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Abstract 

This thesis examines the role of economic uncertainty in investors’ decision process and 
analysts’ forecast bias. The first empirical chapter investigates the effect of firm-level 
exposure to economic uncertainty (EUE) on cross-sectional returns through differentiating 
the mispricing from ambiguity-premium effects. Conditional on a common mispricing 
index, I find that EUE induces disagreement among investors, which amplifies mispricing. 
The highest EUE quintile produces a significantly higher mispricing alpha than the 
unconditional mispricing effect. By contrast, the high-minus-low EUE portfolio in the non-
mispricing group generates a significant positive premium in the sense of the ambiguity-
return trade-off. The EUE-induced mispricing effect is different from existing limits of 
arbitrage explanations, such as idiosyncratic risk. The ambiguity premium is a new source 
of the risk premium that is robust to the latest risk models. 

The second empirical chapter studies the role of market-wide sentiment in relation 
to the mispricing and the ambiguity effects documented in the first study. Considering the 
presence of the market-wide sentiment combined with short-sale constraints, I find larger 
mispricing spread in stocks with high EUE following high-sentiment periods. This 
mispricing effect is stronger following the periods with both increasing economic 
uncertainty and high sentiment. It suggests that economic uncertainty indeed leaves more 
room for the sentiment effect in the market. The ambiguity premium in the non-mispricing 
group, however, is significant only following low-sentiment periods during which the 
mispricing effect vanishes. This is consistent with the previous finding that the market 
pricing is more rational when investor sentiment is relatively low.   

The final empirical chapter examines whether there is an effect of EUE on analysts’ 
optimism. Existing literature shows that equity analysts have an optimistic bias. I find that 
analysts are even more optimistic for stocks with higher EUE. This is especially true 
following periods with high economic uncertainty. This study confirms that such an 
increase in optimism is for incentives given that high uncertainty reduces their reputation 
costs by lowering the chance of them being caught for such bias. The effect is more 
pronounced when firm-specific information quality (measured by earnings quality and 
information availability at the market level) is lower, and investors are less sophisticated 
(measured by the proportion of institutional ownership). Finally, analysts issuing optimistic 
view for stocks with higher exposure to economic uncertainty impede the price efficiency 
in the market. The EUE-induced mispricing is significantly apparent among stocks with 
high optimism. 

This thesis contributes to the literature in several ways. First, economic uncertainty 
has two seemingly contradicting mechanisms in asset pricing, including the ambiguity 
premium and the mispricing effects. This thesis reaches a clear conclusion that both 
mechanisms are at work through disentangling the two effects, which has not been studied 
by the existing literature where these two mechanisms are studied in isolation. Second, I 
identify EUE as a common mispricing component across anomalies, which is different 
from but complements investor sentiment and arbitrage risk, contributing to existing 
studies by suggesting that mispricing has common components across stocks. Finally, 
analyst optimism for incentives exacerbates the mispricing effect of economic uncertainty. 
This finding complements studies which suggest that analyst bias impedes the price 
efficiency in the market.  
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Chapter 1 
 
 

1 Introduction 

Economic uncertainty is a relevant state variable for investment decisions.  It measures the 

extent that the prospect of the economy is unpredictable using the available information 

and models (Jurado, Ludvigson and Ng, 2015). In a period with high economic uncertainty, 

economic agents are more likely to be conservative in their investment and reduce their 

future consumption. Bloom (2009) shows that time-varying shocks in macro uncertainty 

are linked to real economic activity and asset prices. Moreover, it affects the quality of 

information which matters to security analysts in their forecasts as their role is to analyse 

public and non-public information at various levels (Healy and Palepu, 2003; Amiram et al., 

2017). In this regard, the goal of this thesis is to examine the effect of economic uncertainty 

on investors and security analysts in their decision processes with three empirical chapters.  

 

1.1 Research Background and Motivation 

There is a distinct difference between uncertainty and risk. In the seminal study of Knight 

(1921), this difference is concentrated on the probability distribution of an event. If the 

future is unknown with a known probability distribution of all possible outcomes in that 

event, this refers to risk. However, if the probability distribution is unknown, it refers to 

uncertainty. Specifically, Jurado, Ludvigson and Ng (2015) define economic uncertainty as 

the conditional volatility of a disturbance that is unforecastable from the perspective of 

economic agents. Intuitively, it is about whether the economy has become more or less 
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predictable (Jurado, Ludvigson and Ng, 2015). In asset pricing literature, economic 

uncertainty affects asset prices in two channels: beliefs and preferences.  

 First, the divergence of opinions among investors is an important source of 

mispricing in stock markets (Hong and Stein, 2007). This is because stocks are more likely 

to reflect the valuation made by investors with an optimistic view, whereas pessimists are 

less likely to be involved in the valuation due to short-sale constraints (Miller, 1977). 

Disagreement about asset prices and the level of divergence in opinions become larger with 

uncertainty as it leaves more room for investors to follow their own subjective estimations 

and to ignore objective valuations (Hirshleifer, 2001). For instance, Hong and Sraer (2016) 

link the market-wide uncertainty and disagreement on firms’ earnings to the market-beta 

anomaly. They show that stocks with a high market beta exhibit larger disagreement, 

resulting in overpricing and lower expected return. Li (2016) extends their argument 

considering disagreement on macro-factors and finds that stocks with larger exposure to 

macro-disagreement generate an anomalously lower expected return in a high economic 

uncertainty period. In this regard, economic uncertainty can be a factor which exacerbates 

the disagreement between optimists and pessimists. Therefore, stocks exposed to a high 

level of uncertainty in the economy have a larger dispersion of opinions, resulting in 

overpricing and lower expected return. I refer to this effect as the mispricing effect of 

economic uncertainty, which amplifies the tension between optimists and pessimists in the 

belief channel.  

In other literature, economic uncertainty is priced in the sense of the ambiguity-

return trade-off. Bali, Brown and Tang (2017, p. 473) highlight that “studies that link 

uncertainty to second-order risk aversion indicate that investors care not only about the mean and variance 

of asset returns, but also on the uncertainty of events over which the future return distribution occurs.” In 
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other words, stocks exposed to economic uncertainty can affect investors’ preference. In 

this regard, Anderson, Ghysels, and Juergens (2009) show that macro uncertainty carries a 

positive premium and provide significant evidence in their empirical analyses using 

dispersion in the economic forecast as a measure of economic uncertainty. This line of the 

literature suggests that investors would demand extra compensation in the form of higher 

expected return to hold stocks with higher exposure to economic uncertainty. I refer to this 

effect as the ambiguity-premium effect in the preference channel. 

These two lines of literature conclude that economic uncertainty has two 

contradicting effects on cross-sectional returns. It exacerbates heterogenous beliefs among 

investors and predicts a negative relationship between firms’ economic uncertainty 

exposure and expected returns. However, it also affects the preference of investors facing 

uncertainty in the sense of the ambiguity-return trade-off. As these two effects can be 

observed in the market at any time, the first challenge of this thesis is to disentangle them. 

In traditional asset pricing theory, the value of securities is determined by rational 

investors and irrational pricing attributed to investor sentiment is ignored. However, 

relevant studies have shown the role of sentiment in financial markets, leading to significant 

mispricing in assets. For instance, Stambaugh, Yu and Yuan (2012) suggest that 

disagreement between optimists and pessimists is more pronounced due to the presence of 

market-wide sentiment combined with short-sale constraints. During high-sentiment 

periods, investors’ beliefs are more likely to play a significant role in asset prices. During 

low-sentiment periods, by contrast, the optimistic valuation tends to vanish, and asset prices 

are more likely to reflect the view of rational investors (Stambaugh, Yu and Yuan, 2012). 

Therefore, isolating investors’ behaviours in different periods motivates this thesis to 
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provide further understanding into those two opposite effects of economic uncertainty on 

cross-sectional returns. 

Consistent with the psychology literature, people are prone to rely more on their 

heuristics rather than facts in their judgements under uncertainty (Kahneman and Tversky, 

1973). In financial markets, when uncertainty is high, investors are more likely to follow 

their own subjective estimations and to ignore objective valuations, leading to more 

irrational behaviours (Hirshleifer, 2001). For instance, Birru and Young (2020) show that 

the predictability of market-wide sentiment in both aggregate and cross-sectional returns is 

stronger when the market-level uncertainty, measured by the VIX, is high. They suggest 

that in periods with higher uncertainty, the effect of sentiment is prone to be more 

pronounced and rational investors are even more limited to offset the effect of irrational 

ones due to the less reliable information flow. In this regard, this thesis, furthermore, 

considers the effect of macroeconomic uncertainty on the market-wide sentiment by 

examining investors’ behaviours towards two effects of EUE on cross-sectional returns.       

Several studies have shown analysts’ bias in their forecasts (i.e., Stickel, 1990; 

Chopra, 1998; Lim, 2001). This is mainly due to their incentive concerns, consistent with 

the rational framework. Brown et al. (2015) show that analysts find direct contact with 

management useful in producing and improving their earnings forecasts and stock 

recommendations. This enables them to acquire information about the firm and its industry 

from the management. Issuing an upward forecast is more likely to help analysts have a 

better relationship with managers (Lim, 2001). This is because managers are able to increase 

their compensation with favourable forecasts which lead to higher capital market valuation 

(Lim, 2001). In addition, given that upward forecasts tend to encourage investors to trade 

more, analysts are more likely to generate more trading volume for the brokerage firm they 
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work for, resulting in higher trading commissions (Cowen, Groysberg and Healy, 2006). 

However, their invective concerns in forecasts with upward bias is harmful to their career 

in the long term. Jackson (2005) supports this conjecture and finds that investors update 

analyst reputations after detecting optimistic forecasts in the long term and follow analysts 

with better reputations accordingly. Due to reputation costs, analysts are concerned about 

losing the opportunity of getting promoted to high-status brokerage houses or securing 

their jobs in the industry (i.e., Fama, 1980; Lim, 2001). Therefore, analysts are in a trade-off 

between their reputation and incentive concerns resulted from optimistic forecasts.  

In financial markets, security analysts are intermediaries who provide forecasts and 

recommendations by collecting and analysing factors from firm-, market- and macro-levels 

(Healy and Palepu, 2003; Amiram et al., 2017). The quality of information at these levels 

affects their issues. Economic uncertainty is one of those factors affecting information 

quality at the macro-level as it is related to the prospect of the economy which is 

unpredictable using the available information and models (Bloom, 2009; Jurado, Ludvigson 

and Ng, 2015). Considering forecast optimism in the rational framework where analysts are 

in a trade-off between their reputation and incentive concerns, another motivation of this 

thesis is to understand whether analysts behave more optimistic for incentives in their issues 

with less career concern for firms which are more highly exposed to economic uncertainty.  

 

1.2 Measuring Economic Uncertainty 

There are various proxies and indices used to measure the macro-level uncertainty in 

literature. For instance, several studies rely on market volatility, due to its significant 

relationship between real activity and uncertainty (i.e., Bloom, 2009; Bakeart, Hoerova and 

Duca, 2013; Bali and Zhou, 2016). However, Jurado, Ludvigson and Ng (2015) argue that 
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financial market volatility may not reflect economic uncertainty accurately, since it may vary 

over time due to changes in risk-aversion, leverage or sentiment. 

Other studies use dispersion in forecasts (i.e., Mankiw and Reis, 2002; D’amico and 

Orphanides, 2008; Anderson, Ghysels and Juergens, 2009; Li, 2016). During high 

uncertainty time, dispersion in forecasts are expected to be high, and there is larger 

disagreement in the surveys on macroeconomic indicators (Bachmann, Elstner and Sims, 

2013). However, forecasts may not clearly show expectations about the whole economy 

and may give subjective responses due to their pecuniary interests and individual biases. 

Additionally, the dispersion of analyst forecasts might be affected by heterogeneity in the 

business cycle, even if there is no shift in uncertainty in economic fundamentals (Jurado, 

Ludvigson and Ng, 2015). 

Considering those arguments on different measures at an aggregate level, this study 

uses the economic uncertainty index introduced by Jurado, Ludvigson and Ng (2015) as the 

main measurement in this thesis. This index is constructed based on various 

macroeconomic series, not on any single (or a small number of) economic indicator (Jurado, 

Ludvigson and Ng, 2015). By using this measure, they show that it can capture uncertainty 

in different macro variables at the same time, across companies, industries, markets and 

regions.  

Figure 1.1 depicts the economic uncertainty index by Jurado, Ludvigson and Ng 

(2015). It shows that there are sharp rises in the index during recession periods, defined by 

NBER with grey shades, when lower investment, consumption and economic growth 

occur. It is worth noting that during the first half of 2020, the index reaches the highest 

level after the great recession of 2007-2009, due to COVID-19 which is classified as a 

pandemic by World Health Organization (WHO) in March 2020.      
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Figure 1.1 Economic Uncertainty Index 

This figure illustrates the economic uncertainty index by Jurado, Ludvigson and Ng (2016). NBER recession 
periods are shaded with grey: 1960-61, 1969-70, 1973-75, 1980, 1981-82, 1990-91, 2001, 2007-2009. The 
sample period is from June 1960 to June 2020. 

 

There are two distinct advantages of using the economic uncertainty index. First, it 

removes all forecastable components of the conditional volatility on indicators, consistent 

with the theoretical definition of uncertainty, rather than risk. Second, it has the advantage 

of capturing the uncertainty in the whole economy instead of the uncertainty in only a single 

economic indicator (Jurado, Ludvigson and Ng, 2015).  

Along with the economic uncertainty index, I use various indices and proxies as 

alternative measures in robustness checks of this thesis, such as dispersions in the Survey 

of Professional Forecasters (D’Amico and Orphanides, 2008; Glas and Hartman, 2016; Li, 

2016), variance risk premium index (Bali and Zhou, 2016), the degree of ambiguity in the 
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U.S. stock market (Brenner and Izhakian, 2018) and the economic policy uncertainty index 

(Baker, Bloom, and Davis, 2016). 

 

1.3 Summary of the Essays 

1.3.1 Economic Uncertainty: Mispricing and Ambiguity Premium 

The first empirical chapter (Chapter 2) investigates the effect of economic uncertainty on 

asset prices following two concepts: the mispricing and the ambiguity-premium effects. 

Economic uncertainty exacerbates heterogenous beliefs among investors, making optimists 

more optimistic and pessimists more pessimistic. It predicts a negative relationship between 

firms’ economic uncertainty exposure and expected returns (Hong and Sraer, 2016; Li, 

2016). Economic uncertainty also affects the preference of investors facing uncertainty in 

the sense of the ambiguity-return trade-off, predicting a positive relationship between firms’ 

economic uncertainty exposure and expected returns (Anderson, Ghysels, and Juergens, 

2009; Bali and Zhou, 2016; Bali, Brown and Tang, 2017). The main conjecture of Chapter 

2 is that both the ambiguity premium and the mispricing mechanisms can be observed at 

any time. A clear conclusion can only be reached as these two effects can be disentangled.  

First, a common mispricing measure (MIS) proposed by Stambaugh, Yu and Yuan 

(2012; 2015) is adopted to identify cross-sectional variation for overpriced and underpriced 

stocks. Using various firm-level characteristics, I capture investors’ biased beliefs about 

companies. Importantly, this measure can also help identify stocks which are least affected 

by investors’ biased beliefs, neither overpriced nor underpriced. If economic uncertainty 

exacerbates heterogenous beliefs which are the source of mispricing, stocks exposed to 

higher economic uncertainty will induce larger disagreement about those firm-level 
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characteristics in the mispricing measure, leading to more apparent mispricing. 

Simultaneously, the preference of investors facing uncertainty in the sense of the ambiguity-

return trade-off is observed in stocks that are least influenced by these mispricing 

characteristics. In other words, economic uncertainty yields a positive premium in a group 

of stocks, called “non-mispricing” group. This empirical setting in Chapter 2 offers a 

practical way to disentangle those two different effects of economic uncertainty on 

investors’ beliefs and preferences using firm-level data in the market. 

Chapter 2 has two main hypotheses. First, if EUE-induced disagreement is a 

common source of mispricing, the mispricing effect, measured by the long-short portfolio 

sorted by MIS, will be the strongest in the group of stocks with the highest EUE. Second, 

for stocks experiencing the least influence of mispricing measured by the MIS, called “non-

mispricing” group, the ambiguity-premium effect of EUE will be the dominant effect, and 

therefore a positive relationship between EUE and expected return is expected. 

In Chapter 2, this study examines the effect of economic uncertainty on the cross-

section of stock returns in the US markets between 1970 and 2019. Empirically, I measure 

stock’s exposure to economic uncertainty (EUE) by estimating the sensitivity of stock 

returns to log changes of the economic uncertainty index by Jurado, Ludvigson and Ng 

(2015). Consistent with Hong and Sraer (2016) and Li (2016), I capture the exposure by 

using the absolute value of the economic uncertainty beta, since disagreement (return 

volatility) is larger for stocks with a higher absolute level of correlation with economic 

uncertainty regardless of a positive or negative sign.   

Following Stambaugh, Yu and Yuan (2015), the main analysis is based on portfolios 

independently double-sorted on EUE and MIS. I provide significant evidence to support 

my predictions. First, the mispricing spread, the difference between underpriced and 
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overpriced portfolios, generates the largest alpha in the highest EUE quintile, with an 

annualised alpha of 9%. This spread is also larger than the unconditional mispricing spread, 

with an annualised alpha of 3.96%, confirming that mispricing in stock returns is more 

pronounced as exposed to greater macro-level uncertainty. Second, high-minus-low EUE 

portfolio yields a positive premium in the non-mispricing group, with an annualised alpha 

of 4.2%, implying that economic uncertainty is priced in the sense of the ambiguity-return 

trade-off in the group of stocks which are least subject to mispricing. 

I examine how two channels of the EUE effect are influenced by alternative risk 

models including Fama-French models, q-factor (Hou, Xue, and Zhang, 2015), q5 (Hou et 

al., 2020) and the mispricing (Stambaugh and Yuan, 2017) models. In general, the influence 

of the mispricing effect induced by EUE on the anomalies diminishes when using more 

elaborated multifactor models but remains significant in most of the models, such as models 

with Fama-French factors including an aggregate liquidity factor, q-factor and the 

mispricing models. By contrast, the ambiguity-premium effect of EUE remains strong 

when other risk factors are controlled. This chapter shows that EU-induced ambiguity 

premium is different from various risk factors introduced in previous studies. This finding 

is consistent with the view where investors demand additional compensation for bearing 

uncertainty (Anderson, Ghysels and Jurgens, 2009).  

Finally, this study examines the EUE effect on cross-sectional returns in the context 

of limits-to-arbitrage. Considering Stambaugh, Yu and Yuan (2015) suggesting that 

idiosyncratic volatility (IVOL) deters arbitrageurs from correcting mispricing, resulting in 

high levels of mispricing among stocks with high IVOL, to examine whether IVOL has an 

impact on EUE-induced mispricing, I extend the main analyses of double-sorting to three 

dimensions. I find that EUE and IVOL are two different sources of frictions that affect 
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mispricing. Consistent with the limits of arbitrage context, Chapter 2 uncovers EUE as a 

source of arbitrage friction that is not captured by the IVOL. 

 

1.3.2 Economic Uncertainty, Investor Sentiment and Cross-Sectional Returns 

In the second empirical chapter (Chapter 3), this thesis examines the link between market-

wide sentiment and investors’ attitude to assets with different levels of EUE to explore 

behavioural insights into those two effects of economic uncertainty on the cross-section of 

stock returns. Existing studies have shown the role of market-wide sentiment in mispricing. 

Stambaugh, Yu, and Yuan (2012, p. 290) suggest that “[D]uring such periods (high investor 

sentiment), the most optimistic views about many stocks tend to be overly optimistic, and many stocks tend 

to be overpriced. During low-sentiment periods, the most optimistic views about many stocks tend to be those 

of the rational investors, and thus mispricing during those periods is less likely.” I, therefore, predict 

that the EUE-induced mispricing effect will be more pronounced following the high-

sentiment period. In contrast, the ambiguity-premium effect should be less affected by 

market-wide sentiment and more likely to be observed following low-sentiment periods 

when investors behave more rationally, as Stambaugh, Yu, and Yuan (2012) suggest. 

I quantify market-wide sentiment using an index developed by Baker and Wurgler 

(2006). As introduced in Chapter 2, I measure EUE by estimating the sensitivity of stock 

return to log changes of economic uncertainty proposed by Jurado, Ludvigson, and Ng 

(2015). 

Consistent with the prediction, I show that the EUE-induced mispricing effect is 

only observed following periods with high sentiment with an annualized alpha of 16.2%. 

By contrast, the ambiguity-premium effect is only observable following the low-sentiment 
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period with an annualized premium of 6.36%. It suggests that when investors are more 

rational, during the low-sentiment period, the ambiguity aversion is more likely to be 

reflected and observed in the price. This finding provides further supporting evidence that 

the ambiguity-premium effect is more likely to be attributed to rational pricing rather than 

mispricing. 

I extend the prediction by considering the interaction between market-wide 

sentiment and macro-level uncertainty. Uncertainty refers to an event with an unknown 

distribution that causes difficulties to forecast objective probabilities (Knight, 1921). In the 

absence of probabilities, investors are more likely to follow their own subjective estimations 

and to ignore objective valuations, leading to more irrational behaviours and larger 

disagreement (Hirshleifer, 2001). This is also consistent with psychology literature 

suggesting that people tend to rely more on their heuristics rather than facts in their 

judgements and predictions under uncertainty (Kahneman and Tversky, 1973). In this 

regard, Birru and Young (2020) suggest that investor sentiment has a stronger market-wide 

effect on cross-sectional returns in periods with higher uncertainty. They show that when 

the VIX is high, proxying for the market level uncertainty, market-wide sentiment has more 

power to predict the aggregate market and cross-sectional returns. This finding is consistent 

with Garcia (2013) which suggests that sentiment has a more prominent role during 

recession periods.  

Empirically, I find that the effect of market-wide sentiment on the EUE-induced 

mispricing is the strongest in periods with high market-wide sentiment and high 

macroeconomic uncertainty. In addition, the ambiguity premium effect is only observed in 

periods with more rational behaviours but increasing macro-level uncertainty. Those 

findings in Chapter 3 also provide evidence that macro-level uncertainty matters for 
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investors’ irrationality as the strongest sentiment effect is observed when economic 

uncertainty is high. 

 

1.3.3 Incentivised Optimism: Economic Uncertainty and Analyst Forecast 

The first two empirical chapters have examined effects of economic uncertainty on 

investors’ decision process. Specifically, I have shown that investors treat stocks with 

different EUE in different ways based on their beliefs and preferences. I further examine 

these effects by differentiating investors’ behaviour with the market-wide sentiment. In the 

last empirical chapter (Chapter 4), I investigate the effect of economic uncertainty on the 

analysts’ decision process in earnings forecast and stock recommendations.  

In the conjecture of Chapter 4, EUE may give more room to analysts to be more 

optimistic for incentives with less career concern due to its effect on information quality. 

Intuitively, investors are more likely to face more difficulties in estimating the outlook of 

companies with larger EUE. Therefore, stock’s exposure to economic uncertainty makes it 

more difficult for investors to verify analysts’ forecasts. This condition is more likely to tilt 

the balance of analysts’ trade-off to be more optimistic for incentives in their forecast as 

the chance of being caught is relatively lower leading to a lower reputational concern. 

Therefore, Chapter 4 hypothesises that optimism in analysts’ forecasts increases with stock 

exposure to economic uncertainty. 

Considering the forecast bias in the rational framework, private information could 

be one of the key sources for stocks with higher uncertain payoffs (Lim, 2001). Therefore, 

analysts tend to publish optimistic forecasts for stocks with high EUE for better managerial 

relationships to access private information. Additionally, optimistic forecasts encourage 
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investors with an optimistic view to buy, which generates more trading volume (Cowen, 

Groysberg and Healy, 2006). Stocks with uncertain payoffs are more likely to be held by 

optimists rather than pessimists (i.e., Cao, Wang and Zhang, 2005; Easley and O’Hara, 

2009; Epstein and Schneider, 2010). Therefore, analysts tend to expect a higher trading 

commission by publishing upward forecast for stocks with high EUE. 

In Chapter 4, I measure monthly analyst optimism at the firm-level as the difference 

between one-year consensus earnings forecasts and actual value scaled by prior month stock 

price (i.e., Lim, 2001; Larocque, 2012; Henderson and Marks, 2013; Engelberg, Mclean and 

Pontiff, 2018). This is different from existing studies (i.e., Cowen, Grosyberg and Healy, 

2006; Hugon, Kumar and Lim, 2016; Chang and Choi, 2017) which study the relative 

analysts’ optimism for the same stock, because using consensus optimism measure mitigates 

the effect of extreme values in forecasts as the skewness in the distribution of earnings and 

forecasts concerns the analyses (Zhang, 2006).  

This study empirically shows a significant relationship between EUE and analysts 

upward bias in both earnings forecasts and stock recommendations. For instance, monthly 

consensus forecasts of one-year earnings are 3.6% larger than the actual value for stocks in 

the highest EUE group. Indeed, EUE-induced analyst optimism is observed only in the 

subsample where firms have lower earnings quality and less available market-level 

information. Those results suggest that analysts are more optimistic in order to have a better 

relationship with managers to access private information for stocks with high EUE. 

Optimistic forecast bias in the rational framework can potentially result in 

reputational costs and career concerns for analysts (Jackson, 2005). Consistent with this 

view, I empirically find that analysts are more likely to move down from a higher-status 

brokerage house to a lower one due to issuing optimistic earnings forecasts. However, 
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analysts who publish upward earnings forecasts for stocks with high EUE are less likely to 

lose their positions in a high-status brokerage house. Collectively, these findings suggest 

that EUE-induced optimism is more likely to allow analysts to hide their bias as investors 

tend to have more difficulties in verifying the valuation of stocks with high uncertain 

payoffs (Ackert and Anthassakos, 1997). In other words, analysts can blame their optimistic 

bias in those stocks affected by macro-level uncertainty on the vague informational 

environment. 

Finally, several studies suggest that analyst optimism impedes price efficiency, thus 

there is significant mispricing in anomalies (Engelberg, McLean and Pontiff, 2018; Guo, Li 

and Wei, 2020). I interact main findings in Chapter 2 with EUE-induced analyst optimism 

to further investigate whether their bias exacerbates mispricing in stocks with high EUE as 

a result of their incentive concerns. I find that EUE-induced mispricing is significantly 

apparent in the group with high consensus optimism. Moreover, the ambiguity-premium 

effect is only significantly observed in the group of stocks with low consensus optimism. 

These findings suggest that analysts with an optimistic view for stocks with high EUE 

impede the price efficiency in the market, resulting in significant mispricing. 

 

1.4 Research Contribution 

1.4.1 Contributions to Asset Pricing Literature  

This thesis contributes to asset pricing literature in several ways. Previous studies have 

shown that macroeconomic uncertainty induces mispricing in the stock market, leading to 

a negative relationship between firms’ economic uncertainty exposure and expected returns 

(Hong and Sraer, 2016; Li, 2016). It also generates a premium in the sense of the ambiguity-
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return trade-off, predicting a positive relationship between firms’ economic uncertainty 

exposure and expected returns (Anderson, Ghysels, and Juergens, 2009; Bali and Zhou, 

2016; Bali, Brown and Tang, 2017). However, relevant studies have yet to reach a clear 

conclusion in these two mechanisms of economic uncertainty. This study contributes to the 

literature by showing that the apparently contradicting effects of economic uncertainty (i.e., 

mispricing effect versus ambiguity premium) on cross-sectional returns are both 

significantly at work. Controlling different types of investor responses in the market by 

using the firm-level mispricing measure in Chapter 2, this study is able to disentangle these 

two mechanisms. Investors biases are more pronounced for stocks with greater exposure 

to macroeconomic uncertainty, leading to stronger mispricing. In addition, their preferences 

are influenced by stocks with larger EUE, producing an ambiguity premium in the sense of 

the ambiguity-return trade-off.  

 This study shows that economic uncertainty connects the aggregate disagreement 

effect to mispricing, consistent with Hong and Sraer (2016). They use the CAPM beta as a 

proxy for exposure to aggregate uncertainty. Empirically they show that stocks with higher 

absolute betas suffer more overpricing, due to larger disagreement among investors. 

Considering findings in Chapter 2, this study extends their work by identifying one common 

source of disagreement that influences many different anomalies and also carries an 

observable “risk” premium.  

 Considering the mispricing effect of EUE, this thesis provides evidence to the 

existing literature showing that its effect can be a common driver of well-known market 

anomalies. Stambaugh and Yuan (2017) argue that anomalies manifest mispricing and there 

are common components across assets leading to mispricing. For instance, Stambaugh, Yu 

and Yuan (2012) suggest that the presence of market-wide sentiment exacerbates mispricing 
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due to its significant effect on the divergence of opinions Furthermore, Stambaugh, Yu and 

Yuan (2015) suggest that arbitrage asymmetry with arbitrage risk measured by idiosyncratic 

volatility deters arbitrageurs, resulting in apparent mispricing in stock markets. Findings in 

Chapter 2 regarding the mispricing effect of EUE show that exposure to economic 

uncertainty might be one of these common components that amplify investors’ belief 

biases, and further drives anomalies. Lastly, this study further controls for arbitrage risk 

such as idiosyncratic volatility and shows that EUE is a new source of arbitrage limit to the 

mispricing literature (Nagel, 2005; Stambaugh, Yu and Yuan, 2015). 

This study contributes to the literature by providing further insights into two 

opposite effects of EUE on cross-sectional returns from a behavioural perspective in 

Chapter 3. In the literature, previous studies have shown the significant role of market-wide 

sentiment in stock returns through its effect on beliefs and preferences (Baker and Wurgler, 

2006; Stambaugh, Yu and Yuan, 2012). Hong and Stein (2007) suggest that the general 

source of mispricing is a disagreement between optimistic and pessimistic investors. This 

disagreement is more pronounced during the high sentiment period, leading to significant 

mispricing in subsequent returns (Stambaugh, Yu and Yuan, 2012). Chapter 3 shows that 

EUE amplifies mispricing, especially following a high sentiment period, confirming that 

EUE escalates cross-sectional dispersion in investors’ views. This identifies EUE as a 

common mispricing component across anomalies in the market, which is different from 

but complements investor sentiment (Nagel, 2005; Stambaugh, Yu, and Yuan, 2012 and 

2015).  

This thesis, furthermore, provides evidence that there is an ambiguity premium 

following a low-sentiment period as the rational expectation is pervasive in Chapter 3. It is 

a result of rational demand,  consistent with the theoretical model introduced by Anderson, 
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Gjhysels and Jurgens (2009). This finding complements Shen, Yu and Zhao (2017) who 

show that macro-risk carries a significant premium following a low sentiment period. 

This study shows that macro-level uncertainty matters for investors’ irrationality as 

the strongest sentiment effect is observed when economic uncertainty is high. Findings in 

Chapter 3 suggest that uncertainty causes subjective valuations increasing sentiment-driven 

investors’ trades. This finding contributes to Birru and Young (2020) who suggest that the 

sentiment effect is more significant and rational investors’ views are more limited to 

counterbalance irrational ones when market uncertainty is higher. Moreover, it is also 

consistent with Garcia (2013) suggesting that during recession periods sentiment has an 

important role in financial markets. 

 

1.4.2 Contributions to Security Analysts Literature 

This thesis contributes to the literature on security analysts. Previous studies examine the 

effect of market uncertainty and financial crises on analyst performance. For instance, 

Amiram et al. (2017) show that analysts issue forecasts more often when the volatility on 

market return is high, implying that they are timelier during periods with higher market 

uncertainty. However, their accuracy is lower. They suggest that analysts underreact to news, 

measured by stock price movement. In addition, Loh and Stulz (2018) provide evidence 

suggesting that due to their career concerns, analysts put more effort into their forecast 

when uncertainty is high during financial crises. This thesis extends those studies by 

examining the effect of economic uncertainty on analyst optimism in forecasts and 

recommendations based on rational bias. In particular, this study explores that stock 

exposure to economic uncertainty mitigates analysts’ dilemma between improving 

management access and losing their reputation. My findings support Chang and Choi (2017) 
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who find a positive relationship between market uncertainty, measured by VIX, and analyst 

optimism. They claim that analysts’ optimism during high market uncertainty period is due 

to less reputational costs and more trading commission benefits.  

This thesis is related to the importance of reputation for analysts’ career in the 

industry that limits their incentive concerns (Fama,1980; Lim, 2001). Several studies suggest 

that analysts are more likely to lose their jobs or move down from a high-status brokerage 

house to a low one due to their optimism in earnings forecasts (Jackson, 2005; Groysberg, 

Healy and Maber, 2011; Chang and Choi, 2017). Findings are consistent with this view in 

Chapter 4. However, this concern is less likely for analysts when the informational 

environment is vague. Specifically, this study provides strong evidence that analysts are able 

to hide their bias for incentives as experiencing less career concern when issuing optimistic 

forecasts for stocks with higher EUE. I, therefore, unveil another important conditional 

variable to understand determinants of analysts’ optimism for incentives. 

Finally, this thesis contributes to Engelberg, McLean and Pontiff (2018) and Guo, 

Li and Wei (2020) suggesting that analyst optimism impedes the price efficiency and results 

in significant mispricing in anomalies. Findings in Chapter 4 further show that analyst 

optimism in forecasts for stocks with higher EUE tends to mislead investors, exacerbating 

mispricing. 

 

1.4.3 Contributions to Practice 

This study offers a practical application to investment management literature, considering 

findings in Chapter 2. Song (2020) shows that when systematic factors are not properly 

accounted for this will lead to a mismatch of mutual fund skill and scale. Economic 

uncertainty is a relevant state variable affecting investment decisions alongside macro-risk 
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factors (Bloom, 2009; Jurado, Ludvigson and Ng, 2015). Therefore, exposure to economic 

uncertainty can be considered to evaluate fund managers’ portfolio compositions to 

understand how economic uncertainty may affect the performance of a certain manager’s 

strategy. Moreover, Barber, Huang and Odean (2016) show that sophisticated investors 

evaluate fund performance with more sophisticated benchmarks rather than the market 

model. For those investors, EUE could be taken into account to improve the benchmark 

model.  

The rest of the thesis is organised as follows. Chapter 2, 3 and 4 present the three 

empirical chapters. Chapter 5 concludes the thesis with the limitations. 
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Chapter 2 
 
 

2 Economic Uncertainty: Mispricing and 

Ambiguity Premium 

 

2.1 Introduction 

Economic uncertainty (EU) has become an accustomed reality for policy, business, and 

investment decision-makers. One recent and ongoing example is the heightened economic 

uncertainty caused by the Covid-19 pandemic. During this period, I have made two 

observations about the financial markets. First, the tug of war between optimists and 

pessimists in the market is intensified. This is exemplified by the record-breaking daily gains 

and losses closely clustered in the leading equity benchmark indices around the world.1 

Second, some investors prefer to watch from the sidelines by moving their money out of 

the equity market temporarily and watching for bargains for their long-term investments.2 

These phenomena represent two different responses from investors to economic 

uncertainty. While both of these phenomena have been studied separately, the existing 

 
1 For example, in one month in March 2020, the S&P 500 index experienced two of the top 20 historical best 
daily performance and three of the worst 20 daily performance since its introduction in 1923. In fact, two of 
these large episodes are next to each other: on March 12, 2020 with a return of −9.51% and March 13, 2020 
with a return of 9.29%. See  
https://en.wikipedia.org/wiki/List_of_largest_daily_changes_in_the_S%26P_500_Index [accessed June 29, 
2020]. If I look at the oil price during the period, a similar extreme volatility can be observed.  
2 There is anecdotal evidence suggesting that investors first fall back to cash and then move on to safe assets 
such as gold during this period. See https://www.cnbc.com/2020/04/20/coronavirus-why-gold-is-seen-as-
a-safe-haven-investment-in-a-crisis.html?__source=newsletter%7Cmakeit [accessed June 29, 2020]. 

https://en.wikipedia.org/wiki/List_of_largest_daily_changes_in_the_S%26P_500_Index
https://www.cnbc.com/2020/04/20/coronavirus-why-gold-is-seen-as-a-safe-haven-investment-in-a-crisis.html?__source=newsletter%7Cmakeit
https://www.cnbc.com/2020/04/20/coronavirus-why-gold-is-seen-as-a-safe-haven-investment-in-a-crisis.html?__source=newsletter%7Cmakeit
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studies have not been able to present a coherent framework to study both of these effects.  

This leads to inconclusive findings on the impact of EU on asset pricing.  

These two responses are broadly related to studies on how economic uncertainty 

affects investors’ beliefs and preferences. First, EU amplifies biases in individuals’ beliefs 

by making optimists more optimistic and pessimists more pessimistic. Hirshleifer (2001) 

argues that uncertainty leaves more room for investors to follow their own subjective 

estimations and to ignore objective valuations. Investors’ heterogeneous beliefs about the 

fundamental value can be a source of mispricing (Hong and Stein, 2007). When there are 

contrasting beliefs among investors, Miller (1977) shows that stocks will be in general 

overpriced as this is more likely to reflect optimists’ views than pessimists’ in light of short-

sale constraints. In a theoretical model, Hong and Sraer (2016) suggest that there is a link 

between the market-wide uncertainty and the disagreement of firm value. They suggest that 

aggregate level uncertainty has an important role in belief formation. They show that stocks 

with high absolute capital asset-pricing model (CAPM) betas are more sensitive to aggregate 

disagreement than those with low absolute CAPM betas, leading to overpricing in the high 

beta stocks due to the presence of short-sale constraints. In this context, stocks with higher 

exposures to economic uncertainty (more sensitive to aggregate disagreement) will suffer 

more disagreement on the evaluation of the company’s outlook. Therefore, these stocks 

will be more likely to experience overpricing and have lower expected returns. I refer to this 

effect as the mispricing effect of economic uncertainty, which amplifies the tension between 

optimists and pessimists. 

Second, people prefer certain over uncertain outcomes. Uncertain outcomes have 

been classified into two groups by Knight (1921): one referred to as risk, which is defined 

as an event with known distribution; and the other as uncertainty, which is an event with 
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unknown distribution. Knight (1921) contends that people are more averse to uncertainty 

than risk. In this regard, stocks’ exposures to economic uncertainty will affect investors’ 

preference for these stocks. Anderson, Ghysels, and Juergens (2009) show that macro 

uncertainty carries a positive premium in equilibrium in a dynamic model, and they find 

supportive empirical evidence using dispersion in the Survey of Professional Forecasters as 

a measure of uncertainty. In a nutshell, this line of literature predicts that investors would 

demand a premium from stocks with exposures to economic uncertainty. I refer to this 

effect as the ambiguity-premium effect, and it applies to those uncertainty-averse investors 

who would prefer to stay on the sidelines unless the expected compensation is high enough. 

These two explanations regarding investors’ behaviour in response to economic 

uncertainty have conflicting predictions on the relationship between firms’ economic 

uncertainty exposure (EUE) and cross-sectional returns.3 The ambiguity-premium effect 

predicts a positive correlation between EUE and expected returns, while the mispricing 

effect predicts a negative one. It is not surprising that existing studies provide mixed 

evidence on the relationship between EUE and expected returns.4 

 
3 I define EUE as the absolute sensitivity of the return to the change of economic uncertainty. Empirically, it 
is estimated by the absolute value of the regression coefficient from a time series regression of a stock’s returns 
on log changes of economic uncertainty index while controlling for other risk factors such as Fama-French 
market factors. More detailed discussion can be found in Section 2.3.2 
4 Li (2016) fails to find any predictive power of disagreement exposure on future cross-sectional returns 
unconditional of macro disagreement states. When studying the relationship conditional on the state of macro 
disagreement, he finds that stocks with higher exposures to macro disagreement earn lower future returns, 
which provides some support to the mispricing effect as proposed by Hong and Sraer (2016). Bali, Brown, 
and Tang (2017) also find a negative relationship between the uncertainty beta estimated using Jurado 
Ludvigson and Ng (2015), the uncertainty index and expected return. These results are consistent with both 
the mispricing argument and ambiguity premium effect under the hedging argument in the context of 
Merton’s (1973) ICAPM. By contrast, Anderson, Ghysels, and Juergens (2009) and Bali and Zhou (2016) 
provide evidence supporting a positive uncertainty premium. The mixed findings in those studies may also be 
due to the use of different economic uncertainty proxies. Brenner and Izhakian (2018) study the time-varying 
ambiguity premium at the market level. They find that the ambiguity premium is positive when the expected 
probability of the positive outcome is high, while the ambiguity premium is negative when the expected 
probability of the negative outcome is high. 
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The challenge of obtaining a clear inference from the studies mentioned above is 

that both the ambiguity premium and the mispricing mechanisms are at work. A clear 

conclusion can only be drawn when these two effects can be disentangled. The mispricing 

argument suggests that disagreement is a general source of mispricing (Hong and Stein, 

2007). However, what information sources investors use to form their optimistic or 

pessimistic beliefs about the company are not specified in these models. It is, therefore, a 

useful identification strategy to study the effect of economic uncertainty when investors 

already have heterogeneous beliefs in the first place. To this end, the mispricing score (MIS) 

proposed by Stambaugh, Yu, and Yuan (2012; 2015) using firm-level characteristics 

provides a measure of cross-sectional variation for overpricing and underpricing stocks.5 If 

the disagreement is a source of mispricing, higher exposure to economic uncertainty will 

induce larger disagreement in investors’ assessment of those firm-level value relevant 

characteristics and will lead to more apparent mispricing. In other words, high firm-level 

exposure to economic uncertainty will exacerbate investors’ mispricing of other firm 

characteristics in the MIS, making optimists more optimistic and pessimists more 

pessimistic. In addition, stocks in the non-mispricing group (neither overpriced nor 

underpriced) according to MIS can be used to study a ‘pure’ ambiguity-premium effect by 

examining a subset of stocks that are not influenced by these known mispricing 

characteristics.6 

I have the following two main hypotheses: 1) If EUE-induced disagreement is a 

common source of mispricing, I expect that the mispricing effect (measured by the long-

short portfolio sorted by MIS) will be the strongest in the group of stocks with the highest 

 
5 Eleven firm characteristics are taken into account for MIS construction. Please see Section 2.3.1 for details.  
6 A similar approach is adopted in Stambaugh and Yuan (2017) when they construct their size factor using 
stocks least likely to be mispriced, that is, in the middle mispricing group. They show that when controlling 
for the mispricing effect a much clearer and strong size premium is documented that is nearly twice that 
implied by the familiar Fama-French version of SMB. 
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EUE; and 2) For stocks experiencing the least influence of mispricing measured by the MIS 

(that is, those in the middle portfolio sorted by MIS), the ambiguity-premium effect of EUE 

will be the dominant effect, and therefore a positive relationship between EUE and 

expected return is expected. 

Empirically, I measure EUE by estimating the sensitivity of stock return to log 

changes of economic uncertainty proposed by Jurado, Ludvigson, and Ng (2015, hereafter 

JLN). They define economic uncertainty as to the conditional volatility of a disturbance that 

is unforecastable from the perspective of economic agents.7 I broadly follow Bali, Brown, 

and Tang (2017) to estimate stocks exposure in five-year rolling regressions controlling for 

known risk factors.8 Following Hong and Sraer (2016) and Li (2016), I capture the exposure 

by using the absolute value of the economic uncertainty beta, since disagreement (return 

volatility) is larger for stocks with a higher level of correlation with economic uncertainty 

regardless of a positive or negative sign. 

My main analyses examine the post-formation, risk-adjusted alphas of 25 portfolios 

independently double-sorted by EUE and MIS. I adjust the portfolio return for known risk 

factors using a Fama and French (2016, hereafter FF) six-factor model.9 I find support for 

both mispricing and ambiguity-premium effects in the period between 1970 and 2019 in 

the US markets. 

 
7 Jurado, Ludvigson, and Ng’s aggregate macroeconomic uncertainty measure is constructed with a wide range 
of economic data. They show that such a measure is better at capturing quantitively important uncertainty 
episodes than other popular financial market-based proxies, such as the VIX index.  
8 One important modification I made in our empirical setting is that, instead of using the level of economic 
uncertainty, as in Bali, Brown, and Tang (2017), I use log changes of economic uncertainty as the level is very 
persistent. Log changes of economic uncertainty are more suitable to capture unexpected innovations in the 
uncertainty with close-to-zero expectation, which is an important requirement of pricing factors in the context 
of arbitrage pricing theory, suggesting that unexpected innovations in macroeconomic variables concerns 
investors about their future investment and consumption, influencing the indirect utility of real wealth and 
asset prices (i.e., Merton, 1973; Ross, 1976; Chen, Roll, and Ross, 1986; Bali, Subrahmanyam, and Wen, 2020). 
9  Those risk factors are market excess return (MKT), size (SMB), value (HML), momentum (UMD), 
investment (IA), and profitability (ROE). Other risk models are also tested in Section 2.5.1.  
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First, the mispricing effect is the strongest in the group of stocks with the highest 

EUE, supporting my first hypothesis. The annualized mispricing alpha (that is the alpha of 

the portfolio that longs underpriced and shorts overpriced stocks) is 9% with a t-statistic of 

3.86 in the highest EUE quintile. This is more than double the unconditional mispricing 

effect that does not consider the EUE effect (with an annualized alpha of 3.96%) in my 

sample. 

Second, I identify a clear EUE ambiguity premium in the group of stocks that are 

the least affected by the mispricing index of Stambaugh, Yu, and Yuan (2015). In this middle 

mispricing quintile, which I refer to as the “non-mispricing” group, alphas change from 

negative to positive as EUE increases from low to high, supporting my second hypothesis 

that ambiguity-averse investors would demand higher returns for stocks with higher EUE. 

The annualized alpha of the high-minus-low EUE portfolio within the “non-mispricing” 

quintile, measuring the EUE ambiguity premium, is 4.2% with a t-statistic of 2.17. 

Further insights of EUE on cross-sectional pricing can be gained by examining the 

asymmetric effect of EUE on over- and underpricing. I show that after controlling for the 

ambiguity-premium effect, overpricing is more prominently observed than underpricing 

due to short-sale constraints (Stambaugh, Yu and Yuan, 2012).10 In fact, only the overpriced 

legs are significant and monotonically increased with EUE while none of the underpriced 

legs are significant. Overall, this provides evidence supporting that disagreement and short-

sale constraint induces more overpricing (Hong and Sraer, 2016). Furthermore, since 

overpricing is stronger than underpricing, the average mispricing effect is negative. When I 

examine all stocks in the high EUE group without differentiating mispricing, the positive 

 
10 To see a pure mispricing effect, I control for the ambiguity premium by removing the ambiguity premium 
from the over- and underpriced legs. 
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ambiguity premium and the negative mispricing effect almost cancel each other out, 

generating a close-to-zero alpha. 

I confirm the robustness of my finding in Fama-MacBeth (1973) and double-cluster 

panel regressions on excess return with firm-level risk controls. Specifically, it shows that 

the base MIS effect is negative (high MIS measures overpricing); the interaction effect of 

MIS and EUE is negative and significantly supports EUE, amplifying the mispricing effect; 

and finally, after controlling for the EUE’s interaction with MIS, the base EUE effect 

becomes positive and significant. This base EUE effect captures the pure ambiguity-

premium effect confirming the overall positive ambiguity premium for high EUE stocks. 

I also conduct a series of further analyses to examine links between the EUE and 

cross-sectional returns with alternative specifications and to substantiate the impact of the 

two channels. 

Distinguishing periods with increasing or decreasing economic uncertainty, I show 

that both mispricing and ambiguity-premium effects are mainly observed following a period 

of increasing uncertainty. This confirms that the increase in uncertainty both drives 

disagreements and triggers ambiguity aversion. 

To understand the marginal contribution of bringing EUE into the cross-sectional 

asset pricing, I examine how two channels of the EUE effect are influenced by alternative 

risk models including a seven-factor model (FF’s five factors, a momentum factor and an 

additional liquidity factor), q-factor (Hou, Xue, and Zhang, 2015), q5 (Hou et al., 2020) and 

the mispricing (Stambaugh and Yuan, 2017, hereafter MSP) models. In general, the 

mispricing effect of EUE on the identified mispricing anomalies is weakened as more 

elaborated multifactor models are used as a benchmark model but remains significant in 

most of the models such as Fama-French models including an aggregate liquidity factor, q-
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factor and the mispricing models. By contrast, the ambiguity-premium effect of EUE 

remains strong when other risk factors are controlled with more elaborated risk models. In 

fact, the largest ambiguity premium comes from the q5 model, where the unconditional 

mispricing effect is fully explained. This demonstrates the robustness of the EUE ambiguity 

premium as a new factor that is different from existing risk factors and existing known 

mispricing. 

To study whether the source of uncertainty matters, I extend my empirical study to 

consider alternative macro uncertainty measures including the dispersion of the Survey of 

Professional Forecasters (Li, 2016), the index of economic policy uncertainty (Baker, Bloom, 

and Davis, 2016), the variance risk premium (Bali and Zhou, 2016), and the ambiguity 

degree index (Brenner and Izhakian, 2018). The mispricing effect is robust to all alternative 

uncertainty measures, whereas the ambiguity premium only can be observed by using JLN’s 

aggregated economic uncertainty measure (the main measure used in this paper), the 

dispersion of analysts’ forecast for GDP, and the index of economic policy uncertainty. My 

results suggest that uncertainty about GDP and economic policy are the main sources of 

ambiguity that induce a clear price response reflecting investors’ ambiguity aversion. These 

further tests also highlight the advantage of using a comprehensive and aggregated 

economic uncertainty measure, such as the JLN series, which can capture both the 

ambiguity premium and mispricing effects. 

Finally, I study these two channels of effects with controls and interactions with 

well-known mispricing conditions such as limits of arbitrage. I show that the higher the 

EUE for a stock, the larger the divergence of opinion measured by volume turnover (Hong 

and Stein, 2007), idiosyncratic volatility (Stambaugh, Yu, and Yuan, 2015) and analysts’ 
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forecast dispersions (Diether, Malloy, and Scherbina, 2002). This confirms that exposure to 

economic uncertainty induces disagreement at the stock level. 

Among these disagreement measures, the idiosyncratic volatility (IVOL) is the only 

one that can predict next-period EUE, suggesting that there is a potential commonality 

between these two. Can the EUE mispricing effect capture IVOL effects? To unravel the 

effect of IVOL from that of EUE on mispricing, I extend my main analyses of double-

sorting to three dimensions. I find that EUE and IVOL are two different sources of friction 

that affect mispricing. The EUE effects on mispricing are more prominent in the group 

with low IVOL where traditional mispricing effect is weaker as arbitrage friction is low. 

From the limits of arbitrage points of view, I uncover EUE as a source of arbitrage friction 

that is not captured by the IVOL. Furthermore, I find that the ambiguity-premium effect is 

also strong in the group of stocks with low arbitrage friction, confirming that the ambiguity 

premium is not due to mispricing and consistent with the nature of the “risk” premium 

instead. 

This study contributes to the literature by disentangling the ambiguity premium 

from the mispricing effect of economic uncertainty on cross-sectional asset pricing. 

Existing factor models (FF, q5, or MSP) are useful to predict expected cross-sectional 

returns regardless of whether they are rational compensation for systematic risk or reflect 

common sources of mispricing (Hirshleifer and Jiang, 2010; Kozak, Nagel, and Santosh, 

2018). This study shows that these two channels of effects need not be mutually exclusive. 

Exposure to economic uncertainty will not only amplify investors’ biased beliefs, leading to 

stronger mispricing, but also affect investors’ preference producing an ambiguity premium. 

I provide evidence that links the aggregate disagreement to mispricing, supporting the 

theoretical proposition of Hong and Sraer (2016). Empirically, they use the CAPM beta as 
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a proxy for exposure to aggregate uncertainty and show that stocks with higher absolute 

betas will suffer more overpricing. This helps explain the beta anomaly. My study extends 

their work by identifying one common source of macro uncertainty that influences many 

different anomalies and also carries an observable “risk” premium. 

This study extends studies of economic uncertainty and the effect of ambiguity in 

asset pricing. My study reconciles the seemingly contradicting findings of the coexistence 

of the positive and negative effects of EUE on the expected return when studied in isolation.  

I provide a unified framework enabling us to attribute the effects of EUE to two different 

economic interpretations. Empirically, I identify a positive EU-induced ambiguity premium 

that is different from existing risk factors and robust to the latest multifactor asset-pricing 

models. Brenner and Izhakian (2018) attribute observations of time series variation in the 

ambiguity premium to the change of investors’ attitude toward ambiguity. My cross-

sectional analysis shows that this could be due to the asymmetric effect of ambiguity on 

mispricing. Controlling for mispricing, the ambiguity premium is positive. A positive 

ambiguity premium provides support to theoretical models (Anderson, Ghysels, and 

Juergens, 2009) and is consistent with the general view that people dislike uncertainty and 

should be compensated by a positive premium as they require for bearing risk. 

In this study, findings regarding the asymmetric impacts on overpricing and 

underpricing provide further insights into the effect of EUE as a common economic driver 

of well-known market efficiency anomalies. Stambaugh and Yuan (2017) argue that 

anomalies partly reflect mispricing, and that mispricing has common components across 

stocks. They construct a mispricing factor to capture common components. However, the 

underlying economic driver for the common components has yet to be studied in depth. 

This study shows that exposure to economic uncertainty could be one of these common 
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components that amplify investors’ belief biases, which drive anomalies. This identifies 

EUE as a common mispricing component across anomalies in the market, which is 

different from but complements arbitrage risk (Nagel, 2005; Stambaugh, Yu, and Yuan, 

2012 and 2015). 

My findings also have a direct implication for practical investment management. My 

approach enables fund managers and investors to capture and report sources of alphas with 

improved clarity. Investors need to differentiate fund managers’ skills from high returns 

generated by fund managers through exposures to common systematic factors (Song, 2020). 

Taking EUE into consideration in portfolio attribution analysis would enable investors to 

understand how economic uncertainty may affect the performance of a certain manager’s 

strategy (for example, those anomalies-/factors- driven strategies). Besides, given that EUE 

is new to the literature, investors may be able to identify the manager’s “hidden” (alpha) 

skills that reflect the economic uncertainty-induced ambiguity premium. In other words, 

EUE can be a part of a more advanced benchmark model for sophisticated investors to use 

in evaluating and selecting funds (Barber, Huang, and Odean, 2016). 

The rest of the chapter is organized as follows. Section 2.2 reviews the literature 

and develops my main hypotheses. Section 2.3 presents my data. Section 2.4 presents main 

findings. Section 2.5 reports robustness and further tests. Section 2.6 concludes.  

 

2.2 Literature Review and Hypotheses Development 

2.2.1 Economic Uncertainty Measurement 

The main difference between risk and uncertainty is related to the probability distribution 

of an event. If the future is unknown with a known probability distribution of all possible 
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outcomes in that event, this refers to risk. However, if the probability distribution is 

unknown, it refers to uncertainty. In other words, risk can be estimated and quantified with 

an objective distribution that all investors can use to make certain assumptions and 

predictions. However, uncertainty is unidentifiable and unmeasurable, thus those investors 

are unable to predict the likelihood of an event (Knight, 1921). Anderson, Ghysels, and 

Juergens (2009) see uncertainty as investors’ confidence in their estimation about the 

unknown mean and their errors in the approximation of a true conditional mean for the 

state variable. 

JLN (2015) define uncertainty as the conditional volatility of the purely 

unforecastable component of the future value of the series. Therefore, uncertainty is about 

whether a state variable has become more or less predictable, that is less or more uncertain 

(Jurado, Ludvigson and Ng, 2015). An economic uncertainty index is then constructed as a 

weighted average of as many as 132 macroeconomic variables by JLN (2015). This measure 

of economic uncertainty index has two distinct advantages. First, it emphasizes the 

conditional volatility after removing all forecastable components, which puts it more in line 

with the theoretical definition of uncertainty instead of risk. Second, it has the advantage of 

capturing the uncertainty of the economy instead of the uncertainty of just one particular 

economic indicator through aggregating a large number of economic indicators. In my 

empirical study, I adopt this measure of economic uncertainty as my main measure. 

 

2.2.2 Economic Uncertainty, Disagreement, and Mispricing 

Hong and Sraer (2016) link the market-wide uncertainty to the disagreement of firm value 

in a theoretical model. They show that macro uncertainty is important to belief formation, 

and the traditional CAPM beta also captures the degree of a stock exposure to the market-
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wide uncertainty. A higher beta will lead to more disagreement in a stock. Building on Miller 

(1977), this will lead to overpricing in the high beta stocks and hence explain the beta 

anomaly.11 In this regard, their theory suggests that stocks with higher EUE will experience 

overpricing and have lower expected return subsequently. Li (2016) tests Hong and Sraer’s 

(2016) argument by focusing on disagreement measured by the exposure to a series of factor 

portfolios constructed by the Survey of Professional Forecasters database. 12  He finds 

supporting evidence that stocks with higher EUE earn lower returns only in the subperiod 

of high EU. 

Many studies have shown that uncertainty at both the aggregate and firm levels 

cause disagreement (for example D’Amico and Orphanides, 2008; Bachmann, Elstner, and 

Sims, 2013; Anderson, Ghysels, and Juergens, 2009; Sadka and Scherbina, 2007). Hirshleifer 

(2001) argues that uncertainty leaves more room for investors to follow their own subjective 

estimations and to ignore objective valuations, and therefore reduces the quality of 

information used in stock valuation. Harrison and Kreps (1978) and Scheinkman and Xiong 

(2003) argue that in a dynamic setting, stocks with more investors’ disagreement will have 

higher price–earnings ratios and lower subsequent returns. In other words, higher exposure 

to uncertainty would amplify the value effect. Bali and Zhou (2016) show that incorporating 

the uncertainty beta provides both statistical and economic success in explaining some stock 

market anomalies (Small–Big for the size anomaly, Value–Growth for the book-to-market 

anomaly, and HiTech–Telcm for the industry anomaly). This line of literature suggests that 

 
11 Miller (1977) argues that asset prices will be more likely to reflect the valuation made by optimists than 
pessimists when there is a high level of heterogenous beliefs, resulting in overpricing and lower future return. 
The core of this argument is built on the fact that short-sale constraints make it more restricted and/or more 
costly for pessimists to express their opinions through their trading activities. The increase in heterogenous 
beliefs will exacerbate this asymmetry and lead to more apparent overpricing. Strong support for this can be 
found in the literature subsequently (Diether, Malloy, and Scherbina, 2002; and Chen, Hong, and Stein, 2002). 
12 Li (2016) constructs macro-factors by measuring macro disagreement on GDP growth, inflation rate, 
treasury bill rate, industrial production, and nonresidential fixed investment from the Survey of Professional 
Forecasters database. 
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exposure to economic uncertainty can lead to overpricing and also be a common factor 

affecting existing mispricing anomalies. 

I hypothesise that higher exposure to economic uncertainty will exacerbate 

investors’ disagreement about those valuation characteristics used to construct MIS and 

lead to stronger heterogeneous beliefs about the stock value. One possible reason is that 

investors become overconfident about their private information (Hirshleifer, 2001). 

Stronger disagreement would further lead to more apparent mispricing. I refer to this effect 

as the mispricing effect of EUE. Therefore, my first hypothesis is as below: 

 

H1: Mispricing spreads, sorted by MIS, are larger among stocks with higher EUE relative to those with 

lower EUE. 

 

2.2.3 Economic Uncertainty and Ambiguity Premium 

When facing uncertainty, investors seem to expect the worst situation (Anderson, Hansen, 

and Sargent, 2003). Maenhout (2004) shows that if investors are concerned that their model 

of stock returns is misspecified, they will charge a substantially higher equity premium as 

compensation for the perceived ambiguity in the probability distribution. Heath and 

Tversky (1991) argue that ambiguity aversion has much to do with how competent an 

individual feels when assessing the relevant distribution. For example, Warren Buffett 

steered clear of dotcom stocks, even during the height of the tech boom in the late 1990s, 

and he is also reluctant to invest in technology companies because he is not confident in 

estimating their values.13 In short, uncertainty will alter investors’ preferences. 

 
13 https://www.forbes.com/sites/simonmoore/2019/05/05/buffetts-relationship-with-tech-stocks-its-
complicated/#31f3a5dc63da [accessed June 29, 2020]. 

https://www.forbes.com/sites/simonmoore/2019/05/05/buffetts-relationship-with-tech-stocks-its-complicated/#31f3a5dc63da
https://www.forbes.com/sites/simonmoore/2019/05/05/buffetts-relationship-with-tech-stocks-its-complicated/#31f3a5dc63da
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Among studies on economic uncertainty, Anderson, Ghysels, and Juergens (2009) 

measure economic uncertainty by using the dispersion in the Survey of Professional 

Forecasters. They show that securities that are positively correlated with their EU measures 

have higher expected returns, implying that uncertainty-averse investors demand higher 

returns as a compensation. Bali and Zhou (2016) provide further support for this conjecture, 

showing that equity portfolios that are highly correlated with variance risk premium (VRP, 

a proxy for financial and economic uncertainty) carry a significant premium relative to those 

that are uncorrelated or minimally correlated with VRP. In general, this line of research 

proposes a positive risk premium effect of a stock’s exposure to economic uncertainty.14 I 

refer to this effect as the ambiguity-premium effect of economic uncertainty. Therefore, my 

second hypothesis is as below:  

 

H2: There is a positive relationship between EUE and future returns for stocks in the non-mispricing group 

which is the least influenced by mispricing captured by MIS. 

It is important to note that my ambiguity-premium hypothesis is conditional on 

removing the general mispricing effect. Stambaugh, Yu, and Yuan (2015) show that the 

asymmetric effect of IVOL on the different mispricing legs leads to inconclusive empirical 

 
14 There is another stream of literature studying the uncertainty premium based on the ICAPM (Merton, 1973) 
(see, for example, Ozoguz, 2008; Bali, Brown, and Tang, 2017). They show that there is a positive uncertainty 
premium. The theoretical argument is similar to those discussed above, and it suggests that for risk-averse 
investors assets that covary positively with future investment opportunities have higher average returns. 
Different from the traditional risk-sharing literature, they focus on the directional correlation for hedging 
purpose argument. In other words, they propose that assets that have a negative correlation with uncertainty 
have higher “uncertainty risk”. These stocks should carry a premium. Such argument relies on investors being 
able to predict the future state (the unexpected changes in uncertainty in this case). However, the challenge 
of this argument is that investors are not able to predict future economic uncertainty, therefore arguing that 
they will take a directional hedging position against the foundation for the discussion of uncertainty. For this 
reason, our discussion focuses on the absolute level of exposure to economic uncertainty, avoiding the 
directional interpretation. Empirically I measure the exposure by the absolute value of the beta coefficients. 
In a robustness test, I also show the results obtained without taking the absolute value of EU beta. It confirms 
that there is no obvious asymmetry in the results for positive and negative beta and taking absolute value of 
the exposure beta present a consistent and simplified interpretation of the empirical findings. See Table A-I.5 
in Appendix II for more details.  
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relationships observed between IVOL and expected return. In a similar vein, my hypotheses 

developed above suggest that the asymmetric effect of EUE on different mispricing legs 

will affect the conclusion of the pure EUE risk premium effect. Particularly, for stocks with 

higher EUE, the positive EUE risk premium is more apparent in the underpriced leg (with 

higher expected returns) since both the risk premium and the mispricing effects work in the 

same direction. By contrast, in the overpriced leg, the positive effect of the ambiguity 

premium will be reduced by the negative expected return due to the mispricing effect. 

Therefore, I expect that the ambiguity-premium effect will be more clearly captured by a 

group of stocks that are less affected by mispricing. To this end, the middle quintile sorted 

on mispricing would be a good candidate portfolio to be considered as “orthogonal” to 

mispricing (neither over- nor underpriced with respect to those firm characteristics). The 

variation of EUE and expected return in this group of stocks captures a “purer” ambiguity-

premium effect compared with other mispricing groups. Similarly, I expect that the “pure” 

mispricing effect in the over- and underpriced legs can only be observed when the positive 

ambiguity-premium effect is properly controlled (see more discussion on this in Section 

2.4.2). 

 

2.3 Data and Measure 

The dataset used in my empirical analyses contains all common stocks (with share codes 10 

and 11) on the NYSE, Amex, and NASDAQ. Stocks whose prices are less than $5 per share 

are excluded from the dataset since those assets are hard to short (Asquith, Pathak, and 

Ritter, 2005). Monthly asset returns and companies’ fundamental values are from the 

merged CRSP-Compustat database from July 1965 to December 2019. To calculate 

monthly analyst forecast dispersion, data on analysts’ earnings estimates are from the 

unadjusted I/B/E/S summary database starting from December 1981. 
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2.3.1 Mispricing Measure 

Following Stambaugh, Yu, and Yuan (2015), the mispricing measure (MIS) is constructed 

based on 11 market anomalies. Their detailed definitions can be found in Appendix II. 

Stocks with the highest MIS scores are assigned as the most overpriced, while those with 

the lowest MIS scores are assigned as the most underpriced. Stambaugh, Yu, and Yuan 

(2015) show that MIS minimises noisy measures of anomaly-specific effects. Thus, I have 

a single factor in identifying the degree of mispricing more accurately in the market. 

Additionally, they find that long-short portfolios formed on MIS have a higher average 

return relative to individual-anomaly portfolios, indicating that the new MIS measure is 

better at identifying mispricing in the market.15 

 

2.3.2 Economic Uncertainty Exposure 

Existing studies have relied on different proxies to measure uncertainty in the economy. 

For instance, several papers use market volatility, due to its significant relation with real 

activity (for example, Bloom, 2009; Bekaert, Hoerova, and Duca, 2013; Bali and Zhou, 

2016). However, JLN (2015) argue that financial market volatility may not reflect economic 

uncertainty accurately, since it may vary over time due to changes in risk aversion, leverage, 

or sentiment. 

Other studies use dispersion in forecasts (for example, Mankiw and Reis, 2002; 

D’Amico and Orphanides, 2008; Anderson, Ghysels, and Juergens, 2009; Li, 2016). It is 

 
15 Monthly mispricing scores for each stock from July 1965 to December 2016 are collected from Robert F. 
Stambaugh’s website and I updated them to December 2019. See more details related to mispricing score 
formation at: http://finance.wharton.upenn.edu/~stambaug/ . 

http://finance.wharton.upenn.edu/~stambaug/
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expected that during time with high uncertainty, forecasts are dispersed, and surveys show 

a higher level of disagreement on macro-indicators (Bachmann, Elstner, and Sims, 2013). 

However, forecasts may not clearly show expectations about the whole economy and may 

give subjective responses due to their pecuniary interests and individual biases. Additionally, 

the dispersion of analyst forecasts might be affected by heterogeneity in the business cycle, 

even if there is no shift in uncertainty in economic fundamentals (JLN, 2015). 

Considering those arguments on different measures of economic uncertainty, I use 

the uncertainty index constructed by JLN (2015). This index is constructed based on 132 

micro-series, not on any single (or a small number of) economic indicators, measuring 

uncertainty in the whole economy. JLN (2015) show that using this measure can capture 

uncertainty in different macro variables at the same time across companies, industries, 

markets, and regions. The index is obtained from Sydney Ludvigson’s website.16 

To measure innovations in economic uncertainty, I use monthly logarithmic 

changes in the index (𝛥𝑈𝑁𝐶𝑡).17 

 

 
∆UNC𝑡 = ln (

UNCt

UNCt-1

) 
(2.1) 

 

I estimate the uncertainty beta from a rolling regression for each stock with the 

following model, using previous 60-month observations:18 

 
16 https://www.sydneyludvigson.com/data-and-appendixes/.  
17 Unexpected innovations in macroeconomic variables concern investors about their future investment and 
consumption, influencing the indirect utility of real wealth and asset prices. Thus, using the changes in 
economic uncertainty is consistent with the literature (for example, Merton, 1973; Ross, 1976; Chen, Roll, and 
Ross, 1986; Bali, Subrahmanyam, and Wen, 2020). The level of the index is non-stationary with a Dickey-
Fuller statistic of −2.152, while its logarithmic difference is stationary with a Dickey-Fuller statistic of −13.678.  
18 I require at least 24 months of non-missing observation for each stock to estimate the model. 

https://www.sydneyludvigson.com/data-and-appendixes/
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 𝑅𝑖,𝑡 = 𝛼𝑖,1 + 𝛽𝑖,1∆𝑈𝑁𝐶𝑡 + 𝛽𝑖,2𝑀𝐾𝑇𝑡 + 𝛽𝑖,3𝑆𝑀𝐵𝑡 + 𝛽𝑖,4𝐻𝑀𝐿𝑡

+ 𝛽𝑖,5𝑈𝑀𝐷𝑡 + 𝛽𝑖,6𝐼𝐴𝑡 + 𝛽𝑖,7𝑅𝑂𝐸𝑡 + 𝜀𝑖,𝑡 (2.2) 

 

where 𝑅𝑖,𝑡  is the monthly excess return of stock 𝑖  in month 𝑡 . ∆𝑈𝑁𝐶𝑡  is a proxy for 

innovations in economic uncertainty in month 𝑡. 𝑀𝐾𝑇𝑡 , 𝑆𝑀𝐵𝑡 , 𝐻𝑀𝐿𝑡 , 𝑈𝑀𝐷𝑡 , 𝐼𝐴𝑡 , and 

𝑅𝑂𝐸𝑡  are Fama and French factors in month 𝑡.19 Definitions are given in Appendix II. 

These factors are from Kenneth French’s website.20 

Once I have estimated the monthly EU beta for each stock during the sample 

period, I use the absolute value of EU betas for all analyses in this study. This approach is 

consistent with relevant studies (Hong and Sraer, 2016; Li, 2016). In Hong and Sraer’s 

(2016) prediction, aggregate disagreement is positively associated with the absolute value of 

market beta.21 This is because disagreement is higher for stocks returns that are highly 

correlated with uncertainty regardless of the positive or negative sign. The use of the 

absolute value also matches my intention to examine the impact of EU on the uncertainty 

of a stock’s return distribution (the variance of the distribution). A large magnitude of the 

beta, no matter whether it is positive or negative, makes the variance of the return more 

sensitive to the change of economic uncertainty.22 

 
19 In EUE estimation, I exclude the liquidity factor introduced by Pastor and Stambaugh (2003), which is 
different from Bali, Brown and Tang (2017). This is because Pastor and Stambaugh (2003) do not consider 
stocks traded on NASDAQ in the liquidity factor, while those stocks are included in my sample. However, 
the main results are similar when I estimate EUE with the inclusion of the liquidity factor to this model. 
20 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html .  
21 In Table A-I.5 of Appendix I, I also report results obtained without taking the absolute value of the EU 
beta. I show that there is no obvious asymmetry in findings for stocks with positive and negative EU betas. 
Grouping stocks by their absolute EU betas improves the clarity of the interpretation and a consistent 
connection to the theoretical argument.  
22 I examine correlations between the log change of economic uncertainty and the other risk factors in Table 
A-I.1 of Appendix I. The correlations are very low with a maximum of -0.148 for the correlation with the 
market factor.  

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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2.4 Empirical Analyses 

2.4.1 Economic Uncertainty Exposure and Mispricing Index 

I employ bivariate portfolio analyses to examine the relation between EUE and cross-

sectional expected returns conditional on general mispricing of stocks. Following 

Stambaugh, Yu, and Yuan (2015), at the end of each month 𝑡, five portfolios are formed 

by sorting on individual stocks’ EUE estimated in Equation (2.2) up to month 𝑡. Then, 

independently another five portfolios are constructed by sorting on stocks’ mispricing score 

(MIS) in month 𝑡. Finally, 25 EUE-MIS portfolios are formed as intersections of five EUE 

and five MIS groups, and value-weighted returns are calculated during month 𝑡 + 1.23 The 

first set of the 25 portfolios is formed in July 1970. 

Before examining the portfolio returns, I study the distribution of EUE among 

these portfolios. Table 2.1 reports the average EUE (in Panel A) and the number of stocks 

(in Panel B) in 25 portfolios. Panel A shows that overpriced stocks (the Overpriced row) 

have higher EUE compared to underpriced ones (the Underpriced row). The averages of 

EUE for the five MIS portfolios monotonically decrease from 0.684 for the overpriced 

group to 0.618 for the underpriced group. This pattern holds in all subgroups with varying 

EUE. 

Furthermore, examining the number of stocks in the portfolio shows that the 

overpriced high EUE portfolio has the highest number of stocks (161) among the 25 

portfolios. It confirms that among overpriced stocks (the Overpriced row), more of them 

have a higher EUE; and among stocks with high EUE (the high EUE column), more of 

 
23 When I form 50 (10x5) EUE-MIS portfolios, the main results remain the same.  
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them are overpriced rather than underpriced.24 Given that I use independent sorting, the 

distribution of stocks suggests a strong association between overpricing and high EUE. It 

supports my hypothesis that EUE could be a common determinant of mispricing.  

Table 2.1 Economic Uncertainty Exposure of the 25 EUE-MIS portfolios 

This table reports the average EUE and the number of stocks of the 25 EUE-MIS portfolios in Panels A and 
B, respectively. The EUE is the absolute beta coefficient estimated in Equation (2.2). Variable definitions are 
listed in Appendix II. The pooled average of stocks in each portfolio over the sample period is reported. The 
sample period is from July 1970 to December 2019. 

 Low EUE 2 3 4 High EUE All Stocks 

Average EUE 

1 Overpriced 0.139 0.267 0.455 0.752 1.805 0.684 
2 0.126 0.258 0.449 0.745 1.681 0.652 
3 Non-mispricing 0.121 0.254 0.446 0.741 1.615 0.635 
4 0.118 0.253 0.446 0.741 1.562 0.624 
5 Underpriced 0.117 0.253 0.445 0.739 1.534 0.618 
All stocks 0.124 0.257 0.448 0.744 1.639  

Average No of Stocks 

1 Overpriced 95 96 104 115 161 570 
2 112 112 112 115 120 571 
3 Non-mispricing 120 119 115 113 105 572 
4 121 122 119 113 96 572 
5 Underpriced 124 123 121 116 90 574 
All stocks 572 572 572 572 571  

 

 

2.4.2 Economic Uncertainty Exposure and Cross-sectional Return: Bivariate Sort 

I next examine the risk-adjusted returns of these 25 value-weighted portfolios.25 Those 

portfolios are rebalanced at the end of each month during the sample period. The risk-

adjusted returns are alphas estimated by the following augmented Fama and French (2016) 

six-factor model: 

 

 
24 There are on average 2,859 stocks in each month in our sample, which is comparable to previous studies. 
For instance, Stambaugh, Yu, and Yuan (2015) report 3,113 stocks in each month on average, while this figure 
is 2,414 in Liu, Stambaugh, and Yuan (2018). 
25 Analyses of excess returns (return minus risk-free rate) of these portfolios can be found in Table A-I.2 of 
Appendix I. The results are consistent with the main findings.  
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 𝑅𝑝,𝑡 = 𝛼𝑝,1 + 𝛽𝑝,1𝑀𝐾𝑇𝑡 + 𝛽𝑝,2𝑆𝑀𝐵𝑡 + 𝛽𝑝,3𝐻𝑀𝐿𝑡 + 𝛽𝑝,4𝑈𝑀𝐷𝑡

+ 𝛽𝑝,5𝐼𝐴𝑡 + 𝛽𝑝,6𝑅𝑂𝐸𝑡 + 𝜀𝑖,𝑡 

 

(2.3) 

 

where 𝑅𝑝,𝑡  is the excess return of portfolio 𝑝  in month 𝑡  and 𝛼𝑝,1  is adjusted return. 

𝑀𝐾𝑇𝑡 , 𝑆𝑀𝐵𝑡 , 𝐻𝑀𝐿𝑡 , 𝑈𝑀𝐷𝑡 , 𝐼𝐴𝑡 , and 𝑅𝑂𝐸𝑡  are Fama and French factors in month t. 

Finally, t-statistics are reported in parentheses using Newey-West (1987) robust standard 

errors.  

Panel A of Table 2.2 reports the alphas for the 25 EUE-MIS portfolios. I also report 

risk-adjusted returns on average and univariate sorted portfolios for MIS (the last two 

columns) and EUE (the last two rows), respectively. I refer to the spread returns in the 

univariate sorted portfolios as measuring the unconditional MIS and unconditional EUE 

effects. Panel A confirms that there is significant unconditional mispricing. The alpha of 

the long-short portfolio is 0.33% per month with a t-statistic of 3.57, as shown in the 

univariate MIS column. However, the unconditional EUE effect on cross-sectional return 

is statistically insignificant as reported in the univariate EUE row. As I examine in the 

following analyses, this insignificant effect is due to the negative mispricing effect and the 

positive ambiguity-premium effect of EUE cancelling each other out. 

Turning our attention to the 25 double-sorted portfolios, I show that mispricing 

alphas are significant in four of the EUE quintiles and the mispricing effects (in the 

Underpriced-Overpriced row) are increasing from the low to high EUE groups in general. 

Specifically, I observe the strongest mispricing in the high EUE quintile with an alpha of 

0.75% per month (9% per annum, 𝑡 = 3.86). This is more than double the unconditional 
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mispricing alpha (0.33% per month). These findings show that stocks with higher EUE 

experience stronger mispricing in the market, supporting my first hypothesis.  

Table 2.2 Risk-adjusted Returns of 25 Portfolios Double-sorted by EUE and MIS 

This table reports the risk-adjusted returns on 5 MIS (EUE) and 25 EUE-MIS value-weighted portfolios in 
Panel A. The 25 portfolios are formed by independently sorting on EUE and the mispricing scores. The mean 
of 5 MIS (EUE) portfolios is reported in Average MIS (EUE) column (row). The 5 MIS (EUE) portfolios 
are formed by sorting individual stocks on their mispricing scores (EUE), reported in univariate MIS (EUE) 
column (row). Panel B reports the ambiguity-premium adjusted returns on the difference between each 
double-sort portfolio and the corresponding value in the middle mispricing quintile called “non-mispricing” 
group. The risk-adjusted returns are estimates of alphas estimated in Equation (2.3). Variable definitions are 
listed in Appendix II. Portfolio returns are in percent and t-statistics are reported in parentheses using Newey-
West (1987) robust standard errors with 3 lags. The sample period is from July 1970 to December 2019. ***, 
**, and * indicate significance at the 1%, 5%, and 10% levels, respectively. 

  
Low 
EUE 2 3 4 

High 
EUE 

High-
Low 

Average 
MIS 

Univariate 
MIS 

Panel A: Mispricing alphas 

1 Overpriced -0.03 -0.25** -0.47*** -0.38*** -0.44*** -0.41*** -0.31*** -0.29***  
(-0.33) (-2.15) (-3.35) (-2.98) (-3.84) (-2.74) (-4.54) (-3.90) 

2 -0.14 0.13 -0.23** 0.10 -0.06 0.08 -0.04 -0.03  
(-1.61) (1.39) (-2.19) (0.84) (-0.51) (0.55) (-0.86) (-0.56) 

3 Non-mispricing -0.11 0.09 0.03 -0.00 0.24* 0.35** 0.05 0.01 

(-1.27) (0.97) (0.32) (-0.01) (1.74) (2.17) (1.21) (0.20) 
4 0.04 0.03 -0.11 0.00 0.28* 0.24 0.05 0.01  

(0.56) (0.36) (-1.23) (0.02) (1.89) (1.37) (1.05) (0.23) 
5 Underpriced 0.01 0.10 0.01 0.05 0.31** 0.30* 0.09** 0.04  

(0.10) (1.56) (0.09) (0.50) (2.05) (1.81) (2.08) (1.15) 
Underpriced− 
Overpriced 

0.04 0.35** 0.47*** 0.43*** 0.75*** 0.71*** 0.41*** 0.33*** 

(0.30) (2.55) (2.73) (2.76) (3.86) (3.15) (4.45) (3.57) 
Average EUE -0.05 0.02 -0.16*** -0.05 0.07 0.11    

(-1.26) (0.43) (-3.06) (-0.84) (0.85) (1.21)   
Univariate EUE -0.00 0.07 -0.10** 0.01 0.09 0.09   

(-0.04) (1.57) (-2.36) (0.13) (1.15) (0.96)   
Panel B: Ambiguity premium adjusted alphas  

1 Overpriced 0.08 -0.35** -0.49*** -0.38** -0.68*** -0.75*** 

  
 

(0.55) (-2.48) (-3.01) (-2.13) (-4.00) (-3.56) 
2 -0.04 0.04 -0.26** 0.10 -0.30** -0.27 

 

 
(-0.31) (0.35) (-1.98) (0.60) (-2.11) (-1.41) 

3 Non-mispricing 
0.00 0.00  0.00 0.00 0.00 0.00   

  
4 0.15 -0.07 -0.14 0.00 0.04 -0.11 

 

 
(1.29) (-0.55) (-1.18) (0.02) (0.24) (-0.57) 

5 Underpriced 0.12 0.00 -0.02 0.05 0.07 -0.05 

 

 
(1.08) (0.03) (-0.18) (0.34) (0.36) (-0.21) 

Underpriced− 
Overpriced 

0.04 0.35** 0.47*** 0.43*** 0.75*** 0.71***   
(0.30) (2.55) (2.73) (2.76) (3.86) (3.15)     

 

Examining the EUE effect in the middle quintile of the mispricing (the “3 Non-

mispricing” row of Panel A), the high-low EUE portfolio generates a significant alpha of 

0.35% per month (4.2% annualized) with a t-statistic of 2.17. It confirms that exposure to 
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EU is priced in non-mispricing portfolios. This finding provides evidence for the existence 

of the ambiguity premium, which is different from those mispricing factors and known risk 

factors, supporting my second hypothesis. 

Traditionally, overpricing is more prominently observed than underpricing due to 

short-sale constraints (Stambaugh, Yu, and Yuan, 2012). I confirm this finding in Panel A. 

The monthly high-low EUE alpha is −0.41% in the overpricing group and 0.30% in the 

underpricing group in Panel A. However, when I test the statistical significance, the absolute 

magnitude of these two alphas are not statistically different from each other. This is because 

the returns in both mispricing legs would also be affected by the ambiguity-premium effects. 

In other words, stocks with a high level of EUE would have a positive ambiguity premium 

attached to them. This not only applies to the non-mispricing group, but also all other 

stocks regardless of their mispricing status. To see a pure mispricing effect, I control for 

the ambiguity premium by longing the overpriced (or underpriced) leg and shorting the 

corresponding middle “non-mispricing” group for each of the EUE quintiles. Intuitively, 

the ambiguity premium recorded by the non-mispricing group would also be applied to all 

stocks with the same level of EUE quintile. As expected, Panel B shows that after removing 

the ambiguity-premium effect overpricing is much more prominent than underpricing. 

Alphas of overpriced portfolios become more negative as EUE increases from low to high, 

confirming the amplification effect of EUE on overpricing stocks. By contrast, there is no 

evidence of the EUE effect on the underpriced leg. This evidence provides further support 

to my first hypothesis that disagreement and short-sale constraints contribute to overpricing 

instead of underpricing and is consistent with the model of Hong and Sraer (2016). 

Finally, comparing the combined (average) effect of EUE shown in the “univariate 

EUE” (Average EUE) row to the pure ambiguity-premium effect in the non-mispricing 
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row, I can see that the overall “ambiguity premium” disappeared in the univariate EUE 

sorted portfolios. This is because the average negative mispricing effect (the effect of EUE 

is more prominent among overpriced stocks than among underpriced stocks, as I discussed 

above) reduces the overall positive risk premium. 

Overall, my results document that EUE has two effects on cross-sectional asset 

pricing. There is significant and economically large mispricing among stocks with high EUE 

and a positive risk premium effect in the non-mispricing group. The mispricing effect is 

more apparent in overpricing, which produces a negative effect on stock returns. When 

considering the overall EUE effect on the high EUE stocks, this negative mispricing effect 

cancels out the positive risk premium effect, and I cannot observe a clear EUE effect on 

the cross-sectional returns. These findings demonstrate the importance of disentangling the 

two channels of effects in order to understand the economic impact of EUE on asset 

pricing. 

 

2.4.3 Economic Uncertainty Exposure and Cross-sectional Return: Regressions 

In the last section, I study the risk-adjusted returns for bivariate-sorted portfolios. The 

results are intuitive and practically relevant to investment return from the factor investing 

point of view. In this section, I examine my hypotheses at the stock level using the 

traditional Fama-MacBeth (1973) cross-sectional regressions. Petersen (2009) shows that 

the Fama-MacBeth procedure gives downward-biased standard errors despite Newey-

West’s (1987) adjustment used in estimations.26 Therefore, I also employ a series of panel 

 
26 For more details and extensive literature re-examined and compared using different estimation methods, 
see Petersen (2009). 
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regressions for double-clustered standard errors at the firm and year levels. I test the effect 

of firm-level EUE exposure on monthly excess returns by the following model: 

 

 
𝑌𝑝,𝑡+1 = 𝜆0,𝑡 + 𝜆1𝐸𝑈𝐸𝑝,𝑡 + 𝜆2𝑀𝐼𝑆𝑝,𝑡 + 𝜆3𝑀𝐼𝑆 ∗ 𝐸𝑈𝐸𝑝,𝑡 + ∑ 𝜆𝑗𝑋𝑝,𝑡

𝑛

𝐽=4

+ 𝐹𝑖𝑥𝑒𝑑 𝐸𝑓𝑓𝑒𝑐𝑡𝑠 + 𝜀𝑖,𝑡 

 

(2.4) 

 

where 𝑌𝑝,𝑡+1 is the excess return for stock 𝑝 in month 𝑡 + 1. 𝑋𝑝,𝑡  is a set of stock-specific 

variables in month 𝑡 for stock 𝑝, including 𝛽𝐶𝐴𝑃𝑀, 𝐷𝐼𝑆𝑃, 𝐼𝑉𝑂𝐿, 𝑇𝑂, 𝑆𝐼𝑍𝐸, 𝑀𝑂𝑀, 𝑅𝐸𝑉, 

𝐵𝑀, 𝐼𝐿𝐿𝐼𝑄, 𝑅𝑂𝐸, and 𝐼/𝐴. All variables are defined in Appendix II. In Fama-MacBeth 

regressions, I control for industry fixed effect and standard errors are robust using Newey-

West (1987) with three lags. In panel regressions, firm/industry and year fixed effects are 

included, and standard errors are double-clustered at the firm/industry and year levels 

(Cameron, Gelbach, and Miller, 2011). I report the regression results in Table 2.3.  

Panel A reports the Fama-MacBeth regressions with industry fixed effect. It shows 

that without controlling for other factors, EUE is negatively correlated with the next 

period’s return cross-sectionally. Controlling for the mispricing index itself does not change 

the sign. The benchmark MIS effect as shown in Equation 2 is negative as expected since 

the higher the MIS index, the more overpriced the stock. What I am interested in is the 

main specification in which the EUE’s mispricing effect is controlled for in Equations 3 

and 4. When the interaction between EUE and MIS is included, the coefficient for the 
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Table 2.3 Fama-MacBeth and Panel Regressions of Excess Returns 

This table reports Fama-MacBeth cross-sectional and panel predictive regressions of monthly excess returns in Equation (2.4). Variable definitions are listed in Appendix II. 
In Fama-MacBeth regressions, industry fixed effect is included, and standard errors are robust using Newey-West (1987) with 3 lags. In panel regressions, firm/industry and 
year fixed effects are included, and standard errors are double-clustered at the firm and the year levels. The slope coefficients are in percent and t-statistics are reported in 
parentheses. The sample period for the full specification is from December 1981 to December 2019, due to DISP availability. ***, **, and * indicate significance at the 1%, 
5%, and 10% levels, respectively. 

 Panel A: Fama-MacBeth regressions  Panel B: Panel regressions 
  1 2 3 4   1 2 3 4 

EUE -0.166*** -0.087** 0.454*** 0.463***  0.005 -0.209** 0.033 -0.130 0.289* 0.475*** 0.583*** 0.620*** 

 (-3.47) (-2.05) (4.53) (2.71)  (0.081) (-2.066) (0.538) (-1.306) (1.951) (3.614) (2.723) (2.990) 
MIS  -0.028*** -0.021*** -0.009***    -0.024*** -0.032*** -0.021*** -0.024*** -0.009 -0.019*** 

  (-8.92) (-6.43) (-3.07)    (-5.189) (-7.870) (-4.234) (-5.564) (-1.470) (-3.649) 
EUE*MIS   -0.010*** -0.009***      -0.005** -0.011*** -0.007** -0.012*** 

   (-6.18) (-2.78)      (-2.226) (-6.620) (-2.124) (-2.969) 
βCAPM    0.010        -0.151 -0.105 

    (0.09)        (-0.699) (-0.749) 
DISP    -0.059        0.002 0.000 

    (-0.96)        (0.528) (0.011) 
IVOL    -9.319**        39.997*** 13.011 

    (-2.55)        (2.746) (1.061) 
TO    0.015        -0.192*** -0.028 

    (0.45)        (-3.396) (-0.677) 
SIZE    -0.000**        -0.000*** -0.000* 

    (-2.29)        (-2.744) (-1.868) 
MOM    0.278*        -0.565** -0.239 

    (1.80)        (-2.615) (-1.052) 
REV    -3.430***        -1.989** -0.727 

    (-7.89)        (-2.209) (-0.817) 
BM    0.067        0.780*** 0.210* 

    (0.84)        (4.579) (1.835) 
ILLIQ    5.855        0.027 -0.078* 

    (0.88)        (1.150) (-1.965) 
ROE    0.845**        -0.004 -0.004 

    (2.22)        (-1.114) (-1.375) 
I/A    -0.207***        -0.289*** -0.199*** 

    (-3.37)        (-3.847) (-3.664) 
Constant 0.880*** 2.237*** 1.868*** 1.288***  0.794*** 0.937*** 1.980*** 2.469*** 1.801*** 2.042*** 0.581 1.622*** 

 (3.85) (13.42) (11.96) (7.25)  (18.761) (13.466) (8.346) (11.205) (7.084) (8.851) (1.649) (4.525) 

            
(Continued) 
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Table 2.3 – Continued 

 Panel A: Fama-MacBeth regressions  Panel B: Panel regressions 
  1 2 3 4   1 2 3 4 
obs 1701548 1697868 1697868 612206  1701730 1702076 1697533 1697868 1698052 1698389 612055 612206 
R-sq 0.047 0.053 0.054 0.134  0.029 0.013 0.029 0.015 0.029 0.015 0.034 0.014 
Adj R-sq 0.043 0.049 0.049 0.116   0.019 0.013 0.020 0.015 0.020 0.015 0.022 0.014 

Firm FE N/A N/A  N/A N/A   Yes No Yes No Yes No Yes No 
Industry FE Yes Yes Yes Yes  No  Yes No  Yes No  Yes No  Yes 
Year FE N/A N/A  N/A  N/A   Yes Yes Yes Yes Yes Yes Yes Yes 
Cluster by Firm N/A N/A  N/A  N/A   Yes Yes Yes Yes Yes Yes Yes Yes 
Cluster by Year N/A N/A  N/A  N/A    Yes Yes Yes Yes Yes Yes Yes Yes 
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Interaction of EUE and MIS is negative. Higher EUE would amplify the negative 

mispricing effect that I observed in the benchmark MIS coefficient, which supports my 

mispricing hypothesis. Furthermore, when the mispricing effect is fully controlled for by 

the benchmark MIS and the interaction, the EUE coefficient is positive and significant 

(0.45%, 𝑡 = 4.53 ). This captures the ambiguity-premium effect and supporting my 

hypothesis of a positive ambiguity premium once the EUE-induced mispricing effect is 

controlled for. The results are consistent after controlling for other firm-level characteristics 

and using alternative panel data estimation methods in Panel B. 

 

2.4.4 Time Series Variation of Economic Uncertainty 

In this section, I further examine whether time-varying economic uncertainty affects the 

cross-sectional mispricing and ambiguity premium. If EUE induces heterogeneous beliefs 

in the stock valuation, such effect is likely to be stronger following periods of increasing 

economic uncertainty. This is because such heterogenous beliefs are exacerbated in these 

periods.   

To test this prediction, I divide the sample into two groups: month 𝑡 is an increasing 

(decreasing) EU month if the change of the EU index in month 𝑡 is positive (negative). 

There are 276 increasing and 318 decreasing EU months in my sample, respectively. 

I obtain risk-adjusted returns following the increasing and decreasing EU periods 

by modifying my main model using two subperiod intercept dummies: 
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 𝑅𝑝,𝑡 = 𝛼𝐻𝑑𝐻,𝑡−1 + 𝛼𝐿𝑑𝐿,𝑡−1 + 𝛽𝑝,1𝑀𝐾𝑇𝑡 + 𝛽𝑝,2𝑆𝑀𝐵𝑡 + 𝛽𝑝,3𝐻𝑀𝐿𝑡

+ 𝛽𝑝,4𝑈𝑀𝐷𝑡 + 𝛽𝑝,5𝐼𝐴𝑡 + 𝛽𝑝,6𝑅𝑂𝐸𝑡 + 𝜀𝑖,𝑡 

 

(2.5) 

 

where 𝑅𝑝,𝑡 is the excess return of portfolio 𝑝 in month 𝑡. 𝑑𝐻,𝑡−1 and 𝑑𝐿,𝑡−1 are dummy 

variable indicating increasing and decreasing EU periods, respectively. 𝑀𝐾𝑇𝑡 , 𝑆𝑀𝐵𝑡 , 

𝐻𝑀𝐿𝑡, 𝑈𝑀𝐷𝑡 , 𝐼𝐴𝑡, and 𝑅𝑂𝐸𝑡 are Fama and French market factors in month 𝑡.  Table 2.4 

reports risk-adjusted returns following increasing and decreasing EU periods in different 

EUE groups. 

Consistent with the prediction, the EUE effect on mispricing is much stronger 

following periods of increasing EU in Panel A. The spread between underpriced and 

overpriced legs in the high EUE group is significant (1.12% per month, 𝑡 = 3.76) after the 

increasing EU period. This is higher than the unconditional mispricing spread (0.44% per 

month, 𝑡 = 3.04) following the same period. By contrast, as shown in Panel B, following 

the decreasing EU periods, the spread of mispricing portfolios in high EUE group is about 

half of that following the increasing EU periods. Additionally, the monotonic increasing 

pattern of returns with EUE is less clear. 

Similarly, I show that the ambiguity-premium effect is only observable following 

periods with increasing uncertainty. The alpha of high-low EUE portfolios in the non-

mispricing group is significant (0.44% per month, 𝑡 = 2.06) which is higher than the whole 

sample period results shown in Table 2.2. 

Overall, the subperiod analysis further confirms that increasing uncertainty is the 

main driver of the EUE effect on asset pricing. Practically, a mispricing investment strategy 

that is concentrated on only stocks in the highest EUE quintile and only invested following 
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periods of increasing economic uncertainty would earn a risk-adjusted return of 13.44% per 

annum (1.12%×12) based on FF-6 factor-alpha. This is more than three times the 

unconditional mispricing strategy shown in Table 2.2. The ambiguity premium is also found 

to be higher following a period with increasing economic uncertainty. This suggests that 

economic uncertainty is indeed a driver for this ambiguity premium. 

Table 2.4 Portfolio returns following increasing and decreasing EU periods 

The table reports the risk-adjusted returns on 5 MIS (EUE) and 25 EUE-MIS value-weighted portfolios 
following increasing and decreasing EU periods in Panel A and B respectively. The 25 portfolios are formed 
by independently sorting on EUE and the mispricing scores. The mean of 5 MIS (EUE) portfolios is reported 
in Average MIS (EUE) column (row). The 5 MIS (EUE) portfolios are formed by sorting individual stocks 
on their mispricing scores (EUE), reported in univariate MIS (EUE) column (row). The risk-adjusted returns 
are estimates of alphas estimated in Equation (2.5). Variable definitions are listed in Appendix II. Portfolio 
returns are in percent and t-statistics are reported in parentheses using Newey-West (1987) robust standard 
errors with 3 lags. The sample period is from July 1970 to December 2019. If the change of the EU index by 
Jurado, Ludvigson and Ng (2015) in month t-1 is positive (negative), then month t is increasing (decreasing)-
EU month. There are 276 increasing and 318 decreasing EU months, respectively. ***, **, and * indicate 
significance at the 1%, 5%, and 10% levels, respectively. 

  
Low 
EUE 2 3 4 

High 
EUE 

High-
Low 

Average 
MIS 

Univariate 
MIS 

Panel A: High EU Period 

1 Overpriced -0.13 -0.12 -0.48*** -0.50*** -0.52*** -0.39* -0.35*** -0.33***  
(-0.82) (-0.74) (-2.63) (-2.92) (-3.05) (-1.71) (-3.40) (-2.95) 

2 -0.15 0.21 -0.23 0.03 -0.11 0.048 -0.05 -0.03  
(-1.13) (1.41) (-1.61) (0.18) (-0.58) (0.21) (-0.76) (-0.49) 

3 Non-mispricing -0.21 0.07 0.038 -0.04 0.24 0.44** 0.02 -0.04 
(-1.56) (0.59) (0.29) (-0.25) (1.24) (2.06) (0.32) (-0.65) 

4 0.06 -0.06 -0.21 -0.08 0.33 0.27 0.01 -0.05  
(0.60) (-0.54) (-1.60) (-0.64) (1.52) (1.07) (0.083) (-0.83) 

5 Underpriced -0.01 0.22** 0.07 0.23 0.60*** 0.61** 0.22*** 0.11*  
(-0.06) (2.10) (0.59) (1.52) (2.72) (2.55) (3.44) (1.82) 

Underpriced− 
Overpriced 

0.12 0.34* 0.55** 0.73*** 1.12*** 1.00*** 0.57*** 0.44*** 
(0.60) (1.70) (2.34) (3.34) (3.76) (2.99) (4.13) (3.04) 

Average EUE -0.09 0.07 -0.16** -0.07 0.11 0.20    
(-1.49) (0.95) (-2.12) (-0.89) (1.00) (1.49)   

Univariate EUE  -0.027 0.09 -0.09 -0.01 0.18 0.21   
(-0.49) (1.53) (-1.38) (-0.13) (1.56) (1.48)     

Panel B: Low EU Period 

1 Overpriced 0.06 -0.37** -0.46*** -0.27 -0.36** -0.42** -0.28*** -0.24***  
(0.46) (-2.46) (-2.70) (-1.58) (-2.43) (-2.18) (-3.43) (-2.92) 

2 -0.13 0.07 -0.24* 0.16 -0.02 0.11 -0.03 -0.02  
(-1.24) (0.55) (-1.71) (1.09) (-0.14) (0.63) (-0.53) (-0.31) 

3 Non-mispricing -0.02 0.11 0.02 0.03 0.24 0.26 0.08 0.05 
(-0.19) (0.92) (0.17) (0.22) (1.40) (1.22) (1.40) (0.96) 

4 0.02 0.10 -0.02 0.08 0.24 0.21 0.09 0.06  
(0.25) (1.03) (-0.18) (0.73) (1.43) (1.02) (1.64) (1.18) 

5 Underpriced 0.02 -0.01 -0.05 -0.11 0.05 0.03 -0.02 -0.01  
(0.19) (-0.12) (-0.54) (-0.90) (0.24) (0.12) (-0.38) (-0.24) 

Underpriced− 
Overpriced 

-0.04 0.36** 0.41* 0.16 0.41* 0.45 0.26** 0.23** 
(-0.22) (2.06) (1.91) (0.78) (1.71) (1.57) (2.34) (2.13) 

Average EUE -0.01 -0.02 -0.15** -0.02 0.03 0.04   
 (-0.22) (-0.37) (-2.49) (-0.33) (0.29) (0.32)   

Univariate EUE  
0.02 0.05 -0.11** 0.02 0.01 -0.09   

(0.47) (0.95) (-2.00) (0.33) (0.13) (-0.07)     
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2.5 Further Analyses 

In this section, I provide further analyses to examine links between the EUE and cross-

sectional returns and further identify the two channels of impacts. 

I first consider the rational channel. I examine to what extent the existing cross-

sectional risk model can explain these two types of EUE effect. I then extend my empirical 

study to consider alternative macro uncertainty measures to understand the source of 

information of my EUE measure. Finally, I study these two channels controlling for limits 

of arbitrage. 

 

2.5.1 Can Alternative Risk Models Explain Two Channels of EUE Effect? 

If the real pricing process is driven by a multifactor risk model, to obtain a clear inference 

of a new factor, one needs to control for known factors. With the gradual development of 

the multifactor model literature adding more and more risk factors to the list, I would like 

to understand what the marginal contribution is of bringing the EUE into the consideration 

in the cross-sectional asset pricing. To this end, I examine the robustness of my findings 

with alternative risk models. 

In my main results in Table 2.2, I use an augmented FF six-factor model defined in 

Equation (2.3). Panel A of Table 2.5 reports risk-adjusted returns on the selected EUE-MIS 

portfolios with the market model and two alternative versions of the augmented FF factor 

models. It shows that both mispricing and ambiguity-premium effects are robust to these 

risk model specifications in Panel A. The mispricing alphas are statistically significant, 

ranging from 0.50% to 1.05% per month in the high EUE group. Except for the CAPM 
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model, these alphas are larger than the unconditional mispricing return. The ambiguity 

premium decreases as more factors are included. 

In addition to FF models, I also consider the q-factor (Hou, Xue, and Zhang, 2015; 

Hou et al., 2020) and the MSP models (Stambaugh and Yuan, 2017).27 The results are 

reported in Panel B. 

The effect of EUE on the mispricing is significant when using the q4 and MSP 

models. The monthly alpha of the “Underpriced−Overpriced” portfolio in the high EUE 

portfolio is 0.80% (𝑡 = 3.41) for the q4 model and 0.38% (𝑡 = 2.10) for the MSP model. 

The exception is when the q5 model is considered. It can fully account for the mispricing 

effects as indicated by the insignificant alpha of the Underpriced−Overpriced portfolio in 

the high EUE group. This reveals more insights into the economic driver of the EUE 

mispricing effect. In the q5 model, Hou et al. (2020) introduce intangibles investments as a 

part of the expected growth factor. They show that this model can capture mispricing in 

various anomalies successfully when compared to the q4 and MSP models. The fact that 

adding this additional factor takes away the EUE-induced mispricing effect suggests that 

EUE shares similar economic drivers with the expected growth factor. Potentially, EU is a 

state variable that affects future consumption and investment opportunities/decisions. 

Importantly, EUE ambiguity premiums in non-mispricing groups are strong in all 

models. Alphas on “high-low” portfolios constructed on EUE in the third mispricing 

groups are significant, 0.44% per month (𝑡 = 1.94), 0.47% per month (𝑡 = 2.35) and 

0.42% per month (𝑡 = 3.04) in the q4, q5, and MSP models, respectively. 

 
27 See Appendix II for a detailed description of the factors. The monthly value of the mispricing up to 
December 2016 and the q-factors are from http://finance.wharton.upenn.edu/~stambaug/ and 
http://global-q.org/factors.html, respectively. 

http://finance.wharton.upenn.edu/~stambaug/
http://global-q.org/factors.html
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Table 2.5 Effect of Different Risk Models 

This table reports the risk-adjusted returns on overpriced, underpriced, and non-mispricing double-sort portfolios. The portfolios are formed by independently sorting on 
EUE and the mispricing scores. The univariate MIS (EUE) portfolios is reported in univariate MIS (EUE) column (row). The risk-adjusted returns are estimates of alphas 
from the following models:  

 𝐶𝐴𝑃𝑀: 𝑅𝑝,𝑡 = 𝛼𝑝,1 + 𝛽𝑝,1𝑀𝐾𝑇𝑡 + 𝜀𝑖,𝑡  

 𝐹𝐹5   ∶  𝑅𝑝,𝑡 = 𝛼𝑝,1 + 𝛽𝑝,1𝑀𝐾𝑇𝑡 + 𝛽𝑝,2𝑆𝑀𝐵𝑡 + 𝛽𝑝,3𝐻𝑀𝐿𝑡 + 𝛽𝑝,4𝐼𝐴𝑡 + 𝛽𝑝,5𝑅𝑂𝐸𝑡 + 𝜀𝑖,𝑡 ,  

 𝐹𝐹7   ∶  𝑅𝑝,𝑡 = 𝛼𝑝,1 + 𝛽𝑝,1𝑀𝐾𝑇𝑡 + 𝛽𝑝,2𝑆𝑀𝐵𝑡 + 𝛽𝑝,3𝐻𝑀𝐿𝑡 + 𝛽𝑝,4𝑈𝑀𝐷𝑡 + 𝛽𝑝,5𝐼𝐴𝑡 + 𝛽𝑝,6𝑅𝑂𝐸𝑡 + 𝛽𝑝,7𝐿𝐼𝑄𝑡 + 𝜀𝑖,𝑡   

 𝑞4      ∶ 𝑅𝑝,𝑡 = 𝛼𝑝,1 + 𝛽𝑝,1𝑀𝐾𝑇𝑡 + 𝛽𝑝,2𝑄𝑆𝑀𝐵𝑡 + 𝛽𝑝,3𝑄𝐼𝐴𝑡 + 𝛽𝑝,4𝑄𝑅𝑂𝐸𝑡 + 𝜀𝑖,𝑡  

 𝑞5      ∶ 𝑅𝑝,𝑡 = 𝛼𝑝,1 + 𝛽𝑝,1𝑀𝐾𝑇𝑡 + 𝛽𝑝,2𝑄𝑆𝑀𝐵𝑡 + 𝛽𝑝,3𝑄𝐼𝐴𝑡 + 𝛽𝑝,4𝑄𝑅𝑂𝐸𝑡 + 𝛽𝑝,5𝑄𝐸𝐺𝑡 + 𝜀𝑖,𝑡 

 𝑀𝑆𝑃  ∶  𝑅𝑝,𝑡 = 𝛼𝑝,1 + 𝛽𝑝,1𝑀𝐾𝑇𝑡 + 𝛽𝑝,2𝑀𝑆𝑀𝐵𝑡 + 𝛽𝑝,3𝑀𝐺𝑀𝑇𝑡 + 𝛽𝑝,4𝑃𝐸𝑅𝐹𝑡 + 𝜀𝑖,𝑡 

𝑅𝑝,𝑡 is the excess return of portfolio 𝑝 in month 𝑡 and 𝛼𝑝,1 is adjusted return in percent. 𝑀𝐾𝑇𝑡 , 𝑆𝑀𝐵𝑡 , 𝐻𝑀𝐿𝑡 , 𝑈𝑀𝐷𝑡 , 𝐼𝐴𝑡 , and 𝑅𝑂𝐸𝑡  are Fama and French market factors 

and 𝐿𝐼𝑄𝑡  is the level of aggregate market liquidity in month t.. 𝑄𝑆𝑀𝐵𝑡 , 𝑄𝐼𝐴𝑡 , 𝑄𝑅𝑂𝐸𝑡  and 𝑄𝐸𝐺𝑡 are Hou, Xue and Zhang (2015) and Hou et al. (2020) q-factors in month 𝑡. 

𝑀𝑆𝑀𝐵𝑡  𝑀𝐺𝑀𝑇𝑡 , and 𝑃𝐸𝑅𝐹𝑡 are Stambaugh and Yuan (2017) mispricing factors in month 𝑡. Variable definitions are listed in Appendix II. Portfolio returns are in percent 
and t-statistics are reported in parentheses using Newey-West (1987) robust standard errors with 3 lags. The sample period is from July 1970 to December 2016 for MSP and. 
to December 2019 for the other models. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively. 

  Low High H-L Uni MIS  Low High H-L Uni MIS  Low High H-L Uni MIS 

Panel A: CAPM and Fama French models 

 CAPM   FF5   FF7 

1 Overpriced -0.15 -0.45*** -0.30* -0.62***  -0.22* -0.58*** -0.37** -0.47***  -0.04 -0.33*** -0.29 -0.24***  
(-1.14) (-3.80) (-1.89) (-6.57)  (-1.82) (-4.32) (-2.46) (-4.66)  (-0.32) (-2.68) (-1.62) (-3.12) 

3 Non-mispricing -0.13 0.31* 0.44** -0.00  -0.14* 0.31** 0.45*** -0.01  -0.09 0.24 0.34* 0.01 
(-1.28) (1.75) (1.97) (-0.10)  (-1.76) (2.12) (2.61) (-0.32)  (-0.95) (1.62) (1.76) (0.35) 

5 Underpriced 0.02 0.34* 0.32* 0.24***  0.07 0.46*** 0.40** 0.12***  -0.03 0.17 0.20 0.01  
(0.27) (1.88) (1.65) (4.83)  (0.91) (2.75) (2.27) (2.65)  (-0.36) (1.13) (1.19) (0.28) 

Underpriced− 
Overpriced 

0.17 0.80*** 0.62*** 0.87***  0.28* 1.05*** 0.76*** 0.59***  0.01 0.50** 0.49** 0.25*** 
(1.01) (3.41) (2.65) (6.59)  (1.80) (4.29) (3.25) (4.47)  (0.08) (2.58) (2.03) (2.61) 

Univariate EUE  
0.10** -0.15 -0.24*   -0.01 0.13 0.14   -0.01 0.06 0.07  
(2.02) (-1.33) (-1.67)   (-0.26) (1.43) (1.29)   (-0.13) (0.75) (0.65)  

              (Continued) 
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Table 2.5 – Continued 

  Low High H-L Uni MIS  Low High H-L Uni MIS  Low High H-L Uni MIS 

Panel B: Investment Based q and Mispricing models  
q4  q5  MSP 

1 Overpriced -0.15 -0.45*** -0.30* -0.38***  -0.05 -0.17 -0.12 -0.11  0.12 -0.21* -0.33* -0.07  
(-1.14) (-3.80) (-1.89) (-3.24)  (-0.40) (-1.30) (-0.70) (-1.06)  (1.11) (-1.76) (-1.93) (-1.20) 

3 Non-mispricing -0.13 0.31* 0.44** 0.01  -0.07 0.40** 0.47** 0.10**  -0.07 0.36** 0.42** 0.06 
(-1.28) (1.75) (1.97) (0.14)  (-0.68) (2.39) (2.25) (2.21)  (-0.65) (2.58) (2.46) (1.24) 

5 Underpriced 0.02 0.34* 0.32* 0.07  -0.19** 0.06 0.25 -0.13***  -0.15* 0.17 0.32* -0.08**  
(0.27) (1.88) (1.65) (1.29)  (-2.25) (0.35) (1.23) (-2.65)  (-1.87) (1.12) (1.70) (-2.25) 

Underpriced− 
Overpriced 

0.17 0.80*** 0.62*** 0.45***  -0.14 0.23 0.37 -0.02  -0.26* 0.38** 0.64*** -0.01 
(1.01) (3.41) (2.65) (2.90)  (-0.83) (1.10) (1.55) (-0.14)  (-1.91) (2.10) (2.70) (-0.16) 

Univariate EUE  
-0.00 0.14 0.14   -0.06 0.21* 0.27**   -0.05 0.18** 0.23**  
(-0.03) (1.21) (1.00)     (-1.33) (1.90) (1.99)     (-1.13) (2.05) (2.00)   
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Collectively, results obtained when using alternative risk models reveal further 

insights regarding the two channels of the EUE effect. In general, when a given risk model 

cannot explain the unconditional mispricing, EUE’s amplification of the mispricing effect 

would also be more apparent. EUE’s influence on known mispricing anomalies is weakened 

as more elaborated multifactor models are used as a benchmark model in general. This 

suggests that the EUE-induced mispricing effects are partly correlated with the underlying 

economic drivers of those risk factors. By contrast, the ambiguity-premium effect of EUE 

remains strong when other risk premiums are controlled with more elaborated risk models. 

In fact, the largest ambiguity premium comes from the q5 model when the mispricing effect 

is fully explained. This demonstrates the robustness of the EUE-induced ambiguity 

premium as a new factor that is different from existing risk and mispricing factors. 

 

2.5.2 Does the Measure of Uncertainty Matter? 

Previous studies have used different proxies for economic uncertainty, including the Survey 

of Professional Forecasters (for example, D’Amico and Orphanides, 2008; Glas and 

Hartman, 2016; Li, 2016), VRP (Bali and Zhou, 2016), and the JLN measure (Bali, Brown, 

and Tang, 2017). Mixed findings in the previous literature may be due to the choice of 

proxies. To verify if my findings are unique due to the use of the JLN uncertainty measure, 

I provide a unified study to compare the difference among these measures. 

For analysis using macro forecasters’ dispersions, following Li (2016), I consider 

dispersion in various economic forecasts including GDP, industrial production (INPR), and 

nonresidential fixed investment (RNRSN) at the growth rates, and unemployment rate 

(UNEM), Treasury-bill (TBILL), and inflation rate (CPI). The cross-sectional forecast 

dispersions are measured as the difference between the 75th percentile and 25th percentile 
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of quarterly forecasts from the Survey of Professional Forecasters (SPF) database. 28  I 

estimate quarterly macro-disagreement beta for each measure separately from a 20-quarter 

rolling regression for each stock with the model specified in Equation (2.2) by replacing 

∆𝑈𝑁𝐶𝑡 with the log changes of these macro-dispersion proxies. Similar to the main analysis, 

I measure the exposure to these macro-dispersions by the absolute value of beta (hereafter 

ADSM). Since this measure is updated quarterly, the same beta from the prior quarter-end 

is used to form the monthly portfolios in each quarter. Finally, the 25 ADSM-MIS 

portfolios are formed as intersections of five ADSM-beta and the five MIS groups, and 

value-weighted portfolio returns are calculated.  

The results in Table 2.6 provide additional evidence to support my main findings 

that EU measured by macro-disagreement amplifies mispricing of the anomalies. The 

alphas of the “Underpriced−Overpriced” portfolios in the high ADSM quintiles are 

statistically positive for all dispersion measures, ranging from 0.56% to 0.84% per month. 

These results suggest that my findings regarding the amplification effect are not specific to 

a particular uncertainty measure. However, the ambiguity-premium effect is less observable 

in the non-mispricing group when using these proxies,29 and it only exists when using the 

dispersion of growth in GDP forecast. The alpha of the “high-low” portfolio constructed 

on ADSMGDP beta is significant (0.34% per month, 𝑡 = 2.28). This suggests that exposure 

to the uncertainty of GDP is one of the most important sources of ambiguity for which 

investors demand a premium. 

 
28 https://www.philadelphiafed.org/research-and-data/real-time-center/survey-of-professional-forecasters . 
To form each of those macro-disagreement proxies, I take the mean value of the available forecast 
dispersion at all forecast horizons (Li, 2016). 
29 Similarly, the unconditional effect of these macro-disagreement exposures is not observable with the 
exception of using the TBILL dispersion. This is consistent with Li (2016), who fails to find the unconditional 
pricing effect. 

https://www.philadelphiafed.org/research-and-data/real-time-center/survey-of-professional-forecasters
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Table 2.6 Source of Uncertainty I: Macro-disagreement measured by the Survey of Professional Forecasters 

This table reports the risk-adjusted returns on overpriced, underpriced, and non-mispricing double-sort portfolios. Those macro-disagreement variables are forecast dispersion 
in the unemployment rate (UNEM), growth in GDP, industrial production (INPR), nonresidential fixed investment (RNRSN), the level of Treasury-bill (TBILL) and inflation 
rate (CPI). The portfolios are formed by independently sorting on the absolute value of macro-disagreement (ADSM) betas and the mispricing score. The univariate ADSM 
(MIS) portfolios are reported in the Univariate ADSM (MIS) row (column). The risk-adjusted returns are estimates of alphas estimated in Equation (2.3). Variable definitions 
are listed in Appendix II. Portfolio returns are in percent and t-statistics are reported in parentheses using Newey-West (1987) robust standard errors with 3 lags. The sample 
period is from January 1974 for UNEM, GDP and INPR, and from October 1986 for RNRSN, TBILL, and CPI to December 2019. ***, **, and * indicate significance at the 
1%, 5%, and 10% levels, respectively. 

  
Low 

ADSMGDP 
High 

ADSMGDP 
High – 
Low 

Low 
ADSMINPR 

High 
ADSMINPR 

High – 
Low 

Low 
ADSMUNEM 

High 
ADSMUNEM 

High – 
Low 

Univariate 
MIS 

1 Overpriced -0.23 -0.37*** -0.15 -0.11 -0.25** -0.15 0.02 -0.55*** -0.57*** -0.29*** 
 (-1.62) (-3.12) (-0.79) (-0.88) (-2.16) (-0.82) (0.16) (-4.05) (-2.82) (-3.80) 

3 Non-mispricing -0.17* 0.18 0.34** -0.14 0.10 0.24 -0.17 -0.07 0.10 -0.01 
 (-1.79) (1.50) (2.28) (-1.43) (0.85) (1.51) (-1.63) (-0.55) (0.58) (-0.21) 
5 Underpriced  0.02 0.19 0.17 0.03 0.51*** 0.48*** -0.01 0.30* 0.31* 0.04 
 (0.20) (1.30) (0.91) (0.30) (3.28) (2.90) (-0.17) (1.91) (1.75) (1.04) 
Underpriced− 
Overpriced 

0.25 0.56*** 0.31 0.13 0.76*** 0.63*** -0.03 0.84*** 0.88*** 0.34*** 
(1.47) (3.11) (1.36) (0.94) (3.76) (2.60) (-0.22) (4.16) (3.43) (3.47) 

Univariate -0.03 -0.00 0.02 -0.03 0.14* 0.16* -0.02 0.06 0.08  
 (-0.78) (-0.06) (0.24) (-0.66) (1.84) (1.79) (-0.37) (0.69) (0.71)  

  
Low 

ADSMTBILL 
High 

ADSMTBILL 
High – 
Low 

Low 
ADSMRNRSN 

High 
ADSMRNRSN 

High – 
Low 

Low 
ADSMCPI 

High 
ADSMCPI 

High – 
Low 

 

1 Overpriced -0.18 -0.40** -0.22 -0.18 -0.24 -0.06 0.19 -0.43** -0.25 -0.35*** 
 (-1.33) (-2.44) (-1.04) (-1.24) (-1.56) (-0.29) (-1.33) (-2.35) (-1.07) (-3.81) 
3 Non-mispricing 0.03 -0.17 -0.19 -0.11 -0.03 0.08 -0.19 -0.07 0.12 0.03 
 (0.25) (-1.08) (-1.07) (-0.93) (-0.18) (0.39) (-1.16) (-0.55) (0.50) (0.64) 
5 Underpriced  -0.01 0.43** 0.44* 0.15 0.41*** 0.26 -0.03 0.38** 0.41** -0.00 
 (-0.12) (2.25) (1.87) (1.37) (2.91) (1.40) (-0.33) (2.15) (1.98) (-0.12) 
Underpriced− 
Overpriced 

0.17 0.83*** 0.66** 0.33* 0.65*** 0.32 0.16 0.81*** 0.65** 0.35*** 
(0.94) (3.25) (2.01) (1.84) (2.87) (1.09) (0.98) (3.16) (2.23) (3.14) 

Univariate -0.01 0.09 0.10 0.00 0.07 0.07 -0.03 0.10 0.13  

 (-0.31) (0.96) (0.87) (0.03) (0.92) (0.72) (-0.52) (1.02) (0.98)  
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Table 2.7 Source of Uncertainty II: Macro-disagreement measured by the Survey of Professional Forecasters 

This table reports the risk-adjusted returns on 25 EPUE/VRE/ADE-MIS value-weighted portfolios. The 25 portfolios are formed by independently sorting on 
EPUE/VRE/ADE betas and the mispricing score. The univariate 5 EPUE/VRE/ADE (MIS) portfolios are reported in the univariate row (column). The risk-adjusted returns 
are estimates of alphas estimated in Equation (2.3). Variable definitions are listed in Appendix II. Portfolio returns are in percent and t-statistics are reported in parentheses 
using Newey-West (1987) robust standard errors with 3 lags. The sample period is from January 1990 for EPUE, January 1995 for VRE, and from March 1998 for ADE to 
December 2019. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively. 

   Economic Policy Uncertainty Index   Variance Risk Factor    Ambiguity Degree Index  

 

Low 
EPUE 

High 
EPUE 

High-
Low 

Univariate 
MIS  

Low 
VRE 

High 
VRE 

High-
Low 

Univariate 
MIS  

Low 
ADE 

High 
ADE 

High-
Low 

Univariate 
MIS 

1 Overpriced -0.17 -0.30* -0.12 -0.36***  -0.27 -0.48*** -0.22 -0.40***  -0.38* -0.73*** -0.35 -0.42***  
(-1.11) (-1.95) (-0.58) (-3.58)  (-1.57) (-2.69) (-0.91) (-3.49)  (-1.71) (-3.38) (-1.16) (-3.42) 

3 Non-
mispricing 

0.11 0.52*** 0.41* 0.03  -0.05 0.30 0.35 0.02  0.03 0.29* 0.26 0.05 
(0.99) (2.92) (1.92) (0.63)  (-0.39) (1.43) (1.36) (0.34)  (0.19) (1.68) (1.05) (0.80) 

5 Underpriced -0.02 0.34* 0.36* 0.00  -0.08 0.29 0.36 0.02  -0.02 -0.03 -0.01 0.02  
(-0.20) (1.81) (1.68) (0.01)  (-0.80) (1.55) (1.56) (0.47)  (-0.28) (-0.24) (-0.05) (0.31) 

Underpriced− 
Overpriced 

0.16 0.64** 0.48 0.36***  0.19 0.77*** 0.58** 0.42***  0.36 0.70*** 0.34 0.44*** 
(0.84) (2.49) (1.50) (3.00)  (1.02) (3.44) (2.00) (3.10)  (1.48) (2.78) (1.09) (2.99) 

Univariate 0.01 0.28*** 0.27**   -0.02 0.13 0.15   -0.03 0.03 0.06  
(0.14) (3.09) (2.58)     (-0.33) (1.26) (1.18)     (-0.60) (0.31) (0.47)   
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In addition to the dispersion of these macro forecasts, Baker, Bloom, and Davis 

(2016) develop an index of economic policy uncertainty (EPU) based on newspaper 

coverage frequency, and demonstrate its relevance to firm-level volatility, investment, and 

innovations.30 Bali and Zhou (2016) study the VRP as a proxy for economic uncertainty.31 

Brenner and Izhakian (2018) measure the degree of ambiguity by the volatility of 

probabilities of outcomes abstracted from high-frequency S&P 500 derivative data.32 I 

repeat the same analyses with these three uncertainty proxies. As in my EUE estimation, I 

estimate these uncertainty exposure betas from a 60-month rolling regression for each stock 

by replacing ∆𝑈𝑁𝐶𝑡 with the log changes of the EPU index, variance risk factor, or the log 

change of ambiguity degree index in Equation (2.2).33 I collect the absolute value of monthly 

estimated EPU exposure (EPUE), variance risk exposure (VRE), and ambiguity degree 

exposure (ADE) for each stock. Then, I form 25 independent double-sorted 

EPUE/VRE/ADE-MIS portfolios. 

Table 2.7 reports the main findings. Similar to my finding in Table 2.6, using these 

alternative uncertainty measures reproduces the mispricing effect but less of the ambiguity-

premium effect. Among these three, the VRE captures the strongest mispricing effects, but 

it is smaller than that in my main result. For the ambiguity premium, no evidence of it is 

found in VRE or ADE. 34  However, there is evidence of the high EPUE that has a 

 
30 The monthly economic policy uncertainty index is taken from: https://www.policyuncertainty.com/.  
31 They define the variance risk premium factor as “the difference between expected variance under the risk-
neutral measure and expected variance under the objective measure in the U.S. equity market.” The monthly 
factor is taken from Zhou’s website: https://sites.google.com/site/haozhouspersonalhomepage/  
32 I am grateful to Yud Izhakian for sharing his ambiguity index data.  
33 Since the variance risk premium factor itself is a risk factor that measures innovation in the variance risk 
premium series, I do not record a difference like other macroeconomic uncertainty proxies.  
34 This finding of the absence of an overall ambiguity premium is consistent with Brenner and Izhakian (2018), 
who show that an ambiguity premium is contingent on the expected probability of the positive and negative 
outcomes. I show that aggregate ambiguity will have an asymmetric effect on stocks that are subject to over- 
and underpricing, which complements their findings. However, it poses a question on the risk interpretation 
of the return effect their measure captures. Their ambiguity measure is different from the macroeconomic 
uncertainty measure I use. Their measure’s measurement is a probability-based measure that relies on market 
data to capture the volatility in the probability. What drives the underlying ambiguity is not specified under 

https://www.policyuncertainty.com/
https://sites.google.com/site/haozhouspersonalhomepage/
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significant positive alpha, and the high-low EPUE produces a 0.41% monthly ambiguity 

premium (𝑡 = 1.92). 

Collectively, these further tests highlight the advantage of using a comprehensive 

and aggregated economic uncertainty measure, such as the JLN series, which can capture 

both an ambiguity premium and mispricing effects. While the mispricing effect is robust to 

all alternative uncertainty measures, a pure ambiguity premium can only be observed by 

using JLN’s aggregated economic uncertainty measure, the dispersion of analysts’ forecasts 

for GDP, and the EPU index. It suggests that the source of ambiguity from the uncertainty 

of GDP and economic policy are the key determinants of ambiguity aversion in asset 

pricing.  

 

2.5.3 Does Economic Uncertainty Lead to Disagreement? 

I build my hypotheses on the assumption that high EUE leads to high disagreement on 

valuation, which amplifies mispricing (with short-sale constraints) and induces a risk 

premium due to ambiguity aversion. Therefore, I would expect that EUE would have a 

direct impact on traditional disagreement measures such as volume (Hong and Stein, 2007), 

idiosyncratic volatility (Stambaugh, Yu, and Yuan, 2015) and analysts’ forecast dispersions 

(Diether, Malloy, and Scherbina, 2002). I test the effect of firm-level EUE on individual 

stocks’ disagreement variables by firm-level panel regressions in Table 2.8. 

The results in Table 2.8 show that EUE can positively predict next-period stock-

level disagreements proxied by each of those three variables, even after control for their 

 
such empirical measure. This is possibly the reason that even controlling for mispricing, their measure still 
does not carry a significant premium.  
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own lagged terms and other time-varying firm characteristics. Consistent with my 

conjecture, the higher the EUE for a stock, the larger the divergence of opinion, providing  

Table 2.8 Economic Uncertainty Exposure and Firm-Level Disagreements 

This table reports panel predictive regressions of firm-level disagreement and EUE using the following model; 

𝑌𝑝,𝑡 = 𝜆0 + 𝜆1𝐸𝑈𝐸𝑝,𝑡−1 + ∑ 𝜆𝑗𝑋𝑝,𝑡−1

𝑛

𝐽=2
+ 𝐹𝑖𝑥𝑒𝑑 𝐸𝑓𝑓𝑒𝑐𝑡𝑠 + 𝜀𝑖,𝑡 

where 𝑌𝑝,𝑡 is one of the disagreement variables for stock 𝑝 in month 𝑡, such as DISP, IVOL, TO, and EUE. 

𝑋𝑝,𝑡−1  is a set of stock-specific variables in month 𝑡 − 1 for stock 𝑝, including those disagreement variables, 

SIZE, MOM, REV, BM, ILLIQ. Variable definitions are listed in Appendix II. Firm and year fixed effects 
are included in the model to control for heterogeneity across firms and the influence of time series. Standard 
errors are double-clustered at the firm and the year levels. The slope coefficients are in percent and t-statistics 
are reported in parentheses. The sample period is from December 1981 to December 2019, due to DISP 
availability. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively. 

 DISP   IVOL   TO   EUE 

EUE  0.019***  0.001***  0.069***  0.909*** 

 (2.926)  (12.499)  (7.378)  (116.122) 
DISP 0.330***  0.000***  0.002***  0.000 

 (8.578)  (3.162)  (4.804)  (0.694) 
IVOL 1.302***  0.235***  -11.650***  0.273*** 

 (3.255)  (17.432)  (-7.692)  (3.431) 
TO 0.008*  0.000  0.615***  0.001 

 (1.765)  (1.092)  (32.458)  (1.365) 
SIZE -0.000  -0.000***  -0.000***  -0.000 

 (-1.239)  (-3.043)  (-7.001)  (-1.158) 
MOM -0.038***  -0.000  0.131***  0.004*** 

 (-3.194)  (-0.617)  (4.280)  (3.641) 
REV -0.022  -0.009***  -0.135*  -0.018** 

 (-1.160)  (-10.725)  (-1.945)  (-2.542) 
BM 0.014**  0.000  -0.011**  0.000 

 (2.408)  (0.911)  (-2.082)  (0.834) 
ILLIQ 0.001  0.000**  0.011**  -0.001** 

 (0.528)  (2.630)  (2.603)  (-2.055) 
Constant 0.184***  0.014***  0.766***  0.049*** 
  (10.291)   (55.745)   (27.564)   (8.644) 

Observation 630173  630190  630150  630190 
R-sq 0.152  0.473  0.683  0.931 
Adj R-sq 0.142  0.466  0.679  0.930 
Firm FE Yes  Yes  Yes  Yes 
Year FE Yes  Yes  Yes  Yes 
Cluster by Firm Yes  Yes  Yes  Yes 
Cluster by Year Yes   Yes   Yes   Yes 

 

support for dynamic models documented in Harrison and Kreps (1978) and Hong and 

Sraer (2016).35 By contrast, only idiosyncratic volatility can positively predict next-period 

 
35 Consistent results can also be found in the double-sort portfolios. In Table A-I.3 of Appendix I, stocks 
with high EU exposure tend to have higher turnover, high idiosyncratic volatility, and analyst earnings forecast 
dispersion, showing that those assets are difficult to value and subject to a high level of disagreement. 
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firm-level exposure to economic uncertainty. This suggests that IVOL captures firm-

specific factors that are relevant to stocks’ exposures to macro uncertainty.36 

 

2.5.4 Limits of Arbitrage and Mispricing 

There is a positive relation between IVOL and mispricing in anomalies as shown by 

Stambaugh, Yu, and Yuan (2015). IVOL deters arbitrageurs from correcting mispricing, 

resulting in high levels of mispricing among stocks with high IVOL. Furthermore, they 

show that short-sale constraints induce arbitrage asymmetry and make the effect of IVOL 

on overpricing much stronger than that on underpricing. Both IVOL and EUE-induced 

mispricing effects are built on similar key arguments such as disagreement, short-sale 

constraints, and limits of arbitrage. The causality analyses in the previous section further 

confirm the interlinks between these two firm-level measures. Can the EUE mispricing 

effect simply be a reflection of the IVOL effect? To unravel the effect of IVOL from that 

of EUE on mispricing, I extend my main analyses of double-sorting to three dimensions. I 

form 50 portfolios by independently sorting stocks into two IVOL, five EUE, and five MIS 

groups. 

Table 2.9 reports risk-adjusted returns on 25 value-weighted EUE-MIS portfolios 

for low and high IVOL groups in Panels A and B, respectively. Consistent with findings in 

existing literature, mispricing is stronger in stocks with a higher idiosyncratic risk. In fact, 

the univariate mispricing effect is only significant in the high IVOL group. My focus is to  

 
36 At the market level, I expect that high EU is likely to induce more disagreement and hence more trading 
volume (Hong and Stein, 2007). To test this, I run a time series causality regression between the change of 
aggregate turnover in the S&P 500 index and change of EU for the sample period between July 1965 and 
December 2019. I find that innovations in the EU index can positively predict the next period change of the 
aggregate turnover at a 5% significance level, but no evidence for the reverse causality. See results in Table A-
I.4 of Appendix I. 
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Table 2.9 Triple Sorts on IVOL, EUE, and MIS 

This table reports risk-adjusted returns on 50 value-weighted portfolios formed by sorting independently 
stocks on the two IVOL, 5 EUE, and 5 MIS groups. The 5 MIS (EUE) portfolios are formed by sorting 
individual stocks on their mispricing scores (EUE), reported in univariate MIS (EUE) column (row) for each 
IVOL group. The results among low and high IVOL groups are reported in Panel A and Panel B, respectively. 
The risk-adjusted returns are estimates of alphas estimated in Equation (2.3). Variable definitions are listed in 
Appendix II. Portfolio returns are in percent and t-statistics are reported in parentheses using Newey-West 
(1987) robust standard errors with 3 lags. The sample period is from July 1970 to December 2019. ***, **, 
and * indicate significance at the 1%, 5%, and 10% levels, respectively. 

 

Low 
EUE 2 3 4 

High 
EUE 

High-
Low 

Univariate 
MIS 

Panel A: Low IVOL 

Overpriced 0.02 -0.17 -0.40*** -0.28** -0.41** -0.42** -0.11 

 (0.15) (-1.46) (-3.00) (-1.98) (-2.28) (-2.18) (-1.50) 
2 -0.11 0.04 -0.25** 0.04 -0.36** -0.25 -0.08 

 (-1.10) (0.43) (-1.99) (0.32) (-2.37) (-1.42) (-1.21) 
3 Non-
mispricing 

-0.14 0.09 -0.13 -0.13 0.35 0.49** 0.01 
(-1.46) (0.88) (-1.42) (-1.02) (1.63) (2.07) (0.12) 

4 0.05 0.01 -0.04 -0.06 0.25 0.20 0.00 

 (0.69) (0.09) (-0.45) (-0.52) (1.64) (1.07) (0.01) 
Underpriced -0.05 0.11* -0.00 -0.05 0.25 0.30* 0.01 

 (-0.69) (1.68) (-0.05) (-0.47) (1.50) (1.70) (0.19) 

Underpriced− 
Overpriced 

-0.07 0.28** 0.39*** 0.23 0.66*** 0.72*** 0.12 
(-0.53) (2.03) (2.75) (1.38) (2.76) (2.73) (1.33) 

Univariate 
EUE 

-0.03 0.10* -0.08 -0.06 0.00 0.03  
(-0.57) (1.70) (-1.52) (-0.85) (0.03) (0.36)  

Panel B: High IVOL 

Overpriced -0.40** -0.72*** -0.72*** -0.53*** -0.52*** -0.12 -0.67*** 

 (-2.29) (-4.53) (-3.55) (-3.21) (-3.99) (-0.60) (-6.31) 
2 -0.22 -0.04 -0.27 0.01 0.02 0.23 -0.22** 

 (-1.21) (-0.22) (-1.65) (0.06) (0.11) (1.03) (-2.21) 
3 Non-
mispricing 

-0.04 0.09 0.19 -0.04 0.05 0.09 -0.00 
(-0.25) (0.49) (1.23) (-0.22) (0.31) (0.41) (-0.02) 

4 0.32* 0.00 -0.16 0.13 0.13 -0.20 -0.02 

 (1.68) (0.00) (-0.85) (0.92) (0.71) (-0.78) (-0.16) 
Underpriced 0.44** 0.06 0.17 0.34** 0.37* -0.07 0.30*** 

 (2.47) (0.34) (1.25) (2.02) (1.89) (-0.30) (3.26) 

Underpriced− 
Overpriced 

0.83*** 0.78*** 0.89*** 0.87*** 0.89*** 0.05 0.97*** 
(3.20) (3.27) (3.53) (3.71) (3.82) (0.17) (7.05) 

Univariate 
EUE 

-0.01 -0.11 0.02 0.01 -0.11 -0.10  
(-0.12) (-1.10) (0.16) (0.07) (-1.06) (-0.77)  

 

understand the EUE effect after controlling for IVOL. Among stocks with low IVOL in 

Panel A, the monthly alpha of the “Underpriced−Overpriced” portfolio in the high EUE 

quintile is significant (0.66%, 𝑡 = 2.76), which is more than five times of the insignificant 

univariate mispricing effect (monthly alpha of 0.12%, 𝑡 = 1.33). The ambiguity premium 

is also strongly presented in this group of stocks. The monthly premium of 0.49% (that is, 
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5.88% per annum, 𝑡 = 2.07) is higher than the premium for the full sample reported in 

Table 2.2 (that is, 4.2% per annum). 

For stocks with high IVOL in Panel B, mispricing is much stronger in general and 

presented in every EUE group. However, there is no significant difference among the EUE 

quintiles, suggesting that EUE plays little role in affecting the level of mispricing in this high 

IVOL group. Furthermore, there is no ambiguity premium either. 

Overall, these findings show that EUE and IVOL are two different sources of 

friction that induce mispricing. The effect of EUE on mispricing is more prominent in the 

group with low IVOL, where traditionally the mispricing effect is weak as arbitrage friction 

is low. From the limits of arbitrage point of view, I uncover EUE as a source of arbitrage 

friction that is not captured by the IVOL. Furthermore, consistent with findings in previous 

sections, the ambiguity-premium effect is stronger when the overall unconditional 

mispricing effect is weak. I find that the ambiguity-premium effect is strong in the group of 

stocks with low arbitrage friction, further confirming its nature of “risk” premium instead 

of another mispricing factor.37 

2.5.5 Other Considerations 

Bali, Brown, and Tang (2017) study the effect of economic uncertainty on cross-sectional 

return with a similar setting to this study. I extend their works in several ways. First, 

methodologically I make one important modification in their empirical setting. Instead of 

 
37 I also examine the effect of EU on mispricing considering other proxies for limits of arbitrage and short-
sale constraints such as institutional ownership (Nagel, 2005) and size (Lee, Shleifer, and Thaler, 1991) 
reported in Table A-I.6 of Appendix I. In particular, the EUE mispricing effects are significant in both 
subsamples with high and low limits of arbitrage measures; and are slightly more pronounced in the samples 
with a higher level of limits to arbitrage (i.e., fewer institutional investors and smaller in size). Consistent with 
our main finding in this section, the ambiguity premium effects are only found in the subsample where there 
is lower level of mispricing given a lower limit of arbitrage (for example, more institutional ownership and 
larger in size).  
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using the level of economic uncertainty, I use the changes of economic uncertainty as the 

level is very persistent. The use of the change makes it more suitable to capture unexpected 

innovations in the uncertainty with a close-to-zero expectation, which is an important 

requirement of pricing factors in the context of arbitrage pricing theory (for example, 

Merton, 1973; Ross, 1976; Chen, Roll, and Ross, 1986). This research design is also adopted 

by a more recent study by Bali, Subrahmanyam, and Wen (2020), who study 

macroeconomic uncertainty in the bond market. Second, building on theoretical studies 

such as Hong and Sarer (2016), I measure the exposures with the absolute value of the beta 

coefficient that capture the nature of non-directional uncertainty. In Table A-I.5 of 

Appendix I, I show the benefit of using absolute EUE, which enables us to capture the 

ambiguity premium and the mispricing effect more clearly in the line with theoretical 

arguments. Particularly, it demonstrates a symmetric impact of the most negative and most 

positive EU betas on mispricing. The analysis confirms that using the absolute value of the 

coefficient would simplify the interpretation of results and enable us to identify the 

ambiguity premium that would not be able to be observed when using the raw signed 

coefficients. 

Another consideration is the long-term predictive power of the EUE on both 

effects. In Table A-I.7 of Appendix I, I show that in the FF6 model the EUE mispricing 

effect persists in five future months (the alphas of each of the next 12 months are studied). 

The ambiguity premium does not show persistence at all. By contrast, when the mispricing 

is accounted for by models such as q5, there is little sign of mispricing but a strong presence 

of the ambiguity premium up to 11 future months in Table A-I.7 and Figure A-I.1. These 

analyses further confirm that EUE’s role in mispricing is mainly amplifying the existing 

mispricing, which can be explained by more elaborated asset-pricing models. However, the 
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ambiguity-premium effect is strong and clearly quantifiable when mispricing effects are fully 

controlled for. 

 

2.6 Conclusion 

This study revisits the role of economic uncertainty in cross-sectional asset pricing. I unify 

two main channels of the impact, ambiguity premium, and mispricing, in a framework of 

cross-sectional analyses. The foundation of my conjecture is to recognize heterogeneity 

among investors. Economic uncertainty would affect some investors’ demand for 

compensation of ambiguity aversion and also other investors’ biases in evaluating firm 

characteristics in cross-sectional pricing. Empirically, I separate these two effects by 

interacting EUE with an aggregate mispricing measure of Stambaugh, Yu, and Yuan (2012; 

2015). 

This study shows that the observed EUE effect will not simply be positive or 

negative but depend on the combination of demand for an ambiguity premium and the 

stocks’ other mispricing characteristics. This evidence could be a starting point for further 

theoretical development of a unified risk premium and mispricing model. The robustness 

of my finding of a positive ambiguity premium suggests that EUE is a good candidate as 

an additional risk factor, which can be used to explain and predict cross-sectional stock 

returns. My findings also have direct practical implications on the attribution of return-on-

investment strategies.  
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2.7 Appendix I: Additional Results 

Table A-I.1 Correlations 

This table reports correlation coefficients among risk factors used to estimate EUE betas in Panel A and 
among betas estimated in Equation (2.2) . Variable definitions are listed in Appendix II. The sample period is 
from July 1970 to December 2019. 
 

Panel A: Risk Factors 
 ΔUNC MKTRF SMB HML MOM RMW CMA 

ΔUNC 1       
MKTRF -0.148 1      
SMB -0.090 0.249 1     
HML 0.016 -0.257 -0.066 1    
MOM 0.091 -0.166 -0.066 -0.190 1   
RMW -0.027 -0.249 -0.381 0.131 0.097 1  
CMA 0.040 -0.380 -0.052 0.687 0.014 0.033 1 

Panel B: Betas 
 βEUE βMKTRF βSMB βHML βMOM βRMW βCMA 

βEUE 1       
βMKTRF -0.004 1      
βSMB 0.108 0.094 1     
βHML -0.026 0.011 0.088 1    
βMOM -0.051 -0.053 -0.014 0.125 1   
βRMW -0.107 0.261 0.311 0.129 -0.071 1  
βCMA -0.015 0.277 0.101 -0.547 -0.113 0.236 1 

 
 
One of the concerns of applying multifactor model is the potential multicollinearity among 
factors. Table A-I.1 reports time-series correlations among factors and cross-sectional 
correlations among betas in Panels A and B, respectively.   Panel A shows that ΔUNC has 
a low correlation with existing factors.  Panel B shows that EUE beta has low correlation 
with other betas.  The highest correlation is with SMB beta (11%). It suggests that similar 
firm characteristics affect the firm’s sensitivity to both economic uncertainty and size effect.     
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Table A-I.2 Excess returns of 25 portfolios double sorted by EUE and MIS 

This table reports excess returns (raw return minus risk free rate) on 5 MIS (EUE) and 25 EUE-MIS value-
weighted portfolios in Panel A. The 25 portfolios are formed by independently sorting on EUE and the 
mispricing scores. Mean returns of 5 MIS (EUE) portfolios are reported in Average MIS (EUE) column (row). 
5 MIS (EUE) portfolios are formed by sorting individual stocks on their mispricing scores (EUE), reported 
in Univariate MIS (EUE) column (row). Panel B reports the ambiguity-premium adjusted returns, which are 
difference between each double-sort portfolio return and the corresponding value in the middle mispricing 
quintile called “non-mispricing” group. Variable definitions are listed in Appendix II. Portfolio returns are in 
percent and t-statistics are reported in parentheses using Newey-West (1987) robust standard errors with 3 
lags. The sample period is from July 1970 to December 2019. ***, ** and * indicates significance at the 1%, 
5% and 10% levels respectively. 

  
Low 
EUE 2 3 4 

High 
EUE 

High-
Low 

Average 
MIS 

Univariate 
MIS 

Panel A: Mispricing alphas 

1 Overpriced 0.37 0.15 0.06 0.19 -0.06 -0.42** 0.14 0.13 

 (1.57) (0.59) (0.20) (0.67) (-0.17) (-2.03) (0.54) (0.50) 

2 0.46** 0.68*** 0.46** 0.63** 0.58* 0.12 0.56** 0.54** 

 (2.28) (3.20) (1.98) (2.42) (1.87) (0.61) (2.49) (2.49) 

3 Non-
mispricing 

0.58*** 0.68*** 0.68*** 0.61*** 0.87*** 0.29 0.68*** 0.64*** 

(2.90) (3.52) (3.09) (2.59) (2.86) (1.41) (3.21) (3.15) 

4 0.70*** 0.72*** 0.59*** 0.70*** 1.02*** 0.32 0.75*** 0.69*** 

 (4.00) (3.85) (2.96) (2.99) (3.48) (1.50) (3.74) (3.71) 

5 Underpriced 0.75*** 0.81*** 0.79*** 0.81*** 1.10*** 0.35* 0.85*** 0.78*** 

 (4.42) (4.91) (4.47) (4.07) (4.08) (1.75) (4.83) (4.73) 

Underpriced− 
Overpriced 

0.39** 0.66*** 0.73*** 0.62*** 1.16*** 0.77*** 0.71*** 0.65*** 

(2.46) (3.77) (3.96) (3.40) (5.12) (3.50) (5.06) (4.31) 

Average EUE 0.57*** 0.61*** 0.51** 0.59*** 0.70** 0.13   

 (3.15) (3.24) (2.50) (2.61) (2.49) (0.80)   

Univariate EUE 

0.64*** 0.67*** 0.57*** 0.63*** 0.67** 0.03   
(3.74) (3.83) (2.99) (2.92) (2.37) (0.20)   

Panel B: Ambiguity premium adjusted alphas  

1 Overpriced -0.21 -0.53*** -0.62*** -0.42*** -0.93*** -0.71*** 

   (-1.58) (-3.58) (-4.23) (-2.64) (-5.11) (-3.63) 

2 -0.12 0.00 -0.22* 0.02 -0.29** -0.17 

  (-1.15) (0.01) (-1.90) (0.16) (-2.07) (-0.97) 

3 Non-
mispricing 

0.00  0.00  0.00  0.00  0.00  0.00  
  

  
4 0.12 0.04 -0.09 0.09 0.15 0.02 

  (1.23) (0.38) (-0.82) (0.71) (0.97) (0.13) 

5 Underpriced 0.17 0.13 0.11 0.21 0.23 0.05 

  (1.60) (1.17) (0.91) (1.50) (1.21) (0.27) 

Underpriced− 
Overpriced 

0.39** 0.66*** 0.73*** 0.62*** 1.16*** 0.77***   
(2.46) (3.77) (3.96) (3.40) (5.12) (3.50)     

 

Table A-I.2 replicates main results in Table 2.2 by examining the excess portfolio return 
instead of their risk-adjusted alphas. It can be seen that the mispricing effect shown in this 
table is consistent with the main finding and stronger.  For example, for the high EUE 
group, the Underpriced−Overpriced return is 1.16% per month, which is much higher than 
the risk-adjusted return reported in Table 2 (0.75%).  For the ambiguity premium effect, I 
cannot observe EUE risk premium in the non-mispricing group.  This confirms the 
importance of identifying the EUE risk premium when other risks have been taken into 
consideration.  It is also consistent with the fact that EUE risk premium is more likely to 
be observed when more elaborated risk model is considered.  
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Table A-I.3 Disagreement variables of 25 EUE-MIS portfolios 

This table reports average disagreement variables of 25 EUE-MIS portfolios. Panel A, B and C report the 
average value of long-term analyst forecast dispersion (DISP), idiosyncratic volatility (IVOL) and stock 

turnover (TO) for each portfolio, respectively. Variable definitions are listed in Appendix II. The sample 

period, except for DISP, is from July 1970 to December 2019, and that for DISP starts from December 1981 
to December 2019. 

 
  Low EUE 2 3 4 High EUE All Stocks 

Panel A: Average DISP 

Overpriced 0.448 0.430 0.396 0.435 0.461 0.434 
2 0.379 0.429 0.391 0.442 0.560 0.440 
3 0.447 0.373 0.401 0.442 0.605 0.454 
4 0.353 0.333 0.380 0.375 0.434 0.375 
Underpriced  0.292 0.309 0.369 0.335 0.360 0.333 

All Stocks 0.384 0.375 0.387 0.406 0.484  
Panel B: Average IVOL 

Overpriced 2.075 2.114 2.224 2.437 2.878 2.346 
2 1.834 1.874 1.973 2.160 2.584 2.085 
3 1.701 1.760 1.868 2.038 2.459 1.965 
4 1.624 1.663 1.758 1.964 2.362 1.874 
Underpriced  1.584 1.625 1.714 1.897 2.305 1.825 

All Stocks 1.763 1.807 1.908 2.099 2.518  
Panel C: Average TO 

Overpriced 1.009 1.039 1.110 1.287 1.638 1.216 
2 0.850 0.874 0.948 1.075 1.453 1.040 
3 0.813 0.830 0.906 1.043 1.379 0.994 
4 0.833 0.853 0.915 1.031 1.352 0.997 
Underpriced  0.898 0.925 0.976 1.078 1.414 1.058 

All Stocks 0.881 0.904 0.971 1.103 1.447  
 
Table A-I.3  reports firm-level disagreement measurements in 25 EUE-MIS portfolios.  It 
confirms that mispricing and EUE can clearly group stocks with different degree of firm 
level disagreement.  Specifically, firm-level disagreements are positively correlated with 
EUE and higher for overpriced than underpriced stocks.   
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Table A-I.4 Time-series regression of aggregate turnover 

This table reports the time-series regressions of changes in S&P500 turnover and log changes in EU index on 
macroeconomic variables and the market excess return using the following model; 

𝑌𝑝,𝑡 = 𝛼𝑝,1 + 𝛽𝑝,2ΔTO𝑡−1 + 𝛽𝑝,3ΔUNC𝑡−1 + 𝛽𝑝,4𝑀𝐾𝑇𝑡−1 + ∑ 𝛽𝐽𝑋𝐽,𝑡−1

4

𝐽=1
+ 𝜀𝑖,𝑡 

where 𝑌𝑝,𝑡 is changes either in S&P500 turnover (ΔTO) or in EU index (ΔUNC ) in month 𝑡. 𝑀𝐾𝑇𝑡−1 is the 

market excess return in month 𝑡 − 1 .  𝑋1,𝑡−1 ⋯ 𝑋4,𝑡−1  are four macroeconomic variables: the default 

premium, the term premium, the real interest rate and inflation rate in month 𝑡 − 1. The slope coefficients 
are in percent and t-statistics are reported in parentheses using Newey-West (1987) robust standard errors 
with 3 lags. The sample period is from July 1965 to December 2019. ***, ** and * indicates significance at the 
1%, 5% and 10% levels respectively.   

  

 ΔTO  ΔUNC 

ΔTO -0.453***  -0.006 

 (-13.779)  (-1.392) 
ΔUNC  0.664**  0.550*** 

 (2.233)  (12.094) 
MKT  0.142  0.012 

 (0.855)  (0.687) 
Default Premium  0.187  -0.551*** 

 (0.118)  (-3.166) 
Term Premium 0.352  -0.172** 

 (0.624)  (-2.497) 
Real Interest Rate 3.606  0.152 

 (1.356)  (0.428) 
Inflation Rate 3.118  -0.125 

 (1.211)  (-0.368) 
Constant -0.013  0.008*** 

 (-0.800)  (3.950)     
Observations 654  654 
F-stat 27.52   46.75 

 

Table A-I.4 reports Granger causality test results between changes of economic uncertainty 
index and changes of share turnover in the S&P500 for the sample period between July 
1965 and December 2019. It confirms that an increase in EU induces a positive change in 
next period turnover in the S&P500 while the reverse causality is absent.   
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Table A-I.5 Raw Signed Economic Uncertainty Exposure of the 25 EU-MIS portfolios 

This table reports average EU coefficients and the number of stocks of 25 EU-MIS portfolios in Panels A 
and B, respectively.  EU coefficients are the beta coefficient estimated in Equation (2.2). The pooled average 
of stocks in each portfolio and over the sample period is reported. Panel C reports risk-adjusted returns on 5 
EU and 25 EU-MIS value-weighted portfolios. The 25 portfolios are formed by independently sorting on EU 
and the mispricing score. The mean of 5 EU portfolios is reported in Average EU row. 5 EU portfolios are 
formed by sorting individual stocks on their EU betas, reported in Univariate EU row. Panel D reports the 
risk-adjusted returns on the difference between each double-sort portfolio and the corresponding value in the 
middle mispricing quintile called “non-mispricing” group. The risk-adjusted returns are estimates of alphas 
estimated in Equation (2.3) Variable definitions are listed in Appendix II. Portfolio returns are in percent and 
t-statistics are reported in parentheses using Newey-West (1987) robust standard errors with 3 lags. The 
sample period is from July 1970 to December 2019. ***, ** and * indicates significance at the 1%, 5% and 
10% levels respectively. 

  Low EU 2 3 4 High EU All Stocks 

Panel A: Average EU 

Overpriced -1.358 -0.333 0.007 0.357 1.362 0.007 
2 -1.210 -0.330 0.007 0.352 1.227 0.009 
3 -1.160 -0.328 0.007 0.348 1.155 0.004 
4 -1.103 -0.330 0.009 0.350 1.115 0.008 
Underpriced  -1.081 -0.327 0.008 0.350 1.078 0.006 
All Stocks -1.182 -0.330 0.008 0.351 1.187  

Panel B: Average Number of Stocks 

Overpriced 135 98 95 102 140 570 
2 116 112 111 112 119 571 
3 111 118 120 116 108 572 
4 106 122 121 120 103 572 
Underpriced  104 122 124 122 101 574 
All Stocks 572 572 572 572 571  

  
Low EU 2 3 4 High EU 

High-
Low EU 

High-3 
EU 

Low-3 
EU 

 Panel C: Mispricing alphas 

Overpriced -0.50*** -0.29** -0.02 -0.40*** -0.33** 0.17 -0.31* -0.48*** 

 (-3.87) (-2.28) (-0.15) (-2.64) (-2.48) (0.96) (-1.88) (-2.93) 
2 -0.07 0.04 -0.14 -0.12 0.11 0.17 0.24* 0.07 

 (-0.44) (0.43) (-1.54) (-1.22) (0.90) (0.82) (1.70) (0.38) 
3 0.03 0.17 -0.12 0.03 0.18 0.15 0.30* 0.15 

 (0.25) (1.43) (-1.34) (0.37) (1.49) (0.77) (1.83) (0.95) 
4 0.00 -0.02 0.06 -0.05 0.14 0.14 0.08 -0.06 

 (0.01) (-0.21) (0.90) (-0.55) (1.16) (0.88) (0.53) (-0.46) 
Underpriced 0.01 0.01 -0.01 0.14** 0.23* 0.22 0.24 0.02 

 (0.08) (0.07) (-0.08) (1.99) (1.77) (1.22) (1.51) (0.11) 

Underpriced−
Overpriced 

0.51*** 0.30** 0.01 0.53*** 0.56*** 0.05 0.55*** 0.49** 

(2.98) (2.27) (0.07) (3.07) (3.36) (0.24) (2.59) (2.43) 

Average EU 
-0.10 -0.02 -0.04 -0.08* 0.07 0.17   

(-1.31) (-0.32) (-1.13) (-1.70) (0.94) (1.46)   

Univariate EU 
-0.07 0.01 0.01 -0.02 0.11 0.18   

(-0.83) (0.26) (0.25) (-0.39) (1.53) (1.49)   

Panel D: Ambiguity premium adjusted alphas 

Overpriced -0.53*** -0.47*** 0.10 -0.43** -0.51*** 0.02 -0.61** -0.63*** 

 (-3.44) (-2.74) (0.69) (-2.52) (-2.91) (0.10) (-2.51) (-3.02) 
Underpriced -0.02 -0.17 0.11 0.10 0.05 0.07 -0.06 -0.14 

 (-0.14) (-1.18) (1.02) (0.99) (0.29) (0.30) (-0.29) (-0.68) 

Underpriced−
Overpriced 

0.51*** 0.30** 0.01 0.53*** 0.56*** 0.05 0.55*** 0.49** 

(2.98) (2.27) (0.07) (3.07) (3.36) (0.24) (2.59) (2.43) 

 

Table A-I.5 reports results of using the raw instead of the absolute EU beta in the paper.  
Panel A reports the value of betas for 25 portfolios.  It shows that the distribution of betas 
are symmetrical around the middle EU quintiles, whose betas are close to zero.  Panel B 
shows that overpriced stocks tend to have both very negative and positive EU betas while 
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underpriced stocks tend to have less of these two extremes. The middle EU quintile has a 
contrasting distribution among the over and underpriced stocks in comparison to those two 
extreme quintiles. Panel C reports the FF6-factor alphas for those 25 portfolios. It confirms 
that the main finding in the paper regarding the close to zero beta and high absolute beta is 
not driven by just either side of the extreme EU quintile.  

For mispricing effect, it can be observed that there are significant monthly alphas 

in both the most negative (0.51% with 𝑡 = 2.98) and most positive (0.56% with 𝑡 = 3.36) 
EU beta quantiles. These significant mispricing results observed in extreme EU groups are 
due to significant overpricing in those extreme EU groups. This finding is consistent with 
my main discussion, suggesting that the source of mispricing is from overpriced legs and 
stocks with high exposure to EU are more likely to experience overpricing, regardless their 
positive or negative signs.  

While the overpriced-underpriced alphas for both of high and low EU quintiles are 
significant, their difference (High-Low) is not significantly different from each other (0.05% 
with a t-statistic of 0.24). For the ambiguity premium effect, similarly, there is no significant 
difference in High-Low EU group. Panel D also confirms the asymmetry in over and 
underpriced stocks are consistent with main findings.  Overall, this analysis confirms the 
advantage of using the absolute EU beta to capture the exposure to EU.  It is consistent 
with the theoretical definition of capturing the uncertainty in the distribution (variance) and 
present a simplified interpretation to empirical results by grouping large absolute EU betas 
with both positive and negative signs together.  
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Table A-I.6 Limits of Arbitrage and Mispricing Effect 

This table reports risk-adjusted returns on 50 value-weighted portfolios formed by independently sorting on 
the two IO/SIZE, the five EUE and the five MIS groups. 5 MIS (EUE) portfolios are formed by sorting 
individual stocks on their mispricing scores (EUE), reported in Univariate MIS (EUE) column (row) for each 
group. The risk-adjusted returns are estimates of alphas estimated in Equation (2.3). Variable definitions are 
listed in Appendix II. Portfolio returns are in percent and t-statistics are reported in parentheses using Newey-
West (1987) robust standard errors with 3 lags. The sample period for SIZE is from July 1970 to December 
2019, and that for IO starts from April 1980 to December 2019. ***, ** and * indicates significance at the 
1%, 5% and 10% levels, respectively. 

  
Low 
EUE High  EUE H-L Uni MIS 

Low 
EUE 

High 
EUE H-L Uni MIS 

 Low IO Low SIZE 

Overpriced -0.03 -0.63*** -0.60** -0.55*** -0.26** -0.73*** -0.47*** -0.58*** 

 (-0.13) (-2.89) (-1.97) (-3.86) (-2.25) (-6.52) (-3.26) (-8.23) 
Non-
mispricing 

0.14 0.28 0.14 0.31** 0.03 0.04 0.01 0.09* 
(0.87) (1.20) (0.45) (2.52) (0.33) (0.37) (0.05) (1.93) 

Underpriced 0.17 0.55** 0.39 0.19* 0.37*** 0.57*** 0.20 0.44*** 

 (1.05) (2.33) (1.41) (1.80) (3.86) (4.60) (1.62) (6.45) 
Underpriced
−Overpriced 

0.19 1.18*** 0.99** 0.73*** 0.62*** 1.30*** 0.67*** 1.02*** 
(0.84) (3.72) (2.38) (4.20) (4.17) (8.02) (3.37) (10.41) 

Uni EUE  
0.15 -0.19 -0.34*  0.07 -0.18*** -0.25***  

(1.26) (-1.21) (-1.67)  (1.22) (-2.60) (-3.36)  

 High IO High SIZE 

Overpriced -0.06 -0.41** -0.35* -0.25*** -0.02 -0.36*** -0.34** -0.19*** 

 (-0.48) (-2.38) (-1.77) (-2.81) (-0.21) (-2.73) (-2.06) (-2.80) 
Non-
mispricing 

-0.08 0.35* 0.43* -0.10 -0.11 0.28* 0.39** -0.02 
(-0.65) (1.76) (1.94) (-1.61) (-1.28) (1.85) (2.28) (-0.45) 

Underpriced -0.05 0.37* 0.42** 0.01 0.00 0.29* 0.29 0.04 

 (-0.60) (1.95) (1.99) (0.14) (0.02) (1.78) (1.62) (0.99) 
Underpriced
−Overpriced 

0.01 0.77*** 0.76*** 0.26** 0.02 0.65*** 0.63** 0.23** 
(0.06) (3.14) (2.72) (2.38) (0.17) (3.05) (2.58) (2.50) 

Uni EUE  
-0.03 0.17 0.20*  -0.01 0.09 0.10  
(-0.60) (1.57) (1.71)  (-0.32) (1.19) (1.09)  

 

Limits of arbitrage deter arbitragers to eliminate mispricing (i.e., Miller, 1977; Stambaugh, 

Yu and Yuan, 2012). I examine the effect of EU on mispricing considering other proxies 

for limits of arbitrage and short-sale constraints, such as institutional ownership (IO) (Nagel, 

2005) and SIZE (Lee, Shleifer and Thaler, 1991).   

Table A-I.6 reports risk-adjusted returns on 50 value-weighted triple-sort portfolios. 

These findings are consistent with the general mispricing explanation, where the effect of 

EUE on mispricing would be the strongest among stocks with highest short-sale constraints 

(lower institutional ownership and smaller sizes).  Nevertheless, the EUE’s impact on 

mispricing is still observed in the other half of stocks as well, suggesting that EUE is 

different from institutional ownership or size effect.  

It is worth noting that EU risk-premium only appears in the non-mispricing group 

among stocks suffering from low short-sale constraints. It indicates that the ambiguity-

premium effect is more observable when the general mispricing effect is relatively weaker. 
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Table A-I.7 High − Low EUE portfolio alphas months after the formation 

This table reports risk-adjusted returns on Overpriced−Underpriced portfolios in High−Low EUE group (Mispricing Alpha), and on High−Low EUE portfolios in Non-
mispricing group (Ambiguity Premium) based on the 25 EUE-MIS value-weighted portfolios. 25 portfolios are formed by independently sorting on EUE and the mispricing 
scores.  The analysis for each month is similar to those reported in Table 2 of the main text. I conduct the similar analysis by using the next nth month risk-adjusted return. The 
risk-adjusted returns are estimates of alphas from the following models: 

  𝐹𝐹6   ∶  𝑅𝑝,𝑡 = 𝛼𝑝,1 + 𝛽𝑝,1𝑀𝐾𝑇𝑡 + 𝛽𝑝,2𝑆𝑀𝐵𝑡 + 𝛽𝑝,3𝐻𝑀𝐿𝑡 + 𝛽𝑝,4𝑈𝑀𝐷𝑡 + 𝛽𝑝,5𝐼𝐴𝑡 + 𝛽𝑝,6𝑅𝑂𝐸𝑡 + 𝜀𝑖,𝑡 

                               𝑞5    ∶ 𝑅𝑝,𝑡 = 𝛼𝑝,1 + 𝛽𝑝,1𝑀𝐾𝑇𝑡 + 𝛽𝑝,2𝑄𝑆𝑀𝐵𝑡 + 𝛽𝑝,3𝑄𝐼𝐴𝑡 + 𝛽𝑝,4𝑄𝑅𝑂𝐸𝑡 + 𝛽𝑝,5𝑄𝐸𝐺𝑡 + 𝜀𝑖,𝑡  

where 𝑅𝑝,𝑡 is the excess return of portfolio 𝑝 in month 𝑡 and 𝛼𝑝,1 is adjusted return in percent. 𝑀𝐾𝑇𝑡 , 𝑆𝑀𝐵𝑡 , 𝐻𝑀𝐿𝑡 , 𝑈𝑀𝐷𝑡 , 𝐼𝐴𝑡 , and 𝑅𝑂𝐸𝑡  are Fama and French market 

factors in month t. 𝑄𝑆𝑀𝐵𝑡 , 𝑄𝐼𝐴𝑡 , 𝑄𝑅𝑂𝐸𝑡  and 𝑄𝐸𝐺𝑡 are Hou, Xue and Zhang (2015) and Hou et al. (2020) q-factors in month 𝑡. Variable definitions are listed in Appendix 
II.  Portfolio returns are in percent and t-statistics are reported in parentheses using Newey-West (1987) robust standard errors with 3 lags. The sample period is from July 
1970 to December 2019. ***, ** and * indicates significance at the 1%, 5% and 10% levels respectively. 

Panel A. FF6 

 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10 n=11 n=12 

Mispricing Alpha 0.71*** 0.47** 0.49** 0.51** 0.39* 0.19 0.24 0.16 0.26 0.42* 0.33 0.21 

 (3.15) (2.31) (2.41) (2.37) (1.78) (0.80) (1.17) (0.73) (1.25) (1.76) (1.47) (0.83) 
Ambiguity Premium 0.35** 0.22 0.23 -0.06 -0.02 0.03 0.24 0.28 0.16 0.19 0.31 0.08 

 (2.17) (1.32) (1.45) (-0.42) (-0.11) (0.18) (1.41) (1.63) (1.03) (1.02) (1.64) (0.50) 

Panel B. q5 

Mispricing Alpha 0.37 0.20 0.19 0.40** 0.25 0.10 0.09 -0.08 0.07 0.21 0.14 0.06 

 (1.55) (0.91) (0.79) (2.05) (1.02) (0.37) (0.40) (-0.34) (0.28) (0.78) (0.50) (0.20) 
Ambiguity Premium 0.47** 0.40* 0.39** 0.14 0.20 0.26 0.38* 0.39* 0.32* 0.33 0.55** 0.20 

 (2.25) (1.80) (2.01) (0.91) (0.89) (1.07) (1.76) (1.82) (1.71) (1.53) (2.52) (0.96) 
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Table A-I.7 reports the long-term predictive power of the EUE on both the mispricing and 
the ambiguity premium effects using FF6 and q5 models. It shows that, when using the 
FF6-factor model, the mispricing effect persists to Month 5, while the ambiguity premium 
effect is no longer observable after Month 1. By contrast, when q5 model is accounted for, 
the ambiguity premium effect is significant up to Month 11, whereas the mispricing effect 
disappears. 
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Figure A-I.1 Cumulative Alphas in Different Horizons  

This figure plots the risk-adjusted cumulative returns on High−Low EUE group (Mispricing Alpha), and on 
High−Low EUE portfolios in Non-mispricing group (Ambiguity Premium) based on the 25 EUE-MIS value-
weighted portfolios. The risk-adjusted returns are estimates of alphas from FF6 and q5 models reported in 
Panel A and B, respectively. The sample period is from July 1970 to December 2019.    
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Chapter 3 
 
 

3 Economic Uncertainty, Investor Sentiment 

and Cross-Sectional Returns 

 

3.1 Introduction 

In the previous chapter, I have examined the effect of economic uncertainty exposure 

(EUE) on cross-sectional returns disentangling the mispricing from the ambiguity-premium 

effect. While economic uncertainty exacerbates heterogeneous beliefs among investors, 

making optimists more optimistic and pessimists more pessimistic, it also affects the 

preference of investors facing uncertainty in the sense of the ambiguity-return trade-off. In 

this regard, the former predicts a negative relationship between firms’ economic uncertainty 

exposure and expected returns, but the latter predicts a positive one. These two 

contradicting predictions have been clarified using the mispricing scores (MIS), introduced 

by Stambaugh, Yu and Yuan (2012; 2015), which enable us to identify the mispricing degree 

at the firm level. Consequently, I show that the mispricing alpha in stocks with the highest 

EUE group is higher than the unconditional one, while the high-minus-low EUE portfolio 

in the non-mispricing group, which is the middle portfolio sorted by MIS, generates a 

significant premium.  

In classical theory, asset prices are determined by rational investors and mispricing 

induced by sentiment-driven irrationality is counterbalanced. There would be, thus, no 

significant role of sentiment on prices (Baker and Wurgler, 2006). Existing studies, however, 
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show that sentiment-driven irrationality among investors deters arbitrageurs to 

counterbalance noise trading, resulting in significant price deviation from fundamental 

values despite the absence of fundamental risk.38 Investors exhibit more irrationality during 

high-market sentiment than low-market sentiment periods, implying a link between market-

wide sentiment and time-varying investor behaviours (Baker and Stein, 2004). Specifically, 

Stambaugh, Yu and Yuan (2012) show that the presence of market-wide sentiment 

combined with short-sale constraints exacerbates the disagreement among investors, 

causing significant mispricing in cross-sectional returns. Therefore, in this chapter, I 

examine the role of market-wide sentiment in relation to the two effects of EUE on cross-

sectional returns. In other words, this study explores sentiment-driven behaviours as at least 

a partial explanation for the impact of EUE on asset prices by differentiating investor 

behaviours at market-level.     

  Following Stambaugh, Yu and Yuan (2012), I conjecture that market-wide 

sentiment as an important determinant of mispricing will make the EUE induced mispricing 

more prominent. During high-market sentiment periods, irrational investors determine 

those stocks’ value. The valuation made by rational ones, however, is not involved in the 

prices due to short-sale constraints (Miller, 1977). Furthermore, high-market sentiment will 

exacerbate the disagreement effect induced by EUE, which leads to stronger mispricing, as 

irrational investors are more likely to follow their own valuations for those assets 

(Hirshleifer, 2001). Therefore, my first hypothesis is that the mispricing effect, measured by 

the long-short portfolio sorted by MIS, in stocks with the highest EUE is stronger following 

a period of high-market sentiment than low-market sentiment periods.  

 
38 DeLong et al (1990), Shleifer and Vishny (1997), Baker and Stein (2004) Baker and Wurgler (2006; 2007), 
Fong and Toh (2014) and Shen, Yu and Zhao (2017). 
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During low-market sentiment period, by contrast, the irrational valuations on those 

stocks tend to vanish and the price will be more likely to reflect the view of the rational 

investors.  This will lead to not only lower mispricing, as  Stambaugh, Yu and Yuan (2012) 

suggest, but also the effect of ambiguity premium stronger. For instance, Shen, Yu and 

Zhao (2017) show that macroeconomic risk factors are priced in cross-sectional stocks 

returns consistent with the risk-return trade-off following low-market sentiment when the 

market is more rational.  The ambiguity premium is driven by investors’ rational preference 

for lower ambiguity, thus such an effect will be more clear in the market condition that 

more likely to reflect this group of investors’ view. Therefore, my second hypothesis is that 

there is a positive relationship between EUE and expected returns following the low-market 

sentiment period for stocks in the middle portfolio sorted by MIS, called non-mispricing 

group, which are subject to the least mispricing. In other words, I expect that the ambiguity-

premium effect becomes apparent following a period of low-market sentiment in which 

investors behave more rationally according to Stambaugh, Yu and Yuan (2012). 

I quantify market-wide sentiment using an index developed by Baker and Wurgler 

(2006). They consider various measures and form a composite index by taking the first 

principal component of those proxies.39 As introduced in the first chapter, I measure EUE 

by estimating the sensitivity of stock return to log changes of economic uncertainty 

proposed by Jurado, Ludvigson, and Ng (2015, hereafter JLN). In my main analyses, I 

examine the risk-adjusted returns on 25 portfolios independently double-sorted by EUE 

and MIS, following different market-wide sentiment periods. The risk-adjusted returns are 

the alphas estimated by using a Fama-French (2016, hereafter FF) six-factor model.40  

 
39 Those proxies are the closed-end fund discount, NYSE share turnover, the number of and the mean of 
first-day returns on IPOs, the equity share in new issues and the dividend premium. 
40  Those risk factors are market excess return (MKT), size (SMB), value (HML), momentum (UMD), 
investment (IA), and profitability (ROE).   
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In the US markets between 1970 and 2018, I observe the significant mispricing 

effect following the high-market sentiment period, while the ambiguity-premium effect 

becomes apparent with the former arbitraged away following the low- market sentiment 

period, supporting my hypotheses.  

Specifically, the annualized mispricing alpha in the highest EUE group is 16.2% 

with a t-statistic of 4.49 following the high-market sentiment period, which is about double 

the mispricing effect (with an annualized alpha of 9%) in the whole sample reported in the 

previous chapter and is more than triple the unconditional mispricing effect (with an 

annualized alpha of 4.68%) following the same period. Second, the ambiguity premium in 

the non-mispricing group, which is the middle mispricing quintile, yields an annualized 

alpha of 6.36% with a t-statistic of 2.15 following the low-market sentiment period. This 

figure is more than that (with an annualized alpha of 4.2%) in the whole sample reported 

in the previous chapter.  

I also show that there is a positive relationship between market-wide sentiment and 

the mispricing effect of EUE in time-series regressions. In other words, I show the 

predictability of market-wide sentiment on EUE-induced mispricing, however not on the 

ambiguity premium effect, confirming that market-wide sentiment exacerbates mispricing 

due to short-sale constraints (Stambaugh, Yu and Yuan, 2012). This finding is robust after 

controlling for macroeconomic effects. 

Next, I re-examine two contradicting effects of EUE following different market-

wide sentiment periods with alternative risk models such as a seven-factor model (FF’s five 

factors, a momentum factor and an additional liquidity factor), q-factor (Hou, Xue, and 

Zhang, 2015), q5 (Hou et al., 2020) and the mispricing (Stambaugh and Yuan, 2017, 

hereafter MSP) models. Following the high-market sentiment period, the mispricing effect 
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shrinks as more elaborated multifactor models are used to adjust the excess returns but 

remain significant. The mispricing alphas are significant in the high EUE  group ranging 

from 0.82% to 2.07% per month, suggesting that EUE-induced mispricing following the 

high-market sentiment period is not able to be explained by the existing models.  

Following the low- market sentiment period, by contrast, the ambiguity-premium 

effect in the non-mispricing group remains significant with the mispricing effect arbitraged 

away, except for the CAPM model. The EUE premium is even larger with more 

comprehensive models than the counterpart in my main analysis when investors behave 

rationally. For instance, the monthly alpha of the high-minus-low EUE portfolio in the 

non-mispricing group is 0.71% for the q4 model, 0.76% for the q5 model and 0.80% for 

the MSP model following the low-market sentiment period. This finding once again 

confirms that the EUE premium is a new factor that is different from the existing risk factor 

as rational investors demand in the sense of the ambiguity-return trade-off suggested in the 

previous chapter. 

I further explore the interaction between market-wide sentiment and macro-level 

uncertainty.  Macroeconomic uncertainty amplifies biases in investors’ beliefs due to its 

unpredictable informational environment as discussed in the previous chapter. It leaves 

more room for investors to follow their own subjective estimations and to ignore objective 

valuations, resulting in more irrational behaviours and larger disagreement among them 

(Hirshleifer, 2001). This is also consistent with psychology literature suggesting that people 

tend to rely more on their heuristics rather than the facts in their judgements and predictions 

under uncertainty (Kahneman and Tversky, 1973). In this regard, Birru and Young (2020) 

suggest that in times of larger uncertainty, the effect of market-wide sentiment is prone to 

be more pronounced and rational investors are even more limited to offset the effect of 
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irrational ones due to less reliable information flow. They show that the predictability of 

market-wide sentiment in both aggregate and cross-sectional returns is stronger when the 

market-level uncertainty, measured by VIX, is high.  Therefore, I predict that the mispricing 

effect would be the strongest in the intersection of high market-wide sentiment and high 

macroeconomic uncertainty.  

I confirm this in my empirical findings.  The monthly mispricing alpha in the highest 

EUE group is 1.74% with a t-statistic of 3.79 following the periods of both high EU and 

high-market sentiment. This figure is larger than the mispricing effect (with a monthly alpha 

of 1%) following the periods of low EU and high-market sentiment periods. Second, the 

ambiguity premium effect is only observed when in periods with more rational behaviour 

but increasing macro-level uncertainty. The high-minus-low EUE portfolio in the non-

mispricing group has a monthly alpha of 1.02% with a t-statistic of 2.67 following high EU 

and low-market sentiment periods. This further confirms that EUE is priced as rational 

investors demand ambiguity premium when macroeconomic uncertainty increases and their 

preference is more likely to be reflected during the period of low-market sentiment.  

Finally, I study the robustness of my finding controlling for proxies of short-sale 

constraints such as SIZE and idiosyncratic volatility (IVOL). First, the mispricing effect of 

EUE is more pronounced following the high-market sentiment period in high short-sale 

constrained groups, namely low SIZE and high IVOL. This finding is consistent with Miller 

(1977) and Stambaugh, Yu and Yuan (2012), suggesting that during the high-market 

sentiment period, rational investors are limited to exploit the optimists’ valuation resulting 

in significant overpricing in subsequent anomaly returns as the main source of mispricing. 

However, I still observe a significant mispricing effect of EUE following the high-market 

sentiment period in low short-sale constrained groups. It implies that EUE can be a 
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different source of arbitrage friction which deters rational investors from arbitraging away 

optimistic mispricing, as shown in the first chapter. Finally, following the low-market 

sentiment period, the EUE premium in the non-mispricing group is significant among only 

stocks with low short-sale constraints, as the rational expectation.  

I also perform several other robustness tests. First, I extend my empirical analysis 

considering the economic policy uncertainty index (Baker, Bloom and Davis, 2016) as an 

alternative measure of macro uncertainty. The findings are consistent with my main results. 

Second, following the literature (Lemmon and Portniaguina, 2006; Bergman and 

Roychowdhury, 2008), the University of Michigan Consumer index, used as an alternative 

measure of market-wide sentiment, provides additional support to my main hypotheses. 

This study contributes to the literature by providing further insights into the two 

opposite effects of EUE on cross-sectional returns from a behavioural perspective. Existing 

studies show that market-wide sentiment combined with short-sale constraints affects 

investors’ beliefs and preferences (Baker and Wurgler, 2006; Stambaugh, Yu and Yuan, 

2012). Regarding this, isolating investors’ behaviours in different states present us an 

empirical setting to be able to see that exposure to economic uncertainty could be one of 

these common components that amplify investors’ belief biases, which drive anomalies. 

The general source of mispricing is a disagreement between optimists and pessimists (Hong 

and Stein, 2007). Empirically, this study shows that EUE amplifies mispricing, especially 

following a high-market sentiment period, confirming that EUE escalates cross-sectional 

dispersion in investors’ views. This shows that EUE can be a common mispricing 

component across anomalies in the market (Nagel, 2005; Stambaugh, Yu, and Yuan, 2012 

and 2015).  
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This study is related to Shen, Yu and Zhao (2017) showing that macro-risk is priced 

in cross-sectional returns as a risk premium when the market is more rational. I provide 

evidence that there is a positive ambiguity premium observed following a low-market 

sentiment period as the rational expectation is pervasive. It is a result of rational demand 

consistent with the theoretical model introduced by Anderson, Gjhysels and Jurgens (2009).  

Findings in Chapter 3 also provide evidence that macro-level uncertainty matters 

for investors’ irrationality as the strongest sentiment effect is observed when economic 

uncertainty is high. Although the scope of this study is not to shed light on why uncertainty 

affects time-varying sentiment in-depth, my results suggest that uncertainty causes 

subjective valuations and further increases sentiment-driven investors’ trades, supporting 

existing studies (Garcia, 2013; Birru and Young, 2020).  

The rest of the chapter is organized as follows. Section 3.2 reviews the literature 

and develops my main hypotheses. Section 3.3 presents my data. Section 3.4 presents the 

main findings. Section 3.5 reports robustness and further tests. Section 3.6 concludes.  

 

3.2 Literature Review and Hypotheses Development 

3.2.1 Investor Sentiment and Mispricing 

In traditional asset pricing theory, securities’ value is determined by rational investors and 

mispricing caused by investor sentiment is ignored. Even if there are some irrational 

investors, arbitrageurs counterbalance their demands. Thus, there would be no effect of 

sentiment on prices (Baker and Wurgler, 2006). However, DeLong et al. (1990) show that 

the irrationality of sentiment-driven investors causes a risk in asset prices that deters 

arbitrageurs to take a position against noise trading. Consequently, prices tend to deviate 
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from fundamental values despite the absence of fundamental risk. Baker and Wurgler (2006) 

also suggest that mispricing is caused by sentiment-driven traders and limits to arbitrage. 

Specifically, they find that stocks which tend to have subjective valuation are subject to the 

effect of market-wide sentiment.41 Thus, those assets generate subsequent low returns as 

they are hard to arbitrage by arbitrageurs. 

Stambaugh, Yu and Yuan (2012) investigate the presence of market-wide investor 

sentiment on various anomalies considering two important concepts in literature. The first 

concept is that investor sentiment has a time-varying market-wide component and 

influences stocks prices in the same direction at the same time. The second concept is that 

short-sale constraints limit the ability of arbitrageurs to exploit overpricing (Miller, 1977). 

Combining those concepts, they show that stock prices tend to diverge from fundamental 

values during high-market sentiment periods since prices are mostly affected by optimistic 

investors while pessimists are limited to offset the optimism in trades. Therefore, 

overpricing is more pronounced as the main source of mispricing in anomalies following 

high-market sentiment periods (Stambaugh, Yu and Yuan, 2012). 

Considering those concepts, Shen, Yu and Zhao (2017) document that stocks with 

high macro-risk, measured by stocks’ sensitivity to macroeconomic risk factors, generate 

lower returns following high-market sentiment periods. They suggest that firms with high 

macro-betas are more likely to be speculated in their valuation, thus are affected by market-

wide sentiment. This is consistent with Hong and Sraer (2016) suggesting that high macro-

beta assets are subject to larger disagreement between optimists and pessimists. By contrast, 

those assets generate a significant risk premium only following low-market sentiment 

periods as investors tend to be more rational. 

 
41 Those assets are young, small-sized, highly volatile, unprofitable and distressed. 
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In a nutshell, existing studies document the sentiment effect in cross-sectional returns 

that the traditional finance theory ignores. Those studies suggest that the presence of 

market-wide sentiment can be at least a partial explanation for mispricing. 

 

3.2.2 Investor Sentiment and Two Tales of Economic Uncertainty Exposure 

There are two effects of economic uncertainty exposure on cross-sectional returns 

documented in the previous chapter. Consistent with Hong and Sraers (2016) and Li (2016), 

macro uncertainty influences beliefs, making optimists more optimistic and pessimists more 

pessimistic. It also concerns investors with rational expectation by affecting future 

consumption and investment decisions (Bloom, 2009). Identifying the mispricing degree at 

the firm level measured by the mispricing score (MIS), the mispricing channel shows a larger 

mispricing spread in stocks with the highest EUE relative to the unconditional one formed 

by MIS. The ambiguity channel, by contrast, shows that EUE is priced at a premium in the 

non-mispricing group, i.e., the middle portfolio sorted by MIS  

Building on prior literature, this study examines whether there is a significant role 

of market-wide sentiment in those two effects of EUE on cross-sectional returns. To 

understand links between them, I apply two prominent concepts suggested by Stambaugh, 

Yu and Yuan (2012).  

First, market-wide sentiment has a common component that exerts investors’ 

beliefs to make the EUE-induced mispricing more prominent. During high market-wide 

sentiment periods, irrational investors are more likely to determine stock prices, thus stocks 

with high EUE experience overpricing as irrational investors are more likely to follow their 

own valuations for those assets. Second, the presence of short-sale constraints limits 
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rational traders to offset the irrational trade in those assets, resulting in larger EUE-induced 

disagreement and lower subsequent returns. Therefore, my first hypothesis is as below: 

 

H1: Mispricing spread, sorted by MIS, among stocks with the highest EUE is larger following high-market 

sentiment than low-market sentiment periods.      

 

On the other hand, during low-market sentiment periods, investors tend to behave 

more rational, and prices are close to their fundamental values. (Stambaugh, Yu and Yuan, 

2012). While the mispricing effect of EUE is lower, its ambiguity premium effect appears 

due to investors’ rational preference for lower ambiguity. Therefore, my second hypothesis 

is as below: 

 

H2: There is a positive relationship between EUE and expected returns following the low-sentiment period 

for stocks in the non-mispricing group which are subject to the least mispricing captured by MIS. 

 

3.3 Data and Measures 

The dataset used in my empirical analyses contains all common stocks (with share code of 

10 and 11) on the NYSE, Amex, and NASDAQ. Stocks whose prices are less than $5 per 

share are excluded from the dataset since those assets are hard to short (Asquith, Pathak, 

and Ritter, 2005). Monthly asset returns and companies’ fundamental values are from the 

merged CRSP-Compustat database from July 1965 to December 2018. 
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3.3.1 Investor Sentiment Index 

Baker and Wurgler (2006) form a composite index to measure market-wide sentiment 

(hereafter, the BW sentiment index). The index is the first principal component of six 

sentiment proxies: the number of initial public offerings (IPOs), the average first-day 

returns of IPOs, the dividend premium, the closed-end fund discount, the New York Stock 

Exchange (NYSE) turnover, and the equity share in new issues. The monthly BW sentiment 

index starts from July 1965 to December 2018, and is obtained from Jeffrey Wurgler’s 

website.42 

 

3.3.2 Mispricing Measure 

Following Stambaugh, Yu, and Yuan (2015), the mispricing measure (MIS) is constructed 

based on 11 market anomalies. Their detailed definitions can be found in Appendix II. 

Stocks with the highest MIS scores are assigned as the most overpriced, while those with 

the lowest MIS scores are assigned as the most underpriced. Stambaugh, Yu, and Yuan 

(2015) show that MIS minimizes noisy measures of anomaly-specific effects. Thus, I have 

a single factor in identifying the degree of mispricing more accurately in the market. 

Additionally, they find that long-short portfolios formed on MIS have a higher average 

return relative to individual-anomaly portfolios, indicating that the new MIS measure is 

better at identifying mispricing in the market.43 

 

 
42 http://people.stern.nyu.edu/jwurgler/ 
43 Monthly mispricing scores for each stock from July 1965 to December 2016 are collected from Robert F. 
Stambaugh’s website and I updated them to December 2019. See more details related to mispricing score 
formation at: http://finance.wharton.upenn.edu/~stambaug/. 

http://finance.wharton.upenn.edu/~stambaug/
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3.3.3 Economic Uncertainty Exposure 

Existing studies have relied on different proxies to measure uncertainty in the economy. 

For instance, several papers use market volatility, due to its significant relation with real 

activity (for example, Bloom, 2009; Bekaert, Hoerova, and Duca, 2013; Bali and Zhou, 

2016). However, JLN (2015) argue that financial market volatility may not reflect economic 

uncertainty accurately, since it may vary over time due to changes in risk aversion, leverage, 

or sentiment. 

Other studies use dispersion in forecasts (for example, Mankiw and Reis, 2002; 

D’Amico and Orphanides, 2008; Anderson, Ghysels, and Juergens, 2009; Li, 2016). It is 

expected that during time with high uncertainty, forecasts are dispersed, and surveys show 

a higher level of disagreement on macro-indicators (Bachmann, Elstner, and Sims, 2013). 

However, forecasts may not clearly show expectations about the whole economy and may 

give subjective responses due to their pecuniary interests and individual biases. Additionally, 

the dispersion of analyst forecasts might be affected by heterogeneity in the business cycle, 

even if there is no shift in uncertainty in economic fundamentals (JLN, 2015). 

Considering those arguments on different measures of economic uncertainty, I use 

the uncertainty index constructed by JLN (2015). This index is constructed based on 132 

micro-series, not on any single (or a small number of) economic indicators, measuring 

uncertainty in the whole economy. JLN (2015) show that using this measure can capture 

uncertainty in different macro variables at the same time across companies, industries, 

markets, and regions. The index is obtained from Sydney Ludvigson’s website.44 

 
44 https://www.sydneyludvigson.com/data-and-appendixes/.  

https://www.sydneyludvigson.com/data-and-appendixes/
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To measure innovations in economic uncertainty, I use monthly logarithmic 

changes in the index (𝛥𝑈𝑁𝐶𝑡).45 

 

 
∆UNC𝑡 = ln (

UNCt

UNCt-1

) 
(3.1) 

 

I estimate the uncertainty beta from a rolling regression for each stock with the 

following model, using previous 60-month observations:46 

 

 𝑅𝑖,𝑡 = 𝛼𝑖,1 + 𝛽𝑖,1∆𝑈𝑁𝐶𝑡 + 𝛽𝑖,2𝑀𝐾𝑇𝑡 + 𝛽𝑖,3𝑆𝑀𝐵𝑡 + 𝛽𝑖,4𝐻𝑀𝐿𝑡

+ 𝛽𝑖,5𝑈𝑀𝐷𝑡 + 𝛽𝑖,6𝐼𝐴𝑡 + 𝛽𝑖,7𝑅𝑂𝐸𝑡 + 𝜀𝑖,𝑡 (3.2) 

 

where 𝑅𝑖,𝑡  is the monthly excess return of stock 𝑖  in month 𝑡 . ∆𝑈𝑁𝐶𝑡  is a proxy for 

innovations in economic uncertainty in month 𝑡. 𝑀𝐾𝑇𝑡 , 𝑆𝑀𝐵𝑡 , 𝐻𝑀𝐿𝑡 , 𝑈𝑀𝐷𝑡 , 𝐼𝐴𝑡 , and 

𝑅𝑂𝐸𝑡 are Fama and French factors in month 𝑡. Definitions are given in Appendix II. These 

factors are from Kenneth French’s website.47 

Table 3.1 reports the correlation matrix for each factor and index. Except for HML 

and IA, the correlations between all variables are low, from -0.39 to 0.25, showing that there 

is no potential collinearity in estimations of this study. Particularly, the sentiment and 

 
45 Unexpected innovations in macroeconomic variables concern investors about their future investment and 
consumption, influencing the indirect utility of real wealth and asset prices. Thus, using the changes in 
economic uncertainty is consistent with the literature (for example, Merton, 1973; Ross, 1976; Chen, Roll, and 
Ross, 1986; Bali, Subrahmanyam, and Wen, 2020). The level of the index is non-stationary with a Dickey-
Fuller statistic of −2.152, while its logarithmic difference is stationary with a Dickey-Fuller statistic of −13.678.  
46 I require at least 24 months of non-missing observation for each stock to estimate the model. 
47 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.  

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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economic uncertainty indices do not affect each other. This might be due to the sentiment 

index orthogonalised by several macroeconomic factors (Baker and Wurgler, 2006).48 It is 

not surprising the correlation between HML and IA is high, 0.69. Fama and French (2015) 

show that this is caused by the highest return variances in those factors’ construction, and 

the high correlation between them is artificial. 

Table 3.1 Correlations 

This table reports correlation coefficients among risk factors used to estimate EUE in Equation (3.2). Variable 
definitions are listed in Appendix II. The sample period is from July 1970 to December 2018. 

  UNC ΔUNC SENT MKT SMB HML MOM IA ROE 

UNC 1         
ΔUNC 0.082 1        
SENT -0.117 0.024 1       
MKT -0.108 -0.158 -0.026 1      
SMB 0.079 -0.093 -0.051 0.246 1     
HML -0.007 0.014 0.084 -0.264 -0.073 1    
MOM -0.049 0.103 0.023 -0.152 -0.058 -0.181 1   
IA 0.061 0.042 0.061 -0.378 -0.054 0.688 0.013 1  
ROE 0.009 -0.026 0.176 -0.252 -0.382 0.129 0.099 0.032 1 

 

Once I have estimated the monthly EU beta for each stock during the sample period, 

I use the absolute value of EU betas for all analyses in this study. This approach is consistent 

with relevant studies (Hong and Sraer, 2016; Li, 2016). In Hong and Sraer’s (2016) 

prediction, aggregate disagreement is positively associated with the absolute value of market 

beta. This is because disagreement is higher for stocks returns that are highly correlated 

with uncertainty regardless of the positive or negative sign. The use of the absolute value 

also matches my intention to examine the impact of EU on the uncertainty of a stock’s 

return distribution (the variance of the distribution). A large magnitude of the beta, no 

matter whether it is positive or negative, makes the variance of the return more sensitive to 

the change of economic uncertainty. 

 
48 Those factors are the growth in industrial production, the growth in durable, nondurable, and service 
consumption, the growth in employment and the flag for NBER recession. 



93 
 

3.4 Empirical Analyses 

3.4.1 Economic Uncertainty Exposure: High versus Low Sentiment 

I use the BW sentiment index to identify high- and low-market sentiment periods following 

Baker and Wurgler (2007). If the value of the BW sentiment index in month 𝑡 is positive 

(negative), then month 𝑡 is a high (low)-market sentiment month. There are 308 high- and 

275 low-market sentiment months in my sample, respectively. 

I employ bivariate portfolio analyses to examine the relation between EUE and 

cross-sectional expected returns conditional on the general mispricing of stocks. Following 

Stambaugh, Yu, and Yuan (2015), at the end of each month 𝑡, five portfolios are formed 

by sorting on individual stocks’ EUE estimated in Equation (3.2) up to month 𝑡. Then, 

independently another five portfolios are constructed by sorting stocks on their mispricing 

scores (MIS) in month 𝑡. Finally, 25 EUE-MIS portfolios are formed as intersections of 

five EUE and five MIS groups, and value-weighted returns are calculated during month 

𝑡 + 1. The first set of the 25 portfolios is formed in July 1970. 

I first examine the average EUE and the number of stocks in 25 portfolios in 

different sentiment states. Focusing on the distribution of EUE in those portfolios in Panel 

A of Table 3.2, I significantly observe in the overpriced quintile that sentiment-driven 

investors tilt their portfolios towards stocks with higher EUE during high-mrket sentiment 

periods than low-market sentiment periods. There is an increasing trend in the average of 

EUE on five MIS portfolios from 0.684 for the underpriced group to 0.763 for the 

overpriced group. This trend is more pronounced than that during the low-market 

sentiment period, increasing from 0.547 for the underpriced group to 0.595 for the 

overpriced group. 
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  In Panel B, the overpriced portfolio in the high EUE has on average 180 stocks 

during high-market sentiment period which is more than that (138) during low-market 

sentiment periods, confirming that EUE-induced disagreement is larger during high-market 

sentiment periods, thus irrational investors are more likely to overinvest in stocks with high 

EUE relative to low-market sentiment periods, resulting in more pronounced overpricing 

as the main source of mispricing in cross-sectional returns following high-market sentiment 

periods. 

Comparing the distribution of EUE among these portfolios in the whole sample 

documented in the second chapter, I support my conjecture that there is a significant role 

of market-wide sentiment in relation to two effects of EUE on cross-sectional returns, 

especially to its mispricing one. 

 

3.4.2 Portfolio Analyses 

I next examine risk-adjusted returns of these 25 value-weighted portfolios. Those portfolios 

are rebalanced at the end of each month during the sample period. The risk-adjusted returns 

are alphas estimated by the following augmented Fama and French (2016) six-factor model 

using two subperiod intercept dummies: 

 

 𝑅𝑝,𝑡 = 𝛼𝐻𝑑𝐻,𝑡−1 + 𝛼𝐿𝑑𝐿,𝑡−1 + 𝛽𝑝,1𝑀𝐾𝑇𝑡 + 𝛽𝑝,2𝑆𝑀𝐵𝑡 + 𝛽𝑝,3𝐻𝑀𝐿𝑡

+ 𝛽𝑝,4𝑈𝑀𝐷𝑡 + 𝛽𝑝,5𝐼𝐴𝑡 + 𝛽𝑝,6𝑅𝑂𝐸𝑡 + 𝜀𝑖,𝑡 

 

(3.3) 
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Table 3.2 Economic Uncertainty Exposure: High- versus Low-Market Sentiment 

This table reports the average EUE and the number of stocks of the 25 EUE-MIS portfolios during high- and low-market sentiment periods in Panels A and B, respectively. 
The EUE is the absolute beta coefficient estimated in Equation (3.2). Variable definitions are listed in Appendix II. If the value of the sentiment index by Baker and Wurgler 

(2006) in month 𝑡 is positive (negative), month 𝑡 is high (low)-market sentiment month. There are 308 high and 275 low-market sentiment months, respectively. The sample 
period is from July 1970 to December 2018. 

 High-Market Sentiment Period  Low-Market Sentiment Period 

 Low EUE 2 3 4 High EUE All Stocks   Low EUE 2 3 4 High EUE All Stocks 

 Panel A: Average EUE 

Overpriced 0.161 0.296 0.504 0.830 2.022 0.763  0.113 0.234 0.403 0.667 1.559 0.595 
2 0.145 0.286 0.494 0.821 1.882 0.726  0.104 0.228 0.400 0.664 1.459 0.571 
3 0.138 0.281 0.491 0.817 1.804 0.706  0.102 0.225 0.397 0.659 1.408 0.558 
4 0.134 0.280 0.492 0.817 1.740 0.693  0.100 0.225 0.398 0.659 1.369 0.550 
Underpriced  0.133 0.279 0.489 0.814 1.703 0.684  0.100 0.226 0.397 0.659 1.354 0.547 
All Stocks 0.142 0.284 0.494 0.820 1.830   0.104 0.228 0.399 0.662 1.430  

 Panel B: Average No of Stocks 

Overpriced 101 103 112 127 180 623  90 90 95 102 138 515 
2 122 122 122 126 132 624  101 101 102 103 108 515 
3 132 130 127 122 114 624  107 108 103 103 96 517 
4 134 134 130 123 103 624  108 109 108 104 88 516 
Underpriced  136 135 133 126 95 625  111 110 107 105 86 518 
All Stocks 625 624 624 624 624     517 516 516 516 516   
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where 𝑅𝑝,𝑡 is the excess return of portfolio 𝑝 in month 𝑡. 𝑑𝐻,𝑡−1 and 𝑑𝐿,𝑡−1 are dummy 

variable indicating high and low-market sentiment periods, respectively. 𝑀𝐾𝑇𝑡 , 𝑆𝑀𝐵𝑡 , 

𝐻𝑀𝐿𝑡, 𝑈𝑀𝐷𝑡 , 𝐼𝐴𝑡, and 𝑅𝑂𝐸𝑡 are Fama and French market factors in month 𝑡.  

Table 3.3 reports the risk-adjusted returns on 25 EUE-MIS portfolios following 

different market sentiment periods. I also report risk-adjusted returns on average and 

univariate portfolios for MIS (the last two columns) and EUE (the last two rows) following 

different periods.   

Panel A presents alphas following the high-market sentiment period. Alphas on the 

mispricing spreads, reported in the Underpriced-Overpriced row, increase monotonically 

from the lowest to highest EUE groups following high-market sentiment periods. 

Specifically, the largest mispricing alpha is significantly observed in the high EUE group 

with an alpha of 1.35% per month (𝑡 = 4.49) following the same period. This is is about 

double the mispricing effect (0.75% per month, 𝑡 = 3.86) in the whole sample reported in 

the previous chapter and is more than triple the alpha of the univariate mispricing (0.39%, 

𝑡 = 3.25) following the same period.  

For those results following low-market sentiment periods reported in Panel B, only 

two alphas of the “Underpriced−Overpriced” portfolios in the second and third EUE 

groups are significant. The EUE group does not explain the change of the mispricing effect. 

The unconditional mispricing effect, the alpha of the “Underpriced−Overpriced” portfolio 

constructed on MIS (0.29%, 𝑡 = 2.18), is much weaker than that following high-market 

sentiment periods, consistent with Stambaugh, Yu, and Yuan (2012) suggesting that the 

existence of a mispricing effect only during high-market sentiment periods.  
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These findings confirm that market-wide sentiment has a significant role in the 

EUE-induced mispricing, supporting my first hypothesis. 

Table 3.3 Portfolio Returns following High- and Low-Market Sentiment Periods 

The table reports the risk-adjusted on 5 MIS (EUE) and 25 EUE-MIS value-weighted portfolios following 
high- and low-market sentiment periods in Panel A and B respectively. The 25 portfolios are formed by 
independently sorting on EUE and the mispricing scores. The mean of 5 MIS (EUE) portfolios is reported 
in Average MIS (EUE) column (row). 5 MIS (EUE) portfolios are formed by sorting individual stocks on 
their mispricing scores (EUE), reported in Univariate MIS (EUE) column (row). The risk-adjusted returns 
are estimates of alphas estimated in Equation (3.3). Variable definitions are listed in Appendix II. Portfolio 
returns are in percent and t-statistics are reported in parentheses using Newey-West (1987) robust standard 
errors with 3 lags. The sample period is from July 1970 to December 2018. If the value of the sentiment index 

by Baker and Wurgler (2006) in month 𝑡 is positive (negative), month 𝑡 is high (low)-market sentiment month. 
There are 308 high and 275 low sentiment months, respectively. ***, ** and * indicates significance at the 1%, 
5% and 10% levels respectively. 

  
Low 
EUE 2 3 4 

High 
EUE 

High-
Low 

Average 
MIS 

Univariate 
MIS 

Panel A: High-Market Sentiment Period 

1 Overpriced -0.095 -0.13 -0.45*** -0.51*** -0.74*** -0.65*** -0.39*** -0.32*** 

 (-0.63) (-0.99) (-3.53) (-3.42) (-4.50) (-2.72) (-4.89) (-3.68) 

2 -0.14 0.33*** -0.22 0.16 -0.015 0.12 0.025 0.035 

 (-1.06) (2.66) (-1.59) (0.91) (-0.085) (0.59) (0.34) (0.54) 

3 Non-
mispricing 

-0.046 0.13 0.065 -0.026 0.23 0.28 0.071 0.045 

(-0.39) (1.00) (0.54) (-0.16) (1.40) (1.43) (1.26) (0.83) 

4 -0.088 -0.00 -0.27** -0.077 0.27 0.36 -0.032 -0.080 

 (-0.96) (-0.00) (-2.20) (-0.62) (1.50) (1.64) (-0.54) (-1.43) 

5 Underpriced 0.019 0.12 0.084 0.047 0.61*** 0.59** 0.18** 0.071 

 (0.20) (1.37) (0.68) (0.31) (2.71) (2.47) (2.55) (1.28) 

Underpriced− 
Overpriced 

0.11 0.26 0.54*** 0.55*** 1.35*** 1.24*** 0.56*** 0.39*** 

(0.61) (1.54) (3.07) (2.63) (4.49) (3.58) (4.56) (3.25) 

Average EUE 

-0.069 0.092 -0.16** -0.081 0.072 0.14   
(-1.24) (1.49) (-2.38) (-1.10) (0.75) (1.20)   

Univariate 
EUE  

-0.018 0.11* -0.093 -0.034 0.100 0.12   
(-0.37) (1.74) (-1.34) (-0.46) (0.97) (0.96)   

Panel B: Low-Market Sentiment Period 

1 Overpriced 0.014 -0.40** -0.54** -0.25 -0.10 -0.11 -0.26** -0.28** 

 (0.11) (-2.32) (-2.51) (-1.32) (-0.69) (-0.66) (-2.46) (-2.48) 

2 -0.17 -0.092 -0.30** 0.0096 -0.029 0.14 -0.12* -0.097 

 (-1.37) (-0.68) (-2.09) (0.067) (-0.19) (0.70) (-1.77) (-1.36) 

3 Non-
mispricing 

-0.17 0.031 -0.034 0.066 0.36* 0.53** 0.049 -0.029 

(-1.56) (0.28) (-0.29) (0.47) (1.71) (2.15) (0.82) (-0.49) 

4 0.16 0.061 0.071 0.11 0.39* 0.23 0.16*** 0.12** 

 (1.59) (0.58) (0.59) (0.87) (1.86) (0.98) (2.59) (2.13) 

5 Underpriced -0.041 0.081 -0.030 0.050 0.072 0.11 0.026 0.015 

 (-0.39) (0.91) (-0.30) (0.36) (0.38) (0.51) (0.49) (0.31) 

Underpriced− 
Overpriced 

-0.054 0.48** 0.51* 0.30 0.17 0.23 0.28** 0.29** 

(-0.31) (2.32) (1.95) (1.38) (0.73) (0.81) (2.25) (2.18) 

Average EUE 

-0.044 -0.065 -0.17** -0.0032 0.14 0.18   
(-0.90) (-1.05) (-2.41) (-0.041) (1.33) (1.42)   

Univariate 
EUE  

-0.015 0.034 -0.10** 0.060 0.16 0.18   
(-0.28) (0.69) (-1.97) (0.78) (1.47) (1.29)   
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Focusing on the EUE effect in the middle quintile of the mispricing portfolios, 

called the non-mispricing group, I observe a significant positive relationship between EUE 

and expected returns only following low-market sentiment periods. In Panel B of Table 3.3, 

the high-minus-low EUE portfolio generates a significant alpha of 0.53% per month with 

a t-statistic of 2.15, which is more than that (0.35% per month) in the whole sample reported 

in the first chapter. This finding suggests that EUE is more likely to be priced as a premium 

when investors are more rational, supporting my second hypothesis. 

Overall, my results document that the presence of market-wide sentiment influences 

the effects of EUE on cross-sectional returns. The mispricing effect is significantly apparent 

when investors are irrational and the rational ones are limited in high-market sentiment 

periods. This effect is even more pronounced compared to the whole sample period 

documented previously. By contrast, the ambiguity-premium effect becomes clear with the 

former being arbitraged away following low-market sentiment periods, implying that it is 

more likely to be attributed to rational pricing instead of mispricing. 

 

3.4.3 Predictive Regressions 

In the previous section, I study risk-adjusted returns on portfolios by comparing within two 

sentiment periods, where periods are assigned simply with dummy variables. In this section, 

I examine my hypotheses using predictive regressions to test whether the BW sentiment 

index predicts excess returns on double-sort portfolios controlling for Fama and French 

(2016) market factors. I investigate the predictive power of the sentiment index on monthly 

double-sort portfolio returns by the following model: 
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 𝑅𝑝,𝑡 = 𝛼𝑝,1 + 𝛽𝑝,1𝑆𝑡−1 + 𝛽𝑝,2𝑀𝐾𝑇𝑡 + 𝛽𝑝,3𝑆𝑀𝐵𝑡 + 𝛽𝑝,4𝐻𝑀𝐿𝑡

+ 𝛽𝑝,5𝑈𝑀𝐷𝑡 + 𝛽𝑝,6𝐼𝐴𝑡 + 𝛽𝑝,7𝑅𝑂𝐸𝑡 + 𝜀𝑖,𝑡 

 

(3.4) 

 

where 𝑅𝑝,𝑡 is the excess return of portfolio 𝑝 in month 𝑡. 𝑆𝑡−1 is the lagged level of BW 

sentiment index. 𝑀𝐾𝑇𝑡 , 𝑆𝑀𝐵𝑡 , 𝐻𝑀𝐿𝑡 , 𝑈𝑀𝐷𝑡 , 𝐼𝐴𝑡 , and 𝑅𝑂𝐸𝑡  are Fama and French 

market factors in month 𝑡.  

Table 3.4 reports the slope coefficients of the lagged BW sentiment index on the 

mispricing spreads from the low to high EUE groups, and on the high-minus-low EUE 

portfolio in the non-mispricing group.    

I find that slope coefficients for the mispricing spreads are positive and 

monotonically increase from the low to high EUE groups. In the univariate specification, 

one standard deviation increase in the market sentiment leads to an increase in the value-

weighted returns on the “Underpriced−Overpriced” portfolio in the high EUE group by 

0.87% per month with a t-statistic of 3.60. When I control for Fama and French factors, 

the coefficient of the lagged sentiment index on the mispricing spread in the high EUE 

group remains positive and statistically significant (0.63%, 𝑡 = 2.84 ). These findings 

further support my first hypothesis that the higher the market-wide sentiment the larger the 

EUE-induced mispricing. 

Examining the predictive power of the lagged sentiment index on the ambiguity 

premium effect, I show a significant negative relationship in the univariate specification. 

One standard deviation decrease in the sentiment leads to an increase in the high-minus-

low EUE portfolio in the non-mispricing group by 0.38% per month with a t-statistic of -

2.02, supporting my second hypothesis that the lower the market-wide sentiment the larger 

the ambiguity premium. However, controlling for the market risk factors, the slope 
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coefficient of the lagged sentiment index becomes statistically insignificant. It shows that 

market-wide sentiment may only be able to capture the mispricing which is a result of 

sentiment-related demand and limits to arbitrage, rather than the classical risk-return trade-

off attributed to the rational demand (Baker and Wurgler, 2006).   

Table 3.4 Predictive Regressions of the Mispricing Spread and the Ambiguity Premium 

The table reports estimate of β coefficients on the mispricing spread in EUE quintile and the ambiguity 
premium in the non-mispricing group in by the following models: 
 
Univariate:  

 𝑅𝑝,𝑡 = 𝛼𝑝,1 + 𝛽𝑝,1𝑆𝑡−1 + 𝜀𝑝,𝑡 

FF6: 

𝑅𝑝,𝑡 = 𝛼𝑝,1 + 𝛽𝑝,1𝑆𝑡−1 + 𝛽𝑝,2𝑀𝐾𝑇𝑡 + 𝛽𝑝,3𝑆𝑀𝐵𝑡 + 𝛽𝑝,4𝐻𝑀𝐿𝑡 + 𝛽𝑝,5𝑈𝑀𝐷𝑡 + 𝛽𝑝,6𝐼𝐴𝑡 + 𝛽𝑝,7𝑅𝑂𝐸𝑡 + 𝜀𝑖,𝑡 

FF6+Macro:  

𝑅𝑝,𝑡 = 𝛼𝑝,1 + 𝛽𝑝,1𝑆𝑡−1 + 𝛽𝑝,2𝑀𝐾𝑇𝑡 + 𝛽𝑝,3𝑆𝑀𝐵𝑡 + 𝛽𝑝,4𝐻𝑀𝐿𝑡 + 𝛽𝑝,5𝑈𝑀𝐷𝑡 + 𝛽𝑝,6𝐼𝐴𝑡 + 𝛽𝑝,7𝑅𝑂𝐸𝑡

+ ∑ 𝑚𝐽𝑋𝐽,𝑡−1

4

𝐽=1
+ 𝜀𝑖,𝑡 

𝑅𝑝,𝑡 is the excess return of portfolio 𝑝 in month 𝑡. 𝑆𝑡−1 is the lagged level of the BW sentiment index. 𝑀𝐾𝑇𝑡 , 

𝑆𝑀𝐵𝑡 , 𝐻𝑀𝐿𝑡 , 𝑈𝑀𝐷𝑡 , 𝐼𝐴𝑡 , and 𝑅𝑂𝐸𝑡  are Fama and French market factors in month 𝑡. 𝑋1,𝑡−1 ⋯ 𝑋4,𝑡−1 are 

four lagged macroeconomic variables: the default premium, the term premium, the real interest rate and 
inflation rate. Variable definitions are listed in Appendix II. Portfolio returns are in percent and t-statistics are 
reported in parentheses using Newey-West (1987) robust standard errors with 3 lags. The sample period is 
from July 1970 to December 2018. ***, ** and * indicates significance at the 1%, 5% and 10% levels 
respectively. 

 

Low 
EUE 2 3 4 

High 
EUE 

High-Low 
EUE  High-Low EUE 

 Underpriced-Overpriced  Non-mispricing 

Univariate 0.33* 0.45* 0.16 0.43** 0.87*** 0.53**  -0.38** 

 (1.83) (1.90) (0.89) (2.32) (3.60) (2.53)  (-2.02) 
FF6 0.11 0.24 -0.03 0.25* 0.63*** 0.53**  0.06 

 (0.69) (1.24) (-0.18) (1.67) (2.84) (2.28)  (0.47) 

FF6+ Macro 

0.14 0.28 0.04 0.24 0.58** 0.44*  0.08 

(0.90) (1.25) (0.24) (1.43) (2.50) (1.81)   (0.51) 

 

Baker and Wurgler (2006) have removed macro-related variations from the 

sentiment index by regressing the raw sentiment index on six macro-variables49. Therefore, 

to investigate whether the effect of market-wide sentiment on the findings in time-series is 

 
49 These variables are the growth in industrial production, the growth in durable, nondurable, and service 
consumption, the growth in employment and the flag for NBER recession. 
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robust after adding macroeconomic variables, I additionally consider four lagged 

macroeconomic factors in Equation (3.4), following Stambaugh Yu and Yuan (2012). Those 

factors are the lagged default premium, the difference between BAA and AAA bonds, the 

lagged term premium, the difference between 20-year and 1-year treasuries., the lagged real 

interest rate, the difference between 30-day T-bill and Consumer Price Index inflation rate, 

and the lagged the inflation rate.50 

Controlling for additional four macro-variables, the presence of market-wide sentiment 

on the EUE-induced mispricing persists in Table 3.4. The magnitude of the coefficient and 

its significance level on the mispricing spread in the high EUE group is close to those 

documented earlier. However, there is no predictive power of the sentiment index on the 

ambiguity premium after controlling for macroeconomic factors.   

 

3.5 Further Analyses 

In this section, I provide further analyses to examine links between market-wide sentiment 

and these two channels of the EUE. 

I first examine to what extent the existing cross-sectional risk model can explain the 

market-wide sentiment effect in relation to these two types of EUE effect. I then extend 

my empirical study to consider the interaction of the market-wide sentiment and macro 

uncertainty. I also study the market-wide sentiment effect considering the presence of short-

sale constraints and using an alternative sentiment index. Finally, I provide the robustness 

of my main findings by using stock exposure to economic policy uncertainty. 

 
50  The bond yields and inflation are gathered from Federal Reserve Bank of St. Louis, 
https://fred.stlouisfed.org/, and the T-bill return is gathered from CRSP. 
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3.5.1 Alternative Risk Models 

To provide more evidence to the market-wide sentiment effect on the two channels of EUE 

in cross-sectional returns, I examine the robustness of my findings with alternative risk 

models discussed in the first chapter. 

Along with the Fama French six-factor model in my main analysis, I also report the 

risk-adjusted returns on mispricing spreads and the ambiguity premium in the non-

mispricing group using the market model and two alternative versions of the augmented 

Fama French factor models in Table 3.5. I show that the mispricing effect is robust to these 

risk models following the high-market sentiment period. The mispricing alphas are 

statistically significant in the high EUE group, ranging from 2.07% to 1.12% per month. 

These figures are larger than those reported in the whole sample reported in the first chapter. 

For the low-market sentiment period, the subsequent alphas of ambiguity premium in the 

non-mispricing group remain significant, except for CAPM, when investors behave more 

rationally. Interestingly, the ambiguity premium is even larger than in the main analysis as 

the aggregate liquidity factor is additionally considered.  

   I additionally report the risk-adjusted returns with the q-factor (Hou, Xue, and 

Zhang, 2015; Hou et al., 2020) and the MSP models (Stambaugh and Yuan, 2017) in Table 

3.5. 

Following the high-market sentiment period, EUE-induced mispricing is significant 

in all q-factor and MSP models. The monthly alpha of the mispricing spread in the high 

EUE portfolio is 1.38% (𝑡 = 4.08) for the q4 model, 0.82% (𝑡 = 2.72) for the q5 model 

and 0.83% (𝑡 = 3.16) for the MSP model. These alphas are larger than those reported for 

the whole sample in Chapter 2. Moreover, conditional on market-wide sentiment, the 

mispricing effect cannot be captured by the existing models. 
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Table 3.5 Effect of Different Risk Models following High- and Low-Market Sentiment 
Periods 

This table reports the risk-adjusted returns on overpriced, underpriced and non-mispricing double-sort 
portfolios following high- and low-market sentiment periods. The portfolios are formed by independently 
sorting on EUE and the mispricing scores. The risk-adjusted returns are estimates of alphas from the 
following models: 
 𝐶𝐴𝑃𝑀: 𝑅𝑝,𝑡 = 𝛼𝐻𝑑𝐻,𝑡−1 + 𝛼𝐿𝑑𝐿,𝑡−1 + 𝛽𝑝,1𝑀𝐾𝑇𝑡 + 𝜀𝑖,𝑡 

 𝐹𝐹5   ∶  𝑅𝑝,𝑡 = 𝛼𝐻𝑑𝐻,𝑡−1 + 𝛼𝐿𝑑𝐿,𝑡−1 + 𝛽𝑝,1𝑀𝐾𝑇𝑡 + 𝛽𝑝,2𝑆𝑀𝐵𝑡 + 𝛽𝑝,3𝐻𝑀𝐿𝑡 + 𝛽𝑝,4𝐼𝐴𝑡 + 𝛽𝑝,5𝑅𝑂𝐸𝑡 + 𝜀𝑖,𝑡 

 𝐹𝐹7   ∶  𝑅𝑝,𝑡 = 𝛼𝐻𝑑𝐻,𝑡−1 + 𝛼𝐿𝑑𝐿,𝑡−1 + 𝛽𝑝,1𝑀𝐾𝑇𝑡 + 𝛽𝑝,2𝑆𝑀𝐵𝑡 + 𝛽𝑝,3𝐻𝑀𝐿𝑡 + 𝛽𝑝,4𝑈𝑀𝐷𝑡 + 𝛽𝑝,5𝐼𝐴𝑡 +

                              𝛽𝑝,6𝑅𝑂𝐸𝑡 + 𝛽𝑝,7𝐿𝐼𝑄𝑡 + 𝜀𝑖,𝑡 

  𝑞4      ∶ 𝑅𝑝,𝑡 = 𝛼𝐻𝑑𝐻,𝑡−1 + 𝛼𝐿𝑑𝐿,𝑡−1 + 𝛽𝑝,1𝑀𝐾𝑇𝑡 + 𝛽𝑝,2𝑄𝑆𝑀𝐵𝑡 + 𝛽𝑝,3𝑄𝐼𝐴𝑡 + 𝛽𝑝,4𝑄𝑅𝑂𝐸𝑡 + 𝜀𝑖,𝑡 

  𝑞5      ∶ 𝑅𝑝,𝑡 = 𝛼𝐻𝑑𝐻,𝑡−1 + 𝛼𝐿𝑑𝐿,𝑡−1 + 𝛽𝑝,1𝑀𝐾𝑇𝑡 + 𝛽𝑝,2𝑄𝑆𝑀𝐵𝑡 + 𝛽𝑝,3𝑄𝐼𝐴𝑡 + 𝛽𝑝,4𝑄𝑅𝑂𝐸𝑡 + 𝛽𝑝,5𝑄𝐸𝐺𝑡 + 𝜀𝑖,𝑡 

  𝑀𝑆𝑃  ∶  𝑅𝑝,𝑡 = 𝛼𝐻𝑑𝐻,𝑡−1 + 𝛼𝐿𝑑𝐿,𝑡−1 + 𝛽𝑝,1𝑀𝐾𝑇𝑡 + 𝛽𝑝,2𝑀𝑆𝑀𝐵𝑡 + 𝛽𝑝,3𝑀𝐺𝑀𝑇𝑡 + 𝛽𝑝,4𝑃𝐸𝑅𝐹𝑡 + 𝜀𝑖,𝑡 

𝑅𝑝,𝑡  is the excess return of portfolio 𝑝  in month 𝑡 . 𝑑𝐻,𝑡−1  and 𝑑𝐿,𝑡−1   are dummy variable indicating 

following high and low-market sentiment periods. 𝑀𝐾𝑇𝑡 , 𝑆𝑀𝐵𝑡 , 𝐻𝑀𝐿𝑡 , 𝑈𝑀𝐷𝑡 , 𝐼𝐴𝑡 , and 𝑅𝑂𝐸𝑡  are Fama 

and French market factors and 𝐿𝐼𝑄𝑡  is the level of aggregate market liquidity in month t. 𝑄𝑆𝑀𝐵𝑡 , 𝑄𝐼𝐴𝑡 , 

𝑄𝑅𝑂𝐸𝑡   and 𝑄𝐸𝐺𝑡 are Hou, Xue and Zhang (2015) and Hou et al. (2020) q-factors in month 𝑡. 𝑀𝑆𝑀𝐵𝑡  

𝑀𝐺𝑀𝑇𝑡 , and 𝑃𝐸𝑅𝐹𝑡 are Stambaugh and Yuan (2017) mispricing factors in month 𝑡. Variable definitions are 
listed in Appendix II. Portfolio returns are in percent and t-statistics are reported in parentheses using Newey-
West (1987) robust standard errors with 3 lags. The sample period is from July 1970 to December 2016 for 
MSP and to December 2018 for the other models. If the value of the sentiment index by Baker and Wurgler 

(2006) in month 𝑡 is positive (negative), month 𝑡 is high (low)-market sentiment month. There are 308 high 
and 275 low sentiment months, respectively. ***, ** and * indicates significance at the 1%, 5% and 10% levels 
respectively. 

 High-Market Sentiment Period  Low-Market Sentiment Period 

 

Low 
EUE 

High  
EUE 

High-Low 
EUE  

Low 
EUE 

High 
EUE 

High-Low 
EUE 

 CAPM 

Non-mispricing 0.13 -0.09 -0.22  -0.15 0.35 0.50 

 (1.17) (-0.47) (-0.91)  (-1.19) (1.41) (1.62) 
Underpriced− 
Overpriced 

0.70*** 2.07*** 1.37***  0.32 0.60** 0.28 
(3.23) (6.66) (4.12)  (1.55) (2.37) (1.04) 

 FF5 

Non-mispricing -0.09 0.32* 0.41**  -0.20* 0.42* 0.62** 

 (-0.77) (1.95) (2.06)  (-1.80) (1.88) (2.35) 
Underpriced− 
Overpriced 

0.40* 1.70*** 1.30***  0.14 0.41 0.27 
(1.90) (4.58) (3.57)  (0.69) (1.57) (0.98) 

 FF7 

Non-mispricing -0.03 0.25 0.29  -0.16 0.39* 0.55** 

 (-0.28) (1.41) (1.30)  (-1.21) (1.83) (2.03) 
Underpriced− 
Overpriced 

0.09 1.12*** 1.03***  -0.09 -0.17 -0.08 
(0.45) (3.98) (2.98)   (-0.50) (-0.62) (-0.26) 

 q4 

Non-mispricing -0.02 0.26 0.28  -0.23* 0.49* 0.71** 

 (-0.20) (1.38) (1.22)  (-1.73) (1.85) (2.17) 
Underpriced− 
Overpriced 

0.22 1.38*** 1.17***  0.08 0.23 0.15 
(0.90) (4.08) (3.36)  (0.39) (0.87) (0.52) 

 q5 

Non-mispricing 0.02 0.35* 0.33  -0.18 0.58** 0.76** 

 (0.18) (1.88) (1.45)  (-1.24) (2.42) (2.45) 
Underpriced− 
Overpriced 

-0.08 0.82*** 0.91***  -0.23 -0.36 -0.12 
(-0.36) (2.72) (2.65)  (-1.15) (-1.37) (-0.43) 

 MSP 

Non-mispricing 0.06 0.15 0.09  -0.21* 0.58*** 0.80*** 

 (0.49) (0.73) (0.36)  (-1.68) (2.75) (3.03) 

Underpriced− 
Overpriced 

-0.23 0.83*** 1.06***  -0.30* -0.12 0.18 

(-1.30) (3.16) (3.09)  (-1.69) (-0.48) (0.61) 
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Following low-market sentiment periods, by contrast, the ambiguity-premium 

effect in the non-mispricing group remains significant with the mispricing effect arbitraged 

away. The EUE premium is even larger with more comprehensive models than the 

counterpart in my main analysis when investors behave rationally, and in the whole sample 

reported in the first chapter. The monthly alpha of the high-minus-low EUE portfolio in 

the non-mispricing group is 0.71% for the q4 model, 0.76% for the q5 model and 0.80% 

for the MSP model following low-market sentiment periods. These findings suggest that 

the EUE premium is a new factor that is different from the existing risk factor as rational 

investors demand in the sense of the ambiguity-return trade-off consistent with the 

previous chapter. 

 

3.5.2 Interaction of Economic Uncertainty and Market-wide Sentiment 

In this section, I further examine my hypotheses with the interaction between market-wide 

sentiment and macro-level uncertainty. If macro uncertainty leaves more room for investors 

to behave more irrationally and have a larger disagreement, the sentiment effect tends to be 

more pronounced in periods with increasing EU (Hirshleifer, 2001; Birru and Young, 2020). 

Therefore, I expect that the presence of market-wide sentiment on the EUE-induced 

mispricing is the strongest in the intersection of high market-wide sentiment and high 

macroeconomic uncertainty periods. 

To test this prediction, I further divide the sample into four periods: increasing EU 

and high-market sentiment, increasing EU and low-market sentiment, decreasing EU and 

high-market sentiment, and decreasing EU and low-market sentiment. If the change of the 

EU index in month 𝑡 is positive (negative) then month 𝑡 is an increasing (decreasing) EU. 

High and low-market sentiment months are classified in the same manner as described in 
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Section 3.4.1. Four periods are the interaction of these two-way classifications. There are 

143 (127) months with increasing EU and high (and low)-market sentiment, and 165 (148) 

months with  decreasing EU and high (and low)-market sentiment. 

I obtain risk-adjusted returns following each of four periods by the following model: 

 
𝑅𝑝,𝑡 = ∑ 𝛼𝐽𝑑𝐽,𝑡−1

4

𝐽=1
+ 𝛽𝑝,1𝑀𝐾𝑇𝑡 + 𝛽𝑝,2𝑆𝑀𝐵𝑡 + 𝛽𝑝,3𝐻𝑀𝐿𝑡

+ 𝛽𝑝,4𝑈𝑀𝐷𝑡 + 𝛽𝑝,5𝐼𝐴𝑡 + 𝛽𝑝,6𝑅𝑂𝐸𝑡 + 𝜀𝑖,𝑡 

 

(3.5) 

 

where 𝑅𝑝,𝑡  is the excess return of portfolio 𝑝  in month 𝑡 . 𝑑𝐽,𝑡−1  is dummy variable 

indicating each of the four periods in month 𝑡 − 1. 𝑀𝐾𝑇𝑡, 𝑆𝑀𝐵𝑡, 𝐻𝑀𝐿𝑡, 𝑈𝑀𝐷𝑡 , 𝐼𝐴𝑡, and 

𝑅𝑂𝐸𝑡  are Fama and French market factors in month 𝑡. Table 3.6 reports risk-adjusted 

returns following each of the four periods in different EUE groups. 

Consistent with the prediction, the EUE effect on mispricing is much stronger 

following increasing EU and high-market sentiment periods. The monthly mispricing alpha 

in the highest EUE group is 1.74% with a t-statistic of 3.79. This figure is larger than the 

mispricing effect (with a monthly alpha of 1%) following the periods with low EU and high-

market sentiment. Additionally, it is the largest mispricing spread observed in the entire 

study.  

Second, the ambiguity premium effect is only observed in periods with more 

rational behaviours but increasing macro-level uncertainty. The high-minus-low EUE 

portfolio in the non-mispricing group has a monthly alpha of 1.02% with a t-statistic of 

2.67 following high EU and low-market sentiment periods. This is almost double the 

ambiguity premium observed following unconditional low-market sentiment periods 
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(0.53%, 𝑡 = 2.15) reported in Table 3.3, and is the highest premium documented in both 

chapters. 

Table 3.6 The Interaction of Market-wide Sentiment and Economic Uncertainty 

This table reports the risk-adjusted returns on overpriced, underpriced and non-mispricing double-sort 
portfolios following four different periods: increasing EU and high-market sentiment, increasing EU and low-
market sentiment, decreasing EU and high-market sentiment, and decreasing EU and low-market sentiment.. 
The portfolios are formed by independently sorting on EUE and the mispricing scores. The risk-adjusted 
returns are estimates of alphas estimated in Equation (3.5). Variable definitions are listed in Appendix II. 
Portfolio returns are in percent and t-statistics are reported in parentheses using Newey-West (1987) robust 
standard errors with 3 lags. The sample period is from July 1970 to December 2018. If the change of the EU 

index by Jurado, Ludvigson and Ng (2015) in month 𝑡 is positive (negative) then month 𝑡 is an increasing 
(decreasing) EU.  High and low-market sentiment months are classified in the same manner with the value of 
the sentiment index by Baker and Wurgler (2006). There are 143 (127) increasing EU and high (and low)-
market sentiment, and 165 (148) decreasing EU and high (and low)-market sentiment months.   ***, ** and * 
indicates significance at the 1%, 5% and 10% levels respectively. 

 High-Market Sentiment Period  Low-Market Sentiment Period 

 

Low 
EUE High EUE 

High-Low 
EUE  

Low 
EUE 

High 
EUE 

High-Low 
EUE 

 Panel A: Increasing EU Period 

1 Overpriced -0.18 -0.95*** -0.77**  -0.11 -0.07 0.04 

 (-0.72) (-4.21) (-2.02)  (-0.56) (-0.29) (0.14) 
3 Non-mispricing -0.10 0.03 0.13  -0.36* 0.66* 1.02*** 

 (-0.60) (0.14) (0.49)  (-1.88) (1.86) (2.67) 
5 Underpriced 0.07 0.79** 0.72**  -0.14 0.51* 0.64* 

 (0.52) (2.34) (1.99)  (-0.86) (1.69) (1.95) 
Underpriced− 
Overpriced 

0.25 1.74*** 1.49***  -0.02 0.58 0.60 
(0.85) (3.79) (2.68)  (-0.08) (1.44) (1.52) 

 Panel B: Decreasing EU Period 

1 Overpriced -0.02 -0.55** -0.54**  0.12 -0.12 -0.24 

 (-0.10) (-2.55) (-1.97)  (0.71) (-0.64) (-0.94) 
3 Non-mispricing 0.00 0.41* 0.41  -0.02 0.11 0.12 

 (0.03) (1.79) (1.44)  (-0.12) (0.44) (0.39) 
5 Underpriced -0.03 0.44* 0.47*  0.04 -0.30 -0.34 

 (-0.22) (1.67) (1.72)  (0.26) (-1.24) (-1.19) 
Underpriced− 
Overpriced 

-0.01 1.00*** 1.01**  -0.08 -0.19 -0.10 
(-0.04) (2.87) (2.58)   (-0.38) (-0.62) (-0.26) 

 

Overall, these findings confirm that macro-level uncertainty leaves more room for 

irrational behaviours in traders and the effect of sentiment, consistent with previous studies 

(Garcia, 2013; Birru and Young; 2020). Furthermore, EUE is priced as rational investors 

demand ambiguity premium when macroeconomic uncertainty increases, and their 

preference is more likely to be reflected during the period of low-market sentiment.  
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3.5.3 Short-sale Constraints  

Combining with short-sale constraints, the presence of market-wide sentiment is 

significantly observed in cross-sectional returns as arbitrageurs are not able to offset 

sentiment-driven traders (Miller, 1977; Stambaugh, Yu and Yuan, 2012). Therefore, I extend 

my main analyses distinguishing the level of short-sale constraints in double-sort portfolios 

following different sentiment states.   

The average returns on small-sized stocks are influenced more by market-wide 

sentiment relative to large-sized ones as individual investors are more likely to hold smaller 

and lower-priced stocks in their portfolios, and their trading activities are affected by 

sentiment (Lee, Shleifer and Thaler, 1991; Kumar and Lee, 2006; Baker and Wurgler, 2007). 

To examine the size effect, I form 50 portfolios by independently sorting stocks into two 

SIZE, five EUE, and five MIS groups.  

Consistent with the prediction, Panel A of Table 3.7 shows that the effect of market-

wide sentiment on the EUE-induced mispricing is stronger in small-size stocks relative to 

large-size ones. For small-cap stocks, the risk-adjusted return on the mispricing spread in 

the high EUE group is significantly 1.59% per month (𝑡 = 7.13) while it is significantly 

1.30% ( 𝑡 = 3.97 ) for large-cap stocks following high-market sentiment period. 

Furthermore, considering the significant EUE-induced mispricing in the low SIZE group 

following low-market sentiment periods (1.05%, 𝑡 = 4.89), rational traders are not able to 

arbitrage away the mispricing in small-cap stocks even if investors’ views are sufficiently 

dispersed in low-market sentiment periods.        

The ambiguity premium is significantly observed in the non-mispricing group with 

stocks with high SIZE (monthly alpha of 0.58%, 𝑡 = 2.19), but not with low SIZE, 



108 
 

Table 3.7 Short-sale Constraints 

This table reports the risk-adjusted returns on overpriced, underpriced and non-mispricing portfolios, formed by independently sorting on the two SIZE/IVOL, the five EUE 
and the five MIS groups, following high- and low-market sentiment periods. The risk-adjusted returns are estimates of alphas estimated in Equation (3.3). Variable definitions 
are listed in Appendix II. Portfolio returns are in percent and t-statistics are reported in parentheses using Newey-West (1987) robust standard errors with 3 lags. The sample 

period is from July 1970 to December 2018. If the value of the sentiment index by Baker and Wurgler (2006) in month 𝑡 is positive (negative), month 𝑡 is high (low)-market 
sentiment month. There are 308 high and 275 low-market sentiment months, respectively. ***, ** and * indicates significance at the 1%, 5% and 10% levels respectively. 

 High-Market Sentiment Period  Low-Market Sentiment Period  High-Market Sentiment Period  Low-Market Sentiment Period 

 

Low 
EUE 

High 
EUE 

High-Low 
EUE  

Low 
EUE 

High 
EUE 

High-Low 
EUE  

Low 
EUE 

High 
EUE 

High-Low 
EUE  

Low 
EUE 

High 
EUE 

High-Low 
EUE 

 Panel A: Size Effect 

 Low SIZE  High SIZE 

1 Overpriced -0.38** -0.88*** -0.49***  -0.16 -0.61*** -0.45**  -0.08 -0.69*** -0.61**  0.02 0.02 -0.00 

 (-2.47) (-5.59) (-2.73)  (-1.02) (-4.20) (-2.17)  (-0.52) (-3.70) (-2.31)  (0.18) (0.11) (-0.02) 
3 Non-mispricing 0.11 -0.00 -0.11  -0.08 0.12 0.19  -0.05 0.28 0.33  -0.18 0.40* 0.58** 

 (0.81) (-0.03) (-0.52)  (-0.61) (0.90) (1.09)  (-0.40) (1.55) (1.57)  (-1.57) (1.74) (2.19) 
5 Underpriced 0.42*** 0.71*** 0.29  0.36*** 0.44*** 0.08  0.01 0.61** 0.59**  -0.05 0.04 0.08 

 (3.12) (3.84) (1.53)  (3.04) (2.90) (0.48)  (0.15) (2.55) (2.36)  (-0.45) (0.18) (0.35) 
Underpriced− 
Overpriced 

0.80*** 1.59*** 0.78***  0.52*** 1.05*** 0.53**  0.10 1.30*** 1.20***  -0.07 0.02 0.09 
(4.00) (7.13) (2.89)  (2.62) (4.89) (1.98)  (0.50) (3.97) (3.22)  (-0.39) (0.07) (0.29) 

 Panel B: Idiosyncratic Risk 

 Low IVOL  High IVOL 

1 Overpriced 0.07 -0.55** -0.62**  -0.07 -0.23 -0.16  -0.79*** -0.86*** -0.07  -0.02 -0.15 -0.14 

 (0.41) (-2.39) (-2.16)  (-0.52) (-0.95) (-0.65)  (-3.46) (-4.26) (-0.21)  (-0.06) (-0.98) (-0.56) 
3 Non-mispricing -0.10 0.39 0.49*  -0.17 0.41 0.58*  0.05 0.04 -0.01  -0.24 0.15 0.40 

 (-0.70) (1.49) (1.70)  (-1.42) (1.42) (1.79)  (0.18) (0.19) (-0.02)  (-1.20) (0.65) (1.27) 
5 Underpriced 0.01 0.52** 0.51*  -0.16 -0.01 0.14  0.20 0.68** 0.47  0.69*** 0.16 -0.54 

 (0.12) (2.00) (1.87)  (-1.50) (-0.06) (0.61)  (0.89) (2.51) (1.54)  (2.83) (0.61) (-1.64) 
Underpriced− 
Overpriced 

-0.05 1.08*** 1.13***  -0.09 0.21 0.30  1.00*** 1.53*** 0.54  0.71** 0.31 -0.40 
(-0.27) (3.10) (2.78)   (-0.55) (0.67) (0.87)   (3.03) (4.41) (1.24)   (2.00) (1.09) (-1.02) 
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following low-market sentiment periods. 

As the second short-sale constraint proxy, I consider idiosyncratic risk (IVOL) that 

discourages arbitrageurs to correct stocks’ prices. Since, arbitrageurs are concerned about 

return-to-risk performance over the short-term horizon, as they use capital supplied by 

investors who are more likely to withdraw funds if the short-term performance is poor. 

Therefore, volatile assets exhibit higher mispricing and are subject to investor sentiment as 

a result of noise trading activity pushing prices away from fundamentals (Ali, Hwang and 

Trombley, 2003; Stambaugh, Yu and Yuan, 2015). To examine the IVOL effect, I form 50 

portfolios by independently sorting stocks into two IVOL, five EUE, and five MIS groups.  

Panel B of Table 3.7 reports adjusted returns in both low and high IVOL groups. 

Consistent with existing studies, following high-market sentiment periods, the mispricing 

effect is stronger for stocks with higher IVOL. The risk-adjusted return on the mispricing 

spread in the high EUE group is significantly 1.53% per month (𝑡 = 4.41) for high IVOL 

stocks following high-market sentiment periods, which is higher than the corresponding 

alpha (monthly alpha of 1.08%, 𝑡 = 3.10) for low IVOL stocks following the same period.  

The ambiguity premium is significantly observed in the non-mispricing group for 

low IVOL stocks following both high and low-market sentiment periods. This observation 

implies that even if sentiment-driven investors play a significant role when market-wide 

sentiment is high, the rational demand is apparent among low IVOL stocks. 

Overall, the mispricing effect of EUE is more pronounced following high-

sentiment periods in high short-sale constrained groups, namely high IVOL and low SIZE 

groups. It suggests that during high-market sentiment periods, rational investors are limited 

to exploit the irrational valuation resulting in significant overpricing in subsequent anomaly 

returns as the main source of mispricing (Miller, 1977; Stambaugh, Yu and Yuan, 2012). 
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However, I still observe a significant mispricing effect of EUE following the high-market 

sentiment period in low short-sale constrained groups. It implies that EUE can be a 

different source of arbitrage friction which deters rational investors from arbitraging away 

irrational mispricing, as shown in the second chapter. Finally, following low-market 

sentiment periods, the EUE premium in the non-mispricing group is significant among 

only stocks with low short-sale constraints, as the rational expectation. 

 

3.5.4 Alternative Sentiment Index  

In this section, I investigate whether my results are robust when using an alternative 

sentiment index. Previous studies have used the Consumer Sentiment index by the 

University of Michigan to measure investor sentiment (Lemmon and Portniaguina, 2006; 

Bergman and Roychowdhury, 2008). The Michigan sentiment index is constructed by 

conducting a monthly survey which is mailed to a number of randomly selected households 

and asks their opinion about the economy, starting monthly from January 1978. 51 

Therefore, the Michigan index might be more related to the sentiment in the economy 

rather than in stock markets. Following Stambaugh, Yu and Yuan. (2012), I use residuals 

taken from a regression of the Michigan index on the six macro-related variables used by 

Baker and Wurgler (2006).52 This allows us to remove macro-related information from the 

index. I estimate slope coefficients of Michigan index on double-sort portfolios in time-

series regressions similar to Equation (3.4) by replacing the lagged BW sentiment index with 

the lagged Michigan index.  

 
51 The index is obtained from http://www.sca.isr.umich.edu/tables.html. 
52 The six macro-related variables are the growth in industrial production, the growth in durable, nondurable 
and service consumption, the growth in employment and a flag for NBER recessions. The series are from 
Federal Reserve Bank of St. Louis, https://fred.stlouisfed.org/.  
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Table 3.8 reports slope coefficients of the lagged Michigan index on the mispricing 

spreads from the lowest to highest EUE groups, and on the high-minus-low EUE portfolio 

in the non-mispricing group. The coefficient of the lagged Michigan index on the mispricing 

spread in the high EUE group is significantly positive (0.04%, 𝑡 = 2.06), suggesting my 

first hypothesis still holds when using the Michigan index. However, the slope coefficient 

on the ambiguity premium in the non-mispricing group is statistically insignificant, 

consistent with Table 3.4, confirming that Michigan Index proxying for market-wide 

sentiment may also not be able to predict the classical risk-return trade-off attributed to the 

rational demand.  

Table 3.8 Predictive Regressions of the Mispricing Spread and the Ambiguity Premium: 
the Michigan Index 

The table reports estimate of β coefficients on the mispricing spread in EUE quintile and the ambiguity 
premium in the non-mispricing group in by the following models: 
 
Univariate: 

 𝑅𝑝,𝑡 = 𝛼𝑝,1 + 𝛽𝑝,1𝑀𝑡−1 + 𝜀𝑝,𝑡 

FF6: 

𝑅𝑝,𝑡 = 𝛼𝑝,1 + 𝛽𝑝,1𝑀𝑡−1 + 𝛽𝑝,2𝑀𝐾𝑇𝑡 + 𝛽𝑝,3𝑆𝑀𝐵𝑡 + 𝛽𝑝,4𝐻𝑀𝐿𝑡 + 𝛽𝑝,5𝑈𝑀𝐷𝑡 + 𝛽𝑝,6𝐼𝐴𝑡 + 𝛽𝑝,7𝑅𝑂𝐸𝑡 + 𝜀𝑖,𝑡 

FF6+Macro:  

𝑅𝑝,𝑡 = 𝛼𝑝,1 + 𝛽𝑝,1𝑀𝑡−1 + 𝛽𝑝,2𝑀𝐾𝑇𝑡 + 𝛽𝑝,3𝑆𝑀𝐵𝑡 + 𝛽𝑝,4𝐻𝑀𝐿𝑡 + 𝛽𝑝,5𝑈𝑀𝐷𝑡 + 𝛽𝑝,6𝐼𝐴𝑡 + 𝛽𝑝,7𝑅𝑂𝐸𝑡

+ ∑ 𝑚𝐽𝑋𝐽,𝑡−1

4

𝐽=1
+ 𝜀𝑖,𝑡 

𝑅𝑝,𝑡 is the excess return of portfolio 𝑝 in month 𝑡. 𝑀𝑡−1 is the lagged level of the Michigan index. 𝑀𝐾𝑇𝑡 , 

𝑆𝑀𝐵𝑡 , 𝐻𝑀𝐿𝑡 , 𝑈𝑀𝐷𝑡 , 𝐼𝐴𝑡 , and 𝑅𝑂𝐸𝑡  are Fama and French market factors in month 𝑡. 𝑋1,𝑡−1 ⋯ 𝑋4,𝑡−1 are 

four lagged macroeconomic variables: the default premium, the term premium, the real interest rate and 
inflation rate. Variable definitions are listed in Appendix II. Portfolio returns are in percent and t-statistics are 
reported in parentheses using Newey-West (1987) robust standard errors with 3 lags. The sample period is 
from July 1970 to December 2018. ***, ** and * indicates significance at the 1%, 5% and 10% levels 
respectively. 

 

Low 
EUE 2 3 4 

High 
EUE 

High-Low 
EUE  High-Low EUE 

 Underpriced-Overpriced  Non-mispricing 

Univariate 0.03 0.03 0.02 0.04** 0.07*** 0.05**  -0.04 

 (1.50) (1.49) (1.13) (2.29) (3.00) (2.10)  (-1.52) 
FF6 0.00 0.01 -0.01 0.01 0.04** 0.04*  -0.01 

 (0.20) (0.35) (-0.52) (0.85) (2.06) (1.73)  (-0.78) 

FF6+ Macro 

0.00 0.00 0.00 0.01 0.04** 0.04  -0.00 

(0.23) (0.17) (0.26) (0.36) (2.06) (1.59)   (-0.23) 



112 
 

3.5.5 Economic Policy Uncertainty Index  

In my analyses, I rely on the JLN uncertainty index in beta estimation to form double-sort 

portfolios. To understand whether the role of market-wide sentiment in the two effects of 

EUE on cross-sectional returns depends on index selection, I additionally use the economic 

policy index (EPU) developed by Baker, Bloom and Davis (2016). As in my EUE estimation, 

I estimate these uncertainty exposure betas from a 60-month rolling regression for each 

stock by replacing ∆𝑈𝑁𝐶𝑡 with the log changes of the EPU index, in Equation (3.2). Once 

I collect the absolute value of monthly estimated EPU exposure (EPUE), I form 25 

independent double-sorted EPUE-MIS portfolios. The first set of the 25 portfolios is 

formed in February 1990. 

Table 3.9 presents risk-adjusted returns on EPEU-MIS portfolios following 

different market sentiment periods. Similar to my main findings reported in Table 3.3, I 

observe a significant role of market-wide sentiment in the two effects of EPEU on cross-

sectional returns. Following high-market sentiment periods, the average alpha of the 

mispricing spread in the high EPUE is significantly 1% per month (𝑡 = 2.80), which is 

larger than that (0.64%, 𝑡 = 2.49) reported in the previous chapter. Following low-market 

sentiment periods, the high-minus-low EPUE portfolio in the Non-mispricing group 

significantly generates 0.70% per month (𝑡 = 2.41) as its mispricing effect vanishes, which 

is almost double the ambiguity premium (0.41%, 𝑡 = 1.92) documented previously. 

Overall, I confirm that the market-wide sentiment effect is prominent in both the 

mispricing and the ambiguity premium sourced by different types of economic uncertainty. 
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Table 3.9 Economic Policy Uncertainty Index Portfolio Returns following High- and 
Low-Market Sentiment Periods 

The table reports the risk-adjusted on 25 EPUE-MIS value-weighted portfolios following high- and low-
market sentiment periods in Panel A and B, respectively. The 25 portfolios are formed by independently 
sorting on EPUE and the mispricing scores. The risk-adjusted returns are estimates of alphas estimated in 
Equation (3.3). Variable definitions are listed in Appendix II. Portfolio returns are in percent and t-statistics 
are reported in parentheses using Newey-West (1987) robust standard errors with 3 lags. The sample period 
is from January 1990 to December 2018. If the value of the sentiment index by Baker and Wurgler (2006) in 

month 𝑡 is positive (negative), month 𝑡 is high (low)-market sentiment month. There are 215 high and 133 
low-market sentiment months, respectively. ***, ** and * indicates significance at the 1%, 5% and 10% levels 
respectively. 

  
Low 

EPUE 2 3 4 
High 

EPUE 
High-Low 

EPUE 

Panel A: High-Market Sentiment Period 

Overpriced -0.05 -0.24 -0.38** -0.31 -0.42** -0.37 

 (-0.25) (-1.20) (-2.19) (-1.59) (-2.44) (-1.48) 
2 0.05 -0.33* 0.27 0.02 0.25 0.20 

 (0.26) (-1.68) (1.49) (0.10) (1.00) (0.64) 

3 Non-mispricing 
0.24 0.06 -0.20 -0.15 0.48** 0.24 

(1.40) (0.48) (-1.15) (-0.81) (2.21) (0.81) 
4 -0.13 -0.31** -0.22* -0.14 0.59** 0.73*** 

 (-1.07) (-2.45) (-1.73) (-0.84) (2.51) (2.91) 
Underpriced 0.03 0.03 -0.03 0.10 0.58** 0.55* 

 (0.26) (0.30) (-0.22) (0.69) (2.06) (1.70) 
Underpriced− 
Overpriced 

0.07 0.27 0.36* 0.42* 1.00*** 0.92** 
(0.32) (1.18) (1.82) (1.72) (2.80) (2.12) 

Panel B: Low-Market Sentiment Period 

Overpriced -0.45* -0.29 -0.67** -0.79*** -0.14 0.32 

 (-1.66) (-1.09) (-2.44) (-2.75) (-0.54) (0.97) 
2 -0.06 -0.31 -0.28 -0.33 0.15 0.22 

 (-0.28) (-1.46) (-1.17) (-1.64) (0.66) (0.77) 

3 Non-mispricing 
-0.08 -0.04 -0.26 -0.02 0.62** 0.70** 

(-0.56) (-0.27) (-1.53) (-0.09) (2.28) (2.41) 
4 0.30** 0.07 0.11 -0.08 0.14 -0.16 

 (2.26) (0.46) (0.59) (-0.31) (0.46) (-0.46) 
Underpriced -0.06 0.12 -0.17 -0.04 0.05 0.10 

 (-0.47) (1.04) (-1.23) (-0.18) (0.19) (0.36) 
Underpriced− 
Overpriced 

0.39 0.41 0.50* 0.75* 0.18 -0.21 
(1.21) (1.26) (1.70) (1.93) (0.59) (-0.48) 

 

 

3.6 Conclusion 

In traditional asset pricing theory, investor sentiment has no role in explaining the cross-

section of stock returns. Existing studies, however, have shown that market-wide sentiment 

has a significant influence in the stock market, and have highlighted the incorporation of 

its impact into the theory (i.e., Baker and Wurgler, 2006; 2007; Stambaugh, Yu and Yuan, 
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2012). This study investigates its influence in relation to the two effects of EUE on cross-

sectional returns documented in the previous chapter. The contribution of this study to the 

literature is the empirical examination of the interaction between market-wide sentiment 

and investors’ preferences to assets with different levels of EUE, and the exploration of 

behavioural insights into those EUE effects.  

This study argues that the mispricing effect of EUE is dominant as investors are 

more irrational and the rational ones are limited in the high-market sentiment period. 

Consistent with this, it shows that there is larger mispricing spread in stocks with high EUE 

following the high-market sentiment period. This effect is even more pronounced 

compared to the whole sample period documented in Chapter 2. The ambiguity premium, 

by contrast, is significantly apparent with the mispricing effect vanishing following the low-

market sentiment period as the market is more rational. This finding confirms that the 

ambiguity premium is attributed to investors’ rational preference for lower ambiguity 

(Anderson, Ghysels and Jurgens, 2009), which is clearly observed when the market 

condition reflects this group of investors’ views. 

    In the context of short-sale impediments, this study shows that the effect of market-

wide sentiment on EUE-induced mispricing is stronger among small-sized and high 

idiosyncratic risk stocks. However, EUE-induced mispricing is still observed in low short-

sale constrained groups, implying that EUE can be a different source of arbitrage 

documented in Chapter 2. As the rational expectation, the ambiguity premium effect is 

apparent following a low-market sentiment period among only stocks with low short-sale 

constraints.  

Finally, this study finds that the mispricing effect is even much stronger in the 

intersection of high market-wide sentiment and high macroeconomic uncertainty. This 
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finding suggests that economic uncertainty indeed leaves more room for the sentiment 

effect in the market (Garcia, 2003, Birru and Young, 2020). 
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Chapter 4 
 
 

4 Incentivised Optimism: Economic 

Uncertainty and Analyst Forecasts 

 

4.1 Introduction 

In the first two empirical chapters, I study the effect of economic uncertainty on cross-

sectional returns along with the consideration of market-wide sentiment presence. This 

chapter examines the effect of economic uncertainty on security analysts’ bias in forecasts 

and stock recommendations. 

Existing studies have shown optimistic bias in sell-side analysts’ forecasts (i.e., 

Stickel, 1990; Chopra, 1998; Lim, 2001).53 This bias is generally caused by their incentive 

concerns (Jackson 2005). For instance, Lim (2001) argues that an analyst publishing a 

favourable forecast for a company is more likely to build a better relationship with that 

company. Moreover, optimism in analysts’ forecast generates trading volume for the 

brokerage firm they work for, resulting in receiving more trading commissions (Cowen, 

Groysberg and Healy, 2006). However, analysts’ reputation concerns limit these incentives 

as investors are able to catch them out in the long term. In this regard, this behaviour with 

upward bias can be detrimental for analysts’ reputation in their career as it will affect analysts 

to secure their position in the industry or get promotion to larger brokerage firms (Jackson, 

 
53  Our analyst optimism measure is calculated by subtracting the average analysts’ forecast from actual 
earnings (i.e., Lim, 2001; Engelberg, Mclean and Pontif, 2018).  
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2005; Groysberg, Healy and Maber, 2011; Chang and Choi, 2017). Therefore, analysts are 

in a trade-off between their reputation and incentive concerns related to optimistic 

forecasts. One of these factors that may tilt this balance is the uncertainty of the firm’s 

future outlook. Especially, how a firm’s exposure to macroeconomic uncertainty would 

affect analysts behaviours has not been fully examined in the literature.54  

Along with the incentive based optimism limited with analysts’ reputation concerns, 

there are also different explanations for analyst optimism in the relevant literature. First, 

analysts with pessimistic view on a company are more likely to drop their forecasts. This is 

because the company might withhold inside information from those analysts. Due to 

missing pessimistic view this situation feeds analyst optimism in forecasts for that company, 

which is referred to self-selection bias (McNichols and O’Brien, 1997; Hayes, 1998; Das et 

al., 2006).55 Second, analyst optimism is subject to cognitive biases.56 Several studies find 

that analysts are more likely to underreact (overreact) to negative (positive) news, resulting 

in significant optimism in forecasts, which is more prominent with larger stock-level 

uncertainty (i.e. Mendenhall, 1991; Abarbanell and Bernard, 1992; Esterwood and Nutt, 

1999; Zhang, 2006). Ertimur, Muslu and Zhang (2011) suggest that although those 

explanations are not mutually exclusive, the incentive based explanation has a dominant 

effect on analysts optimism.  

Behavioural explanation based on analysts’ underreaction to new information under 

uncertainty, which is inconsistent with the rational notion, could be the main force that 

 
54 Chang and Choi (2017) show that the market-level uncertainty affecting analysts’ incentives results in 
optimistic bias in their forecasts. However, firm level exposure has not been studied.    
55 Considering the rational framework in analyst optimism, the self-selection bias complements analysts’ 
incentive concerns. Since, the withdrawal of pessimistic forecasts is more likely to keep managerial 
relationships (McNichols and O’Brien, 1997). This study provides evidence consistent with the self-selection 
bias explanation in Section 4.5.4.   
56  Hirshleifer (2001) suggests that due to overconfidence analysts put more attention on their private 
information than public signals, thus their forecast tend to be optimistic. De Bondt and Thaler (1990) argue 
that analysts’ optimism is due to overreaction to information leading to form extreme expectations.  
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makes analysts more optimistic for stocks with uncertain signals induced by economic 

uncertainty. However, Lim (2001) argues that the behavioural explanation due to cognitive 

biases is not clear enough to explain analysts optimism.57 This is because one of the key 

sources in earnings forecasts is companies’ private information, which becomes even more 

important for those with higher uncertain signals (Lim, 2001; Soltes, 2014; Brown et al. 

2015).58       

In this study, I conjecture that EUE may give more room to analysts to be more 

optimistic for incentives with less career concern due to its effect on information quality.59  

Economic uncertainty (EU) is one of these factors at the macro-level related to the prospect 

of the economy which is unpredictable using the available information and models (Bloom, 

2009; Jurado, Ludvigson and Ng, 2015). Intuitively, it would be more difficult for investors 

to estimate the prospect of companies with higher EUE.60 Therefore, stock exposure to 

economic uncertainty makes it harder for investors to verify analysts’ forecasts.61  This 

condition is more likely to tilt the balance of analysts’ trade-off to be more optimistic for 

incentives in their forecast since the chance of being caught is relatively lower leading to a 

lower reputational concern. Therefore, I hypothesise that optimism in analysts’ forecasts 

increases with stock exposure to economic uncertainty.  This hypothesis is also built on the 

 
57 For more details about the theoretical model on analyst rational optimism, see Lim (2001). 
58 Considering analysts underreaction to macroeconomic news (Hugon, Kumar and Lim, 2016), this study 
examines whether the behavioural explanation can hold. However, there is no strong evidence for this 
explanation. More details can be found in Section 4.5.5.  
59 Along with macroeconomic uncertainty, there are several factors which could affect information quality 
such as earnings precision, accruals quality and analyst consensus (i.e. Dechow and Dichew, 2002; Zhang, 
2006; Ng, 2011). In this study, analyst consensus, as analyst dispersion, and accruals quality are controlled in 
empirical analyses.  
60 This specification allows us to differentiate analyst optimism level as not all companies are equally affected 
by macro uncertainty. For instance, companies having large investments or producing durable goods are more 
likely to be influenced by shocks in uncertainty, relative to those producing services or non-durable goods 
(i.e., Bloom, 2009; Gomes, Kogan and Yogo., 2009). 
61 This is especially for each individual company, users of analysts report would be more difficult to pinpoint 
the source of forecasting error in firms with higher sensitivity to EU since they only have limit observations.  
As a researcher I can quantify the effect with large sample and through statistical analyses.  
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three strands of literature on the incentives for analysts to produce a more favourable view 

on a firm with higher EUE than that with lower EUE.   

First, Lim (2001) suggests that managers support positive forecasts while 

eliminating the flow of unfavourable ones. Since favourable forecasts which lead to higher 

capital market valuations increase their compensation levels. Lim (2001) further shows that 

optimistic forecasts tend to be larger for companies with higher uncertain payoffs and for 

analysts who are in a need of management access as an information source. Therefore, for 

stocks with high EUE, analysts are more likely to use optimistic forecasts to gain support 

from managers in order to access private information.  

Second, several studies have modelled heterogeneity among investors and show that 

pessimistic investors reduce their participation in stocks with uncertain payoffs. Thus, those 

assets are held by only optimistic ones (i.e., Cao, Wang and Zhang, 2005; Easley and 

O’Hara, 2009; Epstein and Schneider, 2010).62 Additionally, Cowen, Groysberg and Healy 

(2006) suggest that an optimistic forecast for a stock tend to encourage investors with an 

optimistic view to buy, which generates more trading volume.63 Therefore, analysts might 

expect more trading commission by publishing optimistic view on stocks with high EUE. 

This is because investors with an optimistic view of the economy will be more likely to find 

confirmation of their belief in the analyst’s report which will, in turn, increases their 

investment in such stocks.  

Third, considering the negative effect of EU on the quality of information, analysts 

are less likely to be penalised due to publishing biased forecasts for stocks with high EUE. 

 
62 For instance, Dimmock et al. (2016) test this theoretical model and find results consistent with this 
assumption.  
63 They further suggest that this trading volume is mostly made by retail investors, who are more subject to 
optimism in the market (Nagel, 2005).    
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In other words, due to the nature of high uncertainty, the accuracy of the forecast for this 

type of stocks (error variance is high) is harder to be verified (Ackert and Athanassakos, 

1997).64 

Empirically, I measure EUE by estimating the sensitivity of stock return to log 

changes of economic uncertainty proposed by Jurado, Ludvigson and Ng (2015, hereafter, 

JLN). They define economic uncertainty as the conditional volatility of a disturbance that 

is unforecastable from the perspective of economic agents.65 I broadly follow Bali, Brown 

and Tang (2017) to estimate stocks exposure in 5-year rolling regressions controlling for 

known risk factors.66 Following Hong and Sraer (2016) and Li (2016), I capture the exposure 

by using the absolute value of the economic uncertainty beta, since uncertainty is larger for 

stocks more highly correlated with economic uncertainty regardless of a positive or negative 

sign.  

I measure monthly analyst optimism at the firm-level as the difference between one-

year consensus earnings forecasts and actual value scaled by prior month stock price (i.e., 

Lim, 2001; Larocque, 2012; Henderson and Marks, 2013; Engelberg, Mclean and Pontiff, 

2018). It is important to note that my measure of optimism is at the firm level. This is 

 
64 Relatedly, during uncertain times analysts may have more opportunistic behaviours. This is because there 
is more likely to be a decline in trading volume resulting in lower broker profits in such times (Loh and Stulz, 
2018) and their optimism is more likely to increase trading activity in market. For instance, Chang and Choi 
(2017) find a positive relationship between analyst optimism in forecasts and trading volume when market-
level uncertainty, measured by VIX, is high. Additionally, gaining better access to inside information might 
become more important during bad times than normal times, hence analysts’ incentive concern about 
managerial relationships is expected to be more prominent. 
65 Their aggregate macroeconomic uncertainty measure is constructed with a wide range of economic data. 
They show that such a measure is better at capturing quantitively important uncertainty episodes than popular 
financial market-based proxies, such as the VIX index.  
66 One important modification I made in our empirical setting is that, instead of using the level of economic 
uncertainty as in Bali, Brown and Tang (2017), I use log changes of economic uncertainty as the level is very 
persistent. The use of log change makes it more suitable to capture unexpected innovations in the uncertainty 
with close to zero expectation, which is an important requirement of pricing factors in the context of arbitrage 
pricing theory (i.e., Merton, 1973; Ross, 1976; Chen, Roll and Ross, 1986).  This research design is consistent 
with a recent study by Bali, Subrahmanyam and Wen (2020) who study macroeconomic uncertainty in the 
bond market.  
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different from existing studies (i.e., Cowen, Grosyberg and Healy, 2006; Hugon, Kumar 

and Lim, 2016; Chang and Choi, 2017), which study the relative analysts' optimism for the 

same stock. This is because using consensus optimism measure mitigates the effect of 

extreme values in forecasts as the skewness in the distribution of earnings and forecasts 

may affect emprical analyses (Zhang, 2006).  

I perform panel regressions of analyst optimism on EUE quintile ranks (Rank5) 

controlling for various firm and analyst characteristics.67 In my empirical analyses, I find a 

significant positive relationship between EUE and analyst optimism in the sample between 

1982 and 2018 in the US markets. 

First, analyst optimism increases from the group with the lowest EUE to the group 

with the highest EUE and the strongest one is observed among stocks with the highest 

EUE. The monthly consensus forecasts for one-year earnings is 3.6% larger than the actual 

value for stocks in the highest EUE group. This value is more than triple the optimism in 

the lowest EUE group, which is 1% larger than the actual value. Furthermore, panel 

regression results confirm that firm-level consensus optimism is positively affected by 

stocks’ EUE, supporting my hypothesis. Cross-section of earnings forecast optimism 

increases with firms’ exposure to EU in quintile ranks, controlling for the firm- and 

industry-fixed effects, respectively.  

I further show that EUE impact on analyst optimism is only observed following 

high EU periods. This confirms that EU is the driver of the EUE effect on forecast 

optimism.  When EU is low, the relative difference in the sensitivity to EU will not affect 

 
67 Every month, stocks are sorted on prior month’s EUE to form quintiles. To reduce the effect of outliers 
in OLS estimates, I only use EUE quintile ranks (Johnson, 2004; Zhang, 2006).  
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analysts behaviours.  In other words, analysts behave similarly for high or low EUE firms 

following periods with low EU.   

To substantiate the links between the optimism and analysts’ incentive induced by 

the high EUE condition.  I further examine analyst optimism in the context of different 

incentive explanations. First, considering the benefit of the optimistic forecasts, i.e., access 

to managerial information which may not be publicly available (Brown et al., 2015; Lim, 

2001), I identify firms based on their earnings management quality.68 I measure firms’ 

discretionary accruals (DA) (Kothari et al., 2005) and then separate them into two groups.  

In panel regressions, my results show that a significant effect of EUE on consensus 

optimism is observed in the low earnings quality group (or high DA group). Moreover, 

following Frankel, Kothari and Weber (2006), I measure firms’ available information at the 

market level and divide them into two groups.69 Consistent with results in earnings quality 

analyses, the positive relationship between EUE and optimism is observed in stocks with 

low market-level information. Those results confirm that analysts are more optimistic in 

order to have a better relationship with managers to access private information for stocks 

with high EUE. 

Second, I also examine EUE-induced analyst optimism based on investor 

sophistication as their optimism is more likely to be captured if there are more sophisticated 

investors in the market. The positive EUE and optimism relationship is observed among 

stocks with low institutional ownership. Since retail investors are less informed and may 

 
68 Conducting a series of interviews among several analysts, Brown et al. (2015) show the importance of 
private communication with managers as analysts are able to gather nonpublic information. They additionally 
find that for analysts the quality of earnings management is an important factor to control in the financial 
statements in forecast process, implying a negative relationship between earnings management quality and the 
need of private communication with managers. 
69 It is measured by taking monthly R-square from the market-model regression using daily excess returns for 
each stock in the sample. The higher the R-square, the more the information available in the market.   
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not be able to verify analysts’ forecast especially for stocks with high EUE. By contrast, the 

positive relationship between EUE and optimism is not presented among stocks with high 

institutional ownership.  This is not surprising as those investors are more sophisticated, 

and they are able to capture analysts’ optimism for incentives in earnings forecasts, which 

may harm analysts’ reputation (Jackson, 2005). 

Third, I investigate whether high EUE can indeed reduce reputation costs of 

forecast optimism for analysts career concern.  While optimistic bias in the forecast may 

harm analysts’ reputation in long-term (Jackson, 2005; Groysberg, Healy and Maber, 2011; 

Chang and Choi, 2017), EUE-induced optimism might give analysts an opportunity to hide 

their bias as investors tend to have more difficulties to verify the valuation of stocks with 

high uncertain payoffs (Ackert and Athanassakos, 1997). In the analyst-level analyses, I 

show that analysts with an optimistic forecast for stocks with high EUE are less likely to 

lose their position in high-status brokerage house (Hong, Kubik and Solomon, 2000).70 

EUE-induced optimism might be attributed to a lack of pessimistic coverage for 

those stocks. Analysts with a negative view might downgrade their forecasts for those assets. 

However, those firms might withhold inside information from those analysts, leading them 

to drop coverage of those firms. The missing pessimistic view on high EUE can increase 

the effect of optimistic opinions on the consensus (McNichols and O’Brien, 1997). In this 

regard, I show that the total number of forecasts issued by pessimistic analysts for 

companies with high EUE is in a negative trend.  Moreover, this trend is also observed 

among the optimists covering those companies, suggesting that there are still optimists who 

are less willing to exploit EUE and more likely to drop coverage as facing larger EUE. 

 
70 Following Hong, Kubik and Solomon (2000), if a brokerage house has less than 25 analysts then it is 
classified as low-status brokerage house. 
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Interacting with brokerage size, this might be because the optimists working for larger 

brokerage houses have a higher quality of information environment and better relationship 

with firms (Jacob, Lys and Neale, 1999). Therefore, optimists working for those brokerage 

houses with these opportunities may decide to stop issuing their forecasts as facing higher 

uncertainty. Moreover, their career concerns may deter them from reflecting their optimism 

for those assets.     

This study, furthermore, examines whether EUE-induced forecast optimism, at 

least, is partly related to behavioural biases considering analysts’ underreaction to new 

information at a macroeconomic level. For instance, Zhang (2006) shows that analyst 

forecast optimism increases (decreases) following bad (good) news for stocks with higher 

information uncertainty inconsistent with forecast optimism based on the rational 

framework.71 This is because analysts tend to underreact to new information, and this 

phenomenon is more pronounced with greater uncertainty (Hirshleifer, 2001). Moreover, 

Hugon, Kumar and Lim (2016) show that analysts are more likely to underreact to bad 

macro-related news, resulting in significant optimism in earnings forecasts following 

negative GDP growth news. Therefore, analysts may publish more (less) optimistic forecast 

for stocks with high EUE following negative (positive) GDP growth news due to their 

underreaction to news in earnings forecasts for such stocks.72 In further tests, however, 

results fail to show that EUE-induced optimism, at least, is partly related to analysts’ 

underreaction to macroeconomic news. 

Another role of analysts in the market is to improve price efficiency with their 

forecasts and recommendations. Specifically, they are expected to issue a more optimistic 

 
71 Zhang (2006) measures information uncertainty at stock-level using analyst dispersion 
72 Macroeconomic news measures related to GDP growth are introduced in Section 4.5.5 in detail. 
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(pessimistic) view for underpriced (overpriced) stocks to correct mispricing in the market. 

However, recent studies find that analysts are more likely to issue optimistic views for 

overpriced stocks, exacerbating mispricing in anomaly returns and impeding the price 

correction (Engelberg, McLean and Pontiff, 2018; Guo, Li and Wei, 2020). Considering the 

main findings in Chapter 2, I interact EUE-induced mispricing in anomalies with EUE-

induced analyst optimism in earnings forecasts. In this way, I further investigate whether 

their bias exacerbates anomaly mispricing in stocks with high EUE as a result of their 

incentive concerns. I find that the EUE effect on mispricing is significantly apparent in the 

group with high consensus optimism. Moreover, the ambiguity-premium effect is only 

significantly observed in the group of stocks with low consensus optimism. These results 

confirm that analysts issuing optimistic view for stocks with high EUE impede the price 

efficiency in the market resulting in significant mispricing.          

Finally, I extend my empirical analysis by considering the economic policy 

uncertainty index (Baker, Bloom and Davis, 2016) as an alternative measure of macro 

uncertainty. These findings are consistent with my main results, implying that stocks’ 

exposure to uncertainty in policy and regulations matters to analysts’ optimism in earnings 

forecasts and stock recommendation along with exposure to uncertainty in the real 

economy. I also confirm my finding with an alternative measure of optimism by examining 

the stock recommendations. I show that analysts issue a higher rate of buy 

recommendations, while they reduce the rate of sell recommendations for stocks in the 

group with the highest EUE. There is an increase (decrease) in the annual average rate of 

buy (sell) recommendations by firms’ exposure to EU in quintile ranks, controlling for firm- 

and industry-fixed effects, respectively. Moreover, in logistic regressions, I further confirm 

that analysts are more (less) likely to issue buy (sell) recommendations for those stocks in 

the analyst-level analysis. 
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This study contributes to the literature in several ways. First, several studies examine 

the effect of macro-level uncertainty on investor decision process (i.e., Anderson, Ghysels 

and Juergens, 2009; Bloom, 2009; Bali, Brown and Tang, 2017). Specifically, investors treat 

stocks with different EUE in different ways. While rational investors demand higher equity 

premium from high EUE stocks, irrational ones have a larger disagreement on such assets, 

exacerbating mispricing in equities, documented in the first chapter. My investigation is 

related to its effect on the analyst decision process. Through empirical analyses, this study 

reveals that analysts are more likely to have more incentive based response to higher EUE 

with less career concern, issuing more optimistic forecasts.  

In this study, my findings contribute to previous studies examining the effect of 

market uncertainty and bad times on analyst performance. For instance, Amiram et al (2017) 

show that analysts issue forecasts more often, implying that they are timelier when market 

uncertainty is higher, however, their accuracy is lower. Amiram et al (2017) suggest that 

analysts underreact to news, measured by stock price movement. In addition, Loh and Stulz 

(2018) provide evidence suggesting that due to their career concerns, analysts put more 

effort into their forecast when uncertainty is high during financial crises.73 Specifically, my 

findings complement Chang and Choi (2017) who find a positive relationship between 

market uncertainty, measured by the VIX, and analyst optimism. They explain analysts’ 

optimism during high market uncertainty period with less reputational costs and more 

trading commission benefits (Lim, 2001; Jackson; 2005).  

Second, this study is related to the importance of reputation for analysts’ career in 

the industry that limits their behaviours for incentives (Fama,1980; Lim, 2001). Several 

 
73 Loh  and Stulz (2018) define bad times which equal one for 1987 crisis, LTCM crisis in 1998 and the 
financial crisis in 2008, along with recessions defined by NBER.  
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studies suggest that analysts are more likely to lose their jobs or move down from a high-

status brokerage house to a low one due to their optimistic forecasts for incentives in 

earnings (Jackson, 2005; Groysberg, Healy and Maber, 2011; Chang and Choi, 2017). 

However, this study shows that this concern is less likely for analysts when the 

informational environment is vague. Specifically, this study provides strong evidence that 

analysts are able to hide their optimism for incentives as experiencing less career concern 

when issuing optimistic forecasts for stocks with high EUE. This study unveils another 

important conditional variable to understand the determinant of analysts’ optimistic 

behaviours for incentives.  

Relatedly, this study offers a new firm-level measure of uncertainty that captures 

sensitivity to macro-related index while controlling for the other firm-level uncertainty 

measures, such as IVOL and analyst dispersion, which are widely used in the literature 

(Ackert and Athanassakos , 1997; Zhang, 2006). Therefore, from an investors perspective, 

EUE can be used to evaluate analyst performance in earnings forecasts in terms of 

optimistic bias.  

Finally, this study is related to Engelberg, McLean and Pontiff (2018) and Guo, Li 

and Wei (2020). Their studies suggest that analyst optimism impedes price efficiency and 

results in significant mispricing in anomalies. Empirical results in this chapter support their 

findings and further show that due to incentive concerns, upward bias in forecasts for 

stocks with high EUE tends to mislead investors in anomaly investment strategy, worsening 

mispricing.    

The rest of the chapter is organized as follows. Section 4.2 reviews the literature 

and develops my main hypotheses. Section 4.3 presents my data. Section 4.4 presents the 

main findings. Section 4.5 reports robustness and further tests. Section 4.6 concludes.  
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4.2 Literature Review and Hypothesis Development 

4.2.1 Analyst Optimism 

An extensive number of studies show an upward bias in analysts’ earnings forecasts (i.e., 

Chopra, 1998; Hayes; 1998; Hong and Kubik, 2003). On the one hand, this optimism is a 

result of their incentives, such as generating brokerage revenue and maintaining access to 

management. First, Jackson (2005) shows that brokerage houses enjoy higher volume with 

optimism in their analysts’ forecasts, generating more trading revenue and commissions. 

Second, Lim (2001) argue that optimistic bias in earnings forecast helps analysts access 

companies’ managerial information which is not publicly available. Managers support 

positive forecasts while eliminating the flow of unfavourable ones since favourable forecasts 

which lead to higher capital market valuations increase their compensation levels. Lim (2001) 

finds significant support for this assumption. 

On the other hand, another stream of literature argues that the optimism in earnings 

forecasts is subject to cognitive biases (i.e., De Bondt and Thaler, 1990; Easterwood and 

Nutt, 1999; Hirshleifer, 2001).74 Several studies show that analysts tend to underreact to 

firm-level news such as past quarterly earnings and past returns (Mendenhall, 1991; 

Abarbanell and Bernard, 1992). For instance, Easterwood and Nutt (1999) find that analysts 

are more likely to underreact (overreact) to negative (positive) news, resulting in observable 

optimism in their earnings forecasts. 

Lim (2001), however, argues that behavioural explanations for analyst optimism are 

not enough to explain the reason clearly. This is because one of the key sources in earnings 

 
74  Hirshleifer (2001) suggests that due to overconfidence analysts put more attention on their private 
information than public signals, thus their forecast tend to be optimistic. De Bondt and Thaler (1990) argue 
that analysts’ optimism is due to overreaction to information leading to form extreme expectations.  
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forecasts is companies’ private information. For instance, Brown et al. (2015) show that 

private communication with managers is more important in analysts’ forecasts and stock 

recommendations than their own primary evaluation, which is consistent with Soltes 

(2014).75, 76 Additionally, they find that despite issuing optimistic forecast leading to a loss 

in analysts’ credibility with investors, they increase their chance to access management. In 

this situation, analysts face a trade-off between their forecast precision and improving 

management access as optimistic forecast helps them obtain managerial information 

discussed above. Therefore, analysts tend to report optimistic bias in a rational manner to 

produce accurate forecasts in the future (Lim, 2001; Brown et al., 2015).77 Furthermore, 

considering the main revenue source for a brokerage house (Jackson, 2005, Cowen, 

Groysberg and Healy, 2006), analysts’ optimism, which is expected to generate trading 

volume, is the result of their rational manners rather than behavioural biases.  

Finally, analysts’ performance is key for them to improve their reputation, allowing 

them to secure their positions in the industry or get promotion to larger brokerage firms. 

(Hong and Kubik, 2003). As their optimistic behaviours in earnings forecasts are prone to 

be captured by investors in the long-term, those incentives attributed to optimistic forecasts 

are limited by analysts’ reputational concerns (Jackson, 2005; Groysberg, Healy and Maber, 

2011; Chang and Choi, 2017). 

 
75 Brown et al (2015) conduct 18 follow-up interviews with 365 analysts regarding various topics in their 
decision process.  
76 Soltes (2014) suggests that analysts are able to acquire further clarification about a company and its 
operations which is not publicly available. They have chance to discuss privately on their models used in 
forecasts.  
77 For more details about the theoretical model on analyst rational optimism, see Lim (2001). 
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4.2.2 Economic Uncertainty and Analyst Optimism 

Economic uncertainty implies that the prospect of the economy is unpredictable using the 

available information and models. Therefore, uncertainty is about whether that state 

variable has become more or less predictable, that is, more or less uncertain (Jurado, 

Ludvigson and Ng, 2015). In the period of high EU, managers and investors are more likely 

to be conservative in their investment and reduce their future consumption (Bloom, 2009). 

They are more likely to experience more impediments to forecast the outlook for the 

economy implying that EU is one of the state variables linking to real activity and affecting 

investors’ estimations. There is a larger deviation in fundamentals across firms and 

industries (Bloom, 2009). In a nutshell, EU affects the quality of information at various 

levels.  

Analysts are intermediaries providing earnings forecasts and stock 

recommendations in stock markets by collecting and analysing pubic and non-public 

information from the firm-, market- and macro-level signals (Healy and Palepu, 2003; 

Amiram et al., 2017). The information quality in various levels matters to analysts in their 

forecasts (i.e., Chang and Choi, 2017; Loh and Stulz, 2018). In this study, considering the 

significant effect of EU on the quality of information, my main question is whether analyst 

optimism attributed to rational bias is influenced by EU.  

In my conjecture, analysts’ optimism for incentives in their forecasts become more 

pronounced while they are less concerned about their career. This is because analysts can 

ascribe their bias to a noisy informational environment caused by macro-level uncertainty. 

Therefore, analyst optimism increases with EU. More specifically, analysts can behave 

optimistically for incentives in their forecasts for companies with higher exposure to 

economic uncertainty. As those firms tend to be more affected by changes in economic 
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uncertainty, the prospect of those companies is expected to be more difficult for investors 

to estimate.  

Therefore, EUE gives more room to analysts to produce a more optimistic view on 

earnings forecasts for different incentives. First, private information is one of the key 

sources for analysts to improve their precision in forecasts. Lim (2001) shows that it 

becomes even more important for stocks with higher uncertain payoffs. To maintain a 

better relationship with managers to acquire that information, analysts are more likely to 

publish upward bias forecasts. This is because favourable forecasts are more supported by 

managers relative to unfavourable ones as the managers can have higher compensation with 

higher capital market valuation (Lim, 2001). Therefore, analysts tend to publish optimistic 

forecasts for stocks with high EUE for better managerial relationships to access private 

information, which might become more valuable in high EU periods.     

  Second, one of main revenues for analysts is from trading commissions, which 

tends to increase with optimistic forecast stimulating trading activity. However, this 

behaviour is limited to analysts’ career concerns as investors are able to capture (Jackson, 

2005; Cowen, Groysberg and Healy, 2006). In the market, investors tend to have more 

difficulties in verifying the valuation of stocks with high uncertain payoffs due to a vague 

informational environment (Ackert and Athanassakos, 1997), thus analysts are less likely to 

be concerned about their career by publishing more upward view on stocks with high 

EUE.78 Moreover, considering heterogeneity among investors, those stocks are more likely 

to be held by optimistic investors, while pessimistic ones withdraw their investments in 

those assets (i.e., Cao, Wang and Zhang, 2005; Easley and O’Hara, 2009; Epstein and 

 
78 Loh and Stulz (2018) show that investors have more demand for forecast made by analysts, when the firm’s 
performance is uncertain. Therefore, Chang and Choi (2017) suggest that optimism in earnings forecasts is 
prone to produce more trading activity and it is more pronounced when the market uncertainty, measured by 
VIX, is high. 
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Schneider, 2010). 79  Consequently, optimistic forecasts might encourage optimists to 

increase their investment in those assets, resulting in higher trading volume.  

Finally, analysts’ optimism for those incentives are limited to their career concern. 

This is because reputation plays an important role in the labour market (i.e., Fama, 1980; 

Lim, 2001). Previous studies show that job turnover increases among analysts with poor 

performance (Mikhail, Walther and Willis, 1999). However, this concern may vary with 

information quality (Hong and Kubik, 2003). Considering the negative effect of EUE on 

analyst forecast accuracy, analysts can ascribe their bias to vague signals (Ackert and 

Athanassakos, 1997). Additionally, the precision of forecast for those stocks are hard to be 

verified. Therefore, analysts are less likely to lose their job or move down to low-status 

brokerage house. 

Taken all arguments discussed above, my hypothesis is as below: 

H1: There is a positive relationship between optimism in analysts’ forecasts and stock exposure to economic 

uncertainty.  

 

4.3 Data and Measures 

The data on analysts’ annual EPS forecast and stock recommendations used in my empirical 

analyses are taken from the Institutional Brokes’ Estimate System (I/B/E/S). Following 

previous studies (i.e., Hong and Kubik, 2003; Chang and Choi, 2017), my sample focuses 

on one-year ahead earnings forecasts. To calculate EUE and various firm-level 

characteristics, I obtain the data from the merged CRSP-Compustat database. 

 
79 Following the literature related to limited participation and heterogeneity among investors, Bali, Brown and 
Tang (2017) suggest that investors having optimistic opinion about economic uncertainty are more likely to 
hold stocks exposed to high economic uncertainty. By contrast, pessimists reduce their participation in those 
assets. 
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4.3.1 Analyst Optimism 

In this study, EPS forecasts sample covers annual earnings forecasts from January 1982 to 

December 2018 from an unadjusted detail file on IBES for all common stocks (with share 

codes 10 and 11) on the NYSE, Amex and NASDAQ. Similar to prior literature (i.e., Lim, 

2001; Larocque, 2012; Henderson and Marks, 2013; Engelberg, Mclean and Pontiff, 2018), 

I measure analyst optimism as consensus optimism at the firm level by the following 

equation: 

 

 
OPTIMi,m =  

Mean(Valuei,m,t) − ActualEPSi,t  

Pricei,m−1
 

(4.1) 

 

where Valuej,i,m,t is one-year ahead earnings forecast of firm 𝑖 during month 𝑚 made by all 

analysts for fiscal-year 𝑡.80 ActualEPSi,t is actual earnings announced by firm 𝑖 for fiscal-

year 𝑡. Pricei,m−1 is closing stock price of firm 𝑖 in month 𝑚 − 1.81 I require a minimum 

of two analysts for consensus optimism measure in each month.   

Another optimism measure is from the stock recommendation sample between 

January 1994 and December 2018. This sample contains categorical variables such as 

Buy/Strong Buy, Sell/Strong Sell, Underperform and Hold. Those variables allow us to 

measure analysts’ optimism or pessimism. Anderson (2005) suggests that when a strong buy 

 
80 If there are more than one forecast made by the same analyst during the same month, I take the mean of 
those forecasts. Moreover, using the median value of forecasts in the nominator of the optimism measure 
does not affect results in this study. Lastly, if forecast revision date is after the announcement date, it is 
dropped in the main analyses. However, inclusion of those forecasts do not affect the results.  
81 If closing stock price is less than one dollar, then I drop it to eliminate the effect of outliers in our analyses. 
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(sell) is recommended by an analyst, this implies that the analyst has an optimistic 

(pessimistic) view of the prospect of the stock.   

Following the previous literature (i.e., Cowen, Groysberg and Healy, 2006; Chang 

and Choi, 2017; Hirshleifer et al., 2021), there are one categorical and two binary variables. 

REC is a categorical variable where Buy or Strong Buy=3, Hold=2, and Sell or Strong Sell 

or Underperform=1. BUY is a binary variable which is 1 if analyst 𝑖 issues Buy or Strong 

Buy, and 0 otherwise. SELL is a binary variable which is 1 if analyst 𝑖 issues Sell or Strong 

Sell or Underperform, and 0 otherwise. Since analysts may not issue regularly, and their 

recommendations tend to be highly serially correlated, I only take their last recommendation 

each year (Hong and Kubik, 2003; Chang and Choi, 2017).  

Finally, I measure stock recommendations at the firm-level with their issue 

percentage taken from consensus recommendations on IBES between January 1994 and 

December 2018. Buy percentage (BUYPCT) is the mean of buy recommendation 

percentage and Sell percentage (SELLPCT) is the mean of sell recommendation percentage 

for firm 𝑗 in year 𝑡.  

 

4.3.2 Analysts Characteristics 

Following the literature (i.e., Cowen, Groysberg and Healy, 2006; Chang and Choi, 2017; 

Hirshleifer et al., 2020), there are three analysts characteristics. Coverage (COVER) is the 

number of companies covered by analyst 𝑖 in year 𝑡. Analysts experience (EXPER) is the 

number of years from the starting year of analyst 𝑖 in IBES. Brokerage Size (BRKSIZE) is 

the number of analysts hired by brokerage firm 𝑘  of analyst 𝑖  in year 𝑡 . All those 

characteristics are in natural logarithm.  
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To measure analysts’ career concerns, I form an analyst turnover variable. Following 

Hong, Kubik and Solomon (2000), if analyst 𝑖 is employed by a brokerage company in year 

𝑡 − 1 that has at least 25 analysts move in year 𝑡 to a brokerage company that has less than 

25 analysts, MOVEDOWN is 1 for analyst 𝑖 , and 0 otherwise. This variable measures 

whether analysts lose their reputation by moving down from a high-status brokerage 

company to a low-status one. 

     

4.3.3 Economic Uncertainty Exposure 

Existing studies have relied on different proxies to measure uncertainty in the economy. 

For instance, several papers use market volatility, due to its significant relation between real 

activity (i.e., Bloom, 2009; Bekaert, Hoerova and Duca, 2013; Bali and Zhou, 2016). 

However, Jurado, Ludvigson and Ng (2015) argue that financial market volatility may not 

reflect economic uncertainty accurately, since it may vary over time due to changes in risk-

aversion or leverage or sentiment. 

Other studies use dispersion in forecasts (i.e., Mankiw and Reis, 2002; D’amico and 

Orphanidos, 2008; Anderson, Ghysels and Juergens, 2009; Li, 2016). It is expected that 

during high uncertainty time, forecasts are dispersed, and surveys have a larger disagreement 

on macro-indicators (Bachmann, Elstner and Sims, 2013). However, forecasts may not 

clearly show expectations about the whole economy and may give subjective responses due 

to their pecuniary interests and individual biases. Additionally, the dispersion of analyst 

forecasts might be affected by heterogeneity in the business cycle, even if there is no shift 

in uncertainty in economic fundamentals (Jurado, Ludvignson and Ng, 2015). 
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Considering those arguments on different measures of economic uncertainty, this 

study uses the uncertainty index constructed by Jurado, Ludvigson and Ng (2015). This 

index is based on 132 macro-series, not only on single (or a small number of) economic 

indicators, measuring uncertainty in the whole economy. By using this measure, I am able 

to capture uncertainty in different macro variables at the same time, across companies, 

industries, markets and regions (Jurado, Ludvigson and Ng, 2015).  

To measure innovations in economic uncertainty, I use monthly logarithmic 

differences in the index (𝛥𝑈𝑁𝐶𝑡).82   

 

 
∆UNC𝑡 = ln (

UNCt

UNCt-1

) 
(4.2) 

 

Jurado, Ludvigson and Ng (2015) employ a wide range of macroeconomic time 

series: real output and income, employment and hours, real retail, manufacturing and trade 

sales, consumer spending, housing starts, inventories and inventory sales ratios, orders and 

unfilled orders, compensation and labour costs, and capacity utilization measures. The 

index is obtained from Sydney Ludvigson’s website.83 

I estimate the uncertainty beta from a rolling regression for each stock every month 

with the following model using previous 60-month observations:84 

 

 
82 The level of the index is non-stationary with -1.953 Dickey-Fuller statistic, while its logarithmic difference 
is stationary with -12.819 Dickey-Fuller statistic.  
83 https://www.sydneyludvigson.com/data-and-appendixes/ 
84 I require at least 24 months of non-missing observation for each stock to estimate a beta for the given 
month. 
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 𝑅𝑖,𝑡 = 𝛼𝑖,1 + 𝛽𝑖,1∆𝑈𝑁𝐶𝑡 + 𝛽𝑖,2𝑀𝐾𝑇𝑡 + 𝛽𝑖,3𝑆𝑀𝐵𝑡 + 𝛽𝑖,4𝐻𝑀𝐿𝑡

+ 𝛽𝑖,5𝑈𝑀𝐷𝑡 + 𝛽𝑖,6𝐼𝐴𝑡 + 𝛽𝑖,7𝑅𝑂𝐸𝑡 + 𝜀𝑖,𝑡 (4.3) 

 

where 𝑅𝑖,𝑡  is the monthly excess return of stock 𝑖  in month 𝑡 . ∆𝑈𝑁𝐶𝑡  is a proxy for 

innovations in economic uncertainty in month 𝑡. 𝑀𝐾𝑇𝑡 , 𝑆𝑀𝐵𝑡 , 𝐻𝑀𝐿𝑡 , 𝑈𝑀𝐷𝑡 , 𝐼𝐴𝑡 , and 

𝑅𝑂𝐸𝑡 are Fama and French factors in month 𝑡. These factors are from Kenneth French’s 

website. 85  My annual EPS optimism sample is from January 1982, therefore the beta 

estimation starts from January 1977. 

Once I have estimated monthly EU betas for each stock during the sample period, 

I consider the absolute value of betas for all analyses in this study. This is because, a large 

magnitude of the beta, no matter whether it is positive or negative, makes the variance of 

the return more sensitive to the change of economic uncertainty. Finally, I sort stocks on 

their EUE to form quintiles at the end of each month (Rank5). This allows us to reduce the 

effect of extreme values in EUE for OLS estimates consistent with Johnson (2004). 

   

4.3.4 Firm Characteristics  

In this study, I use several firm characteristics. Size (𝑆𝐼𝑍𝐸) is defined as the price of the 

share multiplied by the number of share outstanding. Book-to-market (𝐵𝑀) is computed 

as the book value of equity at the end of fiscal year t-1 divided by the market value of equity 

at the end of fiscal year t-1. Momentum (𝑀𝑂𝑀) is the cumulative return of stock i from 

month t-12 to t-2. Stock illiquidity (𝐼𝐿𝐿𝐼𝑄) is defined as the ratio of the daily absolute stock 

return to the daily dollar trading volume averaged within the month. Analyst earnings  

 
85 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Table 4.1 Summary Statistics 

This table reports correlation coefficients and summary statistics for the variables in Panel A and B, respectively. Variable definitions are listed in Appendix II. The sample 

period is from January 1982 for OPTIM and January 1994 for BUYPCT and SELLPCT to December 2018. 
 OPTIM BUYPCT SELLPCT Rank5 EXPER BRKSIZE COVER IVOL DISP BM SIZE MOM ILLIQ 

Panel A: Correlations 

OPTIM 1             
BUYPCT . 1            
SELLPCT . -0.431 1           
Rank5 0.015 0.107 -0.010 1          
EXPER -0.007 -0.179 0.067 -0.052 1         
BRKSIZE -0.008 -0.206 0.161 -0.100 0.180 1        
COVER 0.007 -0.110 -0.025 -0.110 -0.197 -0.051 1       
IVOL 0.059 0.128 -0.017 0.238 -0.040 -0.135 -0.14 1      
DISP 0.011 -0.001 0.023 0.042 -0.015 -0.016 0.00 0.067 1     
BM 0.026 -0.135 0.042 -0.006 -0.073 -0.013 0.12 -0.006 0.038 1    
SIZE -0.008 0.025 -0.005 -0.117 0.131 0.138 -0.04 -0.142 -0.024 -0.059 1   
MOM -0.027 0.198 -0.085 0.038 -0.013 -0.069 -0.03 -0.027 -0.025 0.022 0.012 1  
ILLIQ 0.008 0.009 -0.014 0.009 -0.015 -0.048 0.00 0.058 0.007 0.073 -0.010 -0.019 1 

Panel B: Summary Statistics 

Observation 462,901 80,378 80,378 410,630 442,260 443,466 443,466 463,183 451,629 438,942 463,376 440,067 463,187 
Mean 0.018 0.58 0.04 3.000 2.034 3.982 2.903 0.021 0.188 0.584 6.774 0.172 0.144 
Std. Dev. 0.540 0.32 0.11 1.413 0.763 0.534 0.341 0.015 1.274 0.728 26.400 0.655 9.732 
Median 0.001 0.60 0.00 3.000 2.238 4.047 2.890 0.017 0.043 0.474 1.059 0.092 0.003 
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forecast dispersion (𝐷𝐼𝑆𝑃) is measured as the standard value of the mean forecast deviation 

of one-year earnings forecasts divided by the absolute of the mean forecast. Idiosyncratic 

volatility (𝐼𝑉𝑂𝐿) is defined as the standard deviation of the daily risk-adjusted return 

residuals computed by regressing each asset’s daily return on four Fama and French market 

factors: 𝑀𝐾𝑇, 𝑆𝑀𝐵, 𝐻𝑀𝐿, 𝑈𝑀𝐷.  

Table 4.1 reports the correlation matrix and summary statistics for all variables. In 

Panel A, those coefficients show that there is no potential collinearity between variables. In 

Panel B, the monthly mean of the one-year consensus earnings forecast is 2% larger than 

actual earnings. Additionally, the annual mean of BUY recommendation rate is 58%, while 

this figure is only 4% for the annual rate of SELL recommendation, implying that analysts 

are more likely to give buy recommendation which is much higher than sell 

recommendation. Overall, Panel B shows that on average analysts are optimistic in their 

forecasts and stock recommendations consistent with previous studies (i.e., Hayes; 1998; 

Hong and Kubik, 2003; Chang and Choi, 2017).   

 

4.4 Empirical Analyses 

4.4.1 Economic Uncertainty Exposure and Analyst Optimism 

In this section, I investigate the distribution of consensus optimism in EUE quintiles. Table 

4.2 reports monthly averages of EUE and consensus optimism, and annual averages of buy 

and sell percentages in quintiles. In general, analysts issue earnings forecasts larger than 

actual earnings implying that they exhibit optimism in their forecasts, consistent with 

previous studies (i.e., Stickel, 1990; Chopra, 1998; Lim, 2001). Specifically, their optimism 

increases together with the EUE. The monthly mean of one-year consensus earnings 
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forecasts is 1% larger than the actual earnings in the lowest EUE quintile, while it is 3.6% 

larger than the actual earnings in the highest EUE quintile. Consequently, the difference of 

the monthly mean one-year consensus earnings forecasts between the top and the bottom 

EUE quintiles is significantly 2.6% larger than the actual earnings with a t-statistic of 4.625.   

Table 4.2 Economic Uncertainty Exposure and Consensus Optimism 

This table reports summary statistics on the five EUE groups. Stocks are sorted on EUE each month, then 
the mean of monthly consensus optimism (OPTIM) and annual mean of buy (BUYPCT) and sell (SELLPCT) 
percentages are calculated. The EUE is the absolute beta coefficient estimated in Equation (4.3). T-statistics 
are reported in parentheses using standard errors clustered by firm. Variable definitions are listed in Appendix 
II. Sample is from January 1982 to December 2018. ***, **, and * indicate significance at the 1%, 5%, and 
10% levels, respectively. 

  1 2 3 4 5 5-1 

EUE 0.148*** 0.304*** 0.530*** 0.886*** 1.982*** 1.834*** 
 (136.317) (272.771) (316.840) (277.068) (128.275) (54.940) 
OPTIM 0.010*** 0.012*** 0.015*** 0.020*** 0.036*** 0.026*** 
 (17.187) (14.775) (14.026) (10.153) (6.330) (4.625) 
BUYPCT 0.524*** 0.531*** 0.546*** 0.577*** 0.608*** 0.084*** 
 (132.225) (139.519) (151.812) 158.132) (155.343) (13.132) 
SELLPCT 0.047*** 0.045*** 0.045*** 0.044*** 0.045*** -0.002 
 (37.257) (36.073) (37.385) (36.073) (31.266) (-0.755) 

 

Moreover, I observe the same optimistic pattern in stock recommendations, 

considering BUY (SELL) recommendation is an indicator of optimism (pessimism) 

(Anderson, 2005). The annual average of BUY recommendation ratio increases from 52.4% 

for stocks with the lowest EUE to 60.8% for stocks with the highest EUE. The difference 

of the mean BUY recommendation ratio between the extreme EUE quintiles is 8.4% per 

year with a t-statistic of 13.132. By contrast, analysts are less likely to issue SELL 

recommendations, exhibiting a weak decreasing trend with EUE groups and an insignificant 

difference between the extreme quintiles. Overall, EUE induces optimism among analysts 

in their forecasts, supporting my hypothesis.    
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4.4.2 Economic Uncertainty Exposure and Analyst Optimism: Consensus Forecast  

In my main analysis, I employ panel regressions. I examine the effect of firm-level EUE on 

one-year earnings consensus optimism with the following regression:  

 

 
𝑌𝑖,𝑝,𝑡 = 𝜆0 + 𝜆1Rank5𝑝,𝑡−1 + ∑ 𝜆𝑗𝑋𝑖,𝑝,𝑡−1

𝑛

𝐽=2
+ ∑ 𝜆𝑗𝑍𝑝,𝑡−1

𝑚

𝐽=𝑛+1

+ 𝐹𝑖𝑥𝑒𝑑 𝐸𝑓𝑓𝑒𝑐𝑡𝑠 +  𝜀𝑖,𝑡 

 

(4.4) 

 

where 𝑌𝑖,𝑝,𝑡 is OPTIM for stock 𝑝 in month 𝑡. Rank5𝑝,𝑡−1 is EUE quintile for stock 𝑝 in 

month 𝑡 − 1.  𝑋𝑖,𝑝,𝑡−1  is the mean of analyst-specific variables for stock 𝑝 in month 𝑡 − 1, 

including 𝐶𝑂𝑉𝐸𝑅, 𝐵𝑅𝑂𝐾𝐸𝑅𝑆𝐼𝑍𝐸 and 𝐸𝑋𝑃𝐸𝑅. 𝑍𝑝,𝑡−1  is a set of stock-specific variables 

for stock 𝑝  in month 𝑡 − 1 , including 𝐷𝐼𝑆𝑃 ,  𝐼𝑉𝑂𝐿 ,  𝑆𝐼𝑍𝐸 , 𝑀𝑂𝑀 , 𝐵𝑀 and 𝐼𝐿𝐿𝐼𝑄 . 

Firm/industry and year fixed effects are included in the estimation to control for 

heterogeneity across firms/industry and the influence of time series. Finally, standard errors 

are double clustered at the firm-year levels (Cameron, Gelbach and Miller, 2011). I report 

regression results in Table 4.3. 

Table 4.3 shows that coefficients on Rank5 are positive and statistically significant 

in all regressions, implying that firms’ exposure to EU in quintile ranks can positively predict 

the next period firm-level consensus optimism in one-year earnings forecast even after 

control for the analyst and firm-level characteristics. Consistent with my conjecture that the 

larger the EU exposure for a stock, the higher the favourable forecasts made by analysts. 

This is because firms with higher EUE tend to be more affected by changes in economic 

uncertainty. When I divide the sample into two periods, the EUE effect is only significantly 

observed to predict the next period firm-level consensus optimism during increasing-EU  
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Table 4.3  Panel Regressions of Consensus Optimism 

This table reports panel predictive regressions of one-year earnings consensus optimism for whole and different state samples using Equation (4.4). Variable definitions are 
listed in Appendix II. T-statistics are reported in parentheses. The sample period is from January 1982 to December 2018. Increasing- and decreasing-EU months are defined 
as the top and bottom quartile of the whole sample period, respectively. There are 101 increasing- and 115 decreasing-months. ***, **, and * indicate significance at the 1%, 
5%, and 10% levels, respectively. 

  Whole sample  Increasing EU Period  Decreasing EU Period 

Rank5 0.004** 0.006*** 0.003** 0.002*  0.002** 0.001*  0.002 0.001 

 (2.628) (5.026) (2.318) (1.939)  (2.255) (1.993)  (1.398) (0.789) 
EXPER   0.009* 0.014***  0.010** 0.005  0.018** 0.021* 

   (1.968) (2.863)  (2.401) (1.070)  (2.461) (2.023) 
BRKSIZE   -0.003 -0.000  0.002 0.003  0.007 -0.001 

   (-0.492) (-0.107)  (0.349) (0.670)  (0.631) (-0.212) 
COVER   0.004 0.007  0.009 0.010*  -0.015 -0.006 

   (0.628) (1.060)  (1.541) (1.953)  (-1.368) (-1.561) 
IVOL   2.424*** 2.569***  1.685*** 2.072***  2.829*** 2.931*** 

   (3.477) (4.817)  (3.335) (4.779)  (3.683) (4.695) 
DISP   0.002** 0.002**  0.003** 0.003*  0.002*** 0.003*** 

   (2.280) (2.645)  (2.369) (1.966)  (3.351) (3.389) 
BEME   0.019*** 0.015***  0.012* 0.010**  0.019** 0.015** 

   (2.775) (2.978)  (1.984) (2.089)  (2.042) (2.660) 
SIZE   -0.000 0.000**  -0.000 0.000  -0.000 0.000** 

   (-1.128) (2.356)  (-1.038) (1.662)  (-0.880) (2.590) 
MOM   -0.014*** -0.020***  -0.012*** -0.019***  -0.014*** -0.020*** 

   (-5.138) (-5.489)  (-2.972) (-2.863)  (-6.283) (-8.230) 
ILLIQ   0.001 0.000  0.000 0.001  0.000*** 0.001*** 

   (1.566) (0.715)  (0.525) (0.815)  (2.780) (2.835) 
Constant 0.011*** 0.006** -0.063*** -0.090**  -0.079* -0.083**  -0.067* -0.072** 

 (3.021) (2.541) (-2.971) (-2.436)  (-2.026) (-2.186)  (-2.039) (-2.268) 

Observation 409,547 410,190 395,312 395,829  93,703 94,742  97,060 98,046 
R-sq 0.066 0.001 0.069 0.006  0.194 0.016  0.113 0.010 
Adj R-sq 0.048 0.001 0.0512 0.00575  0.140 0.0151  0.0571 0.00947 
Firm FE Yes No Yes No  Yes No  Yes No 
Industry FE No Yes No Yes  No Yes  No Yes 
Year FE Yes Yes Yes Yes  Yes Yes  Yes Yes 
Cluster by Firm Yes Yes Yes Yes  Yes Yes  Yes Yes 
Cluster by Year Yes Yes Yes Yes  Yes Yes  Yes Yes 
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periods.86 This finding provides support for the effect of information quality distorted by 

EU on analysts’ decision.87    

 

4.4.3 Economic Uncertainty Exposure and Analyst Optimism: Stock Recommendations 

In this section, I examine whether EUE affects analysts’ stock recommendations. Using 

data on analysts’ recommendations allows us to examine the difference of beliefs among 

analysts. For instance, when a strong buy (sell) is recommended by an analyst, this implies 

that the analyst has an optimistic (pessimistic) view of the prospect of the stock (Anderson, 

2005). Additionally, stock recommendations are not based only on firms’ earnings-related 

information, since analysts incorporate all relevant information about the firms to make 

buy/sell recommendation. (Chang and Choi, 2017).   

To investigate the effect of EUE on analysts’ recommendation behaviour, I employ 

the following model:   

 

 
𝑃𝑟𝑜𝑏(𝑌𝑖,𝑝,𝑡) = 𝑓(𝜆0 + 𝜆1Rank5𝑝,𝑡−1 + ∑ 𝜆𝑗𝑋𝑖,𝑡−1

𝑛

𝐽=2

+ ∑ 𝜆𝑗𝑍𝑝,𝑡−1

𝑚

𝐽=𝑛+1
+ 𝐹𝑖𝑥𝑒𝑑 𝐸𝑓𝑓𝑒𝑐𝑡𝑠 +  𝜀𝑖,𝑡) 

 

(4.5) 

 

 
86 Increasing- and decreasing-EU months are defined as the top and bottom quartile of the whole sample 
period, respectively. There are 101 increasing- and 115 decreasing-months between January 1982 and 
December 2018.    
87 One may argue that disagreement on macroeconomic variables may be another channel which can drive 
the results instead of analyst optimism. This is because Hong and Sraer (2016) and Li (2016) show that during 
high EU periods, macro-level disagreement is high.  
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where 𝑌𝑖,𝑝,𝑡  is either BUY or SELL binary variables for analyst 𝑖  stock 𝑝  in year 

𝑡. Rank5𝑝,𝑡−1 is EUE quintile for stock 𝑝 at the end of year 𝑡 − 1.  𝑋𝑖,𝑝,𝑡−1  is a set of 

analyst-specific variables for analyst 𝑖 in year 𝑡 − 1, including 𝐶𝑂𝑉𝐸𝑅, 𝐵𝑅𝑂𝐾𝐸𝑅𝑆𝐼𝑍𝐸 and 

𝐸𝑋𝑃𝐸𝑅. 𝑍𝑝,𝑡−1  is a set of stock-specific for stock 𝑝 variables at the end of year 𝑡 − 1, 

including 𝐷𝐼𝑆𝑃, 𝐼𝑉𝑂𝐿,  𝑆𝐼𝑍𝐸, 𝑀𝑂𝑀, 𝐵𝑀and 𝐼𝐿𝐿𝐼𝑄. Moreover, I use multinomial logistic 

regression regarding the same. In this model, 𝑌𝑖,𝑝,𝑡 is REC where Buy or Strong Buy=3, 

Hold=2, and Sell or Strong Sell or Underperform=1. The usual sets of analysts and firm-

level characteristics are included as well. In both logistic regression models, industry- and 

year-fixed effects are included in the estimation to control for heterogeneity industry and 

the influence of time-series.88 Finally, standard errors are clustered at the analyst-level. 

Table 4.4 reports odd probabilities that are exponentiated coefficients for logistic 

regression models. I show that odds ratios on Rank5 are statistically significant in all models 

where the dependent variable is BUY. Therefore, there is an increase in the probability of 

issuing buy recommendation by firms’ exposure to EU in quintile ranks. These findings 

indicate that analysts are more likely to issue buy recommendations for the stocks with 

higher EUE. Additionally, the odds ratios on Rank5 in the models where the dependent 

variable is SELL show that sell-recommendations are less likely to be issued for those assets, 

despite statistically insignificant in the multinomial model.  

I observe that EUE significantly boosts analysts’ optimistic views, while 

significantly reduces their pessimistic opinions. These findings in Table 4.4 give more 

insight into the effect of EUE on analysts’ behaviour, implying that analysts do not only 

 
88 Due to the large number of firms and analysts, their fixed effects are not included into the models. This 
limitation is also faced by Hirshleifer et al. (2021), who examine the effect of first impression on analysts’ 
recommendation. 
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consider the effect of EU on firms’ earnings but also incorporate its effect on all company-

related information reflected by stock recommendations (Anderson, 2005; Chang and Choi, 

2017).  

Table 4.4 Logistic Regressions of Stock Recommendations 

This table reports binomial and multinomial logistic regressions of stock recommendations using Equation 
(4.5). Variable definitions are listed in Appendix II. The slope coefficients are exponentiated and z-statistics 
are reported in parentheses. The sample period is from January 1994 to December 2018. ***, **, and * indicate 
significance at the 1%, 5%, and 10% levels, respectively. 

 Sell Buy  Rec 

    (Sell) (Hold) (Buy) 

  1 2   3 

Rank5 0.983** 1.022***  0.993 - 1.021*** 

 (-2.571) (6.532)  (-0.997)  (6.070) 
EXPER 0.964** 1.013*  0.969* - 1.009 

 (-2.106) (1.765)  (-1.826)  (1.207) 
BRKSIZE 1.205*** 0.878***  1.138*** - 0.892*** 

 (6.515) (-14.910)  (4.604)  (-14.769) 
COVER 1.032 0.941***  1.001 - 0.941*** 

 (1.152) (-5.752)  (0.031)  (-5.984) 
IVOL 11.986*** 3.659***  36.305*** - 6.504*** 

 (3.769) (3.259)  (5.254)  (4.515) 
DISP 1.014*** 1.001  1.017** - 1.005 

 (2.580) (0.144)  (2.196)  (0.777) 
BM 1.101*** 0.943***  1.078*** - 0.954*** 

 (6.011) (-5.983)  (4.824)  (-4.956) 
SIZE 1.000*** 1.000***  1.000* - 1.000*** 

 (-4.064) (10.401)  (-1.847)  (10.119) 
MOM 0.630*** 1.360***  0.731*** - 1.317*** 

 (-15.103) (24.214)  (-10.034)  (21.959) 
ILLIQ 0.737*** 1.027  0.743*** - 1.020 

 (-3.447) (1.309)  (-3.354)  (1.192) 
Constant 0.026*** 1.803***  0.071*** - 1.888*** 
  (-22.828) (9.818)   (-16.460)   (10.886) 

Observation 248,176 248,176  248,176 
Pseudo R-sq 0.0435 0.0335  0.0318 
Industry FE Yes Yes  Yes 
Year FE Yes Yes  Yes 
Cluster by Analyst Yes Yes   Yes 

 

Finally, I further examine the effect of EUE on stock recommendations considering 

the percentage of buy/sell recommendations issued by all analysts for companies. This firm-

level analysis gives information about consensus optimism. I examine it with the following 

estimation:     
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𝑌𝑝,𝑡 = 𝜆0 + 𝜆1Rank5𝑝,𝑡−1 + ∑ 𝜆𝑗𝑋𝑝,𝑡−1

𝑛

𝐽=2
+ ∑ 𝜆𝑗𝑍𝑝,𝑡−1

𝑚

𝐽=𝑛+1

+ 𝐹𝑖𝑥𝑒𝑑 𝐸𝑓𝑓𝑒𝑐𝑡𝑠 +  𝜀𝑖,𝑡 

 

(4.6) 

 

where 𝑌𝑝,𝑡  is either BUYPCT or SELLPCT for stock 𝑝  in year 𝑡 . Rank5𝑝,𝑡−1  is EUE 

quintile for stock 𝑝 at the end of year 𝑡 − 1.  𝑋𝑖,𝑝,𝑡−1  is a set of analyst-specific variables 

for analyst 𝑖 in year 𝑡 − 1, including 𝐶𝑂𝑉𝐸𝑅, 𝐵𝑅𝑂𝐾𝐸𝑅𝑆𝐼𝑍𝐸 and 𝐸𝑋𝑃𝐸𝑅. 𝑍𝑝,𝑡−1  is a set 

of stock-specific for stock 𝑝 variables at the end of year 𝑡 − 1, including 𝐷𝐼𝑆𝑃 , 𝐼𝑉𝑂𝐿,  

𝑆𝐼𝑍𝐸, 𝑀𝑂𝑀, 𝐵𝑀and 𝐼𝐿𝐿𝐼𝑄.  Firm/industry and year fixed effects are included in the 

estimation to control for heterogeneity across firms/industry and the influence of time 

series. Finally, standard errors are double clustered at the firm-year levels (Cameron, 

Gelbach and Miller, 2011). 

Table 4.5 shows that coefficients on Rank5 are positive and statistically significant 

in all BUYPCT regressions, while it is significantly negative in SELLPCT regression 

controlling for firm-fixed effect. There is an increase (decrease) in the annual average rate 

of buy (sell) recommendations by firms’ exposure to EU in quintile ranks, controlling for 

firm and industry-fixed effects, respectively. Those results provide additional evidence that 

there is a significant effect of EUE on analysts’ optimism proxied by stock recommendation 

ratios.    

Overall, my results have so far documented that analysts are more optimistic for 

stocks with higher exposure to economic uncertainty in both companies’ earnings forecasts 

and stock recommendations.     
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Table 4.5 Panel Regressions of Stock Recommendations Percentages 

This table reports panel predictive regressions of the percentage on buy/sell recommendations using Equation 
(4.6). Variable definitions are listed in Appendix II. T-statistics are reported in parentheses. The sample period 
is from January 1994 to December 2018. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, 
respectively. 

  BUYPCT   SELLPCT 

  1 2  3 4 

Rank 5 0.004*** 0.009***  -0.001** -0.000 

 (3.180) (5.872)  (-2.188) (-1.203) 
EXPER -0.023*** -0.035***  0.005** 0.004** 

 (-3.477) (-5.117)  (2.604) (2.327) 
BRKSIZE -0.063*** -0.082***  0.010*** 0.022*** 

 (-10.342) (-10.669)  (3.328) (4.603) 
COVER -0.038*** -0.056***  0.004 0.000 

 (-5.845) (-6.895)  (1.685) (0.042) 
DISP -1.144*** -0.479**  0.355*** 0.363*** 

 (-7.580) (-2.386)  (5.452) (4.591) 
IVOL -0.005*** -0.005***  0.002*** 0.002*** 

 (-4.303) (-2.798)  (3.906) (3.332) 
BM -0.046*** -0.029***  0.006*** 0.003* 

 (-6.585) (-4.907)  (3.220) (1.787) 
SIZE 0.000*** 0.000***  -0.000*** -0.000** 

 (6.251) (4.698)  (-3.820) (-2.531) 
MOM 0.055*** 0.064***  -0.008*** -0.009*** 

 (5.657) (5.397)  (-4.488) (-4.383) 
ILLIQ 0.000 0.001**  -0.000 -0.000*** 

 (0.820) (2.374)  (-1.230) (-3.583) 
Constant 0.986*** 1.110***  -0.025 -0.058*** 
  (31.959) (35.621)   (-1.519) (-3.068) 

Observation 52,409 53,557  52,409 53,557 
R-sq 0.521 0.201  0.390 0.084 
Adj R-sq 0.461 0.201  0.313 0.0830 
Firm FE Yes No  Yes No 
Industry FE No Yes  No Yes 
Year FE Yes Yes  Yes Yes 
Cluster by Firm Yes Yes  Yes Yes 
Cluster by Year Yes Yes   Yes Yes 

 

 

4.5 Further Analyses 

In this section, I provide further analyses to examine EUE-induced analyst optimism in the 

context of rational bias and EUE-induced mispricing in anomalies.  

I first examine to what extent the quality of earnings management and the availability 

of firm-level information in the market can explain EUE-induced analyst optimism 
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regarding firm management relationship. I then extend my empirical study to consider the 

level of investor sophistication regarding analysts’ reputation concern. I also study their 

reputation concern considering their optimistic issues for stock with larger EUE. I 

furthermore examine the possible effect of self-selection bias on EUE-induced optimism. 

Finally, I provide the robustness of my main findings by using stock exposure to economic 

policy uncertainty. 

 

4.5.1 Economic Uncertainty, Analyst Optimism and Firm Management 

Analysts benefit from issuing optimistic forecast to maintain a private relationship with 

managers (Lim, 2001; Soltes, 2014). This enables them to gather information which is not 

publicly available to improve their forecast precision. Conducting a series of interview with 

analysts, Brown et al (2015, p.3) show that “… analysts rate private phone calls as one of the most 

useful types of direct contact with management for purposes of generating their earnings forecasts and stock 

recommendations. Our follow-up interviews reveal that some analysts avoid asking questions during public 

conference calls and use private phone conversations to check the assumptions of their models, to gain 

qualitative insights into the firm and its industry, and to get other details not explained on public calls.” 

Brown et al. (2015) also find that for analysts the quality of earnings management is an 

important factor to control in the forecast process, implying that there is more likely to be 

a negative association of earnings management quality with the need for private 

communication with managers.  

Therefore, EUE-induced analysts’ optimism tends to be more pronounced for 

stocks with low earnings quality as gaining private information from management has 

higher importance for those companies where managers are more likely to hide. I use  
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Table 4.6 Firm Management  

This table reports panel predictive regressions of one-year earnings consensus optimism for different DA and RSQ samples using Equation (4.4). Variable definitions are listed 
in Appendix II. T-statistics are reported in parentheses. High and low DA (RSQ) groups are top and bottom quartiles. The sample period is from January 1982 to December 
2018. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.  

  High DA   Low DA   High RSQ   Low RSQ 

Rank5 0.002** 0.001*  0.004 0.002  -0.000 0.000  0.007** 0.006* 

 (2.169) (1.790)  (1.086) (1.509)  (-1.150) (0.133)  (2.133) (1.964) 
EXPER 0.008 0.009  -0.016 0.011**  0.005** 0.003*  0.016 0.023 

 (1.554) (0.970)  (-0.894) (2.171)  (2.227) (1.810)  (1.237) (1.631) 
BRKSIZE 0.001 -0.005  -0.018 0.008  0.004* 0.000  -0.004 -0.003 

 (0.145) (-1.094)  (-1.070) (1.351)  (1.980) (0.230)  (-0.330) (-0.446) 
COVER 0.011 -0.001  0.033 0.034  0.001 0.001  -0.001 0.009 

 (1.428) (-0.292)  (1.311) (1.136)  (0.488) (0.441)  (-0.104) (0.559) 
IVOL 0.816** 1.349***  4.311 4.112  0.716*** 0.990***  2.828*** 3.040*** 

 (2.701) (4.775)  (1.172) (1.554)  (3.060) (4.636)  (2.978) (3.763) 
DISP 0.001** 0.002**  0.000 0.002  0.001 0.001**  0.000 0.002 

 (2.061) (2.378)  (0.183) (0.774)  (1.363) (2.341)  (0.399) (1.530) 
BEME 0.003 0.007**  0.010 0.012  0.009** 0.010***  0.025 0.020* 

 (0.896) (2.381)  (0.526) (0.894)  (2.309) (3.100)  (1.638) (1.838) 
SIZE -0.000 0.000  -0.000 0.000  -0.000 0.000  -0.000 0.000 

 (-0.443) (0.738)  (-1.221) (1.089)  (-0.078) (1.360)  (-1.026) (1.596) 
MOM -0.005*** -0.011***  -0.020* -0.029**  -0.006*** -0.006***  -0.023*** -0.037*** 

 (-4.907) (-5.190)  (-1.831) (-2.260)  (-4.146) (-4.259)  (-4.383) (-5.268) 
ILLIQ 0.002 0.001  -0.001 -0.001  0.000 0.002  0.001 0.000 

 (1.020) (1.623)  (-0.722) (-0.868)  (0.027) (0.887)  (1.507) (0.353) 
Constant -0.060** -0.014  -0.056 -0.219  -0.035** -0.021*  -0.076* -0.126* 

 (-2.313) (-0.731)  (-1.529) (-1.345)  (-2.185) (-1.739)  (-2.014) (-1.705) 

Observations 78,597 79,108  89,599 89,975  104,170 105,221  90,909 91,788 
R-sq 0.528 0.007  0.057 0.006  0.203 0.020  0.103 0.006 
Adj R-sq 0.498 0.00635  0.0133 0.00501  0.165 0.0192  0.0343 0.00582 
Firm FE Yes No  Yes No  Yes No  Yes No 
Industry FE No Yes  No Yes  No Yes  No Yes 
Year FE Yes Yes  Yes Yes  Yes Yes  Yes Yes 
Cluster by Firm Yes Yes  Yes Yes  Yes Yes  Yes Yes 
Cluster by Year Yes Yes   Yes Yes  Yes Yes   Yes Yes 
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discretionary accruals (DA) introduced by Kothari, Leone and Wasley (2005) to proxy for 

the level of earnings quality. Then I sort stocks on their prior year-end DA in quartiles. 

Table 4.6 reports result estimated by Equation (4.4) for high and low DA groups 

which are top and bottom quartiles. In panel regressions, I show that EUE-induced analyst 

optimism is significantly observed in high DA groups where firms have low earnings quality. 

There is a significant increase of one-year earnings consensus optimism by Rank5, 

controlling for the firm and industry-fixed effects, respectively. However, there is no 

significant EUE- induced optimism in consensus forecasts for stock with high earnings 

quality (low DA group).  

Moreover, following Frankel, Kothari and Weber (2006), I use daily excess returns 

for each stock to take monthly R-squares (RSQ) from the market-model regression in my 

sample. Then I group stocks on their prior month-end RSQ in quartiles. In this way, I am 

able to measure the availability of firm-level information in the market. The larger the RSQ 

for a firm the more the information available in the market, implying that there is less cost 

for analysts to acquire information. (Frankel, Kothari and Weber, 2006). Consistent with 

results in earnings quality analyses, in Table 4.6 I show that positive coefficients on Rank5 

remain only significant in the low RSQ group, implying that EUE-induced optimism in 

consensus forecast is apparent for stocks having less information in the market. In the low 

RSQ group, there is a significant increase of one-year earnings consensus optimism by 

Rank5, controlling for the firm and industry-fixed effects, respectively.      

   Those results provide evidence suggesting that EUE-induced analyst optimism is a 

result of rational bias. Analysts are more likely to issue optimistic forecasts to maintain 

private communication with managers to access private information for stocks with high 

EUE as non-public information is more likely to be more valuable for those firms. 
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4.5.2 Economic Uncertainty, Analyst Optimism and Institutional Ownership 

Analysts’ optimistic bias is limited to their reputation concerns as their performance in 

forecast precision is an important aspect in the industry (Jackson, 2005), since their bias can 

be captured by investors, harming their reputation. Specifically, institutional investors are 

able to evaluate the quality of analysts’ forecasts to capture their optimism as they are more 

sophisticated than retail investors (Cowen, Groysberg and Healy, 2006). Regarding this, I 

expect that EUE-induced optimism in consensus optimism is more pronounced for stocks 

with low institutional ownership. To test this effect, the proportion of institutional 

ownership (IO) for each stock is gathered quarterly from 13F filing on Thomson-Reuters. 

Then, I separate the sample into high and low IO groups based on the median of prior 

quarter-end IO. Table 4.7 reports regressions results estimated by Equation (4.4) for those 

groups.  

Table 4.7 shows that EUE-induced consensus optimism is only observable in the 

low IO group. Therefore, there is an increase in consensus optimism for that group by 

firms’ exposure to EU in quintile ranks, controlling for firm- and industry-fixed effects, 

respectively. However, the phenomenon that cross-section of earnings forecast optimism 

increasing with firms’ exposure to EU disappears in high IO group.  

These results suggest that analysts are rationally optimists when issuing their 

forecast for stocks with high EUE, since their reputational concerns limit them to exhibit 

an optimistic bias for such assets if those assets are held by sophisticated investors in the 

market (i.e., Lim, 2001 Cowen et al., 2006; Ljungqvist et al., 2007).   
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 Table 4.7 Institutional Ownership 

This table reports panel predictive regressions of one-year earnings consensus optimism for different IO 
samples using Equation (4.4). Variable definitions are listed in Appendix II. T-statistics are reported in 
parentheses. High and low IO groups are top and bottom medians. The sample period is from January 1982 
to December 2018. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.  

  High IO   Low IO 

Rank5 -0.000 -0.000  0.004** 0.003** 

 (-0.066) (-0.026)  (2.190) (2.058) 
EXPER 0.003 0.002  0.014* 0.022** 

 (1.568) (0.597)  (1.979) (2.673) 
BRKSIZE 0.004** 0.002  -0.002 0.001 

 (2.236) (0.941)  (-0.290) (0.257) 
COVER 0.003 0.002  -0.001 0.010 

 (0.762) (0.650)  (-0.120) (0.908) 
IVOL 0.709** 0.879***  3.296*** 3.677*** 

 (2.620) (3.305)  (3.278) (4.193) 
DISP 0.002* 0.002**  0.001 0.002* 

 (1.785) (2.131)  (0.905) (1.866) 
BEME 0.008*** 0.008**  0.032** 0.018** 

 (3.204) (2.648)  (2.288) (2.393) 
SIZE -0.000 -0.000  -0.000 0.000** 

 (-0.672) (-0.345)  (-0.908) (2.203) 
MOM -0.007*** -0.009***  -0.020*** -0.027*** 

 (-4.529) (-4.271)  (-4.164) (-4.699) 
ILLIQ 0.003 0.003  0.000 -0.000 

 (0.974) (1.013)  (0.729) (-0.079) 
Constant -0.035* -0.028  -0.085*** -0.144** 

 (-1.695) (-1.177)  (-3.392) (-2.323) 

Observations 211,952 212,249  182,911 183,580 
R-sq 0.189 0.029  0.102 0.007 
Adj R-sq 0.172 0.0290  0.0694 0.00661 
Firm FE Yes No  Yes No 
Industry FE No Yes  No Yes 
Year FE Yes Yes  Yes Yes 
Cluster by Firm Yes Yes  Yes Yes 
Cluster by Year Yes Yes   Yes Yes 

 

 

4.5.3 Economic Uncertainty, Analyst Optimism and Reputation 

Despite optimistic forecasts providing incentives in the short-term, this behaviour is more 

likely to be detrimental for analysts’ career in the long term. Jackson (2005) supports this 

conjecture and finds that investors update analyst reputations detecting optimism in 

forecasts for incentives in the long-term and follow analysts with better reputations 

accordingly. Due to reputation costs, analysts are concerned about getting promoted to 
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high-status brokerage houses or securing their jobs in the industry (i.e., Fama, 1980; Lim, 

2001). However, EUE-induced optimism is more likely to allow analysts to hide their bias 

as investors tend to have more difficulties verifying the valuation of stocks with high 

uncertain payoffs due to a vague informational environment (Ackert and Athanassakos, 

1997). Therefore, I expect that analysts are less likely to suffer from reputational concern 

resulting from an upward view on stocks with high EUE.  

Following the similar way of Chang and Choi (2017), I form analyst-level optimism 

measure. If analyst 𝑖 issues a forecast greater than the actual value of firm 𝑗 in year 𝑡, the 

optimistic score is 1, and 0 otherwise. The mean of these dummy variables across the 

companies that analyst 𝑖 covers gives the aggregate optimistic score for analyst 𝑖 in year 𝑡. 

Next, I sort analysts on their aggregate scores in five groups for each year to measure the 

level of their optimism. If analyst 𝑖 is in the highest group, optimistic flag (OF) is 1 in year 

𝑡, and 0 otherwise. If there are more than one forecast made by analyst 𝑖 for firm 𝑗 in year 

𝑡, I first take the mean of those forecasts to calculate OF. Additionally, I also form an 

aggregate EUE score (𝐸𝑈𝐸𝑠𝑐𝑜𝑟𝑒) by taking the average of monthly Rank5 for all stocks 

covered by analyst 𝑖 in year 𝑡. Finally, I examine the effect of EUE-induced optimism on 

analysts’ career concern with the following estimation: 

 

 𝑃𝑟𝑜𝑏(𝑌𝑖,𝑡) = 𝑓(𝜆0 + 𝜆1𝑂𝐹𝑖,𝑡−1  + 𝜆2EUE𝑖,𝑡−1
score + 𝜆3𝑂𝐹 ∗ EUE𝑖,𝑡−1

score

+ ∑ 𝜆𝑗𝑋𝑖,𝑡−1

𝑛

𝐽=2
+ 𝐹𝑖𝑥𝑒𝑑 𝐸𝑓𝑓𝑒𝑐𝑡𝑠 +  𝜀𝑖,𝑡) 

 

(4.7) 
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where 𝑌𝑖,𝑡 is MOVEDOWN binary variables for analyst 𝑖 year 𝑡. 𝑂𝐹𝑖,𝑡−1 is optimistic flag 

for analyst 𝑖 in year 𝑡 − 1. EUE𝑖,𝑡−1
score is the aggregate EUE score for analyst 𝑖 in year 𝑡 − 1. 

𝑋𝑖,𝑡−1  is a set of analyst-specific variables for analyst 𝑖  in year 𝑡 − 1 , including 

𝐶𝑂𝑉𝐸𝑅, 𝐵𝑅𝑂𝐾𝐸𝑅𝑆𝐼𝑍𝐸 and 𝐸𝑋𝑃𝐸𝑅. Year fixed effects are included in the estimation to 

control for the influence of time series. Finally, standard errors are clustered at the analyst 

level. 

Table 4.8 Analyst Reputation 

This table reports binomial logistic regressions of analysts’ job turnover using Equation (4.7). Variable 
definitions are listed in Appendix II. The slope coefficients are exponentiated and z-statistics are reported in 
parentheses. The sample period is from January 1982 to December 2018. ***, **, and * indicate significance 
at the 1%, 5%, and 10% levels, respectively. 

  1 2 3 

OF 1.144*** 1.700*** 1.554*** 

 (3.092) (4.834) (3.906) 
EUEscore  1.122*** 1.122*** 

  (4.145) (4.102) 
OF*EUEscore  0.821*** 0.838*** 

  (-3.891) (-3.451) 
EXPER   1.021 

   (1.251) 
BRKSIZE   1.049*** 

   (3.741) 
COVER   0.916*** 

   (-3.872) 
Constant 0.032*** 0.026*** 0.026*** 

 (-28.258) (-26.671) (-22.510) 

Observation 78,018 77,151 74,707 
Pseudo R-sq 0.0323 0.0329 0.0301 
Year FE Yes Yes Yes 
Cluster by Analyst Yes Yes Yes 

 

Table 4.8 presents the odd probabilities that are the exponentiated coefficients for 

the logistic regression model. I find that coefficients on OF are positive and statistically 

significant in all specifications. Therefore, the odds of moving down from a higher-status 

brokerage house to a lower one is significantly 55% higher for analysts in the highest 

optimism quintile relative to analysts in lower optimism groups in the full specification. 

Consistent with the literature, my results suggest that analysts issuing optimistic forecast are 
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more likely to move down from high-status brokerage house to low-status ones in the 

subsequent period (Jackson, 2005; Groysberg, Healy and Maber, 2011; Chang and Choi, 

2017). Therefore, their optimistic bias is more likely to be limited by their career concern in 

the future. 

The interaction of 𝑂𝐹and 𝐸𝑈𝐸𝑠𝑐𝑜𝑟𝑒 is significant.  It shows that the odds ratio for 

analysts in the highest optimism quintile is significantly -6% [= 𝑒𝑥𝑝(𝜆2 +  𝜆3) − 1] for a 

one-standard deviation increase in the aggregate EUE score in the full specification. 

Therefore, it is less likely for analysts issuing an optimistic forecast for stocks with high 

EUE to lose their job in a high-status brokerage firm in the subsequent period, since they 

can blame their optimistic bias for those stocks affected by macro-level uncertainty on the 

vague informational environment. 

 

4.5.4 Economic Uncertainty and Self-selection 

My empirical results have so far shown that analysts are biased in earnings forecasts for 

stocks with high EUE. This is mainly due to optimism for incentives with fewer career 

concerns. However, EUE-induced optimism might be attributed to a lack of pessimistic 

coverage for those stocks. Analysts who have career concern or simply have a negative view 

might downgrade their forecasts for those assets due to a poor informational environment. 

However, those firms might withhold inside information from those analysts. Therefore, 

they tend to drop coverage of those firms. The missing pessimistic view on high EUE can 

increase the effect of optimistic opinions on the consensus, leading to an upward bias in 

earnings forecast (McNichols and O’Brien, 1997).  
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In this regard, I further distinguish pessimistic and optimistic analysts based on their 

issues in one-year earnings forecasts. First, I re-calculate OPTIM, defined in Equation (4.1), 

for each forecast made by analyst 𝑖 in year 𝑡, then I take the average of all OPTIMs for the 

same analyst in the same year. Finally, I sort analysts on the mean value of OPTIM to form 

quintiles every year (Rank5𝑂𝑃𝑇𝐼𝑀). Moreover, I also use 𝐸𝑈𝐸𝑠𝑐𝑜𝑟𝑒 defined in Section 4.5.3, 

to measure the average EUE score for all stocks covered by analyst 𝑖 in year 𝑡. To examine 

whether EUE causes the pessimists to drop their coverage, I employ the following model: 

 

 𝑌𝑖,𝑝,𝑡 = 𝜆0 + 𝜆1EUEi,𝑡
𝑠𝑐𝑜𝑟𝑒 + 𝜆2Rank5i,𝑡

𝑂𝑃𝑇𝐼𝑀 + 𝜆3Pessimists ∗ EUE𝑖,𝑡
𝑠𝑐𝑜𝑟𝑒

+ 𝜆3Optimists ∗ EUE𝑖,𝑡
𝑠𝑐𝑜𝑟𝑒 + ∑ 𝜆𝑗𝑋𝑖,𝑡−1

𝑛

𝐽=4

+ ∑ 𝜆𝑗𝑍i,𝑡

𝑚

𝐽=𝑛+1
+ 𝐹𝑖𝑥𝑒𝑑 𝐸𝑓𝑓𝑒𝑐𝑡𝑠 +  𝜀𝑖,𝑡 

 

(4.8) 

  

where 𝑌𝑖,𝑡 is the total number of forecasts issued by analyst 𝑖 in year 𝑡 in natural logarithm. 

EUE𝑖,𝑡
score is the aggregate EUE score for analyst 𝑖 in year 𝑡. Rank5𝑖,𝑡

OPTIM is OPTIM quintile 

for analyst 𝑖 in year 𝑡. Pessimists𝑖,𝑡 is 1 if analyst 𝑖 in the bottom of OPTIM quintile in 

year 𝑡. Optimists𝑖,𝑡 is 1 if analyst 𝑖 in the top of OPTIM quintile in year 𝑡.  𝑋𝑖,𝑡−1  is a set 

of analyst-specific variables for analyst 𝑖 in year 𝑡 − 1, including 𝐶𝑂𝑉𝐸𝑅, 𝐵𝑅𝑂𝐾𝐸𝑅𝑆𝐼𝑍𝐸 

and 𝐸𝑋𝑃𝐸𝑅. 𝑍𝑖,𝑡  is the mean of stock-specific variables for all firms covered by analyst 𝑖 

in year 𝑡, including 𝐷𝐼𝑆𝑃 , 𝐼𝑉𝑂𝐿,  𝑆𝐼𝑍𝐸 , 𝑀𝑂𝑀, 𝐵𝑀and 𝐼𝐿𝐿𝐼𝑄 . Analyst and year fixed 

effects are included in the estimation to control for heterogeneity across analyst and the 

influence of time series. Finally, standard errors are double clustered at analyst-year levels 

(Cameron, Gelbach and Miller, 2011). 
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Table 4.9 Self-Selection 

This table reports panel predictive regressions of the total number of forecasts using Equation (4.8). Variable 
definitions are listed in Appendix II. T-statistics are reported in parentheses. The sample period is from 
January 1982 to December 2018. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, 
respectively. 

  1 2 3 4 5 

EUEscore -0.010 0.022** 0.028*** 0.013 0.013 

 (-1.129) (2.392) (3.417) (1.561) (1.562) 
Rank5OPTIM 0.074*** 0.097*** 0.058*** 0.056*** 0.057*** 

 (10.136) (8.859) (6.945) (6.745) (6.802) 
Pessimists* EUEscore  -0.036*** -0.032*** -0.032*** -0.034*** 

  (-2.913) (-3.728) (-3.812) (-3.890) 
Optimists* EUEscore  -0.074*** -0.055*** -0.054*** -0.024*** 

  (-8.502) (-7.242) (-7.233) (-6.466) 
Pess* EUEscore *BRK     0.000 

     (0.338) 
Opt* EUEscore *BRK     -0.009*** 

     (-3.463) 
EXPER   -0.123*** -0.116*** -0.116*** 

   (-6.397) (-6.006) (-6.006) 
BRKSIZE   -0.011* -0.011 -0.005 

   (-1.383) (-1.234) (-1.472) 
COVER   0.509*** 0.501*** 0.501*** 

   (38.889) (39.117) (39.101) 
IVOL    5.461*** 5.478*** 

    (3.637) (3.654) 
DISP    -0.028* -0.028* 

    (-1.848) (-1.846) 
BM    -0.007 -0.007 

    (-0.341) (-0.325) 
SIZE    -0.000*** -0.000*** 

    (-4.217) (-4.221) 
MOM    0.034** 0.034** 

    (2.569) (2.553) 
ILLIQ    -0.002 -0.002 

    (-0.651) (-0.700) 
Constant 2.631*** 2.534*** 2.003*** 1.972*** 1.966*** 

 (73.360) (54.271) (27.576) (24.535) (24.113)       
Observations 95,780 95,780 79,036 78,609 78,609 
R-sq 0.574 0.578 0.631 0.630 0.630 
Adj R-sq 0.498 0.502 0.569 0.569 0.569 
Analyst FE Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes 
Cluster by Analyst Yes Yes Yes Yes Yes 
Cluster by Year Yes Yes Yes Yes Yes 

 

Table 4.9 shows that coefficients on Rank5𝑂𝑃𝑇𝐼𝑀  are positive and statistically 

significant in all regressions, implying that the total number of forecasts issued by analysts 

is more likely to increase with their optimism. In other words, analysts with pessimistic view 

tend to drop their coverage consistent with McNichols and O’Brien (1997). In particular, 

the pessimists covering stocks with larger EUE are more likely to withdraw forecast, shown 
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with the interaction of Pessimists and 𝐸𝑈𝐸𝑠𝑐𝑜𝑟𝑒 . This negative trend is also observed 

among the optimists who follow firms exposed to higher macro uncertainty, indicated with 

the interaction of Optimists and 𝐸𝑈𝐸𝑠𝑐𝑜𝑟𝑒 .  

Compiling all findings related to EUE-induced optimism in the line with incentive 

concerns, this result suggests that there are still optimists who are less willing to exploit 

EUE and more likely to drop coverage for firms with larger EUE. Interacting with 

brokerage size, the negative coefficient in Specification (5) implies that optimistic analysts 

working for larger brokerage house tend to publish fewer forecasts for high EUE stocks. 

This might be because larger brokerage houses have a higher quality of the informational 

environment and better relationship with companies (Jacob, Lys and Neale, 1999). 

Therefore, optimists working for those brokerage houses with these opportunities may 

decide to stop issuing their forecasts as facing larger uncertainty. Moreover, their career 

concerns may deter them from reflecting their optimism for those assets.  

 

4.5.5 Behavioural Explanation 

In this study, the main conjecture relies on the rational argument where analysts are 

optimists in their forecast to gain incentives that are limited to their reputational concerns. 

This conjecture has empirically been confirmed. However, several studies argue that 

forecast bias is attributed to behavioural biases. For instance, Zhang (2006) shows that 

optimism in earnings forecasts increases (decreases) following bad (good) news for stock 

with higher information uncertainty inconsistent with analyst forecast optimism based on   
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Table 4.10 Behavioural Explanation 

This table reports panel predictive regressions of one-year earnings consensus optimism for Bad and Good news on GDP growth samples using Equation (4.4). Variable 
definitions are listed in Appendix II. T-statistics are reported in parentheses. The sample period is from January 1982 to December 2018. News 1 is the difference between 
the actual real GDP growth and the median consensus real GDP growth forecast. News 2 is the difference between the actual real GDP growth and the actual real GDP 
growth for the same quarter last year. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, res2.pectively. 

  News 1<0   News 1>0   News 2<0   News 2>0 

Rank5 0.003* 0.001  0.002 0.002  0.003* 0.001*  0.003 0.002 

 (1.697) (1.676)  (1.546) (1.403)  (1.847) (2.035)  (1.488) (1.510) 
EXPER 0.004 0.012***  0.012*** 0.016**  0.004 0.010*  0.013*** 0.016** 

 (0.429) (2.857)  (3.620) (2.314)  (0.464) (1.898)  (2.954) (2.291) 
BRKSIZE -0.011 -0.002  0.003 0.001  -0.004 0.003  -0.003 -0.005 

 (-0.985) (-0.468)  (0.515) (0.299)  (-0.416) (0.833)  (-0.595) (-1.545) 
COVER 0.012 0.017  -0.004 -0.001  0.011 0.017  0.001 -0.003 

 (0.877) (1.296)  (-0.754) (-0.444)  (0.835) (1.392)  (0.118) (-0.950) 
IVOL 3.352** 3.102***  1.527*** 2.062***  3.172*** 3.038***  1.484*** 1.895*** 

 (2.617) (3.219)  (4.511) (5.905)  (3.065) (4.010)  (2.914) (4.697) 
DISP 0.001 0.002  0.002*** 0.003***  0.002* 0.003**  0.001** 0.002** 

 (1.539) (1.299)  (2.973) (3.643)  (1.940) (2.097)  (2.671) (2.559) 
BEME 0.009* 0.006*  0.030** 0.024***  0.016** 0.014**  0.021* 0.017** 

 (1.754) (1.896)  (2.342) (2.873)  (2.519) (2.676)  (1.838) (2.383) 
SIZE -0.000 0.000*  -0.000 0.000**  -0.000 0.000*  0.000 0.000** 

 (-1.376) (1.749)  (-0.690) (2.211)  (-1.323) (1.925)  (0.618) (2.153) 
MOM -0.017*** -0.023***  -0.013*** -0.018***  -0.019*** -0.027***  -0.012*** -0.015*** 

 (-3.400) (-4.252)  (-3.889) (-4.728)  (-3.995) (-4.807)  (-3.779) (-4.803) 
ILLIQ 0.000 -0.000  0.001*** 0.001  0.001** 0.001*  -0.001 -0.001 

 (0.444) (-0.004)  (2.775) (1.311)  (2.599) (1.733)  (-0.745) (-1.042) 
Constant -0.053* -0.111  -0.054** -0.068***  -0.080** -0.130**  -0.048*** -0.038* 

 (-1.800) (-1.627)  (-2.452) (-2.971)  (-2.580) (-2.216)  (-2.765) (-1.746) 
Observations 174,956 175,687  219,539 220,142  211,430 212,241  179,572 180,220 
R-sq 0.051 0.006  0.155 0.007  0.044 0.007  0.172 0.005 
Adj R-sq 0.04 0.004  0.13 0.005  0.038 0.003  0.138 0.004 
Firm FE Yes No  Yes No  Yes No  Yes No 
Industry FE No Yes  No Yes  No Yes  No Yes 
Year FE Yes Yes  Yes Yes  Yes Yes  Yes Yes 
Cluster by Firm Yes Yes  Yes Yes  Yes Yes  Yes Yes 
Cluster by Year Yes Yes   Yes Yes   Yes Yes   Yes Yes 
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the rational framework.89 This is because analysts tend to underreact to new information, 

and this is more pronounced with greater uncertainty (Hirshleifer, 2001). Furthermore, 

Hugon, Kumar and Lim (2016) show that analysts are more likely to underreact to bad 

macroeconomic news, resulting in significant optimism in earnings forecasts. Therefore, 

EUE-induced analyst optimism might be, at least, partly related to an underreaction to new 

economic information.  

I expect that analysts tend to publish more (less) optimistic forecast for stocks with 

high EUE following bad (good) macroeconomic news due to their underreaction to news 

in earnings forecasts for such stocks. Consistent with Hann, Ogneva and Sapriza (2012) 

and Hugon, Kumar and Lim (2016), two measures are formed to distinguish the level of 

macroeconomic news to examine this prediction. The first measure is the difference 

between the actual real GDP growth and the median consensus real GDP growth forecast 

(News 1).90 The second one is the difference between the actual real GDP growth and the 

actual real GDP growth for the same quarter last year (News 2). 

Table 4.10 reports regression results estimated by Equation (4.4) following bad and 

good macro-news periods. I find that coefficients on Rank5 are positive following bad 

economic news. However, those results do not provide strong evidence in terms of their 

significance level. Furthermore, I do not observe any significant decrease in EUE-induced 

consensus optimism in a good news sample. Overall, those weak results do not help this 

 
89 Zhang (2006) measures forecast bias by taking the difference between actual earnings and analyst forecast 
divided by stock price. 
90  I take the first (advance) real GDP figures from Federal Reserve Bank of St. Louis 
(https://fred.stlouisfed.org/) then calculate the annualised growth rate for each quarter. Those figures are 
announced at the end of the month following the last month of each quarter. The median consensus real 
GDP forecasts is obtained from the Survey of Professional Forecasters 
(https://www.philadelphiafed.org/surveys-and-data). 
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study conclude that EUE-induced optimism might be, at least, partly related to analysts’ 

underreaction to the news.  

   

4.5.6 Economic Uncertainty, Analyst Optimism and Mispricing 

In the stock market, the role of analysts is also to help investors investment decision with 

forecasts and recommendations, leading to improve market efficiency. However, recent 

studies have shown inconsistent results with this view. For instance, Engelberg, Mclean and 

Pontiff (2018) find that analysts issue positive (negative) earnings forecasts for overpriced 

(underpriced) stocks measured by using 97 anomaly signals. Moreover, Guo, Li and Wei 

(2020) show that analysts exhibit upward bias in stock recommendations for overpriced 

stocks, using 11 anomalies that are introduced in Chapter 2. Those findings are inconsistent 

with the price efficiency which impedes the correction of mispricing. Considering the main 

findings in Chapter 2, I interact EUE-induced mispricing in anomalies with EUE-induced 

analyst optimism in earnings forecasts. In this way, I further investigate whether their bias 

exacerbates anomaly mispricing in stocks with high EUE as a result of their incentive 

concerns. To test this conjecture, I form 18 portfolios by independently sorting stocks into 

two 𝑂𝑃𝑇𝐼𝑀, three EUE and three MIS groups.91  

Table 4.11 reports risk-adjusted returns on 18 value-weighted OPTIM-EUE-MIS 

portfolios for high and low OPTIM groups in Panels A and B, respectively. The risk-risk 

adjusted returns are alphas estimated by an augmented Fama and French (2016) six-factor 

model introduced in Equation (2.3) of Chapter 2. I find that the EUE effect on mispricing 

is significantly apparent in the group with high consensus optimism. In Panel A, overpricing 

 
91 Due to data availability, portfolio formation starts from January 1983. 
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is pervasive in all EUE portfolios. The monthly alpha of the “Underpriced−Overpriced” 

portfolio in the high EUE quintile is significant (0.90%, 𝑡 = 3.37), which is more than the 

average mispricing effect (monthly alpha of 0.65%, 𝑡 = 4.43). The ambiguity-premium 

effect, furthermore, is only significantly observed in the group of stocks with low consensus 

optimism. The high-minus-low EUE portfolio in the non-mispricing group is significantly 

0.44% per month with a t-statistic of 2.13. These results confirm that analysts issuing 

optimistic view for stocks with high EUE exacerbates mispricing in anomalies and their 

optimism impedes the price efficiency in the market.     

Table 4.11 Triple sorts on OPTIM, EUE and MIS 

This table reports risk-adjusted returns on 18 value-weighted portfolios formed by sorting independently 
stocks on the two OPTIM, the three EUE and the three MIS groups. The results among high and low OPTIM 
groups are reported in Panel A and Panel B, respectively. The risk-adjusted returns are estimates of alphas 
estimated in Equation (2.3). Variable definitions are listed in Appendix II. Portfolio returns are in percent and 
t-statistics are reported in parentheses using Newey-West (1987) robust standard errors with 3 lags. The 
sample period is from January 1983 to December 2018. ***, ** and * indicates significance at the 1%, 5% and 
10% levels, respectively. 

  Low EUE 2 High EUE 
High - Low 

EUE 
Average 

MIS 

Panel A: High OPTIM 

Overpriced  -0.98*** -1.59*** -1.77*** -0.79*** -1.44*** 

 (-6.15) (-8.35) (-8.03) (-3.10) (-11.43) 
Non-Mispricing -1.00*** -0.96*** -1.18*** -0.18 -1.05*** 

 (-6.27) (-6.50) (-4.56) (-0.63) (-7.88) 
Underpriced  -0.73*** -0.80*** -0.86*** -0.13 -0.80*** 

 (-5.78) (-5.48) (-4.50) (-0.59) (-8.00) 
Under-Overpriced 0.24 0.79*** 0.90*** 0.66** 0.65*** 

 (1.18) (3.33) (3.37) (2.05) (4.43) 
Average EUE -0.90*** -1.12*** -1.27*** -0.37**  

 (-10.90) (-10.27) (-8.25) (-2.20)  
Panel B: Low OPTIM 

Overpriced  0.84*** 0.89*** 1.45*** 0.60*** 1.06*** 

 (5.71) (5.60) (8.92) (2.97) (9.92) 
Non-Mispricing 0.66*** 0.88*** 1.11*** 0.44** 0.88*** 

 (5.69) (6.57) (6.00) (2.13) (9.66) 
Underpriced  0.31*** 0.68*** 1.04*** 0.74*** 0.68*** 

 (3.08) (5.89) (5.93) (3.76) (8.71) 
Under-Overpriced -0.54*** -0.21 -0.41* 0.13 -0.39*** 

 (-3.03) (-1.09) (-1.87) (0.48) (-3.20) 
Average EUE 0.60*** 0.82*** 1.20*** 0.59***  
  (7.64) (9.43) (9.82) (4.66)   
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4.5.7 Alternative Measure 

To verify whether my findings are unique due to the uncertainty measure, I repeat the main 

analyses considering another uncertainty measure which is the news-based economic 

uncertainty policy index (EPU) developed by Baker, Bloom and Davis (2016).92 As in the 

main EUE estimation, I estimate EPU betas from a 60-month rolling regression for each 

stock with the model specified in Equation (4.3) by replacing ∆𝑈𝑁𝐶𝑡 with the change of 

EPU. Similar to the main analysis, I measure the exposure to EPU by the absolute value of 

the beta and form quintiles at the end of each month (𝑅𝑎𝑛𝑘5𝐸𝑃𝑈𝐸). Then, I re-perform all 

regression models in Equations (4.4), (4.5) and (4.6) by replacing 𝑅𝑎𝑛𝑘5 with 𝑅𝑎𝑛𝑘5𝐸𝑃𝑈𝐸 .  

 Table 4.12 provides additional evidence to support my main analyses, showing that 

stock exposure to EU measured by policy uncertainty induces optimism among analysts. 

Cross-section of earnings forecast optimism increases with firms’ exposure to EPU in 

quintile ranks, controlling for the firm- and industry-fixed effects, respectively. Moreover, 

the percentage of buy recommendations increases with EPUE quintiles at a 1% significance 

level controlling for both firm and industry levels. 

Finally, in Table 4.13 odds ratios on 𝑅𝑎𝑛𝑘5𝐸𝑃𝑈𝐸  in the logistic regressions imply 

that analysts are more (less) likely to issue buy (sell) recommendations. Therefore, there is 

an increase(decrease) in the odds of issuing buy (sell) recommendation by firms’ exposure 

to EPU in quintile ranks. 

Collectively, those results further confirm that not only do stocks’ exposure to 

 

 
92 This index is based on the uncertainty in regulatory and policy decisions captured in various newspapers. 
The monthly value of index is taken from https://www.policyuncertainty.com/  

https://www.policyuncertainty.com/
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Table 4.12 Economic Policy Uncertainty and Analyst Optimism 

This table reports panel predictive regressions of one-year earnings consensus optimism using Equation (4.4) and (4.6) replacing Rank5 with Rank5EPUE. Variable definitions 
are listed in Appendix II. T-statistics are reported in parentheses. The sample periods are from January 1990 for OPTIM and from January 1994 for BUYPCT and SELLPCT 
to December 2018. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively. 

  OPTIM   BUYPCT   SELLPCT 

 1 2  3 4  5 6 

Rank5EPUE 0.003** 0.001  0.004*** 0.009***  -0.000 -0.000 

 (2.189) (0.836)  (3.655) (6.070)  (-1.270) (-0.855) 
EXPER 0.010* 0.015**  -0.023*** -0.035***  0.005** 0.004** 

 (1.783) (2.712)  (-3.444) (-5.091)  (2.616) (2.376) 
BRKSIZE -0.005 -0.002  -0.063*** -0.082***  0.010*** 0.022*** 

 (-0.749) (-0.488)  (-10.212) (-10.566)  (3.301) (4.604) 
COVER 0.003 0.007  -0.039*** -0.057***  0.004* 0.000 

 (0.423) (0.888)  (-5.912) (-7.101)  (1.718) (0.066) 
IVOL 2.376*** 2.497***  -1.123*** -0.463**  0.349*** 0.359*** 

 (3.266) (4.362)  (-7.380) (-2.204)  (5.377) (4.451) 
DISP 0.001 0.002*  -0.005*** -0.005***  0.002*** 0.002*** 

 (1.450) (1.884)  (-4.417) (-2.875)  (3.957) (3.352) 
BEME 0.018** 0.013**  -0.046*** -0.029***  0.006*** 0.003* 

 (2.404) (2.514)  (-6.568) (-4.888)  (3.186) (1.820) 
SIZE -0.000 0.000**  0.000*** 0.000***  -0.000*** -0.000** 

 (-1.006) (2.102)  (6.272) (4.683)  (-3.819) (-2.522) 
MOM -0.013*** -0.018***  0.055*** 0.064***  -0.008*** -0.009*** 

 (-4.670) (-5.143)  (5.668) (5.421)  (-4.512) (-4.391) 
ILLIQ 0.001 0.000  0.000 0.001**  -0.000 -0.000*** 

 (1.312) (0.691)  (0.773) (2.200)  (-1.194) (-3.607) 
Constant -0.055** -0.084**  0.985*** 1.109***  -0.025 -0.058*** 

 (-2.577) (-2.124)  (32.526) (35.755)  (-1.548) (-3.115) 

Observations 352,544 353,055  52,367 53,508  52,367 53,508 
R-sq 0.062 0.005  0.521 0.202  0.390 0.084 
Adj R-sq 0.0420 0.00489  0.461 0.201  0.313 0.0829 
Firm FE Yes No  Yes No  Yes No 
Industry FE No Yes  No Yes  No Yes 
Year FE Yes Yes  Yes Yes  Yes Yes 
Cluster by Firm Yes Yes  Yes Yes  Yes Yes 
Cluster by Year Yes Yes   Yes Yes   Yes Yes 
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uncertainty in the real economy matter in analysts’ optimism but also exposure to policy 

and regulatory uncertainty can affect analysts’ bias in firms’ earnings and stock 

recommendations.   

Table 4.13 Economic Policy Uncertainty and Analyst Optimism: Stock Recommendations 

This table reports binomial and multinomial logistic regressions of stock recommendations using Equation 
(4.5) replacing Rank5 with Rank5EPUE. Variable definitions are listed in Appendix II. The slope coefficients 
are exponentiated and z-statistics are reported in parentheses. The sample period is from January 1994 to 
December 2018. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.  

  Sell Buy   Rec 

    (Sell) (Hold) (Buy) 

 1 2   3 

Rank5EPUE 0.987 1.024***  0.987* - 1.022*** 

 (-1.205) (7.244)  (-1.919)  (6.639) 
EXPER 1.011 1.013*  0.969* - 1.009 

 (0.311) (1.783)  (-1.823)  (1.226) 
BRKSIZE 0.713*** 0.878***  1.137*** - 0.892*** 

 (-8.215) (-14.919)  (4.584)  (-14.789) 
COVER 1.134** 0.941***  1.001 - 0.942*** 

 (2.395) (-5.733)  (0.029)  (-5.971) 
IVOL 46.299*** 3.795***  38.151*** - 6.783*** 

 (3.918) (3.346)  (5.338)  (4.614) 
DISP 1.016*** 1.000  1.017** - 1.005 

 (2.952) (0.056)  (2.225)  (0.718) 
BM 1.082*** 0.944***  1.077*** - 0.955*** 

 (3.411) (-5.908)  (4.767)  (-4.893) 
SIZE 1.000 1.000***  1.000* - 1.000*** 

 (-0.568) (10.384)  (-1.899)  (10.083) 
MOM 0.630*** 1.363***  0.728*** - 1.320*** 

 (-7.946) (24.321)  (-10.182)  (22.036) 
ILLIQ 0.489*** 1.027  0.745*** - 1.019 

 (-2.730) (1.292)  (-3.348)  (1.176) 
Constant 0.049*** 1.795***  0.072*** - 1.882*** 
  (-13.460) (9.720)   (-16.333)   (10.803) 

Observation 247,897 247,897   247,897  
Pseudo R-sq 0.0414 0.0335   0.0319  
Industry FE Yes Yes  Yes 
Year FE Yes Yes  Yes 
Cluster by Analyst Yes Yes   Yes 

 

 

4.6 Conclusion 

This study investigates the effect of economic uncertainty on analysts’ decision process in 

earnings forecasts and stock recommendations. It shows that analyst optimism in their 
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forecasts is larger for stocks with higher exposure to economic uncertainty. Additionally, 

this optimism is more pronounced with increasing macro-level uncertainty. The foundation 

of my conjecture relies on the rational framework where analysts face a dilemma when 

issuing optimistic forecasts: developing a better relationship with managers versus losing 

their reputation. Findings in Chapter 4 suggest that EUE-induced optimism is apparent 

when managers are more likely to hide information in financial reports or when market-

level information is less likely to be available. I also show that analysts are less likely to lose 

their reputation with EUE-induced optimism. Therefore, EUE mitigates the dilemma faced 

by analysts. I, furthermore, find that the missing pessimistic view on stocks exposed to high 

macro uncertainty seems to feed this optimism. Lastly, I examine whether EUE-induced 

optimism in earnings forecasts might be driven by behavioural biases considering the 

underreaction hypothesis. However, there is no strong evidence supporting that EUE-

induced optimism is, at least, partly related to analysts’ underreaction to macroeconomic 

news. 

As a result of analyst optimism for those assets, the mispricing effect of economic 

uncertainty is apparent in anomalies, inconsistent with the price efficiency which is expected 

to be improved by analysts in the market.  Finally, my main findings are robust to the 

economic policy uncertainty index, indicating that uncertainty in regulations also matters to 

analyst optimism in earnings forecasts. 
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Chapter 5 
 
 

5 Conclusion 

 

5.1 Summary of the Thesis 

This thesis aims to examine the effect of economic uncertainty on investors and security 

analysts in their decision-making processes. In the relevant literature, economic uncertainty 

has two seemingly contradicting predictions in asset pricing. It exacerbates heterogeneous 

beliefs among investors, making optimists more optimistic and pessimists more pessimistic 

and causing significant mispricing. However, it also affects the preference of investors 

facing uncertainty in the sense of the ambiguity-return trade-off. In Chapter 2, I reach a 

clear conclusion that both the ambiguity premium and the mispricing mechanisms are 

indeed at work. Such evidence can only be observed with my decomposition using an 

aggregate mispricing measure of Stambaugh, Yu and Yuan (2012; 2015) as two effects have 

been studied separately in the literature. I empirically show that the spread between 

underpriced and overpriced portfolios sorted by the mispricing measure is larger among 

stocks with higher exposures to macro uncertainty. The effect of EUE on the mispricing 

spread is mitigated when more elaborated multifactor models are used but remains 

significant in general. Moreover, I show that the high-minus-low EUE portfolio in the non-

mispricing group, which is the middle portfolio sorted by the mispricing measure, generates 

a significant premium. This result is robust to all multifactor models, implying that it is 

different from existing risk factors. Considering the limits of arbitrage context, EUE is a 
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new source of arbitrage frictions that is not captured by existing sources, such as 

idiosyncratic volatility. Empirical findings suggest that EUE can be a common source of 

mispricing and a candidate as a new risk factor.  

Chapter 3 answers the question of whether market-wide sentiment has a significant 

role in two effects of EUE on cross-sectional returns. I show that the mispricing spread in 

stocks with high EUE following the high-sentiment period, suggesting that investors with 

optimistic view determine those stocks’ value. By contrast, the high-minus-low EUE 

portfolio in the non-mispricing group yields a significant premium following a low-

sentiment period where investors behave more rationally (Stambaugh, Yu and Yuan, 2012). 

Considering the presence of market-wide sentiment, I empirically provide further insights 

into those two opposite effects of economic uncertainty on cross-sectional returns from a 

behavioural perspective. Moreover, interacting market-wide sentiment with the macro-level 

uncertainty, the mispricing effect of EUE is significantly observed following periods with 

both high EU and high sentiment. This finding shows that economic uncertainty 

exacerbates investors’ bias, leading to more irrational behaviours and larger disagreement. 

Second, the ambiguity premium in the non-mispricing group only exists following periods 

with high EU and low sentiment, confirming that rational investors demand an ambiguity 

premium when macro uncertainty intensifies as low market-wide sentiment reflects their 

preference.   

Chapter 4 answers the question of whether economic uncertainty affects analyst 

optimism in earnings forecasts and stock recommendations. Existing studies have shown 

upward bias in forecasts and I show that this bias is even more pronounced for stocks with 

higher EUE relative to those with lower EUE. Considering the rational framework, analysts 

provide optimistic forecasts to develop a better relationship with managers. However, 
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analyst optimism is constrained by their career concern as investors are able to detect it in 

the long term. I show that analysts with optimistic forecasts for stocks with high EUE are 

less likely to lose their position in a high-status brokerage house. Therefore, EUE-induced 

optimism is less likely to be penalised. These findings suggest that the dilemma of improving 

management access or losing their reputation faced by analysts are mitigated by EUE. 

Finally, interacting EUE-induced mispricing documented in Chapter 2 with EUE-induced 

optimism, I find that the mispricing spread in high EUE significantly apparent in the group 

of stocks with high consensus optimism. I suggest that analyst optimism for stocks with 

high EUE do not contribute to the price efficiency in the market, inconsistent with the role 

of analyst forecast and recommendation. 

 

5.2 Key contributions of the Thesis 

This study examines the role of economic uncertainty in asset pricing. It offers a new 

premise to the literature where economic uncertainty affects investors’ beliefs and 

preferences that are not supposed to be mutually exclusive. They can be observed in 

markets and the strength varied with economic and investor sentiment conditions.  

Empirically, this observation can be made using firm-level mispricing characteristics, which 

offers a practical decomposition to disentangle those two effects in the literature. The 

divergence of opinion among investors is an important factor in asset pricing that has been 

examined extensively in relevant studies. This study complements the literature and 

provides further evidence suggesting that economic uncertainty is an important factor 

driving disagreement among investors, which is different from other existing factors.  

This study unveils stock exposure to economic uncertainty as a new systematic 

factor to researchers and practitioners. First, it can be considered as a new common 
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component across stocks and a new arbitrage risk which carries different information from 

existing ones such as idiosyncratic volatility (Nagel, 2005; Stambaugh, Yu and Yuan, 2015). 

Second, it can be exploited to evaluate fund managers’ portfolio composition and 

performance (Song, 2020). Third, alongside macroeconomic risk factors, it can also be 

useful to develop benchmark models as macrolevel uncertainty is the unpredictable 

components of those risk factors (Barber, Huang and Odean, 2016). This study further 

confirms that investors have different attitudes towards stock exposure to economic 

uncertainty based on their beliefs and preferences considering the presence of market-wide 

sentiment (Stambaugh, Yu and Yuan, 2012; Shen, Yu and Zhao, 2017). Furthermore, it 

provides evidence showing that macro-level uncertainty matters for investors’ irrationality 

as the strongest sentiment effect is observed when economic uncertainty is high (Garcia, 

2013; Birru and Young, 2020).  

This thesis contributes to security analyst literature by examining the effect of 

economic uncertainty on analyst optimism in forecasts and recommendations. It confirms 

that stock exposure to economic uncertainty affects analysts’ trade-off between improving 

management access and losing their reputation, contributing to the rational bias framework 

(Chang and Choi, 2017). This study complements the relevant literature about analyst 

reputation concern limiting their optimism for incentives (Fama, 1980; Lim, 2001; Jackson, 

2005). Analysts, however, can hide optimism for incentives as experiencing less career 

concern when issuing biased forecasts for stocks with high EUE. This study, therefore, 

unveils another important conditional variable to understand the determinant of analysts’ 

optimism for incentives. Finally, this thesis contributes to analysts’ research and price 

efficiency in stock markets (Engelberg, McLean and Pontiff, 2018; Goa, Li and Wei, 2020). 

It shows that analyst optimism in forecasts for stocks with high EUE tends to mislead 

investors in anomaly investment strategy and exacerbate mispricing. 
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5.3 Limitations and Future Research Suggestions 

5.3.1 Measuring Good and Bad Economic Uncertainty 

Economic uncertainty is unpredictable using available information and models (Jurado, 

Ludvigson and Ng, 2015). Time-varying shocks in it are linked to real economic activities 

and asset prices (Bloom, 2009). This study documents that it affects both preferences and 

beliefs in stock markets in Chapter 2. While there is a negative relationship between firms’ 

economic uncertainty exposure and expected returns due to the mispricing effect, there is 

also a positive relationship between those due to the ambiguity premium effect. In the time-

series analysis in Chapter 2, this thesis shows that those effects are more pronounced 

following periods with increasing economic uncertainty. 

However, this study does not distinguish types of uncertainty in the economy as 

Segal, Shaliastovich and Yoran (2015) do in decomposing aggregate uncertainty into “good” 

and “bad” uncertainties. For instance, technological advancement in the real economy can 

be considered as good uncertainty providing growth opportunities, i.e., the high-tech 

revolution in the 90s (Segal, Shaliastovich and Yoran, 2015). By contrast, negative shocks 

into the economy lowering investments and consumptions can be classified as bad 

uncertainty, i.e., the recent outbreak of the COVID-19 pandemic. Although those types of 

macro uncertainty exacerbate the predictability of future outcomes for investors, the former 

matches with a positive view and the latter with a negative one (Segal, Shaliastovich and 

Yoran, 2015). In stock-level economic uncertainty beta estimation and time-variation 

analysis using these betas, distinguishing different types of aggregate uncertainty could give 

more insights into its effect on beliefs and preferences in stock markets. 
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To distinguish good and bad uncertainties in economy, one may follow the 

empirical method introduced by Segal, Shaliastovich and Yoran (2015). They decompose 

the usual realized variances into the positive and negative semi-variances which give 

information about the realized variation related to jumps in the right and left tails of the 

relevant state variables such as industrial production, consumption growth and dividend on 

market portfolio.93   

 

5.3.2 Economic Uncertainty, Mispricing and Ambiguity Premium: International 

Evidence 

In Chapter 2, the sample contains all common stocks traded on different markets in the 

United States. It can be extended to examine the effect of economic uncertainty in the US 

on global stock markets. For instance, Rapach, Strauss and Zhou (2013) show that 

macroeconomic indicators have significant predictive power on equity prices from various 

countries’ markets, even stronger than those countries’ fundamentals. They suggest that the 

US equity market is the largest, thus information on macro-indicators in the US is relevant 

for investors in different countries. In other words, investors give more attention to the US 

economy, leading to an informational diffusion on macroeconomic indicators across 

countries (Rapach, Strauss and Zhou, 2013). In this regard, the empirical setting in Chapter 

2 could also be applied to international financial markets. Economic uncertainty in the US 

could affect investors’ beliefs and preferences in other countries’ stock markets.  

 

 
93 For more discussion on the both theoretical and empirical developments behind the methodology, see Segal, 
Shaliastovich and Yoran (2015).  
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5.3.3 Economic Uncertainty Exposure and Fund Performance 

This study unveils economic uncertainty exposure as a new systematic factor in Chapter 2, 

which affects asset prices based on investors’ beliefs and preferences. This new factor could 

be used in investment management applications in the relevant literature. Song (2020) 

shows that systematic factors are not taken into account in mutual fund flows, which lead 

investors to mismatch mutual fund skill and scale. Economic uncertainty is a relevant state 

variable affecting investment decisions alongside macro-risk factors (Bloom, 2009; Jurado, 

Ludvigson and Ng, 2015). Therefore, future research could focus on how to understand 

the composition of fund managers’ portfolios and their exposures to macroeconomic 

uncertainty risk for achieving their longer-term investment objectives. This perspective 

could potentially inform practical investment management and might also be relevant to 

different asset classes in financial markets. Moreover, Barber, Huang and Odean (2016) 

show that sophisticated investors evaluate fund performance with more sophisticated 

benchmarks rather than the market model. For those investors, EUE could be taken into 

account for benchmark model advancement.   

 

5.3.4 Caveats in the Sentiment Index 

In Chapter 3, I examine the link between market-wide sentiment and investors’ 

attitudes to assets with different levels of EUE to provide a behavioural explanation for 

two effects of economic uncertainty in a cross-section of stock returns. I use a sentiment 

index that measures the market-wide sentiment assuming that all industries face 

simultaneously the same sentiment state. However, this may not be the case. For instance, 

while the market is in a high sentiment state, the automotive industry might be facing a low 

sentiment period due to a supply crisis in steel. Therefore, investors may exhibit different 
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attitudes to those companies in that industry. Chapter 3 could be extended considering an 

industry-specific sentiment measure. 

Another limitation is with the construction of the market-wide sentiment index 

proposed by Baker and Wurgler (2006). They use six variables to construct the index, which 

is correlated with the business cycle. Although they remove this effect on the sentiment 

index by orthogonalizing these proxies with economic fundamentals, it might still be 

contaminated by those fundamentals (Baker and Wurgler, 2007). Therefore, it may not 

reflect investor sentiment in isolation though it has widely been used in empirical finance 

literature. To provide a robustness check, following the literature (Lemmon and 

Portniaguina, 2006; Bergman and Roychowdhury, 2008), I use a survey-based consumer 

sentiment index, such as the University of Michigan Consumer index. However, questions 

in the survey might not be responded to carefully. 

 

5.3.5 Investor Mood and Two Tales of Economic Uncertainty Exposure 

In behavioural finance literature, Hirshleifer, Jiang and DiGiovanni (2020) show that stocks 

with higher exposure to investor mood, called mood beta, generate significantly higher 

(lower) subsequent returns relative to those with lower mood beta during high (low) mood 

periods.94 They define mood beta as variation in investor preferences, beliefs and risk 

tolerance induced by investors’ emotion. They suggest that changes in seasonal mood cause 

periodic investor optimism or pessimism in evaluating common pricing factors, which 

induces seasonal variations in mispricing. This can be considered as a special case of 

 
94 Hirshleifer, Jian and DiGiovanni (2020) define January, March and Friday as high mood periods, while 
September, October and Monday are low mood periods. These classifications are made by following previous 
literature which is discussed extensively by Hirshleifer, Jian and DiGiovanni (2020). In their study, stock 
exposure to investor mood estimation are empirically explained in detail.   
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investor sentiment (Hirshleifer, Jian and DiGiovanni, 2020). Chapter 3 could be extended 

using the mood beta to examine whether investor mood has a significant role in those two 

effects of economic uncertainty exposure on cross-sectional expected returns during high 

and low mood periods.  

 

5.3.6 Macroeconomic Disagreement and Analyst Optimism 

In Chapter 4, this study shows that there is a significant effect of EUE on analyst optimism, 

and this effect is only observed following high economic uncertainty periods. In literature, 

Hong and Sraer (2016) and Li (2016) show that during such periods, macroeconomic 

disagreement is high. Therefore one may extend this chapter by examining its on analyst 

forecasts following the empirical setting of Li (2016) to identify the level of disagreement 

about different macroeconomic indicators. This examination may explore another channel 

which can drive the main results in Chapter 4 instead of analyst optimism. 

 

5.3.7 Analyst Optimism and Earnings Management Quality 

This thesis examines the effect of EUE on analyst optimism based on rational bias where 

analysts are in a compromise between their reputation and incentive concerns. To examine 

EUE-induced analyst optimism in the context of maintaining a relationship with managers, 

I identify firms based on their earnings management quality using the Modified Jones Model 

by Kothari et al. (2005). This is because Brown et al (2015) find that the quality of earnings 

management is an important factor for analysts to control in the forecast process. Although 

there are an extensive number of studies where researchers have developed different 
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measures, such as persistence, accruals, smoothness and timeliness to identify earnings 

quality, discussing and evaluating each of those proxies are beyond the scope of this thesis.95 

 

5.4 Conclusion 

I study the role of economic uncertainty in the decision of investor and analysts by studying 

the asset pricing and analysts forecast in three empirical studies.  The findings of this thesis 

further extend our understanding of this key state variable. It affects both investors belief 

formation and preference. It also exacerbates bias induced by the investor’s sentiment and 

creates an information environment hiding analysts’ optimistic biases. These new empirical 

facts would be a useful foundation for future theoretical and empirical studies but also 

relevant to practical investment management.  

 

  

 
95 For an extensive review of earnings quality proxies and its determinants, see Dechow, Ge and Schrand 
(2010) and DeFond (2010). 
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5.5 Appendix II: Description  

Table A-II.1 Variable and Factor Descriptions 

This table reports details of risk factors and stock-level variables used for the whole study. Panel A 
reports the details of market risk factors. Panel B reports the details of firm-level uncertainty 
exposures. Panel C and D report firm-level and analyst-level characteristics, respectively. 

Variable Name Description 

Panel A. Risk Factors 

MKT The excess market return is the value-weighted return of all firms listed on the NYSE, 
AMEX, and NASDAQ minus one-month Treasury-bill rate (Fama and French, 1993). 

SMB Small-minus-big is the average return on the three small-sized portfolios minus the 
average return on the three big-sized portfolios (Fama and French, 1993). 

HML High-minus-low is the average return on the two value portfolios minus the average 
return on the two growth portfolios (Fama and French, 1993). 

UMD Winner-minus-loser is previous 12-month return winner portfolios minus previous 12-
month loser portfolios (Carhart, 1997). 

IA Conservative-minus-aggressive is the difference between the returns on portfolios of 
stocks with low and high investment (Fama and French, 2015). 

ROE Robust-minus-weak is the difference between the returns on portfolios of the stocks 
with high and low profitability (Fama and French, 2015). 

LIQ Liquidity is the level of aggregate market liquidity (Pastor and Stambaugh, 2003). 
QIA Investment factor is the difference between the mean returns on the six low I/A 

portfolios and on the six high I/A portfolios. I/A is the annual change in total assets 
scaled by previous year total assets (Hou, Xu and Zhang, 2015). 

QROE Profitability factor is the difference between the mean returns on the six low ROE 
portfolios and the six high ROE portfolios. ROE is income before extraordinary items 
scaled by previous quarter book equity (Hou, Xu, and Zhang, 2015). 

QEG The expected growth factor is the difference between the mean returns on two high EG 
portfolios and the low EG portfolios. EG is the product of operating cash flow-to-
assets and the change in ROE (Hou et al, 2020). 

MGMT Management factor is pairwise cross-sectional correlations between stocks in net stock 
issues, composite issues, accruals, net operating asset, asset growth, and investment-to-
assets groups (Stambaugh and Yuan, 2017). 

PERF The performance factor is pairwise cross-sectional correlations between stocks in 
distress, O-score, momentum, gross profitability and return on assets groups 
(Stambaugh and Yuan, 2017). 

Panel B. Firm Uncertainty Exposures 

βEUE Economic uncertainty exposure is the absolute value of the coefficient of the change of 
economic uncertainty index (Jurado, Ludvigson, and Ng, 2015) estimated by a 60-month 
rolling regression for each stock with Equation (2.2). 

βADSM Macro-disagreement exposure is the absolute value of the coefficient of the change of 
dispersion in economic forecast estimated by a 20-quarter rolling regression for each 
stock with Equation (2.2) by replacing the log change of economic uncertainty index 
with the log change of those dispersions including GDP, industrial production (INPR), 
and nonresidential fixed investment (RNRSN) at the growth rates, and unemployment 
rate (UNEM), Treasury-bill (TBILL), and inflation rate (CPI). Those measures are from 
the Survey of Professional Forecasters 

βEPUE Economic policy uncertainty exposure is the absolute value of the coefficient of the 
change of economic policy uncertainty index (Baker, Bloom, and Davis, 2016) estimated 
by a 60-month rolling regression for each stock with Equation (2.2) by replacing the log 
change of economic uncertainty index with the log change of the economic policy 
uncertainty index. 

βVRE Variance risk exposure is the absolute value of the coefficient of variance risk index (Bali 
and Zhou, 2016) estimated by a 60-month rolling regression for each stock with 
Equation (2.2) by replacing the log change of economic uncertainty index with the 
variance risk index 
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βADE Ambiguity degree exposure is the absolute value of the coefficient of the change of 
ambiguity index (Brenner and Izhakian, 2018) estimated by a 60-month rolling 
regression for each stock with Equation (2.2) the log change of economic uncertainty 
index with the log change of the ambiguity index. 
 
 

Panel C. Firm Characteristics 

MIS Mispricing measure is the mean of decile ranks of a stock based on 11 market anomalies 
(Stambaugh, Yu, and Yuan, 2015). These anomalies survive after adjusting for Fama 
and French’s (1993) three factors. Those are accruals (Sloan, 1996), asset growth 
(Cooper, Gulen, and Schill, 2008), composite equity issuance (Daniel and Titman, 2006), 
gross profitability (Novy-Marx, 2013), investment-to-assets (Titman, Wei, and Xie 
(2004), 1-month momentum (Jegadeesh and Titman, 1993), 12-month momentum 
(Jegadeesh, 1990) net operating assets (Hirshleifer et al. (2004), net stock issues (Ritter, 
1991), O-score (Ohlson, 1980) and return on assets (Fama and French, 2006). 
For each anomaly, the first decile has stocks with the highest abnormal return, while the 
10th decile has stocks with the lowest abnormal return. For instance, Sloan (1996) 
documents that assets with high (low) accruals in the previous year have a low (high) 
return. Therefore, stocks with the highest (lowest) accruals have the highest (lowest) 
rank. Then, MIS is formed by computing the mean of each asset’s decile rank based on 
those 11 market anomaly variables (Stambaugh, Yu, and Yuan, 2015). 

βCAPM Market beta is the absolute value of the coefficient of the market excess return estimated 
by the market model. 

SIZE Size is defined as the price of the share multiplied by the number of share outstanding.  
BM Book-to-market is computed as the book value of equity at the end of fiscal year t-1 

divided by the market value of equity at the end of fiscal year t-1.  
MOM Momentum (MOM) is the cumulative return of stock i from month t-12 to t-2.  
REV Reversal is defined as the stock return at the end of month t-1. 
ILLIQ Stock illiquidity is defined as the ratio of the daily absolute stock return to the daily 

dollar trading volume averaged within the month. 
DISP Analyst earnings forecast dispersion is measured as the standard value of the mean 

forecast deviation of long-term earnings forecasts divided by the absolute of the mean 
forecast.  

IVOL  Following Ang et al. (2006), idiosyncratic volatility is defined as the standard deviation 
of the daily risk-adjusted return residuals computed by regressing each asset’s daily 

return on four Fama and French market factors: 𝑀𝐾𝑇, 𝑆𝑀𝐵, 𝐻𝑀𝐿, 𝑈𝑀𝐷. 
ROE The quarterly operating profitability is computed by income before extraordinary items 

divided by prior quarter book equity. Quarterly book equity is measured by aggregating 
shareholders’ equity, balance-sheet deferred taxes, and investment tax credit if available, 
minus book value of preferred stock (Davis, Fama, and French, 2000). 

I/A The annual growth rate of total assets is calculated by the change in book assets divided 
by the prior fiscal year book asset (Hou, Xue, and Zhang 2015). 

TO Stock turnover is the total trading volume of stock i divided by the number of share 
outstanding.  

IO Institutional ownership is measured by total institutional ownership divided by shares 
outstanding, gathered quarterly from 13F filing on Thomson-Reuters, starting from the 
first quarter in 1980. 

OPTIM Consensus optimism is calculated as the difference between the mean value of all one-
year earnings forecast made by all analysts in month and actual earnings divided by 
previous month’s closing share price. 

Rank5 Quintile ranks are formed by sorting all stocks on prior month’s βEUE. Top (bottom) 
quintile has stocks with highest (lowest) βEUE.  

Rank5EPUE Quintile ranks are formed by sorting all stocks on prior month’s βEPUE. Top (bottom) 
quintile has stocks with highest (lowest) βEPUE. 

DA Absolute value of discretionary accruals is Modified Jones Model computed by Kothari 
et al. (2005). 

RSQ Monthly R-square is computed using the market-model regression of daily returns 
(Frankel, Kothari and Weber, 2006). 

BUYPCT Buy percentage is the mean of buy recommendation percentage for a firm during a year. 
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SELLPCT Sell percentage is the mean of sell recommendation percentage for a firm during a year. 

Panel D. Analyst Characteristics 

BUY It is a binary variable which is 1 if analyst issues Buy or Strong Buy, and 0 otherwise. 
SELL It is a binary variable which is 1 if analyst issues Sell or Strong Sell or Underperform 

and 0 otherwise. 
REC It is a categorical variable where Buy or Strong Buy=3, Hold=2, and Sell or Strong Sell 

or Underperform=1. 
OF If an analyst issues a forecast greater than the actual value of a firm in a year, optimistic 

score is 1, and 0 otherwise. The mean of these dummy variables across the companies 
that the analyst covers gives the aggregate optimistic score for that analyst in that year. 
Next, analysts are sorted on their aggregate scores in five groups for each year to 
measure the level of their optimism. If that analyst is in the highest group, optimistic 
flag (OF) is 1 in that year, and 0 otherwise. 

EUEscore Aggregate EUE score is measured by taking the mean of monthly Rank5 for all stocks 
covered by an analyst in a year. 

MOVEDOWN If an analyst employed by a brokerage house having at least 25 analysts in previous year 
is observed in a brokerage house having less than 25 analysts in following year then it is 
1, and 0 otherwise.   

Rank5OPTIM Quintile optimistic ranks are measured by sorting all analysts on the mean of all 
OPTIMs of each analyst in a year.  

Pessimists It is 1 if an analyst in the bottom of Rank5OPTIM, and 0 otherwise. 
Optimists  It is 1 if an analyst in the top of Rank5OPTIM, and 0 otherwise. 
COVER The number of companies covered by an analyst in a year in natural logarithm. 
EXPER The number of years from the starting year of an analyst in IBES sample in natural 

logarithm. 
BRKSIZE The number of analysts hired by a brokerage house in a year in natural logarithm. 
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