Effect of Corneal Tilt on the Determination of Asphericity



Consejo, Alejandra, Fathy, Arwa, Lopes, Bernardo T, Ambrosio Jr, Renato and Abass, Ahmed ORCID: 0000-0002-8622-4632
(2021) Effect of Corneal Tilt on the Determination of Asphericity. SENSORS, 21 (22). 7636-.

Access the full-text of this item by clicking on the Open Access link.

Abstract

<b>Purpose:</b> To quantify the effect of levelling the corneal surface around the optical axis on the calculated values of corneal asphericity when conic and biconic models are used to fit the anterior corneal surface. <b>Methods:</b> This cross-sectional study starts with a mathematical simulation proving the concept of the effect that the eye's tilt has on the corneal asphericity calculation. Spherical, conic and biconic models are considered and compared. Further, corneal asphericity is analysed in the eyes of 177 healthy participants aged 35.4 ± 15.2. The optical axis was determined using an optimization procedure via the Levenberg-Marquardt nonlinear least-squares algorithm, before fitting the corneal surface to spherical, conic and biconic models. The influence of pupil size (aperture radii of 1.5, 3.0, 4.0 and 5.0 mm) on corneal radius and asphericity was also analysed. <b>Results:</b> In computer simulations, eye tilt caused an increase in the apical radii of the surface with the increase of the tilt angle in both positive and negative directions and aperture radii in all models. Fitting the cornea to spherical models did not show a significant difference between the raw-measured corneal surfaces and the levelled surfaces for right and left eyes. When the conic models were fitted to the cornea, changes in the radii of the cornea among the raw-measured corneal surfaces' data and levelled data were not significant; however, significant differences were recorded in the asphericity of the anterior surfaces at radii of aperture 1.5 mm (<i>p</i> < 0.01). With the biconic model, the posterior surfaces recorded significant asphericity differences at aperture radii of 1.5 mm, 3 mm, 4 mm and 5 mm (<i>p</i> = 0.01, <i>p</i> < 0.01, <i>p</i> < 0.01 & <i>p</i> < 0.01, respectively) in the nasal temporal direction of right eyes and left eyes (<i>p</i> < 0.01, <i>p</i> < 0.01, <i>p</i> < 0.01 & <i>p</i> < 0.01, respectively). In the superior-inferior direction, significant changes were only noticed at aperture radii of 1.5 mm for both right and left eyes (<i>p</i> = 0.05, <i>p</i> < 0.01). <b>Conclusions:</b> Estimation of human corneal asphericity from topography or tomography data using conic and biconic models of corneas are affected by eyes' natural tilt. In contrast, the apical radii of the cornea are less affected. Using corneal asphericity in certain applications such as fitting contact lenses, corneal implant design, planning for refractive surgery and mathematical modelling when a geometrical centre of the eye is needed should be implemented with caution.

Item Type: Article
Uncontrolled Keywords: eye, cornea, tilt, asphericity, parametric, eye models
Divisions: Faculty of Science and Engineering > School of Engineering
Depositing User: Symplectic Admin
Date Deposited: 18 Nov 2021 08:30
Last Modified: 08 Feb 2024 01:03
DOI: 10.3390/s21227636
Open Access URL: https://www.mdpi.com/1424-8220/21/22/7636
Related URLs:
URI: https://livrepository.liverpool.ac.uk/id/eprint/3143363