
Investigating Shape Coexistence and the Onset of
Deformation in the A ≈ 100 Region with Laser

Spectroscopy

Thesis submitted in accordance with the requirements of
the University of Liverpool for the degree of Doctor in Philosophy

by

Charlie Stuart Devlin

November 16, 2021



Abstract

This thesis presents new measurements of the hyperfine splitting in the electronic

structure for six nuclear states: 98mY, 99Y, 100Nb, 100mNb, 102Nb and 102mNb. The

measurements were taken over a week-long beam time at the IGISOL-IV facil-

ity at the University of Jväskylä Accelerator Laboratory using the technique of

high-resolution laser spectroscopy on a bunched, radioactive ion beam. Whilst

held inside an ion cooler-buncher, the atomic energy state of the beam was ma-

nipulated, via the technique of optical pumping, such that spectroscopy could be

performed from a metastable energy level. In all cases, this allowed for an unam-

biguous spin assignment of the nucleus and extraction of the magnetic dipole and

electric quadrupole moments, as well as the difference in mean-square charge radii

from a reference nucleus.

A remeasurement of 99Y allowed for a recalibration of both the atomic F and

M factors (used in the extraction of the mean-square charge radii) and the ratios

of the hyperfine parameters for the atomic J = 2 → J = 1 transition in yttrium.

This in turn allowed for the spin assignment of 98mY to be confirmed as I = 7 and

for a correction to the previously quoted values of the electromagnetic moments of

the state, due to both the new spin value and a peak reassignment in the hyperfine

structure of the J = 0→ J = 1 atomic transition compared to the previous anal-

ysis. The complementary measurements of the spectroscopic quadrupole moment

and the changes in mean-square charge radii allow for a full characterisation of

the shape change and shape coexistence at 98Y since they allow the extraction of

the magnitude and sign of the deformation and a measure of its rigidity.

In the niobium chain, we present the first successful laser spectroscopic mea-

surements of 100Nb, the isotone of 98Y, and its isomer. These measurements

demonstrate that a shape coexistence is not present between these states as it

is in 98Y. Furthermore, the measurements show a high level of dynamic deforma-

tion in both of these states. After the shape change, two states of 102Nb have

also been measured for the first time through the technique of laser spectroscopy.
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These states take on an prolate shape, compared with the oblate shape of 100Nb

and hence follow the trend of the onset of deformation observed at N = 60 (and in

the prolate deformed isomer of 98mY). They do, however, maintain their dynamic

nature, unlike the N ≥ 60 isotopes in the Y chain.
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M. Laatiaoui, R. Mathieson, I.D. Moore, M. Reponen, S. Rinta-Antila, A. de

Roubin, and S. Zardvornaya. New studies on the shape transition at N ≈ 60

and shape co-existence in 98Y. Manuscript in preparation

• H. Heylen, C.S. Devlin, W. Gins, M.L. Bissell, K. Blaum, B. Cheal, L.

Filippin, R.F. Garcia Ruiz, M. Godefroid, C. Gorges, J.D. Holt, A. Kanel-
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Chapter 1

Introduction

The study of nuclear physics is an investigation into the forces that govern the

interaction between the protons and the neutrons inside of an atom. As several

bodies are introduced into this system, the calculations required to solve it become

increasingly complex. To ease this complexity, many theories have been developed

in order to calculate nuclear properties with a finite amount of computing power.

To test these theories across the nuclear chart, it is critical to gather as much

information on the nuclear landscape as possible. In particular, the technique of

laser spectroscopy gives access to model-independent measurements of the nuclear

magnetic moment, the sign and magnitude of the spectroscopic quadrupole mo-

ment, the change in mean-square charge radius (relative to another isotope) and,

in many cases, can unambiguously assign the nuclear spin [2]. Measuring these

quantities therefore provides an excellent benchmark for many nuclear theories.

To date, over 3000 nuclei have been discovered (with nearly 2000 isomeric

states) [3], but only a few hundred of these are stable (Figure 1.1). Since many of

these radioactive nuclei live for only a few short moments, they must first be pro-

duced at radioactive isotope factories, or by reactions with stable beams, before

they can be measured. Many such facilities exist around the world and have made

1
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Figure 1.1: A chart of all known isotopes at the time of writing [4].

great progress in developing techniques to produce large enough quantities of nu-

clei across the nuclear chart that they can be measured. Of particular importance

to this work is the development of the radioactive ion beam (RIB) facility. RIB

facilities enable not only the production of these short-lived states but also the

ability to form them in to a beam and transport them across an experimental hall,

through various types of apparatus (such as mass-selecting magnets, ion coolers,

purification traps, charge breeders and more) and deliver them to a detection sta-

tion for their measurement. The technique is particularly beneficial to collinear

laser spectroscopy since formation into a beam allows the ions to be accelerated

to high speeds and reduces the width of the measured hyperfine line shapes due

to a decrease in Doppler broadening. The use of ion bunchers also means that

ions can be delivered to the spectroscopy station in discrete packets, allowing for

measurements to be time correlated with the arrival of the bunch. This method

allows for a background reduction factor of ≈ 104, hence permitting the measure-

ment of nuclei which cannot be produced at high rates.

Nuclear structure studies across the nuclear landscape, taken at many facilities

around the globe, have shed light on many new effects in these nuclear systems
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such as halo nuclei [5], proton emitters [6] and highly deformed states [7]. This

work focuses on an effect called shape coexistence wherein several competing en-

ergy levels of the same nucleus can take on vastly different shapes. The shape

coexistence in the system of 98Y (Z = 39, N = 59) was first measured in a study

which took place around 2007 at the IGISOL facility, located at the JYFL Accel-

erator Laboratory, Jyväskylä, Finland [8]. The study showed a large jump in the

measured isotope shift of the hyperfine structure between the ground state and its

isomer, indicative of a large shape change. Unfortunately, this work was unable to

measure the nuclear spin due to the use of a J = 0→ J = 1 atomic transition and

so the values of the nuclear properties could only be extracted using either one

of the alternative spins suggested in literature at the time. This work provides a

new measurement of 98Y using a different atomic transition and confirming a new

spin assignment (Chapter 7). From this, the nuclear properties are extracted and

compared to theoretical calculations from Energy Density Functional theory. To

further investigate the region, measurements of the neighbouring niobium chain

have also been taken. In particular, 100Nb, the isotone of 98Y, and its low lying

isomeric state have been measured to see if this phenomenon also occurs in this

system (Chapter 8).



Chapter 2

Nuclear Theory

In the early days of atomic structure physics, J.J. Thompson proposed that the

atom consisted of a ball of positive charge mixed in with other, negatively charged

particles (electrons). The famous ‘plum pudding’ model of the atom was among

one of the most popular until Ernest Rutherford (alongside Geiger and Müller at

the University of Manchester) proposed an experiment to probe the structure of

the atom by firing a beam of alpha particles at a sheet of gold foil. In perhaps

one of the most startling discoveries of the 20th century, Rutherford discovered

that the particles did not travel directly through the foil (as they would if the

atom were indeed a ‘plum pudding’) but, in fact, many recoiled at multiple angles

including straight back to the source. It was from these findings that Rutherford

postulated the existence of the ‘nucleus’ of an atom that constituted a bulk of its

mass and all of its positive charge with the negative electrons orbiting far away [9].

Not long after, James Chadwick discovered the existence of the neutron by

measuring the recoil products of collisions between alpha particles and many light

nuclei [10]. At a similar time, the first attempts were made to describe the forces

within a nucleus by comparing it to a liquid drop. The liquid drop model (first pro-

posed by Gamow [11]) considered the attraction between nucleons from a strong

force and repulsion from the Coulomb force within the body of the nucleus as well

4
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as the difference in those terms at the surface where nucleons are not fully sur-

rounded. Furthermore, the liquid drop model accounts for the difference between

protons and neutrons by means of an asymmetry term which accounts for protons

and neutrons filling different shells as they are added to the nucleus. Perhaps

most importantly, the model included an interaction due to the pairing between

the nucleons. Whilst this theory was an important step in the direction of un-

derstanding the nucleus, it could not explain the stability of the ‘magic’ nuclei.

In order to reproduce these, Maria Goeppert-Meyer suggested the shell model of

atomic nuclei [12].

2.1 The Shell Model

The prevailing theory in nuclear physics is the shell model. In this picture, nu-

clei inhabit orbitals in much the same way as atomic electrons do where each

orbital has a set occupancy defined by a set of quantum numbers. The energy of

each nuclear shell is computed from a mean-field potential with both surface and

spin-orbit corrections. Calculations of this type are known to accurately describe

the so-called ‘magic numbers’ where effects such as an increase in two-neutron

separation energy, nuclei taking on more spherical shapes and, in some cases, an

increase in natural abundance of specific nuclei occur. The known nuclear magic

numbers are 2, 8, 20, 28, 50 and 82 (as well as 126 for neutrons). Various forms of

the mean-field potential exist, the most realistic being the Woods-Saxon potential.

Unfortunately, the Woods-Saxon potential does not allow an analytical calculation

and so other potentials must be used for such purposes. Commonly utilised poten-

tials for these purposes are the square well potential and the harmonic oscillator

potential, a comparison of which may be found in Figure 2.1.

In parallel with atomic physics, the nuclear shells are labelled with ‘spectro-

scopic notation’. In this way, each state can be referred to uniquely whilst giving



6

0 2 4 6 8 10
Distance from centre of the nucleus (fm)

1.0

0.8

0.6

0.4

0.2

0.0
Po

te
nt

ia
l r

el
at

iv
e 

to
 V

0

Woods-Saxon
Harmonic Oscillator
Square Well

Figure 2.1: The Woods-Saxon, Harmonic Oscillator and Square Well poten-
tials for a theoretical nucleus of diffuseness a = 0.65 fm and nuclear radius

(R = r0A
1/3, r0 = 1.25 fm) R = 5.8 fm.

all the information that describes the quantum state. Such a label is written in

the form Nlj, where N is the principal quantum number (which is commonly

omitted), l is the orbital angular momentum and j is the spin. The value of l is,

by convention, noted by letters rather than numbers. The first four momenta are

denoted by s (l = 0), p (l = 1), d (l = 2) and f (l = 3) which stand for sharp,

principal, diffuse and fundamental respectively, echoing their atomic origins, and

orbitals of higher values of l continue in alphabetical order.

It can be seen, however, that the mean-field potential does not by itself re-

produce the observed nuclear magic numbers. Additional terms such as the spin-

orbit term and the surface correction term must be added in order to complete

the model. Analogous once again to the spin-orbit interaction observed in atomic

structure (causing the fine structure of the atom), the nuclear spin-orbit term is

generated from the spin ~s of the nucleon and its angular momentum ~l. The total



7

angular momentum is then ~j = ~l + ~s. The expectation value of the product of ~l

and ~s is given by
〈
~l · ~s
〉

= ~2
2

[j(j + 1)− l(l + 1)− s(s+ 1)] and the occupation

of each level is 2j + 1. This correction causes a splitting of the energy states as

can be seen in Figure 2.2.
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2

Figure 2.2: An example of the ordering of nuclear shells before and after the
spin-orbit correction. The nuclear magic numbers up to 126 are shown in the

shell gaps. This figure is based off a figure in Ref. [1].

2.2 The Magnetic Dipole Moment

A magnetic moment is, in a classical sense, caused by the movement of charge in

a loop. Inside the nucleus, protons move through the nuclear volume creating a

contribution to the nuclear magnetic moment. The nucleus, however, is a quan-

tum object with spin, a phenomenon that does not exist in the classical picture

and through this both protons and neutrons contribute further towards the total

nuclear magnetic moment.

By first considering only the angular momentum of a proton, the magnetic

moment is defined as
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µ =
e~
2m

`, (2.1)

where ` is the angular momentum of the nucleonic orbit. The quantity e~
2m

is named

the ‘magneton’ and, with m as the mass of a proton, the ‘nuclear magneton’ can

be defined as µN = 3.1525× 10−8 eV/T and is adopted as a unit of measurement

for the magnetic moment.

In a more useful form, Equation 2.1 may be written as

µ = g``µN , (2.2)

where g` is the ‘free g-factor’ for a free nucleon in orbit. g` is defined as 1 for a

proton and 0 for a neutron. In the case of a bound system, an ‘effective g-factor’

is introduced which accounts for changes created by such a system [1].

By continuing the image of the magnetic moment to analogously contain a

contribution from the intrinsic spin of the nucleon, the magnetic moment of a

nucleon can be expressed by

~µ = (g`~̀+ gs~s)µN , (2.3)

where gs is the ‘spin g-factor’ and ~s is the spin of the nucleon [13]. The summation

of the magnetic moments of all nucleons within the nucleus gives us the overall

magnetic moment

µI = gIIµN , (2.4)

where µI is the nuclear magnetic dipole moment, gI is the g-factor of the nucleus

and I is the maximum projection of ~I =
∑

i
~ji =

∑
i
~li + ~si, the sum of all total
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angular momenta of the nucleons.

In the simple case of a single bound proton outside of an inert core the only con-

tribution to the overall magnetic moment is the moment of the unbound nucleon

and so the magnetic moment of the nucleus can be described by

µ =


j − 1

2
+ µp, if j = l + 1

2
,

j
j+1

(
j + 3

2
− µp

)
, if j = l − 1

2
.

(2.5)

Likewise, for a single bound neutron

µ =


µn, if j = l + 1

2
,

− j
j+1

µn, if j = l − 1
2
.

(2.6)

Here, the values µp and µn are the free proton and neutron moments, respectively.

Using their accepted values µp = +2.793µN and µn = −1.913µN , one may cal-

culate the so called ‘Schmidt moments’ which are first-order approximations to

the magnetic moment [14]. Within the many-body nucleus, effects from the other

particles which are present cause changes to the Schmidt moments and therefore

the magnetic moment becomes much more difficult to calculate.

Estimating the magnetic moment for an odd-odd nucleus (which contains both

unpaired protons and unpaired neutrons) is a non-trivial task. In the cases where

the magnetic moment is known from experimental measurements for the lone pro-

ton and lone neutron which occupy the orbits in question, an empirical calculation

of the magnetic moment of a nucleus with spin I may be performed using [14]
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µ(I) =
I

2

[
µ(Iπ)

Iπ
+
µ(Iν)

Iν
+

(
µ(Iπ)

Iπ
− µ(Iν)

Iν

)
Iπ(Iπ + 1)− Iν(Iν + 1)

I(I + 1)

]
, (2.7)

where µ(Iπ) and Iπ are the magnetic moment and spin of the nucleus containing

the lone proton respectively and µ(Iν) and Iν are that of the nucleus with the lone

neutron.

2.3 Nuclear Deformation

2.3.1 Electric Quadrupole Moments

In all but a few particular cases (for example at the so-called magic numbers),

the nucleus assumes a non-spherical shape. The ‘electric quadrupole moment’ is

a measure of this shape and contains information on its geometry and the scale of

non-sphericity.

For a point at a sufficiently large distance from the nuclear volume, the electric

potential generated by the nucleus may be described by [1]

V (~r) =
1

4πε0

∫
V

ρ
(
~r′
)
dv′

| ~r − ~r′ |
, (2.8)

where ρ
(
~r′
)

is the nuclear charge density, ~r is the vector from the origin to the

point of observation and ~r′ is the vector from the origin to a point on the charge

distribution as seen in Figure 2.3. An expansion of the quantity 1

|~r−~r′|
gives the

form of the electric potential as

V (~r) =
1

4πε0

[
1

r

∫
ρ
(
~r′
)
dv′ +

1

r2

∫
ρ
(
~r′
)
r′ cos(θ)dv′

+
1

r3

∫
ρ
(
~r′
)
r′2

1

2

(
3 cos2(θ)− 1

)
+ ...

]
.

(2.9)
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Figure 2.3: A diagram depicting the system used to define the quadrupole
moment. This figure is adapted from a figure in Ref [1]

Due to the symmetry of nuclei, the second term in Equation 2.9 vanishes over

an infinite integral since the integral is an odd function of the coordinates. The

first integral is simply the total charge Ze. The electric quadrupole moment is

then defined as

eQ0 =

∫
ρ
(
~r′
)
r′2
(
3 cos2(θ)− 1

)
dv′, (2.10)

which, by choice of reference axis (choosing to measure the angle θ between ~r

and ~r′ from the axis corresponding to the maximum projection of spin), may be

expressed as

eQ0 =

∫
ρ
(
~r′
) (

3z2 − r′2
)
dv′, (2.11)

where Q0 is known as the ‘intrinsic quadrupole moment’ and z is the distance along

the axis of symmetry. Should Q0 be exactly zero, the nucleus takes a spherical

shape. Otherwise, the shape may either be prolate (Q0 > 0) or oblate (Q0 < 0)

as shown in Figure 2.4 [1].

The intrinsic quadrupole moment, however, cannot be directly measured through

experimental means. Instead, the technique of laser spectroscopy probes a quantity
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named the ‘spectroscopic quadrupole moment’, a quantity which will be discussed

in more detail later in this work.

Oblate 𝑄! < 0 Prolate 𝑄! > 0

Symmetry Axis Symmetry Axis

Figure 2.4: An oblate (Q0 < 0) shape and a prolate (Q0 > 0) shape.

2.3.2 Nuclear Charge Radii

The nuclear mean-square charge radius is a property of the nucleus which contains

information of its size and shape. It is defined in terms of the nuclear charge density

ρ (~r) and integrating across the nuclear volume v as [15]

〈
r2
〉

=

∫
ρ (~r) r2dv∫
ρ (~r) dv

. (2.12)

A point on the surface of a deformed nucleus may be described by

R (θ, φ) = Rav

(
1 +

∞∑
i=2

βiY
i

0 (θ, φ)

)
, (2.13)

where Rav is the average value of R and Y i
0 are the spherical harmonics. The terms

βi ensure volume conservation and as such are parameters including information

on the deformation. Of particular interest to this work is β2 which describes the
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quadrupole deformation and is defined as β2 = 4
3

√
5
π

∆R
Rav

where ∆R is the difference

between the semimajor and semiminor axes of the ellipse [1].

For a nucleus which is deformed away from sphericity, the mean-square charge

radius can be parametrised by [2]

〈
r2
〉

=
〈
r2
sph

〉(
1 +

5

4π

∞∑
i=2

〈
β2
i

〉)
+ 3σ2, (2.14)

where
〈
r2
sph

〉
is the mean-square charge radius of a spherical nucleus with the same

volume and σ is the nuclear diffuseness parameter (approximately 0.99 fm). Equa-

tion 2.14 shows that there are two contributions towards the size of the nucleus.

Firstly, as the size increases (by adding more nucleons) the volume will be

expected to increase similarly. Secondly, the appearance of the 〈β2
i 〉 terms shows

that should nuclear deformation increase, so too will the mean-square charge radius

of the nucleus.

2.3.3 Nilsson Diagrams

The shell model discussed so far is only applicable for nuclei in which deforma-

tion is low. When deformation becomes more substantial, the mean-field potential

must be modified in order to account for the anisotropy introduced by the nuclear

shape. The Nilsson diagram (see Figures 2.5 and 2.6) shows the change in shell

model energy levels for varying deformations. Where deformation, given in Fig-

ures 2.5 and 2.6 only by the parameter ε2, is zero, the standard shell model can

be seen. However, as deformation is increased, degeneracies from the shell model

are lifted as the levels split, though they still retain a two-fold degeneracy.

More than this, as the deformation increases energy levels can shift dramat-

ically causing not only a change in the order of the states but in some cases a
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Figure 2.5: A Nilsson diagram for protons and neutrons below Z,N = 50 [16].
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Figure 2.6: A Nilsson diagram for neutrons between N = 50 and N = 82 [17].
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change in the nuclear magic numbers due to large increases (enough to create

new shell gaps) or decreases (enough to close the shell gaps) in the state’s energy.

The new gaps caused by the raising and lowering of these levels can become large

enough that new shell effects appear.

2.3.4 Shape Coexistence

Of particular interest to this work is an effect named shape coexistence. This

phenomenon occurs when two or more states in a nucleus existing at different

excitation energies take on vastly different shapes. Such a transition is indicative

of a large reconfiguration of the constituent nucleons and cannot thus far be fully

explained by nuclear theory [18]. Perhaps one of the most widely used examples

of the phenomenon is the shape coexistence studied in 186Pb which exhibits three

competing energy states with spherical, oblate and prolate shapes, explained by

three minima in the potential-energy surface [19]. Whilst it was originally thought

to occur in specific areas of the nuclear chart, it is now postulated that shape co-

existence may occur in all nuclei, though there are many in which it is yet to be

observed [18].

2.4 Modern Nuclear Theories

As the nuclear chart has been measured more widely, many phenomena have been

measured which cannot be explained by simple nuclear models. To improve our

understanding of the nuclear force, many new techniques for calculating the prop-

erties of the nucleus have been proposed. One such technique is the interacting

shell model. In this model, nucleons in one orbital are allowed to interact with

those in another, leading to the attraction and repulsion of states. In this picture,

the nucleons are no longer treated independently of each other but instead the
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population of each shell may have a resounding effect on the energies of another

[20]. To calculate these energies, one may make use of a so-called ‘model space’

in which the orbitals that have the greatest influence on the nucleus are chosen.

Ideally, such a model space would lie atop a doubly magic nucleus which acts as a

core. The core is expected to contribute minimally to the properties of the nucleus

and hence make the calculation much less computationally demanding. As nuclei

get further away from the core, the addition of more nuclear orbitals in the model

becomes more complicated and hence this technique is poorly suited to nuclei that

lie away from closed shells.

As computing power increases, ‘ab-initio’ theories become more widely acces-

sible to different regions of the nuclear chart. These theories aim to solve the

nuclear many-body problem by treating each nucleon as a fundamental degree of

freedom through the use of effective field theories. With infinite computing power,

it could be expected that such calculations would show remarkable agreement

with experimentally measured nuclear properties. In practice however, truncation

of operators is necessary. In order to make computation viable, the model in-

dependence of nuclear properties measured by certain experimental techniques is

therefore of great importance to the development of such theories since they allow

for the study of these operators and the extent to which they can be approximated

[21].

Due to the increase in complexity of ab-initio calculations with the addition of

extra nucleons, they were initially limited to the computation of nuclear parame-

ters only at the lowest masses. The development of the Similarity Renormalisation

Group has, at first, allowed access to nuclear properties of light magic nuclei and,

later, to the nuclei surrounding these regions. Most recently, the developments of

ab-initio shell model calculations has vastly increased the range of the technique

and allowed for calculations of nuclear properties as high as the Sn (Z = 50) region
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[22].

One other possible method of solving the nuclear many-body problem is the use

of energy density functionals. In such a calculation, the energy of a many-fermion

system can be written as a functional of the fermion density. This density is in

turn described by the single-particle wave functions of each of the fermions present

in the system [23]. The interactions between these states are usually described

by some effective nucleon-nucleon interaction with free parameters which require

inputs acquired from fits to experimental data such as binding energies, charge

radii and surface thicknesses [24]. The aim of these energy density functional

calculations is to develop a functional theory that is applicable across the whole

nuclear chart.

2.4.1 Energy Density Functional Calculations

In Nuclear Density Functional Theory, the energy of a nucleus is described by its

energy density through [25]

E =

∫
H (~r) d3~r, (2.15)

where H is the Hamiltonian containing all of the information of the chosen effec-

tive nucleon-nucleon interaction. The UNEDF (Universal Nuclear Energy Density

Functional) framework makes use of a Skyrme energy that takes the form (e.g.

Ref. [26])

E = Ekin +

∫
(εSk + ECoul + Epair) d

3~r (2.16)

where Ekin is the kinetic energy of the nucleons, ECoul is the Coulomb energy and

Epair is the pairing energy. The time-even part of the Skyrme energy density, εSk

is [27]
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εeven
T = Cρ

Tρ
2
T + C∆ρ

T ρT∆ρT + Cτ
T τT + CJ

TJ
2
T + C∇JT ρT∇ ~JT , (2.17)

while the time-odd part (which is not active in the functionals discussed in this

chapter but described here for completeness) is

εodd
T =Cs

T~s
2
T + C∆s

T ~sT∆~sT + CsT
T ~sT ~TT+

+ C∇sT (∇~sT )2 + Cj
T
~j2
T + C∇jT ~sT∇× ~JT ,

(2.18)

with ~s, ~j, ~J and ~T as the spin, current, spin current and spin kinetic densities

respectively and εSk =
∑

T=0,1(εeven
T + εodd

T ) (where T is the isospin). The parame-

ters Ci
T are adjusted to various properties of finite nuclei chosen to give sensitivity

to the parameter of study. The UNEDF0 functional was originally developed to

provide a framework that could be used to universally predict nuclear masses, radii

and deformations [26]. The UNEDF1 functional was later developed in order to

optimise the parameters for large deformation [28] whilst the UNEDF2 functional

built on this result by adding sensitivity to shell structure [24].

Another form of EDF is the Fayans functional [29]. These EDFs contain terms

relating to the density gradient and Coulomb-nuclear interaction meaning that

their dependence on the nuclear density is more complex than the previously

mentioned Skyrme-like functionals [30]. In particular, the F(∆r,HFB) functional

has recently been developed in the full Hartree-Fock-Bogolyubov formalism and

has already been shown to accurately describe the charge radii of Ca [31]. EDF

calculations using three functionals (UNEDF0 and UNEDF2 [24, 26] and Fayans)

were performed for this work by M. Kortelainen and are discussed in more detail

in Chapter 7.



Chapter 3

Hyperfine Interaction

In this work, the technique of laser spectroscopy is used to probe the properties of

the atomic nucleus. This method makes use of the interaction between the total

angular momentum of the nucleus and its surrounding electrons which becomes

apparent when the atomic energy levels are measured at high resolution and is

named the ‘hyperfine interaction’. The hyperfine interaction lifts degeneracies

in these energy levels by causing a splitting due to the magnetic moment and

the shape of the nucleus. Measurements of such quantities are vital probes of the

underlying structure across the nuclear chart, shedding light on nucleon occupation

of shells and the interactions between them. By comparing atomic spectra across

an isotopic chain, one may also infer the difference in the nuclear mean-square

charge radii between different nuclei. This allows for an observation of the rigidity

(or otherwise) of the deformation and acts as a complementary measurement to the

electric quadrupole moment even for nuclei of total angular momentum I = 0, 1/2

where the spectroscopic quadrupole moment is zero.

20
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3.1 Hyperfine Splitting

Hyperfine Splitting due to the Magnetic Dipole Moment

The magnetic field produced by the orbiting electrons at the site of the nucleus

couples to the nuclear magnetic dipole moment. This interaction leads to a per-

turbation of the electronic energy levels, given by

∆Eµ = A
〈
~I · ~J

〉
, (3.1)

where A is the ‘hyperfine A coefficient’ which determines the magnitude of the

dipole splitting and is defined by

A =
µIBe(0)

IJ
, (3.2)

where µI is the magnetic moment of the nucleus as described in Section 2.2, Be(0)

is the magnetic field created by the orbiting electrons at the point of the nucleus

and I and J are the nuclear and atomic angular momenta or ‘spins’, respectively.

To evaluate Equation 3.1 the quantity ~F , the vector addition of the nuclear

and atomic total orbital angular momenta, is defined. This ‘hyperfine angular

momentum’ is

~F = ~I + ~J. (3.3)

The associated quantum number, F , may take on the values

F = |I − J | , |I − J |+ 1, ..., I + J − 1, I + J, (3.4)

and the scalar product of ~I and ~J can be calculated as
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~F 2 =
(
~I + ~J

)2

= ~I2 + 2(~I · ~J) + ~J2

=⇒ ~I · ~J =
1

2

[
~F 2 − ~I2 − ~J2

]
.

(3.5)

The expectation value of ~I · ~J is

〈
~I · ~J

〉
=

~2

2
[F (F + 1)− I(I + 1)− J(J + 1)] . (3.6)

For convenience, the quantum number ‘K’ is defined as

K = F (F + 1)− I(I + 1)− J(J + 1), (3.7)

to simplify the equation and hence we may describe the splitting according to the

A coefficient in terms of the new quantum number

∆Eµ =
K

2
A. (3.8)

Hyperfine Splitting due to the Electric Quadrupole Moment

The quadrupole moment of a nucleus, as described in Section 2.3.1, also con-

tributes to a change in energy splitting of atomic states through interaction with

the electric field gradient created by the orbiting electrons. In this case, the change

manifests itself in the form of a further shift in the hyperfine levels.

The shift in energy levels by the quadrupole moment of a nucleus is given by

[2]

∆EQ =
3K(K + 1)− 4I(I + 1)J(J + 1)

8I(2I − 1)J(2J − 1)
B, (3.9)

where B is known as the ‘hyperfine B parameter’ and is given by
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B = eQs

〈
∂2Ve
∂z2

〉
. (3.10)

Here,
〈
∂2Ve
∂z2

〉
is the electric field gradient created by the atomic electrons.

3.1.1 Total Hyperfine Splitting

By combining the descriptions of the splitting according to the hyperfine A and

B parameters from Equations 3.8 and 3.9, the total hyperfine splitting for a com-

ponent with nuclear spin I and electronic angular momentum J is [2]

∆Ehfs =
K

2
A+

3K(K + 1)− 4I(I + 1)J(J + 1)

8I(2I − 1)J(2J − 1)
B. (3.11)

The effects of the splitting from the magnetic moment and the quadrupole

moment can be seen in Figure 3.1.

3.2 Transitions Between Hyperfine States

In the measurements taken during this work, electrons are excited from a lower

energy state with total angular momentum Jl a higher energy state with total

angular momentum Ju and the decay from the state u is then detected by observing

the emitted photon. Any peak in a hyperfine spectrum may be defined according

to the energy difference between the two states from Equation 3.11. That is

γ = ν + αuAu + βuBu − αlAl − βlBl, (3.12)

where, for the sake of convenience,

α =
K

2
, (3.13)

β =
3K(K + 1)− 4I(I + 1)J(J + 1)

8I(2I − 1)J(2J − 1)
. (3.14)
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Magnetic Splitting Magnetic + Quadrupole
Splitting

J=0

J=1

F=5/2

F=7/2

F=5/2

F=3/2

F=5/2

F=7/2
F=5/2

F=3/2

Figure 3.1: The splitting of atomic levels in 99Y (I = 5/2) on a J = 0 →
J = 1 transition. Effects from magnetic and quadrupole interactions cause the

splitting and shifting of energy levels.

The quantity ν refers to the centroid of the transition and is the point in frequency

at which the splitting takes place.

3.2.1 Hyperfine Selection Rules

During a transition between two F states, the electrons must follow the hyperfine

transitions rules. They are

∆F = 0,±1, (3.15)

F = 0 9 F = 0. (3.16)

In this way, the peaks of a hyperfine spectrum are formed. It is clear then

that it is possible for the number of peaks in a hyperfine spectrum to give some

information about the nuclear spin and in some cases the number of hyperfine

peaks in a spectrum allows a spin identification without question. For example,

when a I = 1/2 nuclear state is measured on a J = 1/2 → J = 1/2 transition,

there will be only three peaks in the hyperfine spectrum. However, when such
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distinctions cannot be made, other methods must be used in order to extract the

spin from the hyperfine spectra.

3.2.2 Extracting Nuclear Spin

Where the so-called ‘hyperfine anomaly’ (which occurs due to the non-pointlike

nature of the nucleus) may be considered to be negligible, the ratios of Al/Au and

Bl/Bu should remain constant across an isotopic chain. For the A parameter, this

is the case since both the magnetic moment and the nuclear spin are properties

of the nucleus, rather than the electronic state (and therefore take the same value

for both Au and Al),

Al
Au

=
Be,l(0)Ju
Be,u(0)Jl

. (3.17)

It is also assumed that Be,l(0)/Be,u(0) remains constant across the isotopic chain.

Likewise, for the B parameter, Qs is a nuclear (rather than electronic) property

and so the ratio

Bl

Bu

=

〈
∂2Ve,l
∂z2

〉
〈
∂2Ve,u
∂z2

〉 , (3.18)

also remains constant.

Extraction of these ratios is possible through fitting the hyperfine spectrum

and can be performed for multiple nuclear spins. In cases where the ratios differ

by a higher magnitude than is explicable by a hyperfine anomaly, the assumed

spin can usually be falsified.

The relative spacing of hyperfine peaks is intrinsically related to the nuclear

spin. In order to confirm a spin through laser spectroscopy, it is necessary for all

of the measured peaks (this needn’t be a peak for every allowed transition but
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should be enough that the system is well defined) from one isotope to be fitted by

the routine simultaneously. In some cases, certain nuclear spins will not allow for

the correct peak spacing in the spectrum, regardless of the values used for A and

B. When this happens, these spins too can be discounted.

A less reliable way of extracting the nuclear spin is to observe the relative

intensities of the peaks. Peaks corresponding to different hyperfine transitions

will share differing amounts of the total resonant counts according to the angular

momenta of the states involved. If it can be considered that hyperfine states

have not been ‘pumped’ out of by multiple excitations (which may not return to

their original state under de-excitation) then these peak intensities can aid in the

assignment of the nuclear spin [32].

3.2.3 Extracting Nuclear Moments

Where I, J ≥ 1/2, it is possible to extract the magnetic dipole moment from

the hyperfine spectrum by means of the hyperfine A parameter. Furthermore, if

I, J > 1/2 we may also extract Qs. In cases where the magnetic and/or quadrupole

moments are already known for a (usually stable) reference isotope, ratios of hy-

perfine parameters may be used in order to simplify the extraction of the moments

of interest. This is possible since

µ = µref
IA

IrefAref

, (3.19)

Qs = Qs,ref
B

Bref

. (3.20)

Knowledge of the magnetic and quadrupole moments for many isotopes are doc-

umented in readily available databases and tables (see, for example, Ref. [33]).
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Once the nuclear moments are known, nuclear parameters of interest may be

extracted. From the magnetic moment, the nuclear g-factor is extracted easily as

g =
µ

I
, (3.21)

and from the quadrupole moment, it is also possible to extract the β2 deformation

parameter. For the spectroscopic quadrupole moment, one must first calculate

the ‘intrinsic quadrupole moment’ in order to extract the expectation value of

quadrupole deformation parameter 〈β2〉. This process is discussed in further detail

in Section 7.7.

3.3 Isotope Shift

The change in mass, size and shape of the atomic nucleus has a profound effect

on the measurement of the hyperfine structure. One finds that the addition or

subtraction of neutrons to a nucleus causes a change in the centroid of an atomic

resonance. This shift in centroid position is known as the isotope shift. It can be

written as [15]

δνA,A
′
= δνA

′ − δνA, (3.22)

where νA and νA
′

are the centroid positions of isotopes with masses A and A′

respectively. It is the result of two contributing phenomena from changes in the

electric field observed by the atomic electrons and in the mass of the atomic nucleus

itself. In such a way, the difference in centroid position may be expressed as

δνA,A
′
= δνA,A

′

MS + δνA,A
′

FS , (3.23)

where δνMS is known as the ‘mass shift’ and δνFS is known as the ‘field shift’.
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3.3.1 The Mass Shift

The mass shift contribution to the isotope shift arises from the finite mass of the

nucleus. As nucleons are added to, or removed from, the nucleus, this finite nuclear

mass will change and hence alter the recoil motion of the nucleus. This causes

an alteration of the kinetic energy of the system and hence a perturbation in the

electronic structure [34].

The kinetic energy of the atom with A nucleons can be written as a summation

of the energies of the nucleus and electrons [35]

TA =
~P 2
A

2Amu

+
∑
i

~P 2
i

2me

, (3.24)

where mu and me are the mass of a nucleon and an electron respectively and ~PA

and ~Pi are the momenta of the nucleus and of each electron. Since the atom is

assumed to be stationary,

~PA = −
∑
i

~Pi, (3.25)

and hence Equation 3.24 may be rewritten as

TA =
∑
i

~P 2
i

2me

+
1

Amu

(∑
i

~P 2
i

2
+
∑
i<j

~Pi · ~Pj

)
. (3.26)

Likewise, the kinetic energy of an atom with A′ nucleons may be written as

TA′ =
∑
i

~P 2
i

2me

+
1

A′mu

(∑
i

~P 2
i

2
+
∑
i<j

~Pi · ~Pj

)
. (3.27)
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The difference in kinetic energy of the two atoms is then

δTA
′,A = TA − TA′

=
1

mu

A′ − A
A′A

(∑
i

~Pi
2

2
+
∑
i<j

~Pi · ~Pj

)
.

(3.28)

The term in Equation 3.28 containing ~P 2 gives rise to the ‘normal mass shift’ while

the term containing ~Pi · ~Pj is the origin of the ‘specific mass shift’. The change in

the transition frequencies may then be written as [34]

δνA,A
′

MS = δνA,A
′

NMS + δνA,A
′

SMS = N
A′ − A
A′A

+ S
A′ − A
A′A

. (3.29)

The quantity N is simple to calculate and is defined as

N = ν0
me

mu

, (3.30)

where ν0 is the transition frequency of an infinitely massive nucleus.

The specific mass shift term may be considered a correction to the normal mass

shift for the case where more than one electron is present inside the atom (i.e. any

element other than hydrogen). In this case, it is obvious that electrons can be

distributed asymmetrically around the atomic nucleus (see Figure 3.2) and this

distribution will cause a shift in the centre of mass of the system. For example,

if electrons orbit on the same side of the atomic nucleus then the centre of mass

of the system will be shifted towards the orbiting electrons. Where the electrons

orbit on opposite sides of the nucleus, these contributions will somewhat cancel

and cause the centre of mass of the system to exist closer to the centre of the

nucleus.

It is clear then that the computation of the value S is far from trivial especially

for the many-electron atom. However, empirical estimates for the specific mass
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Centre of mass

Centre of mass

Figure 3.2: A many-electron atom can experience a distribution of orbiting
charge. Electrons may have momenta in the opposite (left) or the same (right)

direction.

shift exist in terms of the magnitude of the normal mass shift for that element.

They are [36]

δνA,A
′

SMS = (0.3± 0.9)δνA,A
′

NMS for ns− np transitions, (3.31)

δνA,A
′

SMS = (0.0± 0.5)δνA,A
′

NMS for ns2 − nsnp transitions. (3.32)

3.3.2 The Field Shift

An electron orbiting a nucleus will experience an electrostatic potential, arising

from the electric charge distributed across the volume of the atomic nucleus (see

Figure 3.3). The nucleus is not a point-like object and so as neutrons are added to

this nucleus, the volume (and therefore the charge distribution across it) changes,

leading to a change in energy of the atomic electrons and therefore an alteration

of the energy of the atomic transitions. Due to this, laser spectroscopy provides

a method by which the size of a nucleus, relative to the size of another isotope in

its chain, may be measured. Through measurement of the isotope shift, combined
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Figure 3.3: The electric potential a nucleus would experience from a Coulomb
potential (red) and in the case of a spherical charge (blue).

with the knowledge of the mass shift, the technique is sensitive to the mean-square

charge radius of a nucleus.

The electrostatic potential experienced by the electrons when orbiting a nucleus

of mean-square charge radius 〈r2〉 is

E =
Ze2

6ε0
|ψe(0)|2

〈
r2
〉
, (3.33)

where |ψe(0)|2 is the electronic charge density generated by the atomic electrons

at the position of the nucleus [15].

The difference in energy between the same transition in two isomers (the field

shift component of the isotope shift) may hence be written as

δνA,A
′

FS =
Ze2

6hε0
∆ |ψe(0)|2 δ

〈
r2
〉A,A′

. (3.34)
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For simplicity, Ze2

6hε0
∆ |ψe(0)|2 is defined as F and is referred to as the ‘field factor’

where ∆ |ψe(0)|2 is the change in charge density between two states, evaluated at

the origin.

3.3.3 Total Isotope Shift

By combining the two contributions to the shift in frequency of a given atomic

transition, a complete picture of the isotope shift is constructed. That is

δνA,A
′
= δνA,A

′

MS + δνA,A
′

FS = M
A′ − A
A′A

+ Fδ
〈
r2
〉A,A′

, (3.35)

and enables the technique of laser spectroscopy to probe not only magnetic and

quadrupole moments of the nucleus of interest but also the evolution of nuclear

size and shape across an isotopic (or even isomeric, where A′−A
A′A
≈ 0) chain.

For cases where isotope shifts have been measured, the ‘King plot’ technique

may be used where the charge radius of three or more isotopes in the chain are

known as well as the electronic factors for another transition.

3.4 King Plot Technique

The linearity of the form of the isotope shift may be exploited through the King

plot [34]. By applying a linear fit to the measured isotope shifts of two atomic

transitions, the F and M factors can be extracted when the factors for one of the

transitions are known. This becomes particularly useful when no good theoretical

estimates exist and measurements must rely on solely quantitative techniques.
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By introducing a modification factor ζ = A′A
A′−A to Equation 3.35 (for a transition

i), the expression may be written as

ζδνA,A
′

i = Mi + ζFiδ〈r2〉A,A′
. (3.36)

Likewise, the isotope shift for a transition j is

ζδνA,A
′

j = Mj + ζFjδ〈r2〉A,A′
. (3.37)

Since δ〈r2〉A,A′
must be the same in both Equations 3.36 and 3.37 (as it is a

property of the nucleus, rather than the transition), the expressions are equated

to yield

1

Fj

[
ζδνA

′A
j −Mj

]
=

1

Fi

[
ζδνA

′A
i −Mj

]
, (3.38)

which, in turn, leads to the useful relation

ζδνA
′,A

j =
Fj
Fi
ζδνA

′,A
i +Mj −

Fj
Fi
Mi. (3.39)

A ‘King plot’ of the modified isotope shifts yields a straight line with gradient

Fj

Fi
and an intercept of Mj− Fj

Fi
Mi. Therefore, the factors for one transition (which

may be chosen for efficiency) can be related to those of another transition if the

factors of one are known.

Should the mean-square charge radii be known from non-optical techniques

then the King plot technique may still be utilised by considering a hypothetical

transition with electronic factors of Fi = 1 and Mi = 0. In this case, the gradient

of the plot directly gives the field factor of the transition of interest and the inter-

cept, the mass factor.



34

In cases where no information is yet known about the chain, empirical tech-

niques can be used to generate F and M factors whereby the factors are used

alongside measured isotope shifts and varied to match the systematic trends of

the region.



Chapter 4

Laser Spectroscopy

The method of laser spectroscopy is a powerful tool for measuring the shape and

size of atomic nuclei as well as the magnetic g-factors of the occupying nucleons

and is adopted by many facilities around the world covering a range of techniques.

The resolution of the measurements is strongly related to the type of measurement

taking place. For example, in-source measurements (where measurements are

performed on atoms as they are released from the target material) tend to have

a large amount of Doppler broadening due to the large range of velocities of the

sample [37]. Techniques such as fast-beam laser spectroscopy have provided large

enhancements on this resolution, though usually at the cost of a loss in sensitivity

of the measurement of short-lived states. There is, of course, a hard limit on

the resolution of a laser spectroscopic measurement since the non-zero lifetime of

the excited atomic state causes a natural line width of the hyperfine resonances.

Typically, these line widths are of the order of tens of MHz - a small number

compared to the transition frequencies which are typically in the order of THz.

35
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4.1 Line Shapes

4.1.1 Homogeneous Line Broadening

The existence of a finite lifetime of a given atomic state leads to a natural line

width of a profile in a laser spectroscopic measurement. This can be shown by

first describing the system as a damped oscillator

e(t) =
E0

2

[
exp

(
i

(
ω0 +

iσ

2

)
t

)
+ exp

(
−i
(
ω0 −

iσ

2

)
t

)]
, (4.1)

where σ
2

is the field decay rate. A Fourier transform of e(t) (E(ω) =
∫∞

0
e(t)eiωtdt)

gives

E(ω) =
E0

2

(
i

ω0 − ω + σ
2
i
− i

ω0 + ω − σ
2
i

)
, (4.2)

where ω is the angular frequency. This in turn leads to the general line shape

description of

|E(ω)|2 ∝ 1

ω − ω0 + (σ
2
)
, (4.3)

when ω ≈ ω0. Defining ∆νH = σ/2π and normalising, Equation 4.3 becomes

g(ν)H =
∆νH

2π
(

(ν − ν0)2 +
(

∆νH
2

)2
) . (4.4)

where ν is the frequency and g(ν)H is the line shape. This is a Lorentizan line

shape and the effect is known as homogeneous broadening as it applies to all atoms

in the same way [38].
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4.1.2 Inhomogeneous Line Broadening

Departures from the natural Lorentzian line shape are possible where experimental

conditions cause a ‘broadening’ of the line width. Mostly, these contributions are

Gaussian in nature and so the overall line shape of the hyperfine resonance is,

in these cases, observed as a Voigt profile - a convolution of the Gaussian and

Lorentzian line shapes. Such a line shape is defined by

V (x, γ, σ) =

∫ −∞
∞

G(x′, γ)L(x− x′, σ)dx′, (4.5)

where G(x′, γ) is the Gaussian component with FWHM of γ and L(x − x′, σ) is

the Lorentzian component with FWHM of σ [35].

Doppler Broadening

A common cause of line broadening within the technique of laser spectroscopy is

Doppler broadening. This occurs since the excited atoms/ions naturally exhibit a

range of velocities according to a Maxwell-Boltzmann distribution which can be

described by

f(vx, vy, vz) =

(
M

2πkT

) 3
2

exp

(
− M

2kT
(v2
x + v2

y + v2
z)

)
, (4.6)

where M is the atomic mass, k is the Boltzmann constant, T is the temperature

of the atom and vx, vy and vz are the velocities in x, y and z respectively. Since

these velocities are independent of each other and the only dimension of interest

is that in the direction of the laser beam axis, we may express the probability of

the transition frequency (between ν and ν + dν), g(ν)dν, as

g(ν)dν =

(
M

2πkT

) 3
2
∫ ∞
−∞

∫ ∞
−∞

exp

(
− M

2kT
(v2
y + v2

z)

)
dvydvz

×
(
c

ν0

)
exp

(
− Mc2

2kTν2
0

(ν − ν0)2

)
dν.

(4.7)



38

Here, the velocity in the direction of the laser axis, vx, has been expressed in terms

of the rest frame frequency, ν0, and the frequency observed in the frame of the

atom, ν.

Since ∫ ∞
−∞

exp

(
− M

2kT
v2
z

)
dvz =

(
2πkT

M

) 1
2

, (4.8)

Equation 4.7 may be written as

g(ν) =
c

ν0

(
M

2πkT

) 1
2

exp

(
− Mc2

2kTν2
0

(ν − ν0)2

)
. (4.9)

Equation 4.9 describes a Gaussian line shape and hence any broadening that takes

place from the range of velocities within a sample will take on Gaussian properties

[38]. Fast-beam laser spectroscopy has been developed to decrease the effect of

Doppler broadening below that of the natural line width of the peak. This is

discussed in more detail in Subsection 4.2.1.

Power Broadening

In the case of an ion beam being continuously excited with continuous-wave laser

radiation, the population of the excited state in the ion beam is dependent on the

process of excitation and on the spontaneous and stimulated emission from those

states. In the equilibrium state, the population 〈P2〉 of the excited state (which is

proportional to the measured signal) is given by [39]

〈P2〉 =
1

2

(I/Isat)

1 + (∆/β)2 + (I/Isat)
, (4.10)

where ∆ = ω0 − ν, the difference between the atomic Bohr frequency ω0 and the

laser frequency β is the width parameter in the weak-excitation limit, ν, Isat is the

saturation intensity and I is the intensity of the incoming beam. An increase in
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the intensity of the laser will then cause an increase in the width of the profile.

This broadening has a Lorentzian dependence on ∆.

Pressure Broadening

Pressure broadening (sometimes referred to as collisional broadening) takes place

when the ions (or atoms) of study are in a gas of sufficiently high pressure. Colli-

sions with neighbouring molecules cause a termination of the excited state of the

ion. The decreased lifetime of the state leads to an increase in the uncertainty in

the energy of the transition and hence a wider line shape due to the uncertainty

principle ∆E∆t ≈ ~
2

[40].

4.2 An Overview of the Technique of Laser Spec-

troscopy

4.2.1 Fast-Beam Collinear Laser Spectroscopy

In order to probe the hyperfine structure of the ion in this work, the technique of

collinear laser spectroscopy is employed. In this technique, radioactive ions must

first be formed in to a beam and accelerated towards the laser beam. Through

applying a secondary (much smaller) tuning voltage, fast ion beams are brought in

to resonance with narrowband laser light, which is locked to a certain wavelength,

by the Doppler effect. A basic diagram of the anti-collinear geometry can be found

in Figure 4.1. This technique allows for very high precision since high velocities

of ion beams allow for the reduction of the aforementioned Doppler broadening

to below the natural line width and the laser does not have to change frequency

throughout the experiment.

An accelerated ion beam observes a shift in the frequency of the laser light as

governed by the laws of Doppler. The frequency of the laser light observed by the
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Laser beamFast Ion Beam (~30 keV)

Tuning electrodes

Figure 4.1: The basic geometry of the laser-ion interaction in anti-collinear
laser spectroscopy. Ions are accelerated to high velocities and meet the laser

beam head on.

ion beam νobv can be calculated from the wavelength of the laser νlas in the rest

frame by [2]

νobv = νlas

(
1 + α±

√
2α + α2

)
. (4.11)

In this description, the quantity α is defined as

α =
qV

MAc2
, (4.12)

where q is the charge of the ion in the beam, V is the acceleration voltage expe-

rienced by the ion and MA is the mass of the atom in question. The ± refers to

anti-collinear (where the sign is positive) and collinear setups (where the sign is

negative). For an example of a collinear set-up, see Ref. [21].

By changing the acceleration voltage, the experimental set up has the ability to

scan over a range of observed frequencies without the need to change the frequency

of the laser and therefore removing any associated systematic uncertainties. By

stepping the acceleration voltage and measuring the number of resonant counts
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detected by the photomultiplier tubes, a full hyperfine spectrum may be built up.

Another benefit of fast-beam collinear laser spectroscopy is its further allowance

for high-resolution spectroscopy by means of manipulating the Doppler broadening

phenomenon. An ion beam has energy

E =
1

2
MAv

2, (4.13)

which gives a spread of velocities (and therefore observed frequencies) described

by

∆E = MAv∆v. (4.14)

Such energy spreads appear due to differing energies of the ions emerging from the

ion source during production, a process through which experimenters have only

limited control.

Since the spread in energy of an ion beam must remain constant under electro-

static acceleration, as all ions experience the same acceleration voltage, an increase

in velocity of the ion beam must decrease the spread of velocities (see Figure 4.2)

Typical acceleration voltages at the collinear laser spectroscopy setup at JYFL are

around 30 kV, which is enough to bring the effect of the energy spread to below

the natural line width of a transition.

4.2.2 Fitting Process

In this work, the hyperfine spectra are fitted using a Python routine implement-

ing the SciPy least squares package [41]. Within this routine, a model hyperfine

spectrum with Lorentzian peaks is generated by the user using initial estimates for

the starting parameters. Voigt profiles were considered for the fitting routine but
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E
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v1 v2

Figure 4.2: The effect of increasing the velocity on the velocity spread under
electrostatic acceleration.

were ultimately not used in favour of the simpler Lorentizan line shape since the

latter was found to describe the experimentally measured line shape well. These

starting estimates include background, FWHM of the hyperfine peaks (which is

shared across all peaks), an intensity for each peak (which allows the intensity of

each peak to vary freely) and values for the hyperfine A and B parameters and the

centroid of the structure. If necessary, extra constraints can be placed on these

values within the routine. For example, it is possible to hold the ratio of hyperfine

constants within the routine.

This model can also be extended to fit multiple files at the same time. In this

technique, spectra are fitted with shared parameters which describe the hyperfine

A and B parameters but the centroid of each spectrum is allowed to vary in order

to account for experimental drifts which may occur between separate runs. Each

spectrum is also allowed its own background count and, as before, peak intensities
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are allowed to vary freely.

The χ2 minimisation is provided by the least squares package, which works to

minimise a cost function based off many iterations from the user-provided starting

estimates. In order to prevent the possibility of the routine ending in a false

minimum, it is important to provide starting estimates close to the true values.

Once the minimum has been found, least squares returns the fitted values for each

parameter along with a Jacobian matrix, evaluated at the solution. The covariance

matrix is then calculated by

C = JT · J, (4.15)

where C is the covariance matrix and J is the returned Jacobian matrix. The

errors are then taken as the diagonal elements of C and scaled by the square root

of the χ2
r of the fit. This value is determined by first finding the χ2 value

χ2 =
n∑
i=0

(xi − x′i)2

σ2
i

, (4.16)

where n is the number of data points, xi is the fitted number of counts to the

ith data point, x′i, and σi is the associated error defined by σi =
√
x′i + 1. The

reduced χ2 is therefore this value divided by the number of degrees of freedom in

the fit, ν, i.e. the number of data points minus the number of fitting parameters.

That is

χ2
r =

χ2

ν
. (4.17)

The statistical errors extracted from the fit in this way may then be used alongside

the errors from the reference values of previously measured isotopes in order to

extract the error on the measured electromagnetic moments.
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The least squares package used in this routine also allows for bounds to be

placed on the parameters such that they will not be allowed to minimise outside

a selected range. For example, a peak intensity cannot be less than zero and so it

is unphysical to have a peak intensity fit to negative counts. To avoid this, it is

possible to set a lower bound of zero to the appropriate parameters.

4.2.3 Other Forms of Laser Spectroscopy

As well as the technique of collinear laser fluorescence spectroscopy (as used in this

work), many other laser spectroscopic techniques are used at nuclear structure fa-

cilities across the globe. The most similar technique to that described previously is

Collinear Resonance Ionisation Spectroscopy (CRIS). This approach uses many of

the same methods as standard collinear laser spectroscopy with the biggest differ-

ence being that instead of allowing electrons to de-excite after interaction with the

spectroscopic laser beam and counting the resultant photons, one or more lasers

are used to excite the electron past its ionisation potential. The newly created

ion is then guided towards an ion counter or decay detection station by electric

fields and counted towards a hyperfine spectrum for each set laser frequency [42].

Due to the nature of this setup, spectroscopy must be performed on the atom only

but the technique has the advantage of very low background signal since it is not

subject to the same laser scatter as fluorescence spectroscopy. One such example

of this technique is the RAPTOR beam line, which is currently in commission at

the IGISOL facility.

Another noteworthy technique is the method developed by the RADRIS col-

laboration for the study of the heaviest elements [43]. The RAdiation Detected

Resonance Ionisation Spectroscopy (RADRIS) setup is located at the GSI facility,

Darmstadt, Germany and is designed to perform laser spectroscopy on the heaviest
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elements which can only be produced at the rate of a few ions per second and as

such requires zero background techniques for their study. The element of interest

is produced in an ionised state by fusion evaporation reactions and selected by the

SHIP velocity filter before being guided in to a gas cell where the ion is attracted

to an electrically charged filament. After a pre-determined collection time, the

beam is shut off and the filament heated to a high temperature, releasing the re-

action products and producing a cloud of neutral atoms. This cloud is then hit by

several laser beams in order to perform the spectroscopic and ionisation steps of

the chosen scheme. Successfully ionised atoms (which are only of the element of

study due to the sensitivity of the ionisation) are then guided to a PIPS detector

where a number of α-decay events are counted. The spectroscopic laser frequency

is then changed and the process repeated, building a spectrum of laser frequency

and α particle counts. This technique has so far been successfully utilised to study

several isotopes of nobelium and, more recently, a campaign is underway to further

the technique to the study of lawrencium.



Chapter 5

The IGISOL Facility

5.1 IGISOL-IV

IGISOL-IV is an experimental setup located at the University of Jyväskylä in

central Finland. Although housed in its own hall, IGISOL-IV is a section of the

wider JYFL Accelerator Laboratory. Other major setups include MARA (Mass

Analysing Recoil Apparatus) and RITU (Recoil Ion Transfer Unit). Unlike these

other setups, IGISOL allows for the creation of monoenergetic (around 30 keV)

radioactive ions, a feature paramount to high-resolution laser spectroscopy as well

as other techniques such as high-precision mass measurements. A diagram of the

IGISOL-IV facility is shown in Figure 5.1.

5.2 The IGISOL Method

To create the necessary radioactive nuclei for measurement, 30 MeV protons from

a K-130 cyclotron are fired at a thin-foil target material. The use of a thin-foil

target, as opposed to a thick target, gives IGISOL its advantage over other facil-

ities. Reaction products recoil directly from the target meaning surface or laser

ionisation from the target is unnecessary. Further to this, the immediate removal

of ions from the target opens up the possibility of measuring isotopes with shorter

46



47

MCC30 Cyclotron

Mass Selecting Magnet
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Beam from K-130 Cyclotron

Laser Line

JYFLTRAP
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Stable Ion Source
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Figure 5.1: A diagram of the IGISOL-IV facility [44].

half lives inaccessible to facilities that use thick targets since they tend to have

longer extraction times for the products of interest. This is particularly true of

the refractory elements (such as Y and Nb) where removal from a thick target

would not be possible. The fast removal of products from the target area provides

considerably smaller losses through decay.

Since reaction products leave the target at high speed, they must be caught

by a helium buffer gas, where the ions are thermalised. This He gas (of typical

pressures around 250 mbar within the gas volume) is ejected through a 1 mm

exit nozzle as a supersonic gas jet, moving the reaction products towards the

sextupole ion guide (see below) before itself being pumped away by Roots pumps.

A schematic of the IGISOL front end is shown in Figure 5.2.

5.2.1 The SPIG

The SPIG (Sextupole Ion Guide) is made of six metal rods, arranged in a circle

[45]. In order to form an ion beam from the IGISOL reaction products, these

rods are supplied with a potential which oscillates between polarities. To ensure

symmetry, each rod is in antiphase with adjacent rods. The resulting electric
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Figure 5.2: A schematic of the IGISOL front end.

field focuses the ions in to the centre of the SPIG (which itself operates by the

application of an RF frequency of around 3-4 MHz and an RF amplitude of 0-

600 Vpp [45]) and hence a beam is created and then accelerated to 30 keV (due

to the +30 kV potential of the IGISOL chamber) towards the experimental area

whilst being focused with Einzel lenses.

5.2.2 Mass Separation

Just before entering the experimental area, the ion beam passes through a 55°

dipole magnet for selection by atomic mass. The magnetic force experienced by

the ions as they pass through the magnet is described by

F = qvB =
mv2

r
=⇒ r =

mv

qB
, (5.1)

where B is the strength of the magnetic field created by the magnet, v is the ve-

locity of the beam, and q andm are the charge and the mass of the ion, respectively.

The energy of the ions is supplied through the acceleration voltage, V , so
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Ek =
1

2
mv2 = qV =⇒ v =

√
2qV

m
. (5.2)

By utilising Equations 5.1 and 5.2, it can be shown that

B =

√
2V m

r2q
, (5.3)

hence by varying the magnetic field strength of the dipole magnet, a ratio of m
q

for a given r can be selected. It is normally assumed that a majority of the

ions leave the IGISOL front end in a singly charged state, however since selection

occurs via m
q

it is also possible to select a charge state as well as a mass. One

notable example is the work which has taken place on doubly charged yttrium [44].

5.3 Stable Ion Source

Access to an ‘offline source’ for the production of stable isotopes is available at

the IGISOL facility for the purposes of beam tuning and stable reference measure-

ments during an online experiment. The beam enters the main experimental area

through a 90° bender from the vertical shortly before the mass-selecting magnet.

There are two offline sources present at the IGISOL facility, a surface ion source

and a spark source [46].

The surface ion source creates an ion beam by means of heating the source

material to such a point that its energy exceeds that of the work function of the

surface. Once this threshold has been surmounted, the ions are desorbed and lose

an electron to the surface, forming a cloud of ions [47].

The principle of the spark ion source is to induce high-voltage discharge sparks

which ionise the helium buffer gas surrounding a cathode. The ionised particles
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are then attracted to the cathode at high velocity and cause fragmentation of the

source material. The spark source can therefore provide an offline source of many

metallic elements by simply changing the cathode to the material of choice.

In either case, ions are formed in to an ion beam by a skimmer electrode after

production, before being focused by an Einzel lens and injected in to the main

beam pipe before the magnet by an extractor electrode, accelerating the ions to

30 kV [46].

5.4 The Ion Cooler-Buncher

The use of ion coolers for the purposes of laser spectroscopy was pioneered by the

IGISOL group in the early 2000s [48]. By decreasing the spread of kinetic energies

within the beam the Doppler broadening effect is reduced, further improving the

resolution to to the natural line width. Moreover, the addition of a buncher to the

end of the cooling unit can allow for time gating on the arrival of an ion beam.

This time gating allows for a background reduction by a factor of ten thousand.

The Cooler

When leaving the ion guide, ions have a range of energies due to random collisions

with helium during the acceleration process. This spread in energy leads to a

spread of velocities of the ions as described by a Maxwell-Boltzmann distribution,

explained in more detail in Section 4.1.

By cooling the ions to the point where they are thermalised, the energy of the

ions is, in a sense, ‘reset’ and will therefore have a much lower spread of energy

than those leaving the IGISOL since they all leave the cooler in a similar energy

state.
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Figure 5.3: The potential throughout the cooler when the gate is raised and
lowered according to the bunching signal being on or off.

Cooling is made possible through a deceleration of the ions (by the 30 kV

platform of the cooler) followed by repeated collisions with helium atoms within

the cooler whilst the ions are confined radially by the use of a segmented radio

frequency quadrupole. A potential gradient down the cooler is also applied to

guide the ions towards the end of the line. With each collision, the ion beam

loses kinetic energy until the point that the ions become thermalised. Typical He

pressures within the cooler are ≈ 0.1 mbar.

The Buncher

By applying a potential gate to the end of the cooler, the ions become trapped

within the volume of the device. This gate can by raised and lowered as required

through the DAQ (Data AcQuisition) controls. Typical cycles of this bunching

last for around 100 ms with the gate raised, followed by 10 µs of the gate lowered

(see Figure 5.3, which shows the potential at the end of the cooler region).
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The raising and lowering of the gate leads to ions being released in to the

laser line in discrete temporal bunches. This allows for a gating procedure to be

applied whereby only the photons which are measured at the time of arrival of

the ion bunch are counted. This method means that background photons, which

are present due to other phenomena such as scattered laser light, are for the most

part ignored in the measurement. Compared to the method where the ion beam

is continuous, the background level is a factor of ≈ 104 lower which means that

much more difficult measurements are made instantly possible [48].

The cooler also has optical access at many points allowing for ‘optical pumping’

whilst the ions are within the cooler. The technique of optical pumping (which

will be discussed further in Chapters 7 and 8) allows experimentalists access to

previously unreachable atomic transitions from metastable states. The cooler is the

ideal place to do this since the ions spend more time in the cooler than anywhere

else in the beam line and therefore have a higher chance of being excited in to

a new metastable state by a secondary laser. As discussed later in Section 8.1,

optical pumping within the cooler has been found to successfully depopulate the

ground state of yttrium [49].

5.5 Beam Optics

For high beam currents, the beam can be tuned by the use of various tuning el-

ements down the line and monitored on a removable Faraday cup. Several such

devices are present throughout the beam line in order to create a good tune down

the whole line. Where beam currents decrease below the range of these devices

(for example when using radioactive beams) the user can make use of the several

MagneTOF devices. These fast timing counting detectors are ideal for measure-

ments of beam currents on the sub-pA scale. Furthermore, if an isotope of interest
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has a short-lived radioactive state then it is possible to make use of a silicon de-

tector which can be lowered in to the line at the switchyard (see Figure 5.1 for

reference) in order to ensure the highest possible beam transport efficiency out

of the IGISOL and in to the experimental hall. The observed half-life on these

detectors can also help with identification of the contents of the beam.



Chapter 6

The Laser Spectroscopy Station

6.1 Light Collection Region

The Light Collection Region (LCR) is the point of measurement for the setup and

is shown schematically in Figure 6.1. At this point, the ion/atom beam (depend-

ing on the experimental setup) overlaps with the spectroscopic laser beam. The

ions are accelerated through a tuning voltage, applied through a x1000 TREK

609E-6 high-voltage amplifier so as to Doppler shift them in to resonance with

the laser. Should the experiment require a measurement on the atomic state of

the isotope, the ion beam then passes through a charge exchange vapour (usually

potassium or sodium) which neutralises the beam. The fluorescence photons from

the de-excitation of hyperfine states are measured by a segmented photomultiplier

tube which sits at 90° to the propagating ion/atom beam. To ensure a high level

of detection efficiency, photons are collected by a lensing system which focuses

them on to the photomultiplier tube. Upon detection, the photomultiplier tube

generates a logic pulse which is sent to the data acquisition system and processed

as described in Subsection 6.2.

In order to ensure correct alignment of the ion beam with the laser, there is a

1 mm aperture in the light collection region which can be placed in to the beam

54
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Figure 6.1: A schematic of the laser spectroscopy line at JYFL in plan. *The
Charge Exchange Cell is removable and is only present in the beam line during
experiments in which spectroscopy takes place on the atom, rather than the ion.

line. Tuning both the ion and laser beams through this aperture guarantees good

alignment and therefore maximises spectroscopic efficiency.

The largest contribution towards background counts is scattered photons from

laser light entering the photomultiplier tube. In order to decrease the amount of

detected laser scatter, the laser line contains baffles either side of the LCR which

reduces the amount of contaminating photons incident in the photomultiplier tube.

6.2 DAQ

In 2017, a new data acquisition system was installed in the laser spectroscopy beam

line at JYFL. Unlike the previous data acquisition, which relied on hardware gat-

ing in order to gate on the time of arrival of an ion bunch, this new data acquisition

saves information for each and every count registered in the photomultiplier tube.

The signals from the photomultiplier are passed through a Fast Timing Amplifier

and the resultant pulses are processed by a Constant-Fraction Discriminator so

that only pulses occuring due to detection events are recorded. The pulses are
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Figure 6.2: An example linear calibration for a scan of 99Y

then time-stamped by a Cronologic TimeTagger 4-2G Time-to-Digital-Converter

with a 500 ps single-shot resolution [50].

In order to scan over a hyperfine structure, the data acquisition applies a tun-

ing voltage to the line by sending a voltage between -4 V and 4 V which is then

amplified by a 1:1000 voltage amplifier. To ensure correct calibration, a scan over

all voltage steps is performed before each measurement and the actual applied

voltage for each step is read out through a 1:1000 voltage divider and a Keysight

34465 digital multimeter. A linear calibration can then be applied to each voltage

channel during offline analysis, ensuring a high accuracy in the calculated Doppler

shifts (see Figure 6.2).

Similarly, the voltage of the cooler is recorded using a Keysight 34465 digital

multimeter used in tandem with a 1:10000 voltage divider. This value is recorded

alongside the wavemeter readout of the laser frequency in the calibration files. As
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explained in Section 5.4, the data acquisition also controls the cooler release. This

enables one bunch (or otherwise, if chosen by the user) to be released for each

voltage step. The setup is able to change the voltage applied to the laser line by

5 kV in less than 200 µs, meaning that the normal ≈ 2 V steps used online are

applied quickly enough to ensure no issues within the experimental requirements

[50]. For each voltage step, a bunch is released in to the laser line from the cooler

and accelerated towards the LCR for fluorescence detection. The program will

then change the voltage applied to the line and repeat.

Once the program has reached the final voltage of its cycle, the voltage re-

turns to the first value and the scan repeats. Unlike the previous data acquisition

system, the new DAQ is capable of scanning multiple voltage regions within the

same run. This ‘track’ system allows the user to select multiple scanning ranges

which can be hundreds of volts apart and will skip over any voltages which are not

selected whilst it performs its sweep. This is extremely helpful to the running of

an experiment since it can allow multiple scanning regions to be measured within

the same run file, hence decreasing any effect in experimental drifts when taking

these measurements separately which could occur when taken hours apart.

For each photon detected, a line of data is written to a .csv file containing

an absolute time stamp, the line voltage which was applied to the LCR (or CEC

if using) at the time of detection, the bunch number, the segment of the photo-

multiplier tube in which the photon was detected and the time it was detected

relative to the release of the bunch from the cooler. By creating a plot of the

counts observed across all channels with respect to the time they were measured

after cooler release, one may establish a time of flight (TOF) for the ion bunch (as

seen in Figure 6.3). The benefit of this new software gating means that the user

may optimise the time gates in the post-experiment analysis with more flexibility

than before. Counts outside of such a TOF gate are disregarded, since there is no
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Figure 6.3: An example of a time gate applied offline to data taken for 98Y.
Here, only data within the shaded region - corresponding to the time of flight
of the ion bunch - is accepted. A large portion of data is disregarded since it

contains only background counts.

ion bunch in front of the photomultiplier tubes and therefore these contain only

background counts.

To this end, a program has been written as part of this work which converts

this raw data in to voltage-counts or frequency-counts column data which can then

be used for the purposes of fitting and, thus, the extraction of hyperfine param-

eters. The program accounts for the calibration of the set voltages (as recorded

in the calibration file) as well as the voltage of the cooler and the set point of the

laser (which are both read separately at the start of each run in order to negate

effects due to experimental drifts). The user may alter the TOF gates within the

program in order to find the optimum values for signal to background reduction.

For use in the Doppler shift calculations, the program reads in a database of pre-

cisely measured atomic masses as published in the Atomic Mass Evaluation 2016
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[51] which, alongside the voltage calibration, ensures a precise Doppler shift is

calculated for each set voltage.

6.2.1 Scanning Across Zero Tuning Volts

With the upgrades to the new data acquisition system, it is now possible to perform

scans of hyperfine structure on different polarities. As a test of any systematic

effects caused by changing polarity, offline measurements of the hyperfine struc-

tures of stable molybdenum isotopes were performed such that by changing the

frequency of the laser for each run, the spectra could be measured across different

voltage ranges.
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Figure 6.4: The fitted values for the centroid for 98Mo (an I = 0 state) as the
scanning range is changed in voltage. Note that for some of these data points
the scanning range crosses 0 V. The shaded region shows the weighted average

value of the centroids and its appropriate error.
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To begin, the single peak structure of 98Mo (I = 0) was measured as a simple

test for any evidence of a shift in the centroid of the peak for varying voltages.

Figure 6.4 shows the fitted peak position in 98Mo for different scanning voltages,

either side of 0 V. The shaded orange band shows the error margin on the weighted

average of the fitted centroid positions. Since only few measurements were taken

for positive volts, a conclusion on the presence of any systematic changes on cen-

troid positions due to scanning on opposite polarities is inconclusive. Furthermore,

drifts in experimental conditions can cause changes in the observed frequency of

the peaks and so to combat this 95Mo was measured since it exhibits hyperfine

splitting and so any changes of peaks relative to each other may be examined.

The hyperfine structure of 95Mo (I = 5/2) on the J = 1/2 → 1/2 transition

at 293 nm was measured for positive and negative scanning voltages. As well as

measurements of the structure where the whole scanning range lies on one polar-

ity, several measurements were taken in such a way that the scanning range would

cross 0 V. For these scans, any effects from the change in polarity would manifest

in an alteration of the hyperfine splitting. Figures 6.5 and 6.6 show the measured

spectra of 95Mo and the fitted hyperfine parameters, respectively. No apparent

effect in either the fitted Au parameter of the centroid of the structure is seen for

these tests, giving good confidence in the ability to scan structures on either side

of 0 V.

For some of these measurements, the scanning voltage was set up in such a

way that the frequency location of one of the hyperfine peaks coincided with zero

scanning volts as part of a second test of these effects. When a resonant peak

occurs at Vtune = 0, the ion beam is on resonance for the whole journey down

the laser line and hence, in some cases, was pumped out before photon detection

could occur. Whilst the peaks were fitted with free intensities (rather than forced

to Racah intensities), the lower statistics on these peaks could have some effect on
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Figure 6.5: The measured spectra of 95Mo .

the fitted values.

In summary, the possibility of scanning hyperfine structures on either side of

0 V seems promising and would be of great use to experimental measurements since

this enables the possibility to scan large ranges without relocking a laser, allowing

for both better accuracy and faster measurements. Whilst so far this possibility

looks promising, it is recommended that more systematic investigations of the

effect of such scans, particularly on simpler structures in order to be conclusive.
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Figure 6.6: The fitted values for the centroid and Au values for 95Mo as the
scanning range is changed in voltage. For all data points except Vscan=600 V,

the scanning range crosses 0 V.

6.3 Laser Systems for Performing Spectroscopy

6.3.1 High-Precision Continuous Wave Lasers

The spectroscopic laser light for this work was provided by a Matisse 2 DS dye

laser, which was recently added to the group’s laser lab. The large range of tun-

ability provided by dye lasers alongside their long-term stability to within MHz

is essential for running online laser spectroscopy experiments. In this subsection,

the basic operation principles of the dye laser are discussed.

The dye laser is pumped by a Verdi diode-pumped solid-state laser which acts

to excite the molecules within a liquid dye. The pumping laser light repeatedly
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Figure 6.7: The dye laser cavity of a Matisse 2 DS Dye Laser. This figure is
based off the figure from Ref [52].

promotes electrons from the ground state in to a level of higher energy until a

population inversion is achieved. For each experiment, the laser dye is chosen in

such a way to maximise the emission of light in the required frequency range. The

absorption and emission profiles of several dyes are readily available in the tech-

nical data sheets provided by their production companies. One major drawback

of the use of a dye as a gain medium inside of a laser is the instability of the dye

molecules when exposed to high-powered light for a long period of time. For this

reason, the dye (which is dissolved into a solvent) is repeatedly pumped through

the laser in the form of a thin jet on to which the laser light is focused. Within the

cavity of the laser (see Figure 6.7), the mirrors are placed to create the bow-tie

arrangement which allows for the light to make multiple passes through the gain

medium. Appropriate mirror sets must be selected for each wavelength range since

their reflectivity is dependent on the wavelength of the incident light.
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Unidirectional Device

The cavity is arranged in a ring configuration allowing the generation of travelling

waves, which is important in order to achieve single-mode operation since two

counter-propagating monochromatic beams overlapping causes spacial hole burn-

ing. However, this arrangement allows propagation of laser radiation in both the

clockwise and anti-clockwise directions. In order to prevent lasing in the unwanted

direction, a unidirectional device is placed in the laser path. The unidirectional de-

vice consists of a crystal plate inside a strong magnetic field. Propagation through

this plate will cause a change of several degrees to the polarisation of the elec-

tric field. The field experiences a second polarisation effect when interacting with

mirror M2, which is out of the plane of polarisation. Reflection out of this plane

causes a roation of the polarisation vector which is dependent on the direction

of the laser propagation. In the counter-clockwise case, the effect is equal and

opposite to the effect from the unidirectional device; if the field is propagating in

the clockwise direction these effects are cumulative and the field will suffer losses

at each Brewster surface due to a decrease in transmission [52].

Mode selection

The cavity of the dye laser allows travelling waves with frequency peaks separated

by ∆ν = c/L where L is the cavity length. In order to select only one of these

frequencies, the laser makes use of several frequency selective elements within the

cavity. The first of these elements is the Birefringent Filter (BiFi). The BiFi allows

for a broad-range frequency selection which sets the laser up to an approximate

wavelength of operation, further elements are then used to choose the frequency

more selectively. The BiFi in the Matisse 2 DS consists of three quartz plates of

varying thicknesses which are stacked upon each other. As the laser light travels

through these plates, its polarisation will be rotated and the magnitude of such a
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rotation is dependent on the wavelength of the travelling wave. There are there-

fore only a finite number of wavelengths which will experience no reflective losses

at the Brewster angles within the laser cavity after transmission through the BiFi.

Tuning of the BiFi is then simple to achieve through a small rotation of the plates.

A second frequency-sensitive piece of equipment present in the laser cavity is

the thick etalon. The thick etalon is formed of two prisms aligned such that their

bases are parallel (see Figure 6.7) with an air gap between. The position of one

prism is controlled by the use of a piezoelectric actuator which allows for the size

of this air gap to be altered. For this reason, the thick etalon is also referred to

as the piezo etalon. Working in tandem with the gross frequency selection of the

BiFi, selection of the appropriate distance between the two glass prisms allows

for the selection of a particular laser mode of operation since the constructive or

destructive interference at each prism surface is a function of their separation [53].

The combination of both the BiFi and the thick etalon is not enough to guaran-

tee the single-mode operation of the laser and so the thin etalon works to provide

a more selective range of frequencies. The thin etalon has a free spectral range of

about 250 GHz, compared to the ≈ 20 GHz of the thick etalon. The horizontal tilt

of the thin etalon (with respect to the laser beam) is controlled by a step motor

[52]. To ensure the laser is operating at the correct wavelength, the frequency

of the light is measured by a HighFinesse WSU/10 wavemeter [50] and tuned by

moving the tuning mirror (TM in Figure 6.7) which changes the cavity length.

6.3.2 Laser Stabilisation

A full scan of a hyperfine spectrum can take place over a large range of time, from

a few minutes to a few hours. In order to accurately take a measurement of the
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Figure 6.8: An example transmission profile of a reference cavity. The laser
frequency can be ‘locked’ to the side of a transmission peak, shown in red. This

figure is based off the figure from Ref [52].

frequency of the hyperfine peaks, it is important that the frequency of the spectro-

scopic laser remains as stable as possible across the length of the scan. To achieve

this, the laser is ‘locked’ to the transmission of a reference cavity. Specifically, the

laser frequency is locked to the side profile of a peak in the spectrum (see Figure

6.8) and a control loop feeds information to a fast piezo actuator, upon which a

mirror is mounted. A change in intensity of the reference peak corresponds to a

change in the frequency of the laser. For example, if the laser were locked to the

left hand side of a peak, an increase in intensity would correspond to an increase

in frequency and a decrease in intensity would correspond to a decrease in laser

frequency. An accurate measurement of this therefore allows for the appropriate

signal to be sent to the fast piezo and the laser frequency to be restabilised to

the required value. It is important to note that this method only works for small

perturbations in laser frequency such that the change in laser frequency is smaller

than the reference peak shape. For larger changes in frequency (known as losing
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the laser lock), manual intervention is required [52].

6.3.3 Pulsed Lasers

The laser light utilised for the pumping part of the two spectroscopic schemes

in this work was provided by a pulsed Ti:Sa laser and transported down in to

the cooler-buncher via a series of mirrors from the upstairs laser laboratory. The

Ti:Sa laser functions in a very similar way to the dye laser; it is a tunable laser

which operates in a bow-tie cavity and is pumped by an external laser. The Ti:Sa

differs to the dye laser mainly by the use of a Titanium:Sapphire crystal as a gain

medium. The high thermal conductivity of a Ti:Sa crystal allows for high laser

power to be generated, without the worry of degrading the molecules in a dye. The

Ti:Sa crystal also benefits from having a large intrinsic emission spectrum and so

enables access to a wide variety of laser wavelengths (with the appropriate mir-

ror sets matched to the wavelength of the light in order to maximise reflection) [52].

The pulsed nature of the laser light provided by the Ti:Sa laser allows for a

higher efficiency in frequency doubling (see below) since the efficiency of the second

harmonic generation is related to the power of the incoming light. Since the Ti:Sa

light is pulsed, its energy is deposited over a short amount of time and therefore

has a higher instantaneous power.

6.3.4 Second Harmonic Generation

In order to produce light in the ultra-violet region of the electromagnetic spectrum,

laser light from the dye laser is passed through a frequency doubling crystal, which

is chosen to meet the needs of the specific spectroscopic scheme. Such a crystal is

a so-called ‘non-linear’ material whose properties can alter the polarisation of the
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light.

For a linear material, the induced polarisation, ~P is given by

~P = ε0χ
(1) ~E, (6.1)

where χ(1) is the linear susceptibility and ~E is the electric field [54]. For a non-

linear material, each component of the polarisation (k = (x, y, z)) is given by

Pk = ε0

(
χ

(1)
ik Ei + χ

(2)
ijkEiEj + ...

)
, (6.2)

where the values χ(n) are the tensors of the nth order non-linear process. For an

input field given by Ei = εiexp(−iωt) + c.c., the second order polarisation term is

Pk = χ
(2)
ijk

(
εiεjexp(−2iωt) + ε∗i ε

∗
jexp(2iωt) + ε∗i εj + εiε

∗
j

)
. (6.3)

The interaction of electromagnetic radiation with a non-linear material will

then therefore create a component of the resulting field with a frequency of ex-

actly double that of the input field. This phenomenon is an effect named Second

Harmonic Generation (SHG). A similar result can also be shown for higher order

harmonics, though it is assumed that these effects are small enough, in most cases,

to be negligible.

In the case of the spectroscopic laser light, the frequency doubling is achieved

by making use of a ‘WaveTrain’ frequency doubling cavity where laser light prop-

agates in a ring and can therefore make multiple passes through the SHG crystal

to increase the efficiency of the doubling [55]. For the pulsed laser system, the

WaveTrain is not necessary since the instantaneous power of each laser pulse is

sufficiently high to achieve a reasonable doubling efficiency.



Chapter 7

Collinear Laser Spectroscopy of

Yttrium Isotopes

It has long been known that the A ≈ 100 region of the nuclear chart demonstrates

a strong onset of deformation. Due to this, the region has been the subject of

many studies over the last two decades [8, 49, 56–62] which have shown that this

large onset of deformation is present in many isotopic chains at N = 60 with the

phenomenon appearing to reach its apex in the yttrium chain.

In 2007, a campaign began to study the shape transition within the yttrium

chain by collecting hyperfine spectra from the semi-magic nucleus 89Y up to 102Y

[8]. The mean-square deformation parameter, 〈β2
2〉, was extracted from a mea-

surement of the mean-square charge radius by

δ
〈
r2
〉A,A′

= δ
〈
r2
〉A,A′

sph
+
〈
r2
〉

sph

5

4π
δ
〈
β2

2

〉
, (7.1)

where 〈rsph〉 is the radius of a spherical nucleus with equal volume. It was shown

that as neutrons are added above the N = 50 shell closure, nuclei become slowly

more deformed as the neutron number increases towards N = 60 (see Figure 7.1).

69
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Figure 7.1: The radii of the Y isotopic chain as measured in Ref [8]. The
dashed lines represent the expected charge radii from the liquid droplet model

for β2 = 0 and β2 = 0.43.

Complementary measurements of the quadrupole moments allowed for the ex-

traction of the quadrupole deformation parameter, 〈β2〉, by

Q0 ≈
5Z 〈r2〉sph√

5π
〈β2〉 (1 + 0.36 〈β2〉), (7.2)

which further demonstrated the weakly oblate nature of these nuclei and, with

comparison to the values of deformation extracted from the radii, help to demon-

strate an increase in β-softness with increasing neutron number (as seen from the
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departure of the trend from the mean-square charge radius predicted by the de-

formed liquid drop model, Figure 7.1).

Above N = 60, a sudden shape transition manifests as the nuclear shape

changes from this softly deformed oblate shape to a rigid prolate deformation.

Critically, it was found that at the site of the shape transition there was a clear

shape coexistence between the ground state of 98Y and its 241 keV isomer. The

isomer 98mY was particularly interesting since the static quadrupole deformation

(extracted from the hyperfine B parameter) alone did not fully account for this

change of shape and the deformation appeared to be much more dynamic in nature

than those isotopes both above and below the point of transition.

The knowledge of nuclear spin is critical to the measurement of nuclear proper-

ties by laser spectroscopy and whilst unambiguous spin identification is normally

possible through laser spectroscopic measurements, in the case of the 2007 study

a J = 0→ J = 1 transition at 363 nm was used. Whilst efficient as a probe of

magnetic and quadrupole moments, such a transition contains a maximum of only

three hyperfine resonances (as seen in Figure 7.2) and hence a nuclear spin has to

be assumed in the fitting process. At the time of the publication of the study, the

spin was assumed to be either 4 or 5 and so a set of hyperfine parameters were

extracted for each of these possible spins. Whilst the lack of a positively assigned

nuclear spin caused ambiguities in the nuclear electromagnetic moments, the pres-

ence of the shape coexistence remained a certainty since the measured isomer shift

(the change in transition frequency, and hence a measure of the change in nuclear

size, between a ground state and its isomer) was largely unaffected.

More recent studies from the GAMMASPHERE array claimed a more likely

spin as high as I = 7. The work found that the feeding of certain levels in 98Zr

(which was the basis for the previous assignment of I = (4, 5)) was not observed.
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Figure 7.2: The previously measured spectra of Y isotopes on the
J = 0→ J = 1 line. It is important to note the sudden shift in centroid be-

tween 98Y and its isomer, clearly demonstrating the shape coexistence [8].
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It was, however, observed that the β decay of 98mY populated a state in 98Zr with

a spin of 7+ as well as having a 43% branch to a 6+ state which is consistent with

an allowed Gamow-Teller transition. The conclusion was therefore that the state

was likely to have a spin of I = (6, 7) rather than I = (4, 5) [63].

To investigate this hypothesis further and to unambiguously characterise the

shape coexistence, a campaign began at the IGISOL-IV facility to measure the spin

of 98mY using laser spectroscopic techniques. During this experiment, an electronic

transition between higher J states than those used previously was probed, since

such a transition yields many more hyperfine resonances. Whilst this effect causes

the transition to be much less efficient (since the resonant counts are split across

more peaks), accurate calculations of the spectrum in each scenario allow for a spin

assignment without the need to measure every peak. Furthermore, yields in the

region are expected to be four times higher for IGISOL-IV compared to IGISOL-

III [64] which enables a much higher count rate than in previous measurements.

This chapter presents this work and subsequent analysis.

7.1 Experimental Setup

Since the main fallback of the previous study on the 363 nm line was the in-

ability to measure all nuclear parameters without assuming knowledge of at least

one, a different methodology was adopted in this study. Instead of probing a

J = 0→ J = 1 transition, a transition was chosen between two states of higher J

value, the J = 2→ J = 1 transition at 321 nm. The resulting hyperfine spectrum

would then include sufficient peaks to determine the nuclear spin of the excited

state alongside its magnetic and quadrupole moments. This transition has previ-

ously been used to successfully measure the spin of 100mY in a paper published in

2010 [56].
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Figure 7.3: The pumping scheme for yttrium. Electrons are excited on the
363 nm line before relaxing in to the 3D2 state for spectroscopy. All hyperfine

parameters [8, 56] quoted are measured in MHz.

In order to prepare the radioactive ion beam for study on this new line, the

configuration of the electrons first had to be manipulated to probe a transition

which starts from a metastable state. To achieve this, the technique of optical

pumping was adopted; the ions are excited with laser light whilst they are held

in the cooler before de-exciting in to a long-lived isomeric state which then forms

the basis of the spectroscopic line (see Figure 7.3).

In this particular case, the ions were excited within the cooler on the same

363 nm line as used in the last experiment by laser light provided by a pulsed

Ti:Sa laser. From the excited 1P1 state, the electrons relax into states of lower

energies for which a transition is allowed. Should electrons de-excite back in to

the ground state, they are re-excited in to the 1P1 state and the pumping process

repeats. Where the electron decays in to a state which cannot decay to the ground

state, the electron cannot be re-excited by the pumping laser light. Should this

happen for any other state than the 3D2 state of interest, the ion is then no

longer available for spectroscopy (unless the electron can move to the ground state

through collisional de-excitation or similar mechanisms). It is therefore important
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to choose a pumping scheme which preferentially decays in to a suitable state in

order to maximise spectroscopic efficiency. The most intensely populated state

(other than the ground state) from the decay of the 1P1 state is the 3D2 level

with a branching ratio (BR) of approximately 36%, calculated from the tabulated

Einstein A coefficients in atomic databases [65]. This is calculated as the ratio of

the transition strength of the J = 1 → J = 2 (with a wavelength of 377.6 nm)

and the sum of all other transition strengths from the 27517 cm−1 level except the

ground state (since any de-excitation in to this state is re-excited by the pumping

laser), that is

BR =
A378

A374 + A378 + A512 + A733 + A745 + A788

, (7.3)

where Ai is the Einstein A coefficient to the transition from the 1P1 state with

wavelength i nm.

Upon arrival at the light collection region, the ions are further excited from

this 3D2 state to the 3P1 state, this time with laser light provided by a frequency-

doubled continuous wave dye laser.

7.2 Initial Predictions

In order to identify the spin of the system, calculations of the hyperfine structure

in the 3D2 → 3P1 transition of 98mY were made for spin values ranging from 4−9.

Such predictions can be performed by making use of the hyperfine parameters of

the electronic levels in 98mY extracted from fitting the spectrum and the ratios be-

tween each of these parameters for the relevant transitions in the pumping scheme,

all of which are available from previous work on this isotopic chain. As shown by

Ref. [56], the hyperfine anomaly in yttrium is known to be less than 1% and it
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I A(1P1) B(1P1) δν98g,98m

4 −88.21(48) +325.4(32) −2747(2)
5 −73.64(39) +339.8(34) −2735(2)
6 −63.13(33) +349.6(36) −2727(2)
7 −55.22(29) +356.7(37) −2721(2)
8 −49.05(25) +362.0(38) −2717(2)
9 −44.12(23) +366.2(39) −2713(2)

Table 7.1: A table of the fitted hyperfine parameters for 98mY on the 363 nm
1S0 → 1P1 transition for nuclear spins ranging from I = 4 − 9. Hyperfine

parameters are quoted in MHz.

is thus a reasonable assumption that these ratios remain constant across the chain.

To begin, A and B parameters and the isomer shifts were extracted from the

previous 98Y data (measured from the 1S0 → 1P1 line) for each of the spins con-

cerned and extended to higher spin values. The results of this fitting process can

be found in Table 7.1.

To calculate the ratio between parameters in the relaxation phase of the pump-

ing scheme, values were taken from Refs. [8] and [56]. In these experiments, data

have been taken which allow for the extraction of the A parameter in 89Y and

both the A and B parameters in 99Y for both the 1P1 and the 3D2 states. A

measurement of the B parameters is not possible for 89Y since it is known to

have a nuclear spin of I = 1/2 and therefore the hyperfine spectrum exhibits no

quadrupole splitting. The data from Ref. [56] also allow us to calculate a ratio

of the hyperfine parameters for the 3D2 → 3P1 transition. The A ratios deduced

from values measured in 89Y are

A(1P1)/A(3D2) = −0.1481(5) , A(3P1)/A(3D2) = +0.445(2), (7.4)

and the B ratios, from 99Y are
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Figure 7.4: The calculated hyperfine spectra for 98mY for I = 4− 9. It is clear
that a confirmation of the nuclear spin is viable from the measurement of the

left hand peak only.

B(1P1)/B(3D2) = +1.46(28) , B(3P1)/B(3D2) = −0.73(15). (7.5)

Knowledge of the ratios of the atomic F factors of the 321 nm and 363 nm tran-

sition (which are available from the gradient of the King plot shown in the 2010

literature [56] and the F factor quoted in the 2007 study [8]) also allow for the

estimation of the isomer shift in the system since

δνA,A
′

363

δνA,A
′

321

=
F363δ 〈r2〉A,A

′

F321δ 〈r2〉A,A′ =
F363

F321

= mKP, (7.6)

where mKP is the gradient of a King plot. With these ratios and the fitted data

from Table 7.1, the hyperfine spectrum of 98mY for the spectroscopic transition

can be calculated and used to predict the locations of the resonance peaks.



78

Figure 7.4 shows the simulated spectra for 98mY for spins I = 4 − 9. It can

be seen that the spin of the system can be inferred by considering the relative

spacings of all of the hyperfine peaks. More than this, it is clear that is it not

necessary to measure the entire hyperfine structure of the 321 nm line to achieve a

spin assignment since the location of many peaks for differing nuclear spins are well

resolved. With enough accuracy in the predictions, the spin of the system can be

determined from the location of only the most intense peak. Since a J = 2→ J = 1

transition demonstrates a splitting of the fine structure into many hyperfine levels

(therefore distributing the total resonant counts across many hyperfine peaks), this

method of measurement is of high importance since the ability to concentrate on

narrow scan regions allows a high efficiency, thus enabling a sufficient measurement

despite the much lower count rate.

7.3 Measurement of 98mY on the 321 nm Line

Based on the measurements thus far, calculations were performed to determine the

necessary tuning voltages to Doppler shift the bunches of yttrium into resonance

with the laser light for the second most intense hyperfine peak (which is predicted

to have almost the same location for each spin and so the most certain location to

search). The scans were set up (with a track measuring the ground state resonance

once every three ‘sweeps’ in order to ensure that count rates were maintained),

yet the measurement proved unfruitful. In fact, a measurement lasting one whole

shift (8 hours) yielded no signal for the peak as shown in Figure 7.5.

In the hopes of finding a solution to the problem that had presented itself, the

363 nm data were further re-examined. The calculated Racah intensities show a

doublet of roughly equal height in the spectrum (see Figure 7.6) and, since the

fitting could not be constrained by any fixed ratios due to the absence of hyperfine

splitting in a J = 0 state, it seemed possible that these peaks were cross-identified.
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Figure 7.5: The measured spectra of 98mY showing no discernable counts
where the peak was expected to occur.

Table 7.2 presents the possible permutations of peak orders. A J = 0 → J = 1

transition allows for three hyperfine transitions and therefore 3! = 6 possible or-

derings in frequency. Scenario e) is the previously assumed situation. Scenarios

a), b) and c) are unlikely since they would give moments which are not in line with

other isotopes in the chain as reported in previous work [8]. Scenario f) also does

not seem likely since it would give a much smaller magnetic moment than expected

from the trend in the chain. The most obvious scenario to try first would then

be Scenario d). With this new peak matching, the previous data were refitted for

spins 4− 9 (see Table 7.3, which replaces 7.1), hyperfine simulations were created

once again and the experimental settings recalculated. The new simulations can

be found in Figure 7.7. The newly calculated hyperfine spectra show that it is still

possible to determine the nuclear spin without the need to measure a full hyperfine

spectrum.
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Figure 7.6: The previously measured 98mY spectrum from 2007.

After just one hour of scanning, the first hyperfine resonance was successfully

measured, confirming that there was indeed a peak misidentification in the 2007

work. During the final hours of the experiment, a further three hyperfine reso-

nances were measured several times, each with a reference track of the ground

state. These reference measurements mean that a well defined measure of the

isomer shift could be extracted without concerns of experimental drifts between

Table 7.2: The fitted values for all six permutations of the peaks (the spectrum
on which these fits were performed is shown in Figure 7.6) for a spin of I = 7 as
suggested by Urban et al. [63], possibilities for other spins with Scenario d) can
be found in Table 7.3. The ν values are relative to an arbitrary constant. Peak 0
represents the F = 7→ F = 6 transition, Peak 1 represents the F = 7→ F = 7

and Peak 2: F = 7→ F = 8.

Scenario Peak Order A (MHz) B (MHz) δν98g,98m (MHz)

a) 0 1 2 +60.58(29) +293.7(37) −563.2(17)
b) 0 2 1 +1.84(27) −876.3(40) −595.9(17)
c) 1 0 2 +53.37(27) +519.6(39) −569.3(17)
d) 1 2 0 −44.37(27) +572.8(39) −634.7(17)
e) 2 1 0 −55.22(29) +356.7(37) −640.8(17)
f) 2 0 1 −16.21(27) −866.5(40) −608.0(17)
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Figure 7.7: A comparison of the measured hyperfine spectra for 98mY to the
calculated spectra which replaces Figure 7.4. The result shows ambiguity in the

nuclear spin, which could align with I = 7 or 8.

measurements. The location of these peaks, as predicted by Scenario d), discounts

the possibility of any other scenario and therefore removes any ambiguity arising

from the order of the peaks in the extraction of the nuclear moments and the

charge radius (Figure 7.7).

With the resonances successfully measured and the peak order of the 363 nm

I A(1P1) B(1P1) δν98m,98g

4 −68.19(45) +508.8(34) −2737(2)
5 −57.98(37) +537.7(36) −2727(2)
6 −50.30(31) +557.9(38) −2720(2)
7 −44.37(27) +572.8(39) −2715(2)
8 −39.66(24) +584.3(40) −2711(2)
9 −35.85(21) +593.4(41) −2708(2)

Table 7.3: The newly fitted hyperfine parameters for 98mY on the 363 nm
1S0 → 1P1 transition which replaces Table 7.1. All hyperfine parameter values

are quoted in MHz.
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spectrum unambiguously defined, the measured 321 nm data were compared to

the simulated positions of the hyperfine peaks for extraction of the nuclear spin.

Upon comparison of the measured data to the calculated spectra, there seemed to

be ambiguity in the final result. Since the simulation of the hyperfine structure in

98mY relies so heavily on the precision of the 99Y data measured on the 321 nm

line, due to the need to extract the B ratio from this spectrum and the atomic F

factor from the King plot, the original data files were re-examined. An inspection

of the data showed that two of the hyperfine peaks in the spectrum critical to the

fitting process (since extraction of the B ratio requires at least 4 peaks, or 5 where

the ratio of the A parameters is not left to vary) had not been fully measured,

leading to uncertainty in the fit itself (see Figure 7.8). A remeasurement of the

hyperfine spectrum of the 321 nm transition of 99Y would enable a more precise

calibration of the ratios and of the King plot, therefore allowing a more confident

spin assignment in 98mY .

7.4 Remeasurement of 99Y

In October 2019, the hyperfine spectrum of 99Y was remeasured on the 321 nm

line. A total of six hyperfine peaks were successfully measured (Figure 7.9) which

allowed for a more complete measurement of the previous spectrum, including the

addition of an extra peak for more statistics. In the fit, all hyperfine parameters

were left unconstrained so that the ratios of the parameters could be extracted

from the results and used in the analysis of 98mY. The results of this fit are shown

in Table 7.4.

To calculate the isotope shift in 99Y, measurements of the ground state of 98Y

were taken. Once fitted, the centroids of these I = 0 peaks then allowed for a

calculation of the shift between 98Y and 99Y and in turn 89Y and 99Y through
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Figure 7.8: The previously measured 99Y spectrum as measured on the 321 nm
line. The blue stars indicate the approximate position of the two not yet fully

measured peaks.
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Figure 7.9: The previously measured 99Y spectrum on the 321 nm line (a))
compared to the 321 nm spectrum which was measured in late 2019 (b)).
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Figure 7.10: The King plot for the computation of the F and M factors of
the 321 nm atomic transition.

δν89,99 = δν89,98
lit + δν98,99, (7.7)

where δν89,98
lit is the isotope shift between 89Y and 98g.s.Y, taken from literature

[56]. This isotope shift can then be utilised in the King plot technique as de-

scribed above. A fit was performed using the ODR package within SciPy [41]

which gave new atomic factors of F = −1404(25) MHz·fm−2 and M = +112(18)

GHz·amu compared to the previous factors of F = −1343(25) MHz·fm−2 and

M = +107(17) GHz·amu. The new King plot is shown graphically in Figure 7.10.

The newly measured values are presented in Table 7.4. The newly calibrated

Table 7.4: The previously and newly measured hyperfine parameters of 99Y.
All values for hyperfine parameters are in MHz.

I A(3P1) B(3P1) A(3D2) B(3D2) δν89,99

5/2 (old) +455 (2) −145 (10) +1023 (4) +200 (38) −2550 (10)
5/2 (new) +459 (4) −118 (10) +1028 (3) +176 (25) −2549 (10)
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hyperfine ratios (Al/Au = +2.237, Bl/Bu = −0.149) were then used in both

creating new calculations of the hyperfine parameters of 98mY in order to correctly

assign the spin and to constrain the ratios of the hyperfine parameters in the fitting

procedure of 98mY (see Section 7.5 below).

7.5 Re-analysis of 98mY on the 321 nm Line

With the newly measured hyperfine ratios from 99Y and the F321 factor recali-

brated, a complete calculation of the hyperfine spectra of 98mY on the 321 nm line

can be performed for multiple spin values, as shown in Figure 7.11. It is clear with

the improved calibration that the measured peaks align best with the spectrum as

calculated for I = 7.

Furthermore, since multiple peaks were successfully measured, a simultaneous

fit of all measured hyperfine peaks from the isomeric state of 98mY was performed

according to the equation

γ = ζ + αuAu + βuBu − 2.237αlAu − (−1.490)βlBu, (7.8)

where ζ = νg.s + δνg.s.,m is the centroid of the isomeric structure built from the

isomer shift δνg.s.,m (which is shared between all runs) and νg.s, the centroid of the

ground-state peak which was measured as a track for each run (and is free to vary

to account for any experimental drifts).

In Table 7.5, the results from the fitting procedure are compared to those cal-

culated with the new hyperfine ratios and the atomic F321 factor. As with the

graphical representation, it can be seen that these values seem to only agree for

all parameters when I = 7 and therefore this spin value is assigned to the state. A

further evaluation of the confidence in this assignment is discussed in the section
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Figure 7.11: The fully corrected simulation of the hyperfine structure of 98mY,
created using the newly measured F and M factors and B ratio from 99Y, all

from this work. Solid vertical lines indicate the locations of the peaks.

below.

The final results of the upper state hyperfine parameters on both the 321 nm

line and the 363 nm line with the new peak reassignment and I = 7 are presented

in Table 7.6.

Table 7.5: LHS: The fitted hyperfine parameters of 98mY for possible spins I =
6−9 for measurements on the 321 nm line. RHS: The parameters calculated for
the 321 nm line from the measurements taken on the 363 nm line (with updated
calibration) and the known ratios of hyperfine parameters. All hyperfine values

are quoted in MHz.

I A(3P1) B(3P1) δνg.s.,m A(3P1)calc. B(3P1)calc. δνg.s.,mcalc.

6 +155.97 (18) −204.3 (42) −1267 (4) +151.2 (12) −226 (49) −1200 (3)
7 +135.20 (16) −247.7 (44) −1204 (4) +133.4 (11) −232 (50) −1198 (3)
8 +119.27 (14) −282.5 (45) −1155 (4) +119.2 (10) −237 (51) −1196 (3)
9 +106.67 (12) −311.1 (46) −1116 (4) +107.8 (9) −240 (52) −1195 (3)
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Table 7.6: The newly extracted hyperfine parameters of the upper states in
98mY on the 363 nm and 321 nm lines from this work. The isotope shift for

98mY is measured against its ground state.

Isotope Au (MHz) Bu (MHz) δνg.s.,m
′

(MHz)
98mY (363 nm) −44.37 (27) +572.8 (39) −2715 (2)
98mY (321 nm) +135.20 (16) −247.7 (44) −1204 (4)

7.6 Extraction of Nuclear Properties

With this spin assignment and the new peak ordering, the nuclear parameters µ

and Qs could now be unambiguously extracted from the old 363 nm data by means

of the ratios of hyperfine components from

µ = µref
IA

IrefAref

, (7.9)

Qs = Qs,ref
B

Bref

, (7.10)

where Aref and Bref are the hyperfine parameters of the same atomic level in a

reference isotope and µref and Qs,ref are its known magnetic and quadrupole mo-

ments. In this case, the stable isotope 89Y was used as a reference for the magnetic

moment (µ89 = −0.1374154(2)µN , A89 = +32.6(1) MHz [8]). 89Y could not be

used as a reference isotope for the quadrupole moments since its spectrum does

not exhibit quadrupole splitting due to having an I = 1/2 nucleus and so the

hyperfine B parameter of 90Y was used as a reference for the extraction of the

quadrupole moment instead (Qs,90 = −0.125(11) b, B90 = −23.5(15) MHz [8]).

These extracted properties may be found in Table 7.7.

Whilst the relationship between B and QS is independent of I, correct extrac-

tion of B from the hyperfine spectrum is reliant on the correct spin assignment

of I, just as it is with A and ν. It therefore stands to reason that the values

extracted for these parameters from each of the data sets should match when the
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Figure 7.12: The extracted nuclear parameters of 98mY for various nuclear
spins as measured on two different atomic lines. The extracted parameters agree

best for I = 7.

correct nuclear spin is used in the fitting routine. Figure 7.12 shows that these

parameters, extracted from the 363 nm and the 321 nm lines match best when

I = 7 is used, again supporting the I = 7 assignment for this metastable state. It

is important to note that the error bars in Figure 7.12 are somewhat artificially

inflated due to the error on each data point containing the same error from the

reference moment and hyperfine parameter. Note that in this figure, 99Y had to

be used as a reference for B on the 321 nm transition as the only other spectrum

measured on the 321 nm line which exhibits quadrupole splitting.

Table 7.7: The measured nuclear properties of 98mY. The spectroscopic
quadrupole moment of 90Y acted as a reference for the value extracted for

98mY.

Isotope I µ (µN) Qs (b) δ 〈r2〉89,A′
(fm2)

98mY 7 +2.62(2) +3.05(27) +1.94(10)
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Figure 7.13: The ratios of A parameters (a)), B parameters (b)) from the 3P1

and 1P1 states, and isomer shifts (c)) for varying spins of 98mY on the 321 nm
and the 363 nm lines, shown relative to the known ratios and gradient of the

King plot.

To combat these inflated errors, the atomic properties may be made use of since

the ratios of hyperfine parameters between any two states should be constant across

the yttrium chain, as previously stated. The ratio between the newly measured

hyperfine parameters for the 3P1 state and the values for the 1P1 state can then be

compared against the known values of these ratios: A(3P1)/A(1P1) = −3.006(13)

(taken from 89Y as before) and B(3P1)/B(1P1) = −0.405(33) (taken from 99Y).

This method allows for a comparison of results without the artificial inflation of

error on the data points from the errors associated with reference isotope. A

comparison of these values for varying spins can be seen in the top two panels of

Figure 7.13 which show the ratios as calculated for various spins of 98mY and a

shaded region representing the known ratio ±1σ. Furthermore, the ratio of isomer

shifts in 98Y can be compared to the gradient of the King plot directly, since its

value is equivalent to F363/F321 (Equation 7.6). The panel a) alone would suggest
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a spin of 7 or 8, panel b) suggests 6 and 7 and panel c) agrees only for a spin of

7. This therefore also reinforces the assignment since all known values can only

be consistent for an I = 7 state for the isomer in 98Y.

7.7 Calculating Deformation

In order to quantify the deformation of the isomeric state, the intrinsic quadrupole

moment must first be calculated. This calculation can be performed using

Q0 =
3Ω2 − I(I + 1)

(I + 1)(2I + 3)
Qs, (7.11)

where Ω is the projection of the nuclear spin along the nuclear symmetry axis.

Here, we assume Ω = I.

The intrinsic quadrupole moment allows for the extraction of the static quadrupole

deformation parameter 〈β2〉 since, for axially symmetric deformed nuclei,

Q0 ≈
5Z 〈r2〉sph√

5π
〈β2〉 (1 + 0.36 〈β2〉). (7.12)

Here, 〈r2〉sph is the charge radius of a spherical nucleus of the same volume as

predicted by the liquid droplet model [32]. For 98mY, the 〈β2〉 value is found to be

0.431. The change in mean-square charge radius can be described by

δ
〈
r2
〉A,A′

= δ
〈
r2
〉A,A′

sph
+
〈
r2
〉

sph

5

4π
δ
〈
β2

2

〉
, (7.13)

where 〈β2
2〉 is the mean-square quadrupole deformation. A measure of the contri-

bution of the static deformation can be extracted from Equation 7.13 by replacing

〈β2
2〉 with 〈β2〉2. Any discrepancy between the value and those measured experi-

mentally is indicative of the presence of dynamic deformation. Such information
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Figure 7.14: The measured and expected change in charge radii for the yt-
trium chain. The difference between the two values shows the extent of dynamic
deformation present in the nucleus. The values for 98mY presented here are a
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is displayed in Figure 7.14.

With the previously calculated moments, 98mY was believed to exhibit a highly

dynamic deformation due to an apparently large discrepancy between the static

estimate of the mean-square charge radius and that measured from the isotope

shift. The new assignment of peaks in the hyperfine structure presented in this

work greatly changes the extracted quadrupole moment and, whilst the centroid

of the structure (and therefore the extracted value of the charge radius) differs

only slightly, this shows a much more static deformation in the isomer than was

previously thought.

7.8 Comparison to Energy Density Functional

Calculations

Calculations for the charge radii of Y isotopes from A = 75 to A = 106 have been

performed using three EDFs: UNEDF0, UNEDF2 and F(∆r,HFB). Figure 7.15

compares the results of the calculations to the nuclear parameters extracted both

from this work and from Ref [8]. Several observations are clear from an examina-

tion of the graph.

Firstly, the rapid change in the shape of the nuclei is predicted at the correct

location for both the UNEDF0 and UNEDF2 functionals. However, the Fayans

functional does not predict an onset of deformation, rather a smooth increase

in charge radius across the chain. This effect can also been seen in Figure 7.16

where the static deformation is expected to stay close to zero as neutron number

increases away from N = 50 for the Fayans functional calculations whereas the
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Figure 7.15: The charge radii of the Y chain compared to the theoretical
predictions from DFT calculations.

UNEDF functionals reproduce the high onset of deformation well.

Secondly, whilst the Fayans functional matches the experimentally measured

charge radii well for nuclei from to N = 50− 55, UNEDF0 and UNEDF2 generate

underpredictions for these values and are more comparable with the static esti-

mates of charge radii calculated as in Section 7.7. Between N = 55 and N = 60,

none of the functionals correctly predict the charge radii as the Fayans calculations

continue to increase smoothly whilst the UNEDF0 and UNEDF2 calculations con-

tinue to underestimate the values.

Finally, all three functionals reproduce the charge radii after the shape change

agreeing well with the measured radii within the conservative 10% error bars dis-

played.
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Figure 7.16: The β2 deformation parameter of the Y chain compared to the
theoretical predictions from DFT calculations.

A further interesting feature of these calculations is their behaviour below

N = 60. Whilst the F(∆r,HFB) calculations fail to reproduce the onset of de-

formation at N = 60, they do recreate the kink in the charge radii observed at

the N = 50 shell closure. On the other hand, the UNEDF functionals, which do

predict the large N = 60 shape change, do not produce the same kink.

For odd A nuclei, such as yttrium, it is unfortunately not possible to calculate

the potential energy surface unambiguously with respect to deformation due to

the nature of quasiparticle blocking procedure used in the calculations. As the

calculations are performed, the Nilsson orbital containing the odd particle needs

to be defined - this is usually an orbital close to the Fermi surface. A large change

in the deformation, e.g. from oblate to prolate as in 98mY, dramatically changes

the order of the Nilsson orbitals and thus changes the blocked orbital [66]. Such

plots are however possible to calculate for even-even nuclei and the surfaces for
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Sr (Z = 38) and Zr (Z = 40) are shown in Appendix A. It can be seen that at

N ≈ 60, the UNEDF functionals begin to predict a potential energy minimum

around β2 = 0.4 which is concurrent with the findings of this study with Y where

98mY was found to have a deformation of 〈β2〉 = 0.431. In contrast, the Fayans

functional predicts a minimum on potential energy around 〈β2〉 = 0 and hence

does not predict an onset of deformation at N = 60.

Going forwards, the calculation of the nuclear properties of the ground and

isomeric states would be an interesting laboratory with which to test the ability

of large-scale Monte Carlo shell model interactions, such as A3DA-m which has

been previously used to calculate the electromagnetic moments of zinc isotopes

[67] and the deformation of shape-coexisting states in 64Ni [68].

7.9 Conclusions

In summary, a total of five peaks in the hyperfine structure of the J = 2→ J = 1

transition at 321 nm of 98mY have been measured for the first time. These mea-

surements have allowed for a spin assignment of I = 7 for the isomeric state to be

confirmed. Furthermore, the data confirms a peak misassignment in the previous

363 nm (J = 0→ J = 1) data from literature. With the new spin assignment and

peak order, these data were refit and the new electromagnetic moments extracted.

Studies of the atomic F and M factors of the 321 nm transition also showed

inaccuracies in the values published in literature. To this end, a remeasurement

of 99Y was also performed on the J = 2 → J = 1 line as a calibration of these

atomic factors as well as the ratio of the hyperfine B parameters of the 3P1 and

3D2 states. With this isotope shift, the F and M factors were newly extracted,

yielding F = −1404(25) MHz · fm−2 and M = +112(18) GHz · amu.
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With the correctly extracted electromagnetic moments, the extent of the shape

coexistence in 98Y could be fully quantified. The data show that the deformation

of the isomeric state (which was previously thought to be very dynamic in nature)

takes on a rigid, prolate shape comparable to isotopes after the N = 60 boundary.

Finally, the charge radii of the Y chain were compared to state-of-the-art

Energy Density Functional calculations using three different EDFs: UNEDF0,

UNEDF2 and F(∆r,HFB). These results show that UNEDF0 and UNEDF2 fail

to reproduce the dynamic nature of the yttrium isotopes between N = 50 and

N = 60 but do predict the onset of deformation at N = 60. On the other hand,

F(∆r,HFB), does well at predicting the charge radii of the chain close to N = 50

but fails to produce the rapid change at N = 60. All three models compare well

with charge radii measured after the shape change.



Chapter 8

Collinear Laser Spectroscopy of

Niobium Isotopes

In past work which detailed the first example of optical pumping in an ion beam

cooler for laser spectroscopy, a change of shape at N = 60, similar to that in

yttrium, was measured in the niobium (Z = 41) chain [49]. This change dif-

fered from the one measured for Z = 39 in that the magnitude of the jump in

mean-square charge radius was smaller in niobium and the nuclei demonstrated

a considerable degree of β-softness both before and after the change, whereas the

isotopes in yttrium become more rigidly deformed after the transition. Although

the key isotope of 100Nb, which sits at the critical point of this change, was miss-

ing from the investigation, the observation was still evident from measurements

of the mean-square charge radii of 99Nb and 101Nb which differ significantly. This

change exhibits many of the same shape properties as that in yttrium (which can

additionally be extracted from the quadrupole moments), the nuclei become in-

creasingly oblate deformed with a high level of β-softness before a sudden change

to a prolate shape. As with 98Y, 100Nb has 59 neutrons and a low-lying isomeric

state and so it is possible that a similar shape coexistence occurs in this isotope.

97
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Just two neutrons higher, 102Nb is an ideal case for the study of the nuclear

structure after this shape change. Not only does it contain long-lived ground and

isomeric states which make it ideal for laser spectroscopy (as in 100Nb) but it is

also an isotone of 100Y which, as explained later in Chapter 9, has presented itself

as another candidate for shape coexistence.

Previous studies of the β decay properties of 100Nb have suggested nuclear

spins of 1+ and 5+ [69] for the 1.5 s and 2.99 s states, respectively. Measurements

of the β decay of the two states suggest that the 1+ state is the ground state of the

system [70]. In 102Nb, spins of 1+ and (4+) have been suggested for the 4.3 s and

1.3 s isomeric states respectively, though the order of these states is the matter of

some debate. In this thesis, the high-spin state is taken to be the ground state of

the system as quoted in the Nuclear Data Sheets [71].

8.1 Setup

In order to avoid an electronic J = 0 → J = 1 (286 nm) transition from the

ground state, which would give only three hyperfine peaks (and therefore a spin

assignment would not be possible), an optical pumping scheme was used to probe

a 4d3(4F )5s 5F1 → 4d3(4F )5p 5F1 transition (291 nm). This scheme was first

investigated as part of the first use of optical pumping inside an ion cooler [49].

Electrons are excited from a 5D0 ground state in to a 3D1 state (with 286 nm

laser light) before subsequently relaxing. A schematic of this process can be found

in Figure 8.1. During this relaxation process, the electron may de-excite in to a

number of different high-lying energy levels above the 5F1 state. Where this occurs,

population of the 5F1 state may still be achieved by the process of collisional de-

excitation. Whilst inside the cooler, ions collide with the helium atoms in the buffer

gas, decreasing the electronic energy to the lower 5F1 state in a process known as

‘quenching’. Such schemes have been found to completely depopulate the ground
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state, allowing for a maximum efficiency of spectroscopy. The measurement is also

aided by the fact that the J = 1 → J = 1 transition (with an Einstein A value

of 1.201 × 108 s−1) is an order of magnitude stronger than the J = 0 → J = 1

transition (A = 1.630× 107 s−1) [65]. The lower efficiency of the pumping line has

little effect on the scheme since the interaction time in the cooler is significantly

longer (100s of ms bunch accumulation time compared to a few µs as the bunch

travels through the LCR) and a higher powered laser beam can be used without

creating any negative effects such as power broadening and increased laser scatter

counts. Again, the pumping light was provided by a pulsed Ti:Sa laser whilst the

spectroscopic light was provided by a frequency-doubled Matisse 2 DS dye laser.

28
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Figure 8.1: The chosen optical pumping scheme for niobium isotopes.

8.2 Preparatory Work

8.2.1 Revisiting the Previous Study of Niobium

In order to decrease the number of fitting parameters, and hopefully increase the

quality of the fit, fixing the ratio of hyperfine parameters to known values is com-

monplace in those isotopic chains which demonstrate minimal hyperfine anomaly.
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Such ratios also have use in determining the nuclear spin of a system unambigu-

ously which, in turn, allows for the correct extraction of magnetic dipole and

electric quadrupole moments of the nuclei as well as the change in mean-square

charge radii.

Previous studies at the JYFL laboratory on niobium isotopes allow access to

data for the stable isotope 93Nb. Whilst these data have been fitted previously, a

technique was used in which the intensities of the peaks are fixed to the so-called

Racah intensities - the relative intensities of the peaks (compared to the most

intense) as expected from angular momenta rules. This is especially useful when

peaks are not well resolved within a spectrum and separate peak intensities are

difficult to extract. When intensities of the peaks do not match those predicted

perfectly, fitting spectra in this way can cause less accurate fits and so a technique

wherein each peak is allowed its own free intensity is preferred. Since good preci-

sion will be necessary in the spin determination of 100,102Nb, the data were refitted

allowing for free peak intensities.

A data set was fitted using a routine in which peaks were allowed to vary their

intensities freely whilst sharing a FWHM. The ratios of the hyperfine parameters

extracted from the fit are Al/Au = −0.9610(1) and Bl/Bu = +0.440(22). The

specific fitted values can be found in Table 8.1 and the fit is show in Figure 8.2.

Table 8.1: The measured hyperfine parameters in 93Nb. The errors shown are
derived from the statistical errors which are taken from the fitting process.

Au (MHz) Al (MHz) Bu (MHz) Bl (MHz)

+1198.10(10) −1151.42(10) +52.96(82) +23.28(82)
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Figure 8.2: The previously measured spectrum of 93Nb (black) with the new
fit (red).

8.2.2 Empirical Estimates

Since the light provided by the dye laser is precise to the order of MHz [72] (com-

pared the THz frequency of the light provided) and scanning over hyperfine struc-

ture takes place in 2 V steps (equivalent to roughly 30 MHz in the reference frame

of the ion), it is important to create accurate estimates for the location of fre-

quency peaks in order to make efficient use of the allocated beam time. Using an

empirical estimate for the magnetic moment of odd-odd nuclei (Equation 8.1 and

explained further in Section 2.2 ) and information from nearby isotopes, predic-

tions of the magnetic moments of 100Nb and 102Nb were created in order to predict

the hyperfine structure.

µ(I) =
I

2

[
µ(Iπ)

Iπ
+
µ(Iν)

Iν
+

(
µ(Iπ)

Iπ
− µ(Iν)

Iν

)
Iπ(Iπ + 1)− Iν(Iν + 1)

I(I + 1)

]
. (8.1)
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For example, such an estimate was performed for the ground and isomeric

states in 100Nb, which contains 41 protons and 59 neutrons. The effects of the

41st proton (excluding residual effects) can be seen in the neighbouring niobium

isotopes where valence neutrons are fully paired and hence their contributions to

the magnetic moment should be small. 99Nb (41 protons, 58 neutrons) has been

measured to have a magnetic moment of +5.97 µN and a spin of I = 9/2 [49].

Likewise, 99Zr also contains 59 neutrons but a fully paired set of valence protons;

the magnetic moment and spin of 99Zr is µ = −0.93 µN and I = 1/2 [62] . Using

these values, a likely magnetic moment of 100Nb is then +5.04 µN with a spin of

I = 5, a spin in line with the suggested value [69].

For the predicted 1+ state, the same 9/2 proton orbital is used, coupled to a

neutron 7/2 orbital as measured in an excited state in 101Zr [73] with a magnetic

moment of µ = 0.6 µN . This gives the required spin and parity of I = 1+ and a

magnetic moment of µ = 3.35 µN .

A similar calculation can be made for 102Nb, which is expected to share the

properties of isotopes after the shape change. For 102Nb, values for the unpaired

proton are therefore taken from 101Nb (µ = +3.19 µN, I = 5/2) [49]. The same

unpaired neutron is present in 103Mo with values µ = −0.27 µN and I = 3/2 [60]

and gives a likely spin and moment in 102Nb of µ = +2.92 µN and I = 4. For

the same orbitals and a spin value of I = 1 for 102Nb, a magnetic moment of

µ = 2.37 µN is predicted.

Since hyperfine splitting is dominated by the effects of the magnetic moment,

it is assumed that the quadrupole moment will not cause any shifts large enough

to be taken in to account in the estimation of the hyperfine structure, especially

due to the likely deviations from these estimates.
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8.3 Measurement and Analysis

Over the experimental campaign, a total of four new states were measured in

niobium: a ground and isomeric state in both 100Nb and 102Nb. An example of

the data taken in these measurements is shown in Figure 8.3. Alongside these

measurements, scans of the F = 7/2 → 7/2 peak of 101Nb were also taken to act

as a reference and calibrate the isotope shift. To begin, the peaks were measured

individually whilst the search for the resonances was ongoing and then, once all

peaks had been found and attributed to a spin state, the peaks of each state were

re-measured as one set using the ‘tracks’ feature of the new DAQ.

Once measured, the spectra could then be fitted according to

γ = ζ + αuAu + βuBu − αlAl − βlBl. (8.2)

Here, ζ = ν101 + δν101,A where ν101 is the centroid of the hyperfine structure of

101Nb and other symbols take the meanings as defined in Equation 3.12 .

For each of the newly measured states, the correct spin must be identified in

order to achieve a reliable extraction of the atomic and nuclear properties. To

confirm the spins of the states, an interim spin investigation was performed for

each state before extraction of the final nuclear properties.

8.3.1 100Nb

As stated in Chapter 3, the ratio of hyperfine coefficients along an isotopic chain

should remain constant if the hyperfine anomaly is negligible. Any large devia-

tions from this ratio are indicative of an incorrect spin assignment and hence the

nuclear spin of an isotope can be assigned if only one spin allows for a consistent
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Figure 8.3: The measured data for 100,102Nb. Peaks identified with an l are
from the low-spin state, with a h the high-spin state and the peak labelled with

l, h contains a contribution from both states.

extraction of the hyperfine ratios.

To begin, the four resolved peaks which were measured individually for the low-

spin state of 100Nb (all peaks labelled with just an l in the top panel of Figure 8.3)

were fitted according to a model where the ratios of the hyperfine parameters were

fixed to Al/Au = −0.9610 and Bl/Bu = +0.440. This method was chosen over one

where the parameters are all allowed to vary freely since one would need at least

5 peaks to fully define the system in this way. This fit was performed for I = 1

and I = 2 and, as can be seen in Figure 8.4, it was only possible to fit each peak

in the low-spin state for I = 1 and hence the spin of the system is assigned as such.

In order to assign a nuclear spin to the high-spin state, all measured spec-

tra of 100Nb (including both states) were then fitted simultaneously. This fit was

performed three times where the spin of the high-spin state was set to either
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Figure 8.4: Assigning the spin of the low-spin state in 100Nb. In Panel a),
the peaks are fit with a spectrum as generated with I = 1. Panel b) shows the
same measured spectrum, only fit with I = 2. It is evident that all peaks cannot
be fit simultaneously unless I = 1. Note that in Panel b), the intensity of the
left-most peak has been manually increased from the fitted value to demonstrate

its position.

I = 4, 5 or 6 (one integer of spin either side of the suggested value) and, in all

cases, its hyperfine parameters were left unconstrained. For the low-spin state,

the spin was always kept at I = 1 and the ratios of the parameters fixed to

Al/Au = −0.9610 and Bl/Bu = +0.440. Including all the data for the low-spin

state in this fit allowed for a more confident description of the line shape of the

unresolved peak since the low-spin peak location can be well defined. The ratios of

the parameters of the high-spin state can be seen in Table 8.2. Whilst the closest

match for the Bl/Bu ratio is given for I = 5, the large fitted errors on the B value

meant that this method proved to be relatively unreliable.

As an alternative test of the nuclear spin, a run where all located high-spin

peaks were measured at once, using the tracks feature of the DAQ, was fitted
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Table 8.2: The measured hyperfine ratios for the high-spin state in 100Nb,
the errors shown are derived from the statistical errors from the fitting process.

The known values are Al/Au = −0.9610(1) and Bl/Bu = +0.440(22).

I Al/Au Bl/Bu

4 −0.9659(13) −2.70(54)
5 −0.9662(13) +0.26(16)
6 −0.9663(13) −0.408(75)

with the hyperfine ratios Al/Au and Bl/Bu fixed within the program to those ex-

tracted from 93Nb in the preparatory studies of this work. A single peak with a

free centroid parameter was added in to this model to account for the effect of the

unresolved low-spin peak. When using this method, it was only possible to fit all

hyperfine peaks simultaneously for I = 5, whilst the use of other spins would not

allow for the correct relative spacing between peaks to occur when these ratios

were forced (see Figure 8.5). It can therefore be confirmed that the spin state for

the high-spin isomer of 100Nb is I = 5. A discussion of one possibility for a residual

discrepancy in the comparison of the B ratios is discussed later in Section 8.6.

Final Extraction of 100Nb Hyperfine Parameters

With the spins of the two states confirmed, all 100Nb spectra were fitted simultane-

ously using a χ2 minimisation routine with the ratios of the hyperfine parameters

of both states fixed to Al/Au = −0.9610 and Bl/Bu = +0.440. The results from

these fits are presented in Table 8.3 and shown graphically in Figure 8.6.

Table 8.3: The measured hyperfine parameters for 100Nb. The errors shown
are derived from the statistical errors from the fitting process. The hyperfine
parameters for the lower atomic state can be extracted from the fixed ratios of

Al/Au = −0.9610(1) and Bl/Bu = +0.440(22).

Isotope I Au (MHz) Bu (MHz) δν101,A (MHz)
100Nb 1 +3153.6(50) +12.1(56) +1428(8)

100mNb 5 +881.95(41) +44.0(51) +1437(4)
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Figure 8.5: Assigning the spin of the high-spin state in 100Nb where the peak
indicated by a blue star contains a contribution from the low-spin state. In
Panel a), the peaks are fitted with a spectrum as generated with I = 6. Panel
b) shows the same measured spectrum, only fitted with I = 5 and Panel c)
with I = 4 . It is evident that all peaks cannot be fit simultaneously unless
I = 5. Note that in Panels a) and c), the intensity of the right-most peak has

been manually increased from the fitted value to demonstrate its position.

8.3.2 102Nb

As in 100Nb, the low-spin state was fitted first to confirm its spin and extract

interim values for the hyperfine parameters in order to define the location of the

unresolved low-spin peak. This was possible since it can be seen from Figure 8.3

that four peaks in the low-spin state are fully isolated from the high-spin structure.

All of the files containing measurements of peaks in the low-spin isomer’s hy-

perfine structure were fitted against a model in which the ratios of the A and

B parameters were fixed and was performed for both I = 1 and I = 2. Again,

it was not possible to carry out the previous tests of leaving all ratios free and

comparing to known values in this case, since at least five peaks are needed to fit
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Figure 8.6: Examples of measured peaks of both states in 100Nb and their
fits. The example structures underneath are calculated from Racah intensities

to show the locations of the peaks of each structure.

Au, Al, Bu, Bl and the centroid simultaneously with no extra constraints. As

seen in Figure 8.7, it was once again seen that every peak not could be fitted

simultaneously under constraint of both the A and B hyperfine parameter ratios

for I = 2 and therefore I = 1 is assigned to this nuclear state.

With the spin of the low-spin state confirmed, it was then possible to perform

an investigation in to the spin of the second state. To do this, a model was con-

structed and fitted simultaneously to all measured spectra of the high-spin state in

Table 8.4: The measured hyperfine ratios for the high-spin state in 102Nb.
The errors shown are derived from the statistical errors from the fitting process.

The known values are Al/Au = −0.9610(1) and Bl/Bu = +0.440(22).

I Al/Au Bl/Bu

3 −0.9679(15) +0.041(15)
4 −0.9633(15) +0.349(21)
5 −0.9604(15) +0.669(30)
6 −0.9585(15) +1.003(43)
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Figure 8.7: The measured spectrum of 102Nb and the fitted spectra for I = 1
and I = 2. Panel b) shows the fit when I = 2, the inset shows the location of
the leftmost peak has not been correctly fit. It is important to note that the
intensity of this peak has been manually increased from the fitted value as a

demonstration of its location.

102Nb alongside the low-spin data (for the low-spin state the ratios of the hyperfine

parameters were fixed whilst the hyperfine parameters of the upper state were left

as free parameters). As before, by including the data of the low-spin state in this

fit the location of the unresolved peak could be well defined. The fit was repeated

for values of nuclear spin between I = 3− 6 for the high-spin state whilst the spin

of the low-spin state was kept constant at I = 1.

The ratios from these fits are presented in Table 8.4. It can be seen that no

solid conclusions can be drawn from these ratios alone (again, a possible reason

for this is discussed in Subsection 8.6) although I = 4 and I = 5 remain good

candidates since no other spins give a B ratio in the region of that expected.

Towards the end of the beam time, a re-measurement of the located peaks was
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taken of six resonant peaks from the high-spin state (including only one peak from

the low-spin state, which was unavoidable due to its unresolved nature) in a single

run in order to increase statistics and reduce uncertainties which may occur due

to drifts in experimental conditions. This file was fitted against a model hyperfine

structure of the high-spin state with spins I = 4, 5 and the ratios of the hyper-

fine parameters fixed to Al/Au = −0.9610 and Bl/Bu = +0.440. To account for

the presence of the low-spin peak, the model was again improved by adding on a

second spectrum containing only one peak with a free centroid to account for the

presence of the low-spin peak.

With these constraints on the hyperfine ratios, it was not possible to fit all

peaks simultaneously for I = 5 (as evidenced in Figure 8.8). It was, however,

possible to achieve a good fit for I = 4 and hence the spin of the high-spin state

in 102Nb is confirmed as such.

Final Extraction of 102Nb Hyperfine Parameters

With the spins of 102,102mNb confirmed, all data taken for both states in 102Nb

were fitted simultaneously with a model which contained contributions from both

states in order to accurately describe the shape of the overlapping peaks. In this

fit, the ratios of the hyperfine parameters in both the low- and high-spin states

are fixed to Al/Au = −0.9610 and Bl/Bu = +0.440. The values from this fit may

be found in Table 8.5 and shown graphically in Figure 8.9.

Table 8.5: The measured hyperfine parameters for 102Nb. The errors shown
are derived from the statistical errors from the fitting process. The hyperfine
parameters for the lower atomic state can be extracted from the fixed ratios of

Al/Au = −0.9610(1) and Bl/Bu = +0.440(22).

Isotope I Au (MHz) Bu (MHz) δν101,A (MHz)
102Nb 4 +644.77(40) −265.8(35) −158(3)

102mNb 1 +2008.1(17) −55.4(23) −179(6)
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Figure 8.8: The measured spectrum of 102mNb and the fitted spectra for I = 4
(Panel a)) and I = 5 (Panel b)). It is important to note that the intensity of
the leftmost red peak in Panel b) has been manually increased from the fitted
value as a demonstration of its location, whereas intensities of the other peaks
are taken from the fitting routine. The spectrum also includes one peak from
the I = 1 state which overlaps in frequency which is signified by a blue star.

8.4 Nuclear Properties

As in Chapter 7, the nuclear electromagnetic moments were extracted from the

ratios of the measured parameters and a reference isotope. In this case, the isotope

93Nb was used for calibration since the hyperfine parameters and moments were

previously known [49]. These values are µ93 = +6.1705(3) µN , Qs,93 = −0.32(2) b,

Au,93 = +1197.5(2) MHz and Bu,93 = +52.9(8) MHz. The extracted properties for

100,100m,102,102mNb may be found in Table 8.6.

As detailed in Chapter 7, the measured spectroscopic quadrupole moments and

changes in mean-square charge radii can be used in tandem in order to measure

the deformation of the nuclear system, allowing us to compare values across the
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Figure 8.9: Examples of measured peaks of both states in 102Nb and their
fits. The example structures underneath are calculated from Racah intensities

to show the locations of the peaks of each structure.

isotopic chain. The mean-square charge radii for niobium isotopes are easily ex-

tracted from the centroids of the hyperfine structures, as the atomic F and M

factors have been previously established during the early work on the chain as

F = −2430 MHz · fm−2 and M = +716 GHz · amu [49], and are shown in Table

8.6 and graphically in Figure 8.10.

Table 8.6: The nuclear moments for Nb extracted from the hyperfine param-
eters of its atomic states. The errors shown are derived from the statistical
errors from the fitting process and the quoted error on the reference values
of µ93 = +6.1705(3) µN , Qs,93 = −0.32(2) b, Au,93 = +1197.5(2) MHz and

Bu,93 = +52.9(8) MHz.

Isotope I µ (µN) Qs (b) δ 〈r2〉101,A
(fm2)

100Nb 1 +3.611(6) −0.07(3) −0.610(7)
100mNb 5 +5.049(3) −0.27(4) −0.613(6)
102Nb 4 +2.953(2) +1.61(11) +0.064(1)

102mNb 1 +2.299(2) +0.34(3) +0.073(2)
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The magnetic moments extracted from the hyperfine spectra compare favourably

to those from the empirical estimates, suggesting a pure configuration in all iso-

topic and isomeric states. For example, the I = 5 state in 100Nb was suggested to

be composed of a s1/2 neutron as in the neighbouring 99Zr nucleus [62] and a g9/2

proton as in common with 99Nb [49, 74]. A combination of these nucleons gave

an estimated magnetic moment of +5.04 µN compared to the extracted value of

+5.049(3) µN . Indeed, even the extracted nuclear moment of 102mNb which differs

the most from the empirical estimate (an estimate of +2.368 µN compared to a

measured value of +2.299 µN) still lies remarkably close agreement.

As in yttrium, the expected mean-square charge radius from static deforma-

tion effects can be calculated through the droplet model and compared to those

measured from the experiment. Figure 8.10 demonstrates the differences between

these two values. It is found that 100Nb behaves much like its previously measured

neighbour 99Nb in that it shows a large degree of dynamic oblate deformation

comparable to that seen in the yttrium chain (with the low- and high-spin states

having a value of Q0 = −0.73(35) b and Q0 = −0.46(6) b, respectively) but

demonstrates no sign of shape coexistence between the ground and isomeric states

of the nucleus which is perhaps surprising due to the isotonic relationship between

100Nb and 98Y. Unlike the Y chain which demonstrates a rapid change to a rigidly

deformed prolate system, the Nb chain demonstrates a similar rapid change in

shape, moving to Q0 values of +3.35(25) b and +3.16(21) b for the low- and high-

spin states respectively, but retains its considerable softness afterwards (as shown

in Figure 8.10).

8.5 Systematics of the Z = 40 Region

Figure 8.11 shows the measured mean-square charge radii for seven isotopic chains

in the Z = 40 region: krypton, rubidium, strontium, yttrium, zirconium, niobium
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Figure 8.10: The measured charge radii of the Nb isotopes compared to the
values expected from the liquid drop model assuming static deformation only.
The lower and upper dashed black lines represent the isodeformation lines for
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Figure 8.11: The measured charge radii of isotopic chains in the Z = 40 region.
Data for changes in charge radii are taken from Refs. [8, 49, 60, 62, 76–78] and

absolute charge radii are taken from Ref. [79]

and molybdenum (Z = 36− 42). It is clear that each chain between Z = 37 and

Z = 41 demonstrates a shape change at N = 60 due to the large jump in the value

of the charge radius. Whilst the effect is strong in all of these chains, it is at its

largest in the yttrium chain. The newly measured charge radii of 100,102Nb fit the

trends in this chain well with 100Nb lying just before the shape change as expected

from the other N = 59 nuclei. Although the known Nb radii follow the trends

of the region, relatively few radii in this chain have been measured in the region

between the N = 50 shell closure and N = 60 compared to its neighbouring chains.

The large change in deformation appears to ‘wash out’ in the Z = 42 molybdenum

chain, where an onset of triaxiality has been suggested to occur [75].

8.6 Conclusions

This chapter presents the first measurements of 100Nb, 100mNb, 102Nb and 102mNb

and, alongside previous measurements in the chain, helps to build a picture of
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the nuclear landscape in this region. When fitting the hyperfine structure mea-

surements from these states, the extracted ratios of the hyperfine parameters did

not agree well with those from the stable 93Nb studies taken before. It is possible

that this is due to experimental drifts which have not been accounted for between

the measurements of each of the scan regions in 93Nb, which was only measured

once. A remeasurement of this structure with the new ‘track’ functionality in the

recently installed data acquisition system at IGISOL-IV could help to remedy this

situation. Regardless, in each of the states it was possible to determine the nuclear

spin (through constraint of the ratios of the hyperfine parameters) and it was also

possible to extract magnetic dipole and electric quadrupole moments.

The magnetic dipole moments compare favourably with the empirical estimates

of the dipole moments of neighbouring isotopes while the quadrupole moments

(together with complementary measurements of the isotope shift) show no sign of

shape coexistence in either 100Nb or 102Nb, unlike the one clearly present in 98Y.

The chain also differs with respect to yttrium in that the dynamic nature of the

deformation does not disappear with the shape change but the difference between

the measured mean-square charge radii and those from the liquid droplet model

remain large.

Many mean-square charge radii of niobium are yet to be measured in the

N = 50−60 region. These measurements would perhaps be interesting to confirm

that the niobium chain indeed follows the same gentle increase in deformation as

the rest of the region.



Chapter 9

Summary and Future Work

9.1 Conclusion

This thesis has presented the first measurement of the low-lying isomeric state

in 98Y on the 3D2 → 3P1 atomic transition. Not only has the work allowed for

an unambiguous spin assignment for this state of I = 7 but also for a correct

calculation of the nuclear electromagnetic moments owing to a peak misidenti-

fication in the previous analysis. Further to these assignments, this work also

details the remeasurement of 99Y for the purposes of recalibrating the ratios of

the hyperfine parameters on the 3D2 → 3P1 transition and a newly performed

King plot, yielding values of the atomic F and M factors of the transition as

F321 = −1404(25) MHz · fm−2 and M321 = +112(18) GHz · amu. The newly con-

firmed spin and moments then allowed for a re-analysis of the previous 363 nm

data and subsequent extraction of the properties of the shape coexistence present

in the system. Previously, it was thought that the isomer demonstrated a highly

dynamic deformation due to a large difference in the measured value of the mean-

square charge radius and the radius predicted by a deformed droplet model under

the assumption of static deformation alone. These new measurements show that

the deformation is, in fact, much more static than previously believed and much

117
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more in line with the type of deformation present after the shape change atN = 60.

Furthermore, a total of four niobium states were successfully measured with

laser spectroscopy for the first time: 100,100mNb and 102,102mNb. For each of these

states, a nuclear spin could be successfully assigned to the state and the magnetic

dipole and electric quadrupole moments extracted. Complementary measurements

of the change in mean-square charge radius were also taken from the spectra which

help to continue to build up a picture of the deformation present in the region.

Similar to the yttrium chain, the Z = 41 Nb isotopes demonstrate a large onset

of deformation at N = 60 but the transition differs in that the high dynamic com-

ponent of the deformation remains present after the shape change. Moreover, no

shape coexistence between the ground states and low-lying isomeric states mea-

sured in this work appears to be present.

In the case of Y, this work was compared to state-of-the-art theoretical cal-

culations in an Energy Density Functional framework. Specifically, calculations

were performed using the UNEDF0 and UNEDF2 Skyrme-like functionals as well

as the recently developed F(∆r,HFB) Fayans functional. This comparison showed

that the F(∆r, HFB) functional fails to reproduce the large onset of deformation

observed in the charge radii of the Y isotopes, whilst the UNEDF0 and UNEDF2

calculations demonstrate a shape change at N ≈ 60. These latter functionals,

however, fail to accurately reproduce the upwards kink observed at N = 50, a

phenomenon well described by the Fayans functional.

9.2 Outlook

In a campaign by the JYFLTRAP group, which performs high-precision mass

measurements at the IGISOL facility, the masses of many neutron-rich yttrium
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isotopes were measured [80]. In particular, measurements of 100Y demonstrated

the possibility of the presence of two states inside the trap: a ground state and

an isomer. However, a laser spectroscopy experiment in the same lab saw no signs

of a second state during their investigation. One possible explanation for this

observation would be a very different state of the isomer to the ground state, as

in 98Y. This shape change would result in a large isomer shift and therefore a

large difference in the centroids of the structure, potentially shifting the hyperfine

structure of this second state outside of the scanning range of the previous study.

Furthermore, a re-analysis of the 100Y data with the newly calibrated F and M

factors could confirm the current spin assignment of I = 4.

As seen in Figure 7.16, another region of high deformation is expected in the

Y chain around N ≈ 40. Indeed, this high level of deformation has already been

observed in the neighbouring strontium chain [77] one proton lower, and in the ru-

bidium chain [78] below that. Tests of production rates using the heavy-ion guide

at the IGISOL facility has show that, using fusion evaporation reactions, isotopes

as neutron deficient 82Y could be successfully created at high rates [45]. The

possibility of using laser spectroscopy to probe these states is therefore promising

and would be an ideal methodology to investigate this region of high deformation

around N,Z ≈ 40.

It can be seen in Figure 8.10 that a large portion of the niobium isotopes be-

tween the shell closure at N = 50 and the shape change at N = 60 have not yet

been measured by laser spectroscopy. Since the niobium chain appears to share

some similarity to the behaviour of the nearby yttrium isotopes, it would be inter-

esting to probe this region and compare the behaviour of the two chains, especially

as the shape change in niobium does not appear to share the same properties yt-

trium due to maintaining its large degree of softness after the shape transition. It

would also be interesting to extend measurements of the charge radius of niobium
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past A = 103 to see if the high degree of β-softness continues to be present or if the

chain begins to behave more like the rigid yttirum isotopes in the same A ≈100

region. Furthermore, a remeasurement of the stable isotope 93Nb would allow for

a better calibration of the ratios of the hyperfine parameters and provide improved

confidence in the spin assignments in this work.

The sudden onset of deformation has been shown to not occur in the moly-

denum chain (Z = 42), indicating that this is appears to be the upper limit for

this phenomenon. Recently, a proposal has been accepted by the JYFL PAC [81]

to study 90−113Tc, crossing this N = 60 critical point. These studies hope to

demonstrate the nature of these effects in odd Z nuclei.



Appendix A

Potential Energy Surfaces From

EDFs

This appendix shows the potential energy surfaces for many isotopes of Sr (Z =

38) and Zr (Z = 40) as calculated from Density Functional Theory using three

functionals: UNEDF0, UNEDF2 and F(∆r,HFB). All figures in this appendix are

courtesy of Markus Kortelainen [66].
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Figure A.1: The potential energy surface with respect to the deformation
parameter β2 for 78−108Zr as calculated by the Fy(∆r,HFB) functional.
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Figure A.2: The potential energy surface with respect to the deformation
parameter β2 for 78−108Zr as calculated by the UNEDF0 functional.



123

0.50 0.25 0.00 0.25 0.50 0.75
0

5

10

15

20

25

30

De
fo

rm
at

io
n 

en
er

gy
 [M

eV
] 78Zr

0.50 0.25 0.00 0.25 0.50 0.75
0

5

10

15

20

25 80Zr

0.50 0.25 0.00 0.25 0.50 0.75
0

5

10

15

20

25
82Zr

0.50 0.25 0.00 0.25 0.50 0.75
0

5

10

15

20
84Zr

0.4 0.2 0.0 0.2 0.4 0.6 0.8
0

5

10

15

20

De
fo

rm
at

io
n 

en
er

gy
 [M

eV
] 86Zr

0.4 0.2 0.0 0.2 0.4 0.6
0

5

10

15

20

25 88Zr

0.4 0.2 0.0 0.2 0.4 0.6
0

5

10

15

20

25

30 90Zr

0.4 0.2 0.0 0.2 0.4 0.6
0

5

10

15

20

25
92Zr

0.4 0.2 0.0 0.2 0.4 0.6
0

5

10

15

20

25

De
fo

rm
at

io
n 

en
er

gy
 [M

eV
] 94Zr

0.4 0.2 0.0 0.2 0.4 0.6
0

5

10

15

20 96Zr

0.4 0.2 0.0 0.2 0.4 0.6
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
98Zr

0.4 0.2 0.0 0.2 0.4 0.6
0

2

4

6

8

10

12
100Zr

0.4 0.2 0.0 0.2 0.4 0.6
Deformation

0

2

4

6

8

10

De
fo

rm
at

io
n 

en
er

gy
 [M

eV
] 102Zr

0.4 0.2 0.0 0.2 0.4 0.6
Deformation

0

2

4

6

8
104Zr

0.4 0.2 0.0 0.2 0.4 0.6
Deformation

0

2

4

6

8
106Zr

0.4 0.2 0.0 0.2 0.4 0.6
Deformation

0

1

2

3

4

5

6 108Zr

UNEDF2

Figure A.3: The potential energy surface with respect to the deformation
parameter β2 for 78−108Zr as calculated by the UNEDF2 functional.

0.50 0.25 0.00 0.25 0.50 0.75
0

5

10

15

20

25

30

De
fo

rm
at

io
n 

en
er

gy
 [M

eV
] 74Sr

0.4 0.2 0.0 0.2 0.4 0.6
0

5

10

15

20

25
76Sr

0.4 0.2 0.0 0.2 0.4 0.6
0

5

10

15

20

25

30
78Sr

0.4 0.2 0.0 0.2 0.4 0.6
0

5

10

15

20

25 80Sr

0.4 0.2 0.0 0.2 0.4 0.6
0

5

10

15

20

25

De
fo

rm
at

io
n 

en
er

gy
 [M

eV
] 82Sr

0.4 0.2 0.0 0.2 0.4 0.6
0

5

10

15

20

25 84Sr

0.4 0.2 0.0 0.2 0.4 0.6
0

5

10

15

20

25 86Sr

0.4 0.2 0.0 0.2 0.4 0.6
0

5

10

15

20

25
88Sr

0.4 0.2 0.0 0.2 0.4 0.6
0

5

10

15

20

25

De
fo

rm
at

io
n 

en
er

gy
 [M

eV
] 90Sr

0.4 0.2 0.0 0.2 0.4 0.6
0

5

10

15

20 92Sr

0.4 0.2 0.0 0.2 0.4 0.6
0

5

10

15

94Sr

0.4 0.2 0.0 0.2 0.4 0.6
0.0

2.5

5.0

7.5

10.0

12.5

15.0 96Sr

0.4 0.2 0.0 0.2 0.4
Deformation

0.0

2.5

5.0

7.5

10.0

12.5

15.0

De
fo

rm
at

io
n 

en
er

gy
 [M

eV
] 98Sr

0.4 0.2 0.0 0.2 0.4
Deformation

0

2

4

6

8

10

12

14
100Sr

0.4 0.2 0.0 0.2 0.4
Deformation

0

2

4

6

8

10

12 102Sr

0.4 0.2 0.0 0.2 0.4
Deformation

0

2

4

6

8

10
104Sr

Fy(dr,HFB)

Figure A.4: The potential energy surface with respect to the deformation
parameter β2 for 74−104Sr as calculated by the Fy(∆r,HFB) functional.
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Figure A.5: The potential energy surface with respect to the deformation
parameter β2 for 74−104Sr as calculated by the UNEDF0 functional.
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Figure A.6: The potential energy surface with respect to the deformation
parameter β2 for 74−104Sr as calculated by the UNEDF2 functional.
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