique. There exists
a partial order ≼ on U defined by the dictionary order, i.e. for two words u and uv, the
former is an ancestor of the later, while the later is an descendant of the former, and we
note u ≼ uv. For two words u, v ∈ U , we denote by u ∧ v the most recent common ancestor
of u and v.

We denote by Ut the collection of labels of active clusters at time t, while U†
t gathers the

labels of inactive clusters at this time. For u ∈ U , we use U(u),Ut(u),U†
t (u) to represent

respectively the descendants of u, the active descendants of u and the inactive descendants
of u at time t. Finally, if u ∈ Ut (or u ∈ U†

t ), we denote by X u
t (or Y u

t ) for its associated
cluster, and Xu

t (or Y u
t ) its size, i.e. Xu

t = ∣X u
t ∣ (or Y u

t = ∣Y u
t ∣). We also use Xt(n) (or

Yt(n)) for the number of active clusters (or inactive clusters) of size n at time t. With these
notations, we have Xt = ∑u∈Ut δXu

t
and a useful identity that

⟨Xt, f⟩ = ∑
C∈Xt

f(∣C ∣) = ∑
u∈Ut

f(Xu
t ) =

∞
∑
n=1

Xt(n)f(n),

for any function f from N+ to R.
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3.2 Random recursive trees

The genealogy in the cluster is given by recursive tree and here we define some notations
for this object. Given a set V = {a1,⋯, an} ⊂ R with increasing order a1 < a2 < ⋯ < an, a
recursive tree t on V is a rooted tree labeled by V such that for any ai,2 ≤ i ≤ n, the path
from a1 to ai is increasing. Thus, the descendants of each vertex has a larger label. The
minimal element a1 is called the root of t. The collection of all the recursive trees on V is
denoted by TV and it is clear ∣TV ∣ = (∣V ∣ − 1)!.

We also define the equivalence relation ∼ between the recursive trees on different ordering
sets. Denoting by t1 a recursive tree on V1 and t2 a recursive tree on V2, then t1 ∼ t2 if and
only if there exists an order-preserving function ψ ∶ V1 → V2, such that ψ is also a bijection
between the graphs t1 and t2. We denote by Tn the set of recursive trees of size n up to the
equivalence relation ∼, and use the recursive trees defined on {1,⋯, n} as a representative
of the equivalent class; see Figure 5 for an example of T4. Finally, we define the space of
finite recursive trees

T ∶=
∞
⋃
n=1

Tn. (3.8)

Figure 5: All the recursive trees (as representatives of equivalent classes) in T4.

A (uniform) random recursive tree (RRT) of size n is a random element chosen uniformly
in Tn. We denote by Tn this random equivalent class. With a slight abuse, RRT can refer
both to the equivalent class or a specific labeling (for instance with the first integers). Since
T defined in eq. (3.8) contains only countably many elements, the space T is a Polish space
under the trivial distance. We denote by Cb(T ) the bounded function on T and we can
construct more general probability measures rather than PTn on T . For example, for any ν
a probability measure on N+, we use the notation Tν to represent a random variable on T ,
such that we sample first the size by ν, then sample an equivalent class uniformly given its
size, i.e. for any f ∈ Cb(T ),

E[f(Tν)] =
∞
∑
n=1

ν(n)E[f(Tn)] =
∞
∑
n=1

ν(n)
⎛
⎝

1

(n − 1)! ∑t∈Tn

f(t)
⎞
⎠
. (3.9)

This is the rigorous definition for the expression in Theorem 3.

There are many ways to construct Tn. One classical construction is the recursive ap-
proach: let T1 be the tree with the single vertex 1, and construct Tk+1 by attaching the
vertex labeled (k + 1) uniformly onto a vertex of Tk. This construction explains why our
infection process (Yule process), conditioned on its size, is a RRT. Indeed each individual
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contaminates a new individual with the same rate, which amounts to attaching a new vertex
to a uniformly chosen vertex of the tree, independently from the previous choices.

The key property of RRT that we need is the splitting property. Its proof can be found in
[20] or [8]. For the sake of completeness, we give it here and explain what role this property
plays in our model in the next section.

Proposition 1 (Splitting property). Let n ≥ 2 and Tn the canonical random recursive tree
of size n. We choose uniformly one edge in Tn and remove it. Then Tn is split into two
subtrees T 0

n and T ∗n , corresponding to two connected components, where T 0
n contains the root

of Tn and T ∗n does not. Then we have

P [∣T ∗n ∣ = j] =
n

n − 1

1

j(j + 1) , j = 1,2,⋯, n − 1. (3.10)

Furthermore, conditionally on ∣T ∗n ∣ = j, T 0
n and T ∗n are two independent RRT’s of size re-

spectively (n − j) and j.

Proof. Recall that Tn has the canonical representation, i.e. it is defined on {1,⋯, n}. It
is clear that after the splitting, the two subtrees are also recursive trees, so it suffices to
calculate the joint law of subtrees. Given that ∣T ∗n ∣ = j,1 ≤ j ≤ n − 1, and for any possible
two equivalent classes t1 ∈ Tj , t2 ∈ Tn−j of sizes respectively j and n − j, we calculate the
probability of {T ∗n ∼ t1, T 0

n ∼ t2}

P[T ∗n ∼ t1, T
0
n ∼ t2] =

n−j
∑
k=1

P[T ∗n ∼ t1, T
0
n ∼ t2,{root(T ∗n ), k} is removed].

Here the decomposition is due to the edge removal, which is the one between the root of
T ∗n and its parent vertex (some k). If this parent vertex is k, then we know all the vertices
{a1,⋯, aj} of T ∗n are chosen from {k + 1,⋯, n}. Then T ∗n should be a concrete recursive tree
t1 ∼ t1 defined on {a1,⋯, aj} and T 0

n is a recursive tree t2 ∼ t2 defined on {1,⋯, n}/{a1,⋯, aj}.
Notice that Tn has (n − 1)! configurations each occurring with equal probability. Moreover
there are (n− 1) edges in Tn each being selected to remove with equal probability. Then we
have

P[T ∗n ∼ t1, T
0
n ∼ t2] =

n−j
∑
k=1

P[T ∗n ∼ t1, T
0
n ∼ t2,{root(T ∗n ), k} is removed]

=
n−j
∑
k=1

∑
k<a1<⋯<aj≤n

P[T ∗n = t1, T
0
n = t2,{root(T ∗n ), k} is removed, a1,⋯, aj ∈ t1]

=
n−j
∑
k=1

(n − k
j

) 1

(n − 1)!(n − 1) .

Using ∑n−jk=1 (n−k
j

) = ( n
j+1

), we get

P[T ∗n ∼ t1, T
0
n ∼ t2] = ( n

j + 1
) 1

(n − 1)!(n − 1) . (3.11)

This implies that

P[∣T ∗n ∣ = j] = ∑
∣t1∣=j, ∣t2∣=n−j

P[T ∗n ∼ t1, T
0
n ∼ t2]

= (j − 1)!(n − j − 1)!( n

j + 1
) 1

(n − 1)!(n − 1)

= (j − 1)!(n − j − 1)!(( n

n − 1

1

j(j + 1))
1

(j − 1)!
1

(n − j − 1)!) = n

n − 1

1

j(j + 1) ,
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and hence

P[T ∗n ∼ t1, T
0
n ∼ t2 ∣ ∣T ∗n ∣ = j] =

1

(j − 1)!
1

(n − j − 1)! .

This yields the desired results.

3.3 Reduction to the size process

Let us explain more explicitly how the study of GFI process (Gt,Ψt, ηt)t≥0 can be reduced
to the study of the size process (Xt, Yt)t≥0, with the help of the splitting property. We
denote by M the finite punctual measures on N+ and endow it with the weak topology
corresponding Borel algebra. Then we treat (Xt, Yt)t≥0 as M2-valued process and denote
by (Ft)t≥0 its natural filtration.

Proposition 2. Let t ≥ 0. Conditionally on (Xu
t )u∈Ut and (Y u

t )
u∈U†

t
, the clusters in

Xt ∪Yt are independent RRT’s whose sizes are given by (Xu
t )u∈Ut and (Y u

t )
u∈U†

t
. More-

over, (Xt, Yt)t≥0 is a branching measure-valued Markov process in (M2, (Ft)t≥0,P).

Proof. The property on the distribution of clusters is obvious at initial time when there is
one single vertex. Let us check that the property remains valid along time and at the same
time that the size process satisfies the Markov property. The branching property of the size
process is then a direct consequence of the branching process of the initial process.
To prove the remaining part, we consider the three events and corresponding rates. First,
a cluster is isolated with a rate depending only on its size, it then simply become inactive.
Second, the growth rate of cluster also just depends on its size and the vertex is added inde-
pendently of the state of the other clusters. Thus, after a growth, the new cluster remains
independent from the other ones (conditionally to the sizes). Third, for fragmentation, we
invoke the splitting property (Proposition 1), which guarantees that sizes determine the law
of the two new clusters and independence with other clusters is preserved. This also ensures
the Markov property thanks to absence of memory for each event.

The transitions rates of the size process are thus directly inherited from our original
process:

i) becomes an isolated cluster of size n at rate θn;

ii) becomes a RRT of size (n + 1) at rate βn;

iii) splits into two RRTs of size (n − j, j) at rate γn 1
j(j+1) , for n ≥ 2,1 ≤ j ≤ n − 1.

In particular, each active cluster lives an exponential time of parameter (β + θ + γ)n − γ.
We introduce now the infinitesimal generator A of the Markov process (Xt, Yt)t≥0. It is
defined on a suitable subspace of measurable bounded functions on M2. Consider two
functions f, g ∶ N→ R+ and F ∶ R2 → R a bounded Borel function. We set

Ff,g ∶ (µ, ν) ∈ M2 → F (⟨µ, f⟩ , ⟨ν, g⟩) ∈ R,
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and define

AFf,g(µ, ν) =
∞
∑
n=1

µ({n})βn (F (⟨µ + δn+1 − δn, f⟩ , ⟨ν, g⟩) − F (⟨µ, f⟩ , ⟨ν, g⟩))

+
∞
∑
n=1

µ({n})θn (F (⟨µ − δn, f⟩ , ⟨ν + δn, g⟩) − F (⟨µ, f⟩ , ⟨ν, g⟩))

+
∞
∑
n=1

µ({n})γ(n − 1)×

n−1

∑
j=1

( n

n − 1

1

j(j + 1)) (F (⟨µ + δj + δn−j − δn, f⟩ , ⟨ν, g⟩) − F (⟨µ, f⟩ , ⟨ν, g⟩)) .

(3.12)

4 First moment semigroup and Perron’s root

In this part, we study the first moment semigroup associated to the process (Xt, Yt)t≥0. We
will establish the existence of Perron’s eigenelements and speed of convergence and prove
Theorem 1.

4.1 Semigroup and generator

Thanks to Section 3.2, the study of the model is reduced to the long time behavior of the
measure-valued branching Markov process (Xt, Yt)t≥0. We consider now the first moment
semigroup M = (Mt)t≥0 associated to (Xt)t≥0, which is defined for any non-negative function
f on N+ such that for any t ≥ 0 and n ≥ 1 by

Mtf(n) ∶= Eδn[⟨Xt, f⟩], (4.13)

where Pδn stands for the size process with initial condition (X0, Y0) = (δn,0) and Eδn is its
associated expectation. In particular we consider for any n,m ∈ N+,

Mt(n,m) ∶=Mt1m(n) = Eδn[⟨Xt,1m⟩] = Eδn[#{C ∈ Xt ∶ ∣C∣ =m}],

which is the mean number of clusters of size m at time t issued from one single cluster of
size n at time 0.

Let us recall that the functional spaces of polynomial growth B and Bp and the polynomial
function [xp] have been introduced at the beginning of Section 3. We extend now the first
moment semigroup to these spaces.

Lemma 1. (i) For any p ≥ 1, t ≥ 0, n ≥ 1, we have

Mt([xp])(n) ≤ e(2
p−1pβ−θ)tnp.

(ii) For any f ∈ B, setting f+ (resp. f−) the positive (resp. negative part) of f , the functions
t ∈ [0,∞) →Mtf+ and t ∈ [0,∞) →Mtf− are well defined and finite and we set for any t ≥ 0
and n ∈ N+,

Mtf(n) = Eδn[⟨Xt, f⟩] ∶=Mtf+(n) −Mtf−(n).
(iii) (Mt)t≥0 is a positive semigroup on B and for any f ∈ B, we have

d

dt
Mtf(n) =Mt(Lf)(n), ∀n ≥ 1, (4.14)
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where the linear operator L ∶ B → B is defined for n ≥ 1 by

Lf(n) = βn(f(n + 1) − f(n))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

I

−θnf(n)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

II

+ γ(n − 1)
n−1

∑
j=1

n

n − 1

1

j(j + 1) (f(j) + f(n − j) − f(n))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
III

. (4.15)

The three terms in the linear operator L correspond respectively to the growth, the
isolation and the fragmentation. This linear operator is the generator of the first moment
semigroup of the size process.

Proof. We study first L([xp]). Notice that for p ≥ 1 and any x, y > 0, (x + y)p ≥ xp + yp, so
the contribution of the fragmentation term is negative. Thus we have

L([xp])(n) ≤ βn((n + 1)p − np) − θnp+1.

We then apply mean-value principle

(n + 1)p − np = np ((1 + 1

n
)
p

− 1) = np × 1

n
× p(1 + ξ

n
)
p−1

≤ p2p−1np−1,

where ξ ∈ [0,1]. It gives us

L([xp]) ≤ (2p−1pβ − θ[x])[xp] ≤ (2p−1pβ − θ)[xp]. (4.16)

Here we use simply [x] ≥ 1 for the isolation term.

The rest of the proof follows classical arguments of localization, see e.g. Theorem 1 in
[21] and we give only the main lines. We assume that X0 = δn for any given n ≥ 1. We
consider the stopped process (Xm

t , Y
m
t )t≥0 defined by Xm

t =Xt∧Tm , Y m
t = Yt∧Tm , where

Tm = inf{t ≥ 0 ∶ ⟨Xt, [x]⟩ ≥m}.

Note that on the event Tm ≥ t, we have ⟨Xt, [x]⟩ ≤ m and ⟨Xt, [xp]⟩ ≤ mp. The process
(Xm

t , Y
m
t )t≥0 lives on a finite state space and has bounded rates. Consider three func-

tions f, g ∶ N→ R+ and F ∶ R2 → R a bounded Borel function and recall that Ff,g(µ, ν) =
F (⟨µ, f⟩ , ⟨ν, g⟩). We get by Kolmogorov forward equation and Dynkin formula (or stopping
theorem)

E[Ff,g(Xm
t , Y

m
t )] = E [Ff,g(Xm

0 , Y
m

0 )] +E [∫
t∧Tm

0
AFf,g(Xs, Ys)ds] ,

where A is defined in (3.12). We apply this equation with F (x, y) = x ∧mp and f = [xp] to
obtain

E[⟨Xm
t , [xp]⟩] = E[⟨Xm

0 , [xp]⟩] +E [∫
t∧Tm

0
⟨Xs,L[xp]⟩ds] . (4.17)

Using the above display and (4.16) yields

E[⟨Xm
t , [xp]⟩] ≤ E[⟨Xm

0 , [xp]⟩] + (2p−1pβ − θ)E [∫
t∧Tm

0
⟨Xs, [xp]⟩ds] .

Since the process (X,Y ) is non explosive, Tm tends a.s. to infinity as m tends to infinity.
Besides it is increasing in m. Applying Fatou’s lemma on the left hand side and monotone
convergence on the right hand side, the above inequality yields

Mt[xp](n) ≤M0[xp](n) + (2p−1pβ − θ)∫
t

0
Ms[xp](n)ds.

13



Grönwall lemma then ensures i) and ii) are an immediate consequence.

For iii), we need to show that for any f ∈ Bp with p ≥ 1, we have

E[⟨Xt, f⟩] = E[⟨X0, f⟩] +E [∫
t

0
⟨Xs,Lf⟩ds] . (4.18)

Let C > 0 such that ∣Lf(n)∣ ≤ Cnp+1 for all n. Similarly to (4.17), we have

E[⟨Xm
t , f⟩] = E[⟨Xm

0 , f⟩] +E [∫
t∧Tm

0
⟨Xs,Lf⟩ds] . (4.19)

and we distinguish the events t < Tm and t ≥ Tm For the first case, we have

⟨Xm
t , f⟩1{t<Tm} Ð→ ⟨Xt, f⟩, almost surely, as m→∞

and ∣⟨Xm
t , f⟩1{t<Tm}∣ ≤ ⟨Xt, ∣f ∣⟩ ≤ ⟨Xt, [xp]⟩. By i), the last term having a finite mean. Using

dominated convergence theorem, we obtain

lim
m→∞E[⟨Xm

t , f⟩1{t<Tm}] = E[⟨Xt, f⟩].

We prove now that the term corresponding to the second case vanishes. We use a coupling
argument and

E[∣⟨Xm
t , f⟩1{t≥Tm}∣] ≤mpP[Tm ≤ t] ≤mpP[⟨X̃t, [x]⟩ ≥m],

where (X̃t)t≥0 is the (increasing) size process with only growth term (i.e. β > 0, θ = γ = 0)
and X̃0 = δn. Then (⟨X̃t, [x]⟩)t≥0 is a Yule process with initial value n. Thus for fixed t,
⟨X̃t, [x]⟩ follows the negative binomial distribution with parameters n,1 − e−λ. Using the
above display, we get

E[∣⟨Xm
t , f⟩1{t≥Tm}∣] ≤mpE[(⟨X̃t, [x]⟩)2p]

m2p
Ð→ 0, as m→∞.

Combining the two cases, the term on the left hand side in (4.19) converges to E[⟨Xt, f⟩].
Now we turn to the right hand side of (4.19). Note that

∣∫
t∧Tm

0
⟨Xs,Lf⟩ds∣ ≤ ∫

t

0
⟨Xs, ∣Lf ∣⟩ds ≤ C ∫

t

0
⟨Xs, [xp+1]⟩ds, ∀m ∈ N+.

Due to i), the last term has finite mean. Moreover ∫ t∧Tm0 ⟨Xs,Lf⟩dsÐ→ ∫ t0 ⟨Xs,Lf⟩ds,
almost surely as m→∞. Applying bounded convergence theorem yields

E [∫
t∧Tm

0
⟨Xs,Lf⟩ds] Ð→ E [∫

t

0
⟨Xs,Lf⟩ds] , as m→∞.

Letting m→∞ in (4.19) gives (4.18) and ends the proof.

4.2 Perron’s root and eigenvectors

Under general assumptions extending the Perron-Frobenius theory in finite dimension, the
ergodic behavior of positive semigroups is given by the unique triplet of eigenelements corre-
sponding to the maximal eigenvalue. We refer in particular to [5, 22] and references therein
for general statements and applications to growth fragmentation. In this work, we apply
a general statement of [5] on the ergodic behavior of positive semigroups. It allows us
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to exploit practical sufficient conditions which are satisfied by our process : irreducibility
properties of the dynamic of the cluster sizes (4.22) and the fast splitting of large clusters
which provide a Lyapunov function for a typical cluster (4.21). Besides, this result ensures
exponential speed of convergence of the profile. This will be useful in particular for the
proof of the a.s. convergences in the next section.

In what follows, notation “f ≤ g” means the point-wise comparison for functions. We
prove at first Lemma 2, which is the key technical ingredient for Proposition 3. The following
space of sublinear functions is useful to control the harmonic function:

S ∶= {f ∶ N+ → [1,∞), such that

a) f is increasing and lim
n→∞ f(n) = ∞

b) f is sublinear
f(n + 1)
n + 1

≤ f(n)
n

, and Cf ∶=
∞
∑
j=1

f(j)
j(j + 1) < ∞}.

(4.20)

Lemma 2. There exists a positive function ψ and b, ξ ∈ R such that 0 < infN+ ψ < supN+ ψ ≤ 1
and for every V ∈ S ∪ {[xp], p ≥ 1}

i) there exist a < b and ζ > 0 such that

LV ≤ aV + ζψ, bψ ≤ Lψ ≤ ξψ. (4.21)

ii) for any R large enough, the set K = {x ∈ N+ ∶ ψ(x) ≥ V (x)/R} is a non-empty finite
set and for any x, y ∈K and t0 > 0,

Mt0(x, y) > 0. (4.22)

Proof. To find the Lyapunov-type function ψ, the main difficulty is to ensure the lower
bound of Lψ in (4.21) exists. As we can see in eq. (4.15), the isolation term −θnf(n) cannot
be bounded from below uniformly in n by f times a constant. The strategy is to use the
growth term and fragmentation term to compensate the isolation term.

Step 1: Construction of ψ - setup. We set

ψ(n) = A − (A −B)qn−1,

with A,B ∈ (0,∞) and q ∈ (0,1) to be chosen later. Then ψ is bounded between A and B
and limn→∞ψ(n) = A. We decompose Lψ as follows

Lψ(n) = βn(ψ(n + 1) − ψ(n))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

I

−(θ + γ)nψ(n)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

II

+γψ(n)+γn
n−1

∑
j=1

1

j(j + 1) (ψ(j) + ψ(n − j))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
III

.

(4.23)

First
∣I∣ = ∣β(A −B)n(qn−1 − qn)∣ ≤ C1ψ(n), (4.24)

for some C1 > 0, since ψ ≥ min{A,B} > 0. Second, we observe that

lim
n→∞

∑n−1
j=1 ( 1

j(j+1)ψ(j))
ψ(n) =

∑∞
j=1

1
j(j+1) (A − (A −B)qj−1)

A

= 1 − (1 − B
A

) q−1(1 + (q−1 − 1) ln(1 − q)) =∶ CA,Bq ,
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Here we used ∑∞
j=1

1
j(j+1) = 1 and ∑∞

j=1
qj−1

j(j+1) = q
−1(1 + (q−1 − 1) ln(1 − q)). Moreover,

lim
n→∞

∑n−1
j=1

1
j(j+1)ψ(n − j)
ψ(n) =

limn→∞∑n−1
j=1

1
j(j+1) (A − (A −B)qn−j−1)

A
= 1,

since ∑n−1
j=1

1
j(j+1)q

n−j−1 goes to 0 as n→∞. Combining the above two displays, we obtain

III ∼ (1 +CA,Bq )γnψ(n), as n→∞.

Step 2: Construction of ψ - choice of parameters. We add and subtract the term
(1 +CA,Bq )γnψ(n) and reformulate eq. (4.23) as

Lψ(n) = γψ(n) + (CA,Bq γ − θ)nψ(n)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

II′

+R1(n, q) +R2(n, q) + βn(ψ(n + 1) − ψ(n))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

III′

, (4.25)

where the term III′ is the remainder term and

R1(n, q) ∶= γn
⎛
⎝
n−1

∑
j=1

( 1

j(j + 1)ψ(j)) −C
A,B
q ψ(n)

⎞
⎠
,

R2(n, q) ∶= γn
⎛
⎝
n−1

∑
j=1

( 1

j(j + 1)ψ(n − j)) − ψ(n)
⎞
⎠
.

(4.26)

We choose q,A,B such that the term II′ is 0 (i.e. CA,Bq = θ/γ) and 0 < A,B ≤ 1 (then
0 < infN+ ψ < supN+ ψ ≤ 1). More concretely, we can distinguish three cases:

• If γ = θ, we can choose A = B = 1.

• If γ > θ, we can choose q close to 1 such that q−1(1 + (q−1 − 1) ln(1 − q)) ∈ (1 − θ
γ ,1)

and then choose 0 < B < A ≤ 1 such that CA,Bq = θ/γ.

• If γ < θ, it suffices to fix some q ∈ (0,1) and then choose 0 < A < B ≤ 1 such that such
that CA,Bq = θ/γ.

Besides, the convergences in Step 1 ensure that there exists C2 ∈ (0,∞) such that

sup
n∈N+

{∣R1(n, q)
ψ(n) ∣ + ∣R2(n, q)

ψ(n) ∣} ≤ C2. (4.27)

Together with (4.24), we obtain that

(γ −C1 −C2)ψ ≤ Lψ ≤ (γ +C1 +C2)ψ.

This guarantees that the two last inequalities of eq. (4.21) hold with the following choices
of parameters:

b ∶= γ −C1 −C2, ξ ∶= γ +C1 +C2.

Step 3: Find a, ζ. For V = [xp] with p ≥ 1,we pick a real number a such that

a < min{2p−1pβ − θ, b}.
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Recalling (4.16) and distinguishing if 2p−1pβ − θn is larger than a or not, we can write

L[xp](n) ≤ anp + (2p−1pβ − θn − a)np1{2p−1pβ−θn≥a}
≤ a[xp] + ζψ,

where ζ ∈ (0,∞) since ψ is bounded and there exist finitely many n satisfying 2p−1pβ − θn ≥ a.
This ends the proof of i) for p ≥ 1. Besides, for any large R, the set K is finite and non-
empty. The combination of growth, fragmentation and isolation ensures the irreducibility
of (Xt)t≥0 which allows to end the proof of ii).

Now we treat the case V ∈ S and verify the condition i) and ii). Property ii) is easy to
verify since V is increasing to infinity while ψ is a bounded function. For condition i), we

calculate LV and use the decomposition in eq. (4.15). Then
V (n+1)
n+1 ≤ V (n)

n implies for the
growth term that

I = βn(V (n + 1) − V (n)) ≤ βn(n + 1

n
V (n) − V (n)) ≤ βV (n).

Then the fact that V increases and CV is finite yield for the fragmentation term III:

γ(n − 1)
n−1

∑
j=1

n

n − 1

1

j(j + 1) (V (j) + V (n − j) − V (n)) ≤ γn
n−1

∑
j=1

V (j)
j(j + 1) < CV γn.

The above two displays entail that

LV (n) ≤ (β − θn)V (n) +CV γn. (4.28)

Now we pick a real number a such that a < min{β − θ, b}. Using the fact limn→∞ V (n) = ∞,
we notice that E ∶= {n ∈ N+ ∶ (β−θn)V (n)+CV γn > aV (n)} is a non-empty finite set. Then
distinguishing the cases when n belongs to E or not in eq. (4.28) yields

LV (n) ≤ aV (n)1{n∈Ec} + ((β − θn)V (n) +CV γn)1{n∈E}
= aV (n) + ((β − a − θn)V (n) +CV γn)1{n∈E}
≤ aV (n) + ζψ(n).

Here the constant ζ is defined by

ζ ∶= max
n∈E

(β − a − θn)V (n) +CV γn
ψ(n) ∈ (0,∞).

The following result giving the existence of eigenelements and asymptotic behavior of the
semigroup is based on Theorem 2.1 in [5].

Proposition 3. There exists a unique triplet (λ,π, h) where λ ∈ R and π = (π(n))n∈N+ is a
positive vector and h ∶ N+ → (0,∞) is a positive function, such that for all t ≥ 0,

πMt = eλtπ, Mth = eλth

and 0 < infn≥1 h(n) ≤ supn≥1 h(n) < ∞ and ∑n≥1 π(n) = ∑n≥1 π(n)h(n) = 1.

Besides, for every p > 0 there exists C,ω > 0 such that for any n,m ≥ 1, t ≥ 0,

∣e−λtMt(n,m) − h(n)π(m)∣ ≤ Cnpm−pe−ωt, ∑
n≥1

π(n)np < ∞. (4.29)
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Proof. We can check directly that the sufficient conditions given in Propositions 2.2 and
2.3 in [5] are satisfied using Lemma 2, together with Lemma 1 iii) which ensures that our
pointwise inequalities ensures the weak version of drift conditions required in [5]. More
precisely, these conditions are met with V = [xp] and ϕ = ψ for p > 0, while ψ ≤ [xp] is
guaranteed by the fact that ψ ≤ 1. Using these sufficient conditions, we can apply Theorem
2.1 in [5], which yields the result. In particular, eq. (4.29) is obtained by specifying the
initial condition µ = δn and using a test function 1m.
We now prove that h is upperbounded. It is a consequence of Lemma 3.4 in [5] which ensures
that that h is dominated by V (i.e. h ≤ V ). Adding that Lemma 2 guarantees that we can
pick a V ∈ S that increases arbitrarily slowly, we obtain that h is bounded.
Finally, we justify that h is lowerbounded. Indeed h(n) = eλM1h(n) ≥ ch(1), where c > 0
since we recall that the probability that one cluster of size n brings one cluster of size one
before unit time 1 is lowerbounded by a positive constant with respect to its size.

Equation (4.29) ensures that for any f ∶ N+ ↦ R such that ∥ f ∥p∶= ∑m≥1m
−(p+2)∣f(m)∣ < ∞,

∣e−λtMtf(n) − h(n) ⟨π, f⟩ ∣ ≤ Cnp+2 ∥ f ∥p e−ωt. (4.30)

Let us also mention that the fact that the eigenfunction h is (lower and upper bounded) in
(0,∞) ensures that for any fixed t

0 < inf
n≥1

Mt1(n) ≤ sup
n≥1

Mt1(n) < ∞.

This implies uniform exponential convergence for bounded tests function:

sup
n,m≥1

∣e−λtMt(n,m) − h(n)π(m)∣ ≤ C ′e−ω
′t, t ≥ 0. (4.31)

Here C ′ > 0, ω′ > 0. This latter fact can be obtained by applying Theorem 3.5 in [4] with
ν = δn. In words, the impact of the initial size of the cluster is bounded, both on the first
order approximation and the control of the gap with this approximation.

At this point one may want to apply [1] to prove strong convergence using the asymptotic
behavior of the first moment semigroup. But [1] requires stronger assumptions than what
is obtained in eq. (4.29) and eq. (4.31), in particular in terms of control of this gap by the
stationary distribution π(m) (instead of m−p). Besides, we are interested by finer and more
quantitative estimates, with motivations in inference and epidemiology. We thus follow
another classical approach via L2 estimates and control of fluctuations.

4.3 L2 martingale

Using the first moment semigroup, we can compute the second moment of ⟨Xt, f⟩ for f ∈ B,
which consists in the so called formula for forks or many-to-two formula, see e.g. [6, 18] and
references therein. The idea is to use the most recent common ancestor of two individuals
to decouple their values.

Lemma 3. For any x ∈ N+ and f ∈ B, we have

Eδx [⟨Xt, f⟩2] =Mt(f2)(x) + 2∫
t

0
∑
n≥1

Ms(x,n)
⎛
⎝ ∑

1≤j≤n−1

κ(n, j)Mt−sf(j)Mt−sf(n − j)
⎞
⎠

ds,

where κ(n, j) = γn
j(j+1) is the rate at which a cluster of size n breaks into a cluster of size

n − j(first child) and j(second child).
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Proof. We follow [6] and adapt the computations to our case where the branching rate
depends on the size of the cluster. Recalling notation of Section 3.1, we have

⟨Xt, f⟩ = ∑
u∈Ut

f(Xu
t ).

Recall also that, for any u, v ∈ U , u ∧ v is the label of the most recent ancestor of u and v
and u ≽ v means that v is an ancestor of u. We first notice that

⟨Xt, f⟩2 = ∑
u,v∈Ut

f(Xu
t )f(Xv

t ) = ∑
u∈Ut

f2(Xu
t ) + ∑

w∈U
∑

u,v∈Ut,
u≠v,u∧v=w

f(Xu
t )f(Xv

t )

= ∑
u∈Ut

f2(Xu
t ) + ∑

w∈U
1{b(w)<t}It(w),

(4.32)

where for any w ∈ U , b(w) is the time at which the cluster labeled by w branches (i.e. the
time when it splits into two clusters, labeled w1 and w2; potentially infinite if that does not
happen) and

It(w) = ∑
u,v∈Ut

i,j∈{1,2}, i≠j
u≽wi, v≽wj

f(Xu
t )f(Xv

t ) = 2
⎛
⎝ ∑
u∈Ut, u≽w1

f(Xu
t ) × ∑

v∈Ut, v≽w2

f(Xv
t )

⎞
⎠
.

Firstly, we have

Eδx
⎡⎢⎢⎢⎣
∑
u∈Ut

f2(Xu
t )

⎤⎥⎥⎥⎦
=Mt(f2)(x).

Secondly, we deal with Eδx [∑w∈U 1{b(w)<t} It(w)]. For any w ∈ U and for any i ∈ {1,2}, we
use strong Markov property and have

1{b(w)<t}Eδx
⎡⎢⎢⎢⎢⎣

∑
u∈Ut, u≽wi

f(Xu
t ) ∣ b(w),Xwi

b(w)

⎤⎥⎥⎥⎥⎦
= 1{b(w)<t}Mt−b(w)f(Xwi

b(w)).

For any w ∈ U , the branching property then yields

1{b(w)<t}Eδx [It(w) ∣Fb(w), b(w)] = 21{b(w)<t}Mt−b(w)f(Xw1
b(w))Mt−b(w)f(Xw2

b(w)).

Combining these identities, we obtain

Eδx [∑
w∈U

1{b(w)<t} It(w)] = 2Eδx [∑
w∈U

1{b(w)<t}Mt−b(w)f(Xw1
b(w))Mt−b(w)f(Xw2

b(w))]

= 2Eδx [∑
w∈U

1{b(w)<t} g(Xw
b(w)−, b(w))] ,

where we introduce

g(Xw
b(w)−, b(w)) ∶= Eδx [Mt−b(w)f(Xw1

b(w))Mt−b(w)f(Xw2
b(w)) ∣X

w
b(w)−, b(w)] .

This function involves the fragmentation event and can be explicited recalling that, when a
cluster of size n splits, the probability that the sizes of the two new clusters are (j, n− j) is
n/((n − 1) ⋅ j ⋅ (j + 1)). We obtain

g(n, s) = ∑
1≤j≤n−1

n

n − 1

1

j(j + 1)Mt−sf(j)Mt−sf(n − j). (4.33)
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Adding that the branching rate of a cluster of size n is γ(n − 1), we obtain

Eδx [∑
w∈U

1{b(w)<t} g(Xw
b(w)−, b(w))] = ∫

t

0
∑

w∈U ,n≥1

g(n, s)Pδx[w ∈ Us−, Xw
b(w)− = n, b(w) ∈ ds]

= ∫
t

0
∑

w∈U ,n≥1

g(n, s)Pδx[w ∈ Us−,Xw
b(w)− = n]γ(n − 1)ds

= ∫
t

0
∑
n≥1

g(n, s)γ(n − 1)Ms(x,n)ds.

This equation and eq. (4.33) give us the expression of κ. It ends the proof.

With the help of this L2 expression, we can deal with the martingale associated to the
harmonic function h.

Proposition 4. The process (Mt)t≥0 defined as

Mt = e−λt ⟨Xt, h⟩ , (4.34)

is a non-negative martingale, which converges almost surely to a non-negative finite random
variable W as t tends to infinity. Moreover, if λ > 0, (Mt)t≥0 converges in L2 norm to W .

Proof. The martingale property is classical and the proof is given for sake of completeness.
Recall the notation Ut and Xu

t . For any u ∈ Ut, let Ut+s(u) be the set of labels of all the
clusters active at time t + s that are descendants of the cluster labeled by u active at time
t; let Xuv

t+s be the size of the active cluster labeled by uv at time t + s which is descendant
of the cluster labeled by u active at time t. Then we have

E [Mt+s ∣Ft] = e−λ(t+s)E
⎡⎢⎢⎢⎣
∑

u∈Ut+s
h(Xu

t+s) ∣Ft
⎤⎥⎥⎥⎦

= e−λ(t+s) ∑
u∈Ut

EδXu
t

⎡⎢⎢⎢⎢⎣
∑

v∈Ut+s(u)
h(Xuv

t+s) ∣Ft
⎤⎥⎥⎥⎥⎦

= e−λ(t+s) ∑
u∈Ut

Msh(Xu
t ) = Mt.

since Msh = eλsh. As M is non-negative, it converges almost surely to a finite random
variable.

Let us now prove the L2 convergence. We apply Lemma 3 with x = 1 and obtain

E [⟨Xt, h⟩2] =Mt(h2)(1) + 2∫
t

0
∑
n≥1

Ms(1, n)
⎛
⎝ ∑

1≤j≤n−1

κ(n, j)Mt−sh(j)Mt−sh(n − j)
⎞
⎠

ds

=Mt(h2)(1) + 2e2λtJt,

where

Jt = ∫
t

0
∑
n≥1

e−2λsMs(1, n)
⎛
⎝ ∑

1≤j≤n−1

κ(n, j)h(j)h(n − j)
⎞
⎠

ds.

Using that κ(n, j) = γn/(j(j + 1)) for all n ≥ 1 and 1 ≤ j ≤ n − 1 and that h is bounded
from Proposition 3, we get that ∑1≤j≤n−1 κ(n, j)h(j)h(n− j) grows at most linearly with n.
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Moreover we can apply eq. (4.30) to control the gap between e−λsMs(1, n) and h(1)π(n)
Combining these estimates ensures that for any p > 2, there exists C > 0 such that

0 ≤ Jt ≤ C ∫
t

0
e−λs∑

n≥1

nγ(h(1)π(n) + n−p)ds, ∀n ≥ 1, t ≥ 0,

which is uniformly upperbounded for all n ≥ 1, t ≥ 0. Adding that π(n) decreases to 0 faster
than n−3 ensures that supt≥0 Jt < ∞. Finally

E [(Mt)2] = e−2λtE [⟨Xt, h⟩2] = e−2λtMt(h2)(1) + Jt,

and we apply (4.30) and conclude that supt≥0 E [(Mt)2] < ∞. Then by the martingale con-
vergence theorem, we obtain that E[W 2] < ∞ and (Mt)t≥0 converges in L2 norm to W .

Remark 1. Proposition 4 is also valid for (Xt)t≥0 under Pδn . However, to not confuse the
notation, we state the result under P = Pδ1 and then W is consistent with Theorem 2 and
Corollary 1.

4.4 Proof of Theorem 1

With the help of Proposition 3 and Proposition 4, we are now ready to prove our Theorem 1.

Proof of Theorem 1. We notice that E[∣Xt∣] = E[⟨Xt,1⟩] = ∑∞
j=1Mt(1, j) and we apply

eq. (4.30) with f = 1 (constant function), n = p = 1. This ensures that limt→∞ log(E[∣Xt∣])/t = λ.

To study the limit of log(E[∣Yt∣])/t, we use Kolmogorov equation. More precisely,
following the localization argument of the proof of Lemma 1 (ii − iii), we check that
Ff,g(µ, ν) = ⟨ν,1⟩ belongs to the domain of the extended generator defined in eq. (3.12).
We get

E[∣Yt∣] = E[⟨Yt,1⟩] = ∫
t

0
E[⟨Xs, θ[x]⟩]ds = ∫

t

0
Ms(θ[x])(1)ds,

and we conclude using eq. (4.30).

Lastly, we study the the survival probability P[τ = ∞].

• In the subcritical phase (λ < 0), eq. (4.30) and the classical first moment estimate
prove that extinction is almost sure.

• In the supercritical phase (λ > 0), we use the L2 martingale of Proposition 4 and the
stopping time theorem to get

h(1) = E [ lim
t→∞ e

−λ(t∧τ) ⟨Xt∧τ , h⟩] = E [W1{τ=∞}] .

Adding that h > 0 from Proposition 3 implies that P[τ = ∞] > 0 and P[W > 0] > 0.

• In the critical phase λ = 0, we first observe that the probability of extinction (isolation)
of clusters, within a unit time, is greater than a positive constant (uniformly with
respect to their size). Besides limt→∞ ∣Xt∣ < ∞ a.s. since Fatou’s lemma ensures that

E[ lim
t→∞

∣Xt∣] ≤ lim
t→∞E[⟨Xt, h⟩] = h(1) < ∞.

This ensures that extinction occurs a.s. in finite time by a classical argument of
Markov process with accessible absorbing point. Indeed, for any K ≥ 1, on the event
limt→∞ ∣Xt∣ ≤ K, exinction occurs a.s. since we can construct an infinite sequence of
stopping times Tn (separated by a unit time) such that ∣XTn ∣ ≤ K and for each n,
extinction occurs with a positive (lower bounded) probability during [Tn, Tn + 1].
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5 Strong convergences

We recall that the Perron’s root λ ∈ R and associated eigenelements have been characterized
in Proposition 3. The sign of λ determines if the first moment semigroup goes to 0 or infinity.
We turn now to trajectorial results and first check that it yields the extinction criterion.
Then we focus on the supercritical regime λ > 0 and prove strong law of large numbers for
the distribution of clusters.

5.1 Kesten-Stigum limit theorem

A fundamental and classical question is whether {W > 0} coincide with survival event
{τ = ∞} or not. This is the Kesten-Stigum theorem in branching process, see e.g. [15, 16].
In our case, the L2 computation ensure that P[W > 0] > 0 and we get the expected result.

Proposition 5. Assume λ > 0. Then P[W > 0] > 0 and {W > 0} = {τ = ∞}a.s..

Proof. The fact that P[W > 0] > 0 comes from the L2 martingale convergence of Proposi-
tion 4, see the proof there. Besides {W > 0} ⊂ {τ = ∞}. Thus if P[W > 0] = P[τ = ∞], the
proof is complete. The lines of the proof are classical, even if the fact that sizes of clusters
is non bounded requires some specific argument.

First, we use the fact that any cluster can be isolated (before any other event happens to
it) during a unit time interval, with a positive probability uniform with respect to its size.
As a consequence, the number of clusters has to tend to infinity to survive :

{τ = ∞} = { lim
t→∞ ∣Xt∣ = ∞} a.s.

Second, we derive from this result that the number of clusters of size 1 tends to infinity on
the survival event. Indeed, during a unit time interval, clusters of size one have a positive
probability to stay cluster of size one and other clusters have a positive probability to create
(by fragmentation) one cluster of size one, and this probability is lower bounded with respect
to the size n ≥ 2. By independence of clusters and Markov inequality, this ensures that

lim
t→∞Xt(1) = +∞ a.s. on {τ = ∞}.

On this event {τ = ∞}, we can thus define a sequence of (finite) stopping times for N ≥ 1

τN ∶= inf{t ∶Xt(1) ≥ N}.

We obtain for t ≥ τN

e−λt ⟨Xt, h⟩ ≥ e−λτN ∑
u∈AN

e−λ(t−τN ) ∑
v∈Ut,v≽u

h(Xv
t ),

where AN ∶= {u ∈ UτN ∶ Xu
τN

= 1}. By Proposition 4, e−λ(t−τN )∑v∈Ut,v≽u h(Xv
t ) converges

to a non-negative random variable denoted by W (u) which is equal in law to W . Besides
{W (u)}u∈AN

are i.i.d. random variables. Thus we have

P[W = 0, τ = ∞] ≤ P[W = 0, τN < ∞]
≤ P[{τN < ∞} ∩ {W (u) = 0,∀u ∈ AN}] = (P[W = 0])N .

As a conclusion, P[W = 0] = 1 or P[W = 0, τ = ∞] = 0 (by letting N → ∞), which ends the
proof.
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5.2 Strong law of large numbers for the size of active clusters

In this part, we prove Theorem 2 using the estimates of the first moment semigroup, the L2

estimates and the martingale associated to the harmonic function. The L2 estimates ensure
weak convergence and the speed obtained allows for strong convergence of subsequences.
Some additional work is needed to control fluctuations and prove the strong convergence
and we follow [2]. We divide the proof into three steps.

Proof of Theorem 2. Step 1: L2 convergence. We prove first the L2 convergence of e−λt ⟨Xt, f⟩
to W ⟨π, f⟩ for f ∈ Bp. We develop the difference as follows

e−λt ⟨Xt, f⟩ −W ⟨π, f⟩
= e−λt ⟨Xt, f⟩ − e−λt ⟨Xt, h⟩ ⟨π, f⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

I

+ e−λt ⟨Xt, h⟩ ⟨π, f⟩ −W ⟨π, f⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

II

. (5.35)

The second term II is nothing but (Mt −W ) ⟨π, f⟩, which converges in L2 to 0 by Proposi-
tion 4. We only have to prove the L2 convergence of the term I to 0. Denoting g ∶= f−⟨π, f⟩h,
Lemma 3 yields

e2λtE[∣I∣2] = E [⟨Xt, g⟩2] =Mt(g2)(1) + Jt, (5.36)

where

Jt ∶= 2∫
t

0
∑
n≥1

Ms(1, n)
⎛
⎝ ∑

1≤j≤n−1

κ(n, j)Mt−sg(j)Mt−sg(n − j)
⎞
⎠

ds.

Recalling that ∥ f ∥p∶= ∑m≥1 ∣f(m)∣m−(p+2) ∈ (−∞,∞). Observe that g ∈ Bp and let
p′ ≥ 2p + 8. By (4.30), there exists C ′ > 0 such that for any n ∈ N+ and s, t ≥ 0,

∣e−λtMtg(n) − h(n) ⟨π, g⟩ ∣ ≤ C ′np+2 ∥ g ∥p e−wt,
∣e−λsMs(1, n) − h(1)π(n)∣ ≤ C ′n−p

′
e−ws.

Since ⟨π, g⟩ = 0 and κ(n, j) ≤ γn, using the above two displays, there exists C1 > 0 such that

∣Jt∣ ≤ C1e
2(λ−ω)t∫

t

0
e(2ω−λ)s∑

n≥1

n2p+6(h(1)π(n) + n−p′)ds.

Using eq. (4.29) (second statement) and p′ > 2p+ 8, the sum ∑n≥1 n
2p+6(h(1)π(n) +n−p′) in

last line is finite and there exists C2 > 0 such that

∣Jt∣ ≤ C2e
2(λ−ω)t∫

t

0
e(2ω−λ)sds, ∀n ≥ 1, s ≥ 0.

Moreover, by Proposition 3, e−2λtMt(g2)(1) = o(1), t→∞. We plug these estimates in (5.36)
and there exists C3 > 0 such that

E[∣I∣2] ≤ C3te
−(λ∧2ω)t, ∀t ≥ 0. (5.37)

Note that C1,C2,C3 may depend on f but not on t. Then the proof is finished.

Remark 2. A byproduct of eq. (5.37) and Proposition 4 is that, for the case λ > 0 there
exists a constant C0 > 0 and an exponent σ ∈ (0, λ), such that for any f ∈ Bp,

E [⟨Xt, f⟩2] ≤ C0e
2λt (∣ ⟨π, f⟩ ∣2+ ∥ f ∥p e−σt) . (5.38)
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Step 2: Almost sure convergence for one type. We use an elegant argument from [2] and
we extend it to our countable-type branching process.

First, we establish an almost convergence for a discrete scheme, using the speed of con-
vergence obtained from the L2 estimates. We can pick a step size ∆ > 0 and apply the
decomposition eq. (5.35). Then the martingale part II converges to 0 almost surely, and for
the term I, eq. (5.37) yields

E [∣e−λk∆ ⟨Xk∆, f⟩ − e−λk∆ ⟨Xk∆, h⟩ ⟨π, f⟩ ∣2] ≤ Ck∆e−(λ∧2ω)k∆, ∀k ≥ 0. (5.39)

By Borel-Cantelli lemma, we get

e−λk∆ ⟨Xk∆, f⟩
k→∞ÐÐÐ→W ⟨π, f⟩, almost surely. (5.40)

Let us observe that on the event {W = 0}, by Proposition 5, the extinction occurs a.s. in
finite time and we focus on the event W > 0. Let us first prove that

e−λtXt(n)
t→∞ÐÐ→Wπ(n), almost surely. (5.41)

Given the almost sure convergence in discrete times, we need to control the fluctuations in
the intervals [k∆, (k + 1)∆). A nice observation in [2] is that we only need to prove the
following sufficient (and necessary) condition

lim
t→∞

e−λtXt(n) ≥Wπ(n), almost surely for all n ≥ 1. (5.42)

We first show that (5.42) implies (5.41) using that the martingale convergence controls the
dissipation of mass. Indeed, for any n ≥ 1, using a subsequence of times (tk)k∈N+ such that
lim
t→∞ e

−λtXt(n) = limk→∞ e−λtkXtk(n). Proposition 4 and Fatou’s lemma and (5.42) ensure

lim
t→∞ e

−λtXt(n)h(n) = lim
k→∞

⎛
⎝∑i≥1

e−λtkXtk(i)h(i) − ∑
i≥1,i≠n

e−λtkXtk(i)h(i)
⎞
⎠

≤W − ∑
i≥1,i≠n

lim
k→∞

e−λtkXtk(i)h(i)

≤W − ∑
i≥1,i≠n

Wπ(i)h(i) =Wπ(n)h(n).

(5.43)

So (5.42) implies (5.41).

We need now to prove eq. (5.42) and follow the argument of [2]. Let ∆ > 0 be the time
step size. The proof relies on the following lower bound:

∀t ∈ [k∆, (k + 1)∆), Xt(n) ≥Xk∆(n) −Nk,∆(n), (5.44)

where Nk,∆(n) is the number of active clusters of size n at time k∆ that will encounter at
least one event within (k∆, (k + 1)∆). Thus,

lim
t→∞

e−λtXt(n) ≥ lim
k→∞

e−λ(k+1)∆Xk∆(n) − lim
k→∞

e−λk∆Nk,∆(n).

Using eq. (5.40) for the first term of the right hand side, we obtain

lim
t→∞

e−λtXt(n) ≥ e−λ∆π(n)W − lim
k→∞

e−λk∆Nk,∆(n).
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It remains to prove that limk→∞ e−λk∆Nk,∆(n) = 0 a.s. and let ∆ go to 0. We introduce

Dk =D∆,n,k,ε ∶= {N∆,k(n) > εXk∆(n), Xk∆(n) > k} , k ≥ 1.

By branching property, we know that

Nk,∆(n) d=
Xk∆(n)
∑
i=1

ξi,

where {ξi}i≥1 are i.i.d. Bernoulli random variables, independent of Xk∆(n) and

P[ξi = 0] = 1 − P[ξi = 1] = exp(−rn∆), rn = (β + θ + γ)n − γ.

Indeed, rn is the total jump rate of an active cluster of size n. Choose ∆ small such that
P[ξi = 1] < ε. Then,

∑
k≥1

P[Dk] ≤ ∑
k≥1

P [Nk,∆(n) > εXk∆(n) ∣ Xk∆(n) > k] < ∞,

using that P[∑ki=1 ξi > εk] decreases exponentially as k grows thanks to Hoeffding inequality.
Borel-Cantelli lemma then ensures that a.s. Dk happens a finite number of times.

Recalling now from (5.40) that Xk∆(n) grows exponentially on the event {W > 0},
so Xk∆ ≤ k also happens a.s. a finite number of times. As a consequence, a.s. on the
event {W > 0}, we have Nk,∆(n) ≤ εXk∆(n) for k large enough, and we conclude that
limk→∞ e−λk∆Nk,∆ = 0 a.s. on the event {W > 0} by letting ε go to 0. This ends the proof
of (5.42) and we get eq. (5.41), that is Theorem 2 for functions with bounded support.

Step 3: Almost surely convergence - general test function. We now extend the space
of test functions and get uniform estimates for Bp. To this purpose, we define the cutoff
operator at some level K ∈ N+

f≤K(n) ∶= f(n)1{n≤K}, f>K(n) ∶= f(n)1{n>K}. (5.45)

First, using eq. (5.41), we obtain

sup
f∈Bp

∣e−λt ⟨Xt, f≤K⟩ −W ⟨π, f≤K⟩ ∣ ≤Kp
K

∑
n=1

∣e−λtXt(n) −Wπ(n)∣ t→∞ÐÐ→ 0, a.s..

Second,

sup
f∈Bp

∣e−λt ⟨Xt, f>K⟩ ∣ ≤ e−λt ⟨Xt, [xp]>K⟩ , sup
f∈Bp

∣W ⟨π, f>K⟩ ∣ ≤W ⟨π, [xp]>K⟩ ,

Combining these estimates and ∣e−λt ⟨Xt, f⟩ −W ⟨π, f⟩ ∣ ≤ ∣e−λt ⟨Xt, f>K⟩ ∣ + ∣e−λt ⟨Xt, f≤K⟩ −
W ⟨π, f≤K⟩ ∣ + ∣W ⟨π, [xp]>K⟩ ∣ yields

lim
t→∞ sup

f∈Bp
∣e−λt ⟨Xt, f⟩ −W ⟨π, f⟩ ∣ ≤ lim

t→∞ e
−λt ⟨Xt, [xp]>K⟩ +W ⟨π, f>K⟩ ,

for any K ≥ 1. We show now that the right hand side goes to 0 as K goes to infinity:

lim
K→∞

lim
t→∞ e

−λt ⟨Xt, [xp]>K⟩ = 0. (5.46)

Indeed (5.40) ensures that

lim
k→∞

e−λk∆ ⟨Xk∆, [xp]>K⟩ =W ⟨π, [xp]>K⟩
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and the right hand side goes to 0 as K goes to infinity.

So we just need to control what happens between the time intervals [k∆, (k + 1)∆). For
that purpose, we use a coupling argument. On every interval [k∆, (k + 1)∆), we consider a
size process X̃t starting the coupling at time k∆ with the same value X̃k∆ ∶= Xk∆; we let
the rates of fragmentation and isolation be zero in X̃t, while the growth process in X̃t and
Xt are constructed by the common exponential clocks. Notice the isolation events make
negative contribution when testing [xp], p ≥ 1, so are the fragmentation events because
(a + b)p ≥ ap + bp for all a, b > 0, p ≥ 1. Therefore, we obtain

sup
t∈[k∆,(k+1)∆)

⟨Xt, [xp]>K⟩ ≤ sup
t∈[k∆,(k+1)∆)

⟨X̃t, [xp]>K⟩ .

The right hand side is monotone in t and we get

sup
t∈[k∆,(k+1)∆)

⟨Xt, [xp]>K⟩ ≤ ⟨X̃(k+1)∆−, [xp]>K⟩ .

As a consequence, setting

Bk = BK
∆,n,k ∶= {⟨X̃(k+1)∆−, [xp]>K⟩ > 2 ⟨Xk∆, [xp]>K⟩} ,

it suffices to prove that
P[{i.o. Bk} ∩ {W > 0}] = 0, (5.47)

to get that lim
t→∞ e

−λt ⟨Xt, [xp]>K⟩ ≤ 2 limk→∞ e−λk∆ ⟨Xk∆, [xp]>K⟩ a.s. and conclude by letting

K → 0. To this purpose, we use a truncation and define

Ck = C∆,n,k,ε ∶= {e−λk∆ ⟨Xk∆, [xp]>K⟩ ≥ ε} ∩ {e−λk∆ ⟨Xk∆, [x2p]⟩ ≤ 1/ε} ,

for ε > 0. We split

P[{i.o. Bk} ∩ {W > 0}] ≤ P[{i.o. Bk ∩Ck}] + P[{i.o. Bk ∩ (Ck)c} ∩ {W > 0}].

The second term on the right side has the following upper bound thanks to (5.40) and
dominated convergence theorem

P[W ⟨π, [xp]>K⟩ ∈ (0,2ε)] + P[W ⟨π, [x2p]⟩ > 1/(2ε)] Ð→ 0, as ε→ 0.

Defining Zk,p,K ∶= ⟨X̃(k+1)∆−, [xp]>K⟩ − ⟨X̃k∆, [xp]>K⟩, and using Markov inequality,

P[Bk ∣ Fk∆] = P [⟨X̃(k+1)∆−, [xp]>K⟩ − ⟨X̃k∆, [xp]>K⟩ > ⟨X̃k∆, [xp]>K⟩ ∣ Fk∆]

≤ var[Zk,p,K ∣ Fk∆]
(⟨X̃k∆, [xp]>K⟩ −E[Zk,p,K ∣Fk∆])2

.
(5.48)

We need now to evaluate the conditional expectation and variance carefully. The computa-
tions are deferred to appendix. Plugging the estimates (1.58) and (1.59) of appendix into
eq. (5.48), we obtain

1Ck
P[Bk ∣ Fk∆] ≤ 2β∆(4pp +K2p+1) × ε−1eλk∆

(εeλk∆ − β∆(2pp +Kp+1) × ε−1eλk∆)2
.

We pick ∆ = ε2 small enough and obtain P[Bk ∣ Fk∆] ≤ Ce−λk∆ on Ck. Adding that

P[Bk ∣ Ck] = E[P[Bk ∣ Fk∆] ∣ Ck], we obtain∑k≥1 P[Bk ∣ Ck] < ∞. By Borel-Cantelli lemma,

P[i.o. Bk ∩Ck] = 0 for every ε. This implies (5.47) and ends the proof.
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5.3 Strong law of large numbers for the size of inactive clusters

In this part, we prove Corollary 1. A heuristic argument to obtain the asymptotic limit is
to use the generator eq. (3.12) and the convergence of Xt ins Theorem 2 :

lim
s↘t

E[⟨Ys, f⟩ − ⟨Yt, f⟩∣Ft]
s − t = θ⟨Xt, [x]f⟩ ∼t→∞ θeλtW ⟨π, [x]⟩⟨π̃, f⟩,

with π̃ defined in eq. (2.5). In the following paragraphs, we prove the expected result, with
a suitable set of tests functions, using in particular martingale analysis.

Proof of Corollary 1. We suppose f ∈ Bp for some fixed p > 0 throughout the proof. The
proof can be divided into 3 step. In Step 1, we control the value ⟨Yt, f⟩. In Step 2 we prove
the expected result with a specific function f = h/[x] which gives us a martingale. In Step
3, we generalize this result to general f ∈ Bp.

Step 1: L2 estimate. We use (5.38) several times and we mention that C0 will be a
constant, independent of f , which may change from line to line.

We use the extended generator (3.12) and justify that Fg,f(µ, ν) = ⟨ν, f⟩ belongs to its
domain using the same localization argument as in the proof of Lemma 1. We get

d

dt
E [⟨Yt, f⟩2] = 2θE [⟨Yt, f⟩ ⟨Xt, [x]f⟩] + θE [⟨Xt, [x]f2⟩] .

Using Young’s inequality with α > 0 to be fixed later, θE [⟨Yt, f⟩ ⟨Xt, [x]f⟩] ≤ αE [⟨Yt, f⟩2]+
( θ2

α )E [⟨Xt, [x]f⟩2]. Then we use Grönwall’s inequality to get

E [⟨Yt, f⟩2] ≤ ∫
t

0
eα(t−s) ((θ

2

α
)E [⟨Xs, [x]f⟩2] + θE [⟨Xs, [x]f2⟩]) ds.

Combining L2 estimate of ⟨Xs, [x]f⟩ obtained in (5.38) and L1 estimate of ⟨Xt, [x]f2⟩ in
(4.30), we obtain

E [⟨Yt, f⟩2] ≤ C0∫
t

0
eα(t−s) (θ

2

α
)(⟨π, [x]f⟩2 e2λs+ ∥ f ∥p e(2λ−σ)s) ds

+ ∫
t

0
eα(t−s)θ (⟨π, [x]f2⟩ eλs +C ∥ f ∥p e(λ−w)s) ds.

We choose α ∈ (0, λ −max(σ/2,w)) and conclude that there exist C ′′ such that

E[⟨Yt, f⟩2] ≤ C ′′ (⟨π, [x]f⟩2 e2λt + ⟨π, [x]f2⟩ eλt+ ∥ f ∥p (e(2λ−σ)t + e(λ−w)t)) . (5.49)

Step 2: A martingale for Y which tends to 0. We use the function

Fh,h/[x](µ, ν) = ⟨µ,h⟩ − (λ
θ
) ⟨ν, h/[x]⟩ ,

where F (x, y) = x−(λ
θ
) y. It belongs to the domain of the extended generator of (Xt, Yt)t≥0,

whose expression can be found in (3.12). It provides a harmonic function : AFh,g = 0. We
obtain that

Ht ∶= ⟨Xt, h⟩ − (λ
θ
) ⟨Yt, h/[x]⟩ . (5.50)
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is a martingale. Let us prove that e−λHt converges to 0 as t → ∞ and thus Corollary 1 for
the specific test function h/[x]. This vanishing property is due to the fact that two parts in
H compensate. We prove L2 estimates using again eq. (3.12) (or the quadratic variation)
and

d

dt
E[∣Ht∣2]

= E [
∞
∑
n=1

Xt(n)βn (∣Ht + h(n + 1) − h(n)∣2 − ∣Ht∣2)]

+E [
∞
∑
n=1

Xt(n)θn(∣Ht − h(n) − (λ
θ
)h(n)/n∣

2

− ∣Ht∣2)]

+E
⎡⎢⎢⎢⎢⎣

∞
∑
n=1

⎛
⎝
Xt(n)γ(n − 1)

n−1

∑
j=1

( n

n − 1

1

j(j + 1))
(∣Ht + h(j) + h(n − j) − h(n)∣2 − ∣Ht∣2)

⎞
⎠

⎤⎥⎥⎥⎥⎦
.

We develop this equation and recognize the generator L defined in eq. (4.15). As Lh = λh,
we get

d

dt
E[∣Ht∣2] = E [

∞
∑
n=1

Xt(n)(βn∣h(n + 1) − h(n)∣2 + θn ∣h(n) + (λ
θ
)h(n)/n∣

2

)]

+E
⎡⎢⎢⎢⎢⎣

∞
∑
n=1

Xt(n)
⎛
⎝
γ(n − 1)

n−1

∑
j=1

( n

n − 1

1

j(j + 1)) ∣h(j) + h(n − j) − h(n)∣2
⎞
⎠

⎤⎥⎥⎥⎥⎦
.

Since h is bounded (see eq. (4.29)), we obtain

E[∣Ht∣2] ≤ C ∫
t

0
E [⟨Xs, [x]⟩] ds ≤ Ceλt. (5.51)

This implies the L2 convergence of e−λtHt to 0 as t→∞. For the pathwise convergence, we
set step size ∆ > 0, then for any ε > 0, we combine Markov inequality, Doob’s inequality for
Ht and the estimate eq. (5.51) that

P
⎡⎢⎢⎢⎣

sup
t∈[k∆,(k+1)∆)

∣e−λtHt∣ > ε
⎤⎥⎥⎥⎦
≤ P

⎡⎢⎢⎢⎣
e−λk∆ sup

t∈[k∆,(k+1)∆)
∣Ht∣ > ε

⎤⎥⎥⎥⎦

≤ ε−2e−2λk∆E
⎡⎢⎢⎢⎢⎣

⎛
⎝

sup
t∈[k∆,(k+1)∆)

∣Ht∣
⎞
⎠

2⎤⎥⎥⎥⎥⎦
≤ 4ε−2e−2λk∆E [∣H(k+1)∆∣2]
≤ Cε−2e−λk∆.

By Borel-Cantelli lemma, we obtain the a.s. convergence of e−λtHt to 0.

Step 3: Convergence of general test function. Now, we need to obtain the result of a
general test function f ∈ Bp. The idea is similar: we define

Hf
t ∶= ⟨Xt, f⟩ − (λ

θ
) ⟨Yt, f/[x]⟩ = ⟨π, f⟩Ht +At +Bt, (5.52)

where At = ⟨Xt, f − ⟨π, f⟩h⟩ and Bt = (λ
θ
) ⟨Yt, (f − ⟨π, f⟩h)/[x]⟩. We use again L2 estimate

and eq. (5.38) and eq. (5.49) to ensure that

e−2λtE [A2
t +B2

t ] ≤ Cf (e−λt + e−σt + e−(λ+σ/2)t) .
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As above, this implies the convergence of e−λtHf
t along a subsequence {k∆}k≥1 with ∆ > 0

e−λk∆Hf
k∆

k→∞ÐÐÐ→ 0, in L2 and almost surely.

and

lim
k→∞

e−λk∆ ⟨Yk∆, f/[x]⟩ = lim
k→∞

( θ
λ
) e−λk∆ ⟨Xt, f⟩ = ( θ

λ
) ⟨π, f⟩W, in L2 and almost surely.

Finally, to obtain the convergence along t ∈ R+, we decompose f into the difference of two
positive functions f = f+ − f− and use that Yt is increasing with respect to t

∀t ∈ [k∆, (k + 1)∆), e−λ(k+1)∆ ⟨Yk∆, f
+⟩ ≤ e−λt ⟨Yt, f+⟩ ≤ e−λk∆ ⟨Y(k+1)∆, f+⟩ ,

and obtain that

e−λ∆ ( θ
λ
) ⟨π, [x]f+⟩W ≤ lim

k→∞
e−λ(k+1)∆ ⟨Yk∆, f

+⟩ ≤ lim
t→∞

e−λt ⟨Yt, f+⟩

≤ lim
t→∞ e

−λt ⟨Yt, f+⟩ ≤ lim
k→∞

e−λk∆ ⟨Y(k+1)∆, f+⟩ = eλ∆ ( θ
λ
) ⟨π, [x]f+⟩W.

We take ∆↘ 0 and obtain that

lim
t→∞ e

−λt ⟨Yt, f+⟩ = ( θ
λ
) ⟨π, [x]f+⟩W, a.s.

Similar argument also works for f−. We combine two terms and use a normalization with
the notation π̃ to prove the almost surely convergence in Corollary 1. The L2 convergence
can be done similarly and we skip the details.

5.4 Limit on recursive tree

In this part, we prove the convergence of the empirical measure on clusters.

Proof of Theorem 3. We prove the convergence on active clusters Xt, and the proof for the
statement on Yt follows the same manner. The main idea is similar to the size process
(Xt, Yt)t≥0, which involves one type convergence and the cut-off argument. Without loss of
generality, we suppose that for any t ∈ T , ∣f(t)∣ ≤ ∣t∣p for some p > 0.

Step 1: Cut-off argument. We do the following decomposition on the event Xt ≠ ∅

1

∣Xt∣
∑
C∈Xt

f(C) −E[f(Tπ)] =
∞
∑
n=1

At(n) +
∞
∑
n=1

Bt(n), (5.53)

where we write g(n) = E[f(Tn)] and

At(n) =
Xt(n)
⟨Xt,1⟩

⎛
⎝

1

Xt(n)
∑

C∈Xt,∣C∣=n
f(C) − g(n)

⎞
⎠
, Bt(n) = (Xt(n)

⟨Xt,1⟩
− π(n)) g(n).

Theorem 2 implies the a.s. convergence of the second term II

lim
t→∞

∞
∑
n=1

Bt(n) = lim
t→∞(⟨Xt, g⟩

⟨Xt,1⟩
− ⟨π, g⟩) = 0, on {τ = ∞}.
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For the first term I, we use a cut-off and ∣f(C)∣ ≤ ∣C∣p

∣
∞
∑
n=1

At(n)∣ ≤ ∣
K

∑
n=1

At(n)∣ + 2 ∣
∞
∑

n=K+1

Xt(n)np
⟨Xt,1⟩

∣ . (5.54)

For the first part in eq. (5.54), we admit the following equation right now

∀n ∈ N+, lim
t→∞

1

Xt(n)
∑

C∈Xt,∣C∣=n
f(C) = E[f(Tn)], almost surely on {τ = ∞}, (5.55)

which can also be seen as a generalized law of large number and will be proved in Step 2. By

Theorem 2, for any n ∈ N+,
Xt(n)
⟨Xt,1⟩ converges a.s. as t → ∞. Then the above display ensures

that limt→∞ ∣∑Kn=1At(n)∣ = 0, almost surely on {τ = ∞}. The second part in eq. (5.54)
also converges a.s. by Theorem 2:

lim
t→∞ ∣

∞
∑

n=K+1

Xt(n)np
⟨Xt,1⟩

∣ = ⟨π, [xp]>K⟩, almost surely on {τ = ∞},

where [xp]>K(n) = np1{n>K}. We put these results back to eq. (5.53) and obtain that

lim
t→∞

RRRRRRRRRRR

1

∣Xt∣
∑
C∈Xt

f(C) −E[f(Tπ)]
RRRRRRRRRRR
≤ 2⟨π, [xp]>K⟩, almost surely on {τ = ∞}.

Then we let K →∞ and prove Theorem 3.

Step 2: One type convergence. It remains to prove eq. (5.55). For the same statement
on Yt, it is exactly the classical law of large number, as (Yt(n))t≥1 is an increasing process
and every time the increment is of size is 1. To prove eq. (5.55) for Xt, we follow the same
spirit in Step 2 of Theorem 2 with some minor technical differences. We recall that Tn the
space of equivalent class of RRT of size n, and denote by

∀t ∈ Tn, Xt(t) ∶= ∑
C∈Xt

1{C∼t},

the number of active cluster of type t. Because the space ∣Tn∣ = (n − 1)! is finite, it suffices
to prove that

∀n ∈ N+,∀t ∈ Tn, lim
t→∞ e

−λtXt(t) =W
π(n)

(n − 1)! , a.s., (5.56)

and this can be reduced once again by the trick from [2] that

∀n ∈ N+,∀t ∈ Tn, lim
t→∞

e−λtXt(t) ≥W
π(n)

(n − 1)! . (5.57)

We explain here how to prove eq. (5.57) with eq. (5.56), which is similar to proving eq. (5.43).
The main idea is the fact that ∑t∈Tn

e−λtXt(t) = e−λtXt(n) has a proper limit and controls
the mass dissipation. Let (tk)k∈N+ be the subsequence such that lim

t→∞ e
−λtXt(t) = limk→∞ e−λtkXtk(t),

then we have

lim
t→∞ e

−λtXt(t) = lim
k→∞

⎛
⎝ ∑t′∈Tn

e−λtkXtk(t′) − ∑
t′∈Tn,t′≠t

e−λtkXtk(t′)
⎞
⎠

≤Wπ(n) − ∑
t′∈Tn,t′≠t

lim
k→∞

e−λtkXtk(t′)

≤Wπ(n) − ∑
t′∈Tn,t′≠t

W
π(n)

(n − 1)! =W
π(n)

(n − 1)! .
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Here from the first line to the second line, we use Fatou’s lemma, and from the second line
to the third line we use eq. (5.57) . This equation controls the upper bound of lim

t→∞ e
−λtXt(t)

and eq. (5.56) is established.

Finally, we prove eq. (5.57), which requires a convergence along discrete subsequence and
the control of fluctuation. We calculate the L2 moment

E
⎡⎢⎢⎢⎢⎣

⎛
⎝
e−λt ∑

C∈Xt,∣C∣=n
(1{C∼t} −

1

(n − 1)!)
⎞
⎠

2⎤⎥⎥⎥⎥⎦
= e−2λtE

⎡⎢⎢⎢⎢⎣
∑

C∈Xt,∣C∣=n
E
⎡⎢⎢⎢⎢⎣
(1{C∼t} −

1

(n − 1)!)
2

∣ Ft
⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎦
≤ e−2λtE [Xt(n)] = O(e−λt) t→∞ÐÐ→ 0.

In the first line, we use the i.i.d. RRT Proposition 2. In the second line, we use eq. (5.38).
Notice the convergence rate is exponential, thus we take a discrete time {k∆}k≥1 with ∆ > 0
and use Borel-Cantelli lemma to obtain that for any ∆ > 0

∀n ∈ N+,∀t ∈ Tn, lim
k→∞

e−λk∆Xk∆(t) =W π(n)
(n − 1)! .

Let us now control fluctuations and let Nk,∆(t) be the number of active clusters of type t at
time k∆, on which occurs some growth/isolation/fragmentation event during (k∆, (k+1)∆).
Then like eq. (5.44), we have

∀t ∈ [k∆, (k + 1)∆), Xt(t) ≥Xk∆(t) −Nk,∆(t),

and it suffices to prove limk→∞ e−λk∆Nk,∆(t) = 0 to conclude eq. (5.57). We skip the details
as it is exactly the same proof starting from eq. (5.44) in the Step 2 of Theorem 2, which
only involves a single type branching.

6 Further discussions

In the last part, we give some remarks of our results and mention some possible questions
in future work.

6.1 Existence of phases

We have done the classification of the phases of our GFI process and proved the results on
different phases. It is also important to point out that:

Proposition 6. All the three phases exist in our model for some parameters (β, θ, γ) ∈ R3+.

We just give a sketch of the proof. The case θ ≥ β is subcritical and we focus on the case
θ ∈ (0, β) in order to illustrate the diagram in Figure 3. The idea is to use Proposition 3
and find some specific test function f to show Lf < εf (or > εf) to prove the subcritical
(or supercritical) phase. More precisely, one can use [xp] with p ∈ (0,1) in Proposition 3 as
a test function for subcritical phase, and f(n) = 1{n=1} + κ1{n≥2} with a careful choice of κ
for supercritical phase. For the existence of critical phase, one need to prove the continuity
and monotone property with respect to the parameters, which is quite natural in our model
with some perturbation analysis.
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6.2 Process and its initial condition

We prove our main results with initial condition G0 = {0} a patient zero, and one may
think the RRT structure at the starting point is essential in our model. This is partially
true, but RRT structure is a method, and our results Theorem 1, Theorem 2, Corollary 1
and Theorem 3 in fact also apply to a general initial condition that G0 is a deterministic
finite graph. We sketch its main idea of proof: set the vertices at moment 0 negative values
for their birth time and we aim to verify the case with G0 = (V0,E0) as one cluster, since
different clusters evolve independently. We denote by PG0 this probability space. We recall
that TV0 the space of recursive trees on concrete vertices V0 and let TV0 be a uniform random
recursive tree on TV0 . Let PTV0

be the process with a randomized initial condition TV0 , then
Theorem 1, Theorem 2, Corollary 1 and Theorem 3 are valid under PTV0

since the initial
condition is RRT and the key property Proposition 2 is established.

Then, we observe that we can couple two probability spaces that

PG0

d= PTV0
[⋅ ∣ TV0 = G0],

and by this coupling PG0 is absolutely continuous with respect to PTV0
. Therefore, all the

results proved in this paper are also valid under PG0 .

6.3 Generalizations of model

Several features could be added, in particular to describe epidemics and tracing in a more
realistic way. In particular, a recovery (death) rate should be added. But the splitting prop-
erty fails. Our results could still be partially generalized, in particular the parts concerning
the mean behavior and some (weaker) description of a.s. long time behavior are expected.
Among other extensions, one can think to describe more finely the contact tracing procedure
and isolation, or to consider structured population or non-Markovian dynamics.

A Conditional expectation and variance

We prove here the conditional expectation and variance estimates of

Zk,p,K ∶= ⟨X̃(k+1)∆−, [xp]>K⟩ − ⟨X̃k∆, [xp]>K⟩ ,

which is used in eq. (5.48). Here (X̃t)t∈[k∆,(k+1)∆), containing only growth and no fragmen-
tation nor isolation, is a coupling process of Xt.

Lemma 4. For any k,K ∈ N+ and p ≥ 1, we have

E[Zk,p,K ∣ Fk∆] ≤ C∆ ⟨Xk∆, [xp]⟩ , (1.58)

where C∆ = e2p−1pβ∆ − 1 + (1 − e−β∆K)Kp and

var [Zk,p,K ∣ Fk∆] ≤ 2β∆(4pp +K2p+1) ⟨Xk∆, [x2p]⟩ . (1.59)

Proof. For the conditional expectation, we decompose it in the genealogy of cluster over Ut
that

E[Zk,p,K ∣Fk∆] = ∑
u∈Uk∆

E [[xp]>K(X̃u
(k+1)∆) − [xp]>K(X̃u

k∆) ∣ Fk∆] . (1.60)
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We observe that for any 0 < a ≤ b,

[xp]>K(b) − [xp]>K(a) = (bp − ap)1{b>K} + ap1{a≤K<b}1{a≤K} + ap1{a≤K<b}1{a>K}.

In the last line, the second term can be bounded by Kp1{a≤K<b} and the third term is zero,
so we have

[xp]>K(b) − [xp]>K(a) ≤ (bp − ap) +Kp1{a≤K<b}. (1.61)

Since there is only growth in the process X̃t on [k∆, (k + 1)∆), X̃u
(k+1)∆− ≥ X̃u

k∆ for any

u ∈ Uk∆. So we can apply eq. (1.61) with a = X̃u
k∆ and b = X̃u

(k+1)∆− to obtain that

E[Zk,p,K ∣Fk∆] ≤ E[⟨X̃(k+1)∆−, [xp]⟩ − ⟨X̃k∆, [xp]⟩ ∣ Fk∆]

+Kp ∑
u∈Uk∆

E [1{X̃u
k∆

≤K<X̃u
(k+1)∆}∣Fk∆]. (1.62)

For the first term in eq. (1.62), we follow the proof of Lemma 1 i) to get

E [⟨X̃(k+1)∆−, [xp]⟩ − ⟨X̃k∆, [xp]⟩ ∣ Fk∆] ≤ (e2p−1pβ∆ − 1) ⟨X̃k∆, [xp]⟩ .

For the second term in eq. (1.62), we can control it by the total number of active clusters
of size smaller than K at k∆ that grow within [k∆, (k + 1)∆):

Kp ∑
u∈Uk∆

E [1{X̃u
(k+1)∆>K} − 1{X̃u

k∆
≤K} ∣ Fk∆]

≤Kp ∑
u∈Uk∆

E [1{X̃u
k∆

≤K, the cluster labeled by u grows in X̃t within [k∆,(k+1)∆)} ∣ Fk∆]

≤ (1 − e−β∆K)Kp ⟨X̃k∆,1⟩ .

Plugging the two inequalities in (1.62) yields (1.58).

For the conditional variance, we have

var [Zk,p,K ∣ Fk∆] = var

⎡⎢⎢⎢⎢⎣
∑

u∈Uk∆

([xp]>K(X̃u
(k+1)∆−) − [xp]>K(X̃u

k∆)) ∣ Fk∆

⎤⎥⎥⎥⎥⎦
.

By branching property,

var [Zk,p,K ∣ Fk∆] = ∑
u∈Uk∆

var [([xp]>K(X̃u
(k+1)∆−) − [xp]>K(X̃u

k∆)) ∣ Fk∆]

≤ ∑
u∈Uk∆

E [([xp]>K(X̃u
(k+1)∆−) − [xp]>K(X̃u

k∆))
2

∣ Fk∆]

≤ ∑
u∈Uk∆

E [[xp]2
>K(X̃u

(k+1)∆−) − [xp]2
>K(X̃u

k∆) ∣ Fk∆]

= E [⟨X̃(k+1)∆−, [x2p]>K⟩ − ⟨X̃k∆, [x2p]>K⟩ ∣ Fk∆] .

Here from the second line to the third line we use (a− b)2 ≤ a2 − b2 for all a > b > 0. The rest
is the same as in the computation of conditional expectation and we obtain (1.59).
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