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Abstract. Gossip protocols are programs that can be used by a group of n agents
to synchronise what they know. Namely, assuming each agent holds a secret, the
goal of a protocol is to reach a situation in which all agents know all secrets.
Distributed epistemic gossip protocols use epistemic formulas in the component
programs for the agents. In this paper, we solve open problems regarding one of
the simplest classes of such gossip protocols: propositional gossip protocols, in
which whether an agent can make a call depends only on his currently known set
of secrets. Specifically, we show that all correct propositional gossip protocols,
i.e., the ones that always terminate in a situation where all agents know all secrets,
require the underlying undirected communication graph to be complete and at
least 2n− 3 calls to be made. We also show that checking correctness of a given
propositional gossip protocol is a co-NP-complete problem. Finally we report on
implementing such a check with model checker nuXmv.

1 Introduction

Gossip protocols have the goal of spreading information through a network via point-to-
point communications (which we refer to as calls). Each agent holds initially a secret
and the aim is to arrive at a situation in which all agents know each other secrets. During
each call the caller and callee exchange all secrets that they know at that point. Such
protocols were successfully used in a number of domains, for instance communication
networks [19], computation of aggregate information [23], and data replication [25]. For
a more recent account see [22] and [24]. One of the early results established by a number
of authors in the seventies, e.g.,[26], is that for n agents 2n − 4 calls are necessary
and sufficient when every agent can communicate with any other agent. When such a
communication graph is not complete, 2n− 3 calls may be needed [12] but are sufficient
for any connected communication graph [18]. However, all such protocols considered in
these papers were centralised.

In [10] a dynamic epistemic logic was introduced in which gossip protocols could
be expressed as formulas. These protocols rely on agents’ knowledge and are distributed,
so they are distributed epistemic gossip protocols. This also means that they can be seen
as special cases of knowledge-based programs introduced in [16].

In [2] a simpler modal logic was introduced that is sufficient to define these protocols
and to reason about their correctness. This logic is interesting in its own rights and was
subsequently studied in a number of papers. In this paper, we are going to focus on its
simplest propositional fragment.

Propositional gossip protocols are a particular type of epistemic gossip protocol in
which all guards are propositional. This means that calls being made by each agent are
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dependent only on the secrets that the agent have had access to. Clearly, this can lead
to states where multiple calls are possible at the same time. Then a scheduler would
decide which call takes priority. Throughout this paper, we assume that the scheduler
is demonic and it picks the order of calls in a way such that the protocol fails or to
maximise the number of calls made before termination. In other words, we study these
gossip protocols in their worst-case scenario.

In [9], many challenging open problems about general as well as propositional gossip
protocols were listed. In the paper we manage to resolve some of them. In particular, we
solve its Problem 5, which asks for a characterisation of the class of graphs for which
propositional protocols exist. In Section 3 we show that, when we ignore the direction
of edges in the communication graph, the only class possible is complete graphs. In
order to show that we need to establish many interesting properties of computations of
such protocols. We also partially resolve its Problem 6, which asks to show that a gossip
protocol needs at least 2n − 3 calls to be correct. We prove this is indeed the case at
least for the class of propositional gossip protocols. Note that, unlike what was shown
in [12], this lower bound holds even if the communication graph is a complete graph.
Finally, we also partially address Problem 7, which asks for the precise computational
complexity of checking the correctness of such protocols. It is known that for gossip
protocols without nesting of modalities this problem is in coNPNP [4]. We improve this
to co-NP-completeness for propositional ones.

Related work. Much work has been done on general epistemic gossip protocols. The
various types of calls used in [10] and [2] were presented in a uniform framework in
[3], where in total 18 types of communication were considered and compared w.r.t. their
epistemic strength. In [5], and its full version [8], the decidability of the semantics of
the gossiping logic and truth was established for its limited fragment (namely, without
nesting of modalities). Building upon these results it was proved in [5] that the distributed
gossip protocols, the guards of which are defined in this logic, are implementable, that
their partial correctness is decidable, and in [7] that termination and two forms of fair
termination of these protocols are decidable, as well. Building on that, [30] showed
decidability of the full logic for various variants of the gossiping model. Further, in [4]
the computational complexity of this fragment was studied and in [6] an extension with
the common knowledge operator was considered and analogous decidability results were
established there.

Despite how simple this modal logic seems to be, there remain natural open problems
about it and the gossip protocols defined using it. These problems were discussed at
length in [9], where partial results were also presented that be build upon in this paper.
Some of these open problems were subsequently tackled in [30], but propositional
protocols were not studied there and questions regarding them were left open.

Centralised gossip protocols were studied in [20] and [21]. These had the goal to
achieve higher-order shared knowledge. This was investigated further in [14], where
optimal protocols for various versions of such a generalised gossip problem were given.
These protocols depend on various parameters, such as the type of the underlying graph or
communication. Additionally, different gossip problems which contained some negative
goals, for example that certain agents must not know certain secrets, were studied. Such
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problems were further studied in [15] with temporal constraints, i.e., a given call has to
(or can only) be made within a given time interval.

The number of calls needed to reach the desired all expert situation in the distributed
but synchronous setting was studied in [27]. In the synchronous setting, agents are
notified if a call was made, but may not necessary know which agents were involved.
In this paper we study the more complex fully distributed asynchronous setting, where
agents are not aware of the calls they do not participate in. In [29,28] the expected time
of termination of several gossip protocols for complete graphs was studied.

Dynamic distributed gossip protocols were studied in [31], in which the calls allow
the agents to transmit the links as well as share secrets. These protocols were charac-
terised in terms of the class of graphs for which they terminate. Various dynamic gossip
protocols were proposed and analysed in [32]. In [17] these protocols were analysed by
embedding them in a network programming language NetKAT [1].

Structure of the paper. We first introduce the logic, originally defined in [2], and
then move on to tackle some open problems for the propositional gossip protocols. The
first aim is to look at the communication graph required for the existence of a correct
propositional gossip protocol (Section 3) and then a lower bound on the number of calls
needed by such a protocol (Section 4). We then move on to looking at the complexity of
the natural decision problems for these protocols (Section 5), before touching on some
computational attempts to see how quickly a computer can determine the correctness of
a given propositional gossip protocol. Due to the space limit some details of the proofs
are omitted and will be published in a journal version of this paper later.

2 Gossiping Logic

We recall here the framework of [2], which we restrict to the propositional setting. We
assume a fixed set A of n ≥ 3 agents and stipulate that each agent holds exactly one
secret, and that there exists a bijection between the set of agents and the set of secrets.
We denote by S the set of all secrets.

The propositional language Lp is defined by the following grammar:

φ ::= FaS | ¬φ | φ ∧ φ,

where S ∈ S and a ∈ A. We will distinguish the following sublanguage La
p, where

a ∈ A is a fixed agents, which disallow all Fb operators for b 6= a.
So FaS is an atomic formula, which we read as ‘agent a is familiar with the secret

S’. Note that in [2], a compound formula Kaφ, i.e., ‘agent a knows the formula φ is
true’, was used. Dropping Kaφ from the logic simplifies greatly its semantics and the
execution of a gossip protocol, while it is still capable of describing a rich class of
protocols. Below we shall freely use other Boolean connectives that can be defined using
¬ and ∧ in a standard way. We shall use the following formula

Expi ≡
∧
S∈S

FiS,

that denotes the fact that agent i is an expert, i.e., he is familiar with all the secrets.
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Each call, written as ab or a, b, concerns two different agents, the caller, a, and
the callee, b. After the call the caller and the callee learn each others secrets. Calls are
denoted by c, d. Abusing notation we write a ∈ c to denote that agent a is one of the two
agents involved in the call c. We refer to any such call an a-call (b-call for agent b, etc.).

In what follows we focus on call sequences. Unless explicitly stated each call
sequence is assumed to be finite. The empty sequence is denoted by ε. We use c to
denote a call sequence and C to denote the set of all finite call sequences. Given call
sequences c and d and a call c we denote by c.c the outcome of adding c at the end of
the sequence c and by c.d the outcome of appending the sequences c and d. We say that
c′ is an extension of a call sequence c if for some call sequence d we have c′ = c.d.

To describe what secrets the agents are familiar with, we use the concept of a
gossip situation. It is a sequence s = (Qa)a∈A, where {A} ⊆ Qa ⊆ S for each agent
a. Intuitively, Qa is the set of secrets a is familiar with in the gossip situation s. The
initial gossip situation is the one in which each Qa equals {A} and is denoted by root.
It reflects the fact that initially each agent is familiar only with his own secret. Note that
an agent a is an expert in a gossip situation s iff Qa = S.

Each call transforms the current gossip situation by modifying the sets of secrets
the agents involved in the call are familiar with as follows. Consider a gossip situation
s := (Qd)d∈A and a call ab.

Then
ab(s) := (Q′d)d∈A,

where Q′a = Q′b = Qa ∪ Qb, and for c 6∈ {a, b}, Q′c = Qc.
So the effect of a call is that the caller and the callee share the secrets they are familiar

with.
The result of applying a call sequence to a gossip situation s is defined inductively as

follows:
ε(s) := s, (c.c)(s) := c(c(s)).

Example 1. We will use the following concise notation for gossip situations. Sets of
secrets will be written down as lists. e.g., the set {A,B,C} will be written as ABC.
Gossip situations will be written down as lists of lists of secrets separated by a comma.
e.g., if there are three agents, a, b and c, then root = A,B,C and the gossip situation
({A,B}, {A,B}, {C}) will be written as AB,AB,C.

Let A = {a, b, c}. Consider the call sequence ac.cb.ac. It generates the following
successive gossip situations starting from root:

A,B,C
ac−→ AC,B,AC

cb−→ AC,ABC,ABC
ac−→ ABC,ABC,ABC.

Hence (ac.cb.ac)(root) = (ABC,ABC,ABC). �

Definition 2. Consider a call sequence c ∈ C. We define the satisfaction relation |=
inductively as follows:

c |= FaS iff S ∈ c(root)a,

c |= ¬φ iff c 6|= φ,

c |= φ1 ∧ φ2 iff c |= φ1 and c |= φ2.



5

So a formula FaS is true after the call sequence c whenever secret S belongs to the
set of secrets agent a is familiar with in the situation generated by the call sequence c
applied to the initial situation root. Hence c |= Expa iff agent a is an expert in c(root).

By a propositional component program, in short a program, for an agent a we
mean a statement of the form

∗[[]mj=1 ψj → cj ],

where m ≥ 0 and each ψj → cj is such that

– a is the caller in the call cj ,
– ψj ∈ La

p.

We call each such construct ψ → c a rule and refer in this context to ψ as a guard.
Intuitively, ∗ denotes a repeated execution of the rules, one at a time, where each

time non-deterministically a rule is selected whose guard is true.
We assume that in each gossip protocol the agents are the nodes of a directed graph

(digraph) and that each call ab is allowed only if a → b is an edge in this digraph. A
minimal digraph that satisfies this assumption is uniquely determined by the syntax of
the protocol and we call this digraph the communication graph of a given protocol.
Given that the aim of each gossip protocol is that all agents become experts it is natural
to consider connected communication graphs only. On the other hand, the underlying
undirected communication graph of a given protocol is the undirected graph we obtain
when all directed edges in the communication graph are replaced with undirected ones
connecting the same nodes.

Consider a propositional gossip protocol, P , that is a parallel composition of the
propositional component programs ∗[[]ma

j=1 ψ
a
j → caj ], one for each agent a ∈ A.

The computation tree of P is a directed tree defined inductively as follows. Its nodes
are call sequences and its root is the empty call sequence ε. Further, if c is a node and for
some rule ψa

j → caj we have c |= ψa
j , then c.caj is a node that is a direct descendant of c.

Intuitively, the arc from c to c.caj records the effect of the execution of the rule ψa
j → caj

performed after the call sequence c took place.
By a computation of a gossip protocol P we mean a maximal rooted path in its

computation tree. In what follows we identify each computation with the unique call
sequence it generates. Any prefix of such a call sequence is called a prefix of P . We say
that the gossip protocol P is partially correct if for all leaves c of the computation tree
of P , and all agents a, we have c |= Expa, i.e., if each agent is an expert in the gossip
situation c(root).

We say furthermore that P terminates if all its computations are finite and say that
P is correct if it is partially correct and terminates.

In [10] the following correct propositional gossip protocol, called Learn New Secrets
(LNS in short), for complete digraphs was proposed.

Example 3 (LNS protocol). The following program is used by agent i:

∗[[]j∈A¬FiJ → ij].

Informally, agent i calls agent j if agent i is not familiar with j’s secret. �
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We now define a new propositional protocol whose communication graph is not
complete. First of all, agents will only be able to call agents with a higher “index”, which
for instance can be his phone number or name, with the corresponding total order (>)
on A. Second, just like in the LNS protocol, agents can only call another agent if they do
not know their secret. Finally, we require that an agent can make a call to another agent
only if he already knows all the secrets of agents with the index value lower than the
agent to be called. We will call this protocol Learn Next Secret (LXS) and its formal
definition is as follows.

Example 4 (LXS protocol). The following program is used by agent i:

∗[[]{j∈A|j>i}¬FiJ ∧
∧

{k∈A|k<j}

FiK → ij].

�

Note that although the communication graph of LXS protocol is not complete, its
underlying undirected communication graph is, which we show is always the case for
correct propositional protocols in the next section.

3 Required Communication Graph

We now show that for natural classes of connected graphs no correct propositional gossip
protocol exists. We first show that by carefully removing some of the calls in a prefix of
P one can get another prefix of P .

Lemma 5 (Call Removal). Consider a propositional gossip protocol P . Let c.d be a
prefix of P such that c.d 6|= FaB. Let d′ be d where all calls that involve an agent familiar
with B are removed, then c.d′ is also a prefix of P and, moreover, (c.d)(root)a =
(c.d′)(root)a.

Proof. It suffices to show that we can remove the last such call in d, because that clearly
preserves the c.d′ 6|= FaB property and then we can simply repeat this procedure until
no such calls are left in d.

Let d = d1.cd.c1.c2 . . . ck, where cd is the last call that involves an agent that is
familiar with B, i.e., c.d1 |= FcB ∨ FdB. Straight from the definition of the outcome of
the cd call, for all agents x 6∈ {c, d}, c.d1(root)x = (c.d1.cd)(root)x. At the same time,
agents c, d cannot be involved in any of the calls c1, . . . , ck. Therefore, we also have
for all agents x 6∈ {c, d}, (c.d1.c1)(root)x = (c.d1.cd.c1)(root)x, and by induction
(c.d1.c1 . . . ci)(root)x = (c.d1.cd.c1 . . . ci)(root)x for all i ≤ k. Note that a 6∈ {c, d},
because c.d 6|= FaB, so (c.d)(root)a = (c.d′)(root)a holds as desired.

Now consider the guard φi associated with the call ci where i ≤ k. By assump-
tion on P , φi is a propositional formula built out of the atomic formulas of the form
FxS where x 6∈ {c, d} is the agent making the call ci. We already showed that
(c.d1.c1 . . . ci−1)(root)x = (c.d1.cd.c1 . . . ci−1)(root)x, so the truth of these atomic
formulas is not affected by the removal of the call cd from d. This shows that we have
c.d1.cd.c1 . . . ci−1 |= φi iff c.d1.c1 . . . ci−1 |= φi and so ci can also be made by the
protocol P after c.d1.c1 . . . ci−1.
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We establish now what the correctness of a propositional protocol implies for the
order of calls.

Lemma 6 (Initiation). Consider any call sequence c which is a prefix of a computation
of a correct propositional gossip protocol P such that c |= FaB. There does not exist a
call sequence d such that c.d.ab is a prefix of P . (In other words, agent a will never call
agent b if agent a already knows B.)

Proof. Suppose such a call sequence d exists. If c.d(root)b ⊆ c.d(root)a, then we have
c.d(root)a = c.d.ab(root)a and so the guard φ of the call ab is still true after ab is
made. As a result, ab could be repeated indefinitely after c.d; a contradiction with the
assumption that P is terminating.

Otherwise, there exists a secret, X , such that c.d |= FbX ∧ ¬FaX before the call
ab takes place. Let us now remove all calls from c.d that involve agents that are familiar
with the secret X , which results in a call sequence c′.d′. Lemma 5 then implies that c′.d′

is also a prefix of P and c.d(root)a = c′.d′(root)a, so the call ab can still be made after
c′.d′. At the same time, c′.d′(root)b ( c.d(root)b, because agent b is no longer familiar
with secret X and possibly other secrets as well.

If there is still a secret Y left such that c′.d′ |= FbY ∧ ¬FaY then we again remove
all calls from c′.d′ that involve agents that are familiar with the secret Y , which results
in a call sequence c′′.d′′. We keep repeating this process until we reach a call sequence
c∗.d∗ such that c∗.d∗(root)b ⊆ c∗.d∗(root)a and c∗.d∗.ab is a prefix of P , because
c.d(root)a = c∗.d∗(root)a. Just like before, we arrive to a contradiction, because the
call ab can now be repeated indefinitely.

Already these two lemmas allow us to show non-existence of a correct propositional
gossip protocol for a wide range of natural communication graph classes. The first graph
class that we consider is the star graph, i.e., when communication is only possible via a
single central agent. This was already shown in [9], however our proof is much more
simplistic.

Theorem 7. Suppose that the underlying undirected communication graph forms a star
graph with at least 3 agents. No correct propositional protocol exists.

Proof. Suppose such a protocol P exists. From Lemma 6 each agent, apart from the
central agent, is involved in at most one call, as otherwise the protocol will not be correct.
Therefore, the non-central agent involved in the first call will not have any further calls,
and so will never become an expert.

We now proceed to show that no correct propositional protocol exists when the
underlying undirected communication graph is not complete. Note that if there are
only two agents then this statement is trivial. In the case of three agents, a undirected
connected graph with a missing link is a star graph so the statement follows from
Theorem 7. The proof of this statement in the general case is quite complex, so we
break it down into several lemmas. In all these lemmas, we make the assumption that a
correct protocol P exists where there is no link between two agents denoted by a and b.
Theorem 11 will later show how this assumption leads to a contradiction.
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Lemma 8. There exists a computation of P such that agent b learns A by receiving a
call from another agent.

Proof. We prove this by contradiction and so assume instead that in all computations
agent b learns A by calling another agent.

Let us pick a computation where b knows the greatest number of secrets before
learning A. In other words, if c.bc is a prefix of P where b learns A during the call bc,
we require the size of c(root)b to be the largest possible. This is well-defined as this
value is an integer between 1 and |A| and agent b has learn to A in every computation as
P is correct.

We know that c |= ¬FbC, because otherwise bc would not be possible due to Lemma
6. We can then remove all calls of agents familiar with C in c and obtain c′. Due to
Lemma 5, c′.bc is still a prefix of P . Note that c does not know A (nor any other secret
apart from his own for that matter) after c′, because all his calls were removed. At the
same time we know that c(root)b = c′(root)b. If P is indeed correct, then it has to be
possible to extend c′.bc to a prefix c′.bc.d.bd of P , for some d and d, such that b finally
learns A during bd. (Note that due to our original assumption, it cannot be db.) But then
c(root)b is smaller than c′.bc.d(root)b, because the latter includes at least one more
secret (namely C); this is a contradiction with the pick of the prefix c.bc of P as the one
where b knows the most number of secrets before learning A.

Lemma 9. For any call sequence c without a-calls and any agent c ∈ A \ {a, b}, if c.ca
is a prefix of P such that c |= FcB (i.e., a learns B from c), then c.d.bc is also a prefix
of P for some call sequence d.

Proof. Let us pick any prefix of P c.ca where c is without a-calls, such that c |= FcB.
Note that after c.ca, all agents that know A (agents a and c, only) also know B. As in
every call all secrets are exchanged, any extension of c.ca would also have this property.

Due to Lemma 6, no agent that knows A would call b after c.ca, because he already
knows B. Moreover, b will never call a (missing link) and let us assume she does not
call c either. Then, as b must learn A eventually, she must call a different agent. From
here the proof follows similarly as in Lemma 8, but with an initial call sequence c.ca.

Let us pick a computation that starts with c.ca where b knows the greatest number of
secrets before learning A. In other words, if c.ca.d.bd is a prefix of P where b learns A
during the call bd for some d ∈ A \ {a, b, c}, we require the size of (c.ca.d)(root)b to
be the largest possible. This is well-defined as this value is an integer between 1 and |A|.

We know that c.ca.d |= ¬FbD, because otherwise bd would not be possible due to
Lemma 6. We can then remove all calls of agents familiar with D in d and obtain d′.
Due to Lemma 5, c.ca.d(root)b = c.ca.d′(root)b, so c.ca.d′.bd is also a prefix of P .

Note that d does not know A after c.ca.d′, because c and d′ have no calls involving
agents familiar with A. Hence c.ca.d′.bd |= ¬FbA. So if P is indeed correct, then it has
to be possible to extend c.ca.d′ to a prefix c.ca.d′.bd.e.be of P , for some call sequence
e and agent e, such that b finally learns A during be. (Note that it cannot be eb, because
no agent familiar with A would call b after c.ca.) But then c.ca.d(root)b is smaller than
c.ca.d′.bd.e(root)b, because the latter includes at least one more secret (namely D); this
is a contradiction with the pick of the prefix c.ca.d.bd of P as the one where b knows
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the most number of secrets before learning A. In conclusion, it must be possible for b to
call c after c.ca.

We have shown so far that c.ca.d.bc has to be a prefix of P for some call sequence
d. Note that c.ca.d 6|= FbC due to Lemma 6. We can then remove all calls of agents
familiar with C from the suffix ca.d of c.ca.d, to obtain c.d′. Then due to Lemma 5,
c.d′.bc is also a prefix of P .

Using very similar techniques we can show the following.

Lemma 10. For any call sequence c without a-calls and any agent c ∈ A \ {a, b}, if
c.ca is a prefix of P such that c |= FcB, and d is the last agent in a call with c before
call ca takes place, then c.ca.d.da is also a prefix of P for some d.

We now have all the ingredients needed to prove the main result of this section.

Theorem 11. Suppose that the underlying undirected communication graph is not
complete. No correct propositional protocol exists.

Proof. Suppose such a correct propositional protocol P exists and there are two agents,
say a and b, which cannot call each other.

From Lemma 8 there exists an agent c ∈ A \ {a, b} and a prefix c.ca of P such that
c |= FcB. We know that c 6|= FcA, because otherwise ca would not be possible due to
Lemma 6. We can then remove all calls of agents familiar with A in c and obtain c′. Due
to Lemma 5, c(root)c = c′(root)c, so c′.ca is also a prefix of P , with a not yet having
been in a call until ca takes place.

Since c′.ca is a prefix of P where c′ has no a-calls and c′ |= FcB then from Lemma
9 we get that c′.d.bc is also a prefix of P for some d. Therefore, c′ cannot have bc nor
cb call due to Lemma 6.

Note that there has to be at least one c-call in c′, because c′ |= FcB. We already
excluded bc and cb. It cannot be ac nor ca either as ca takes place after c′. Therefore,
the last agent to be in a c-call in c′ is some d ∈ A \ {a, b, c}. From Lemma 10 we get
that c′.ca.e.da must also be a prefix of P for some e. Note that also c′ |= FdB, because
when the call between d and c takes place, c already has to know B.

We know that c′.ca.e |= ¬FdA, because otherwise da would not be possible due
to Lemma 6. We can then remove all calls of agents familiar with A in e and obtain e′.
Due to Lemma 5, c′.ca.e(root)d = c′.ca.e′(root)d, so c′.ca.e′.da is also a prefix of P .
As e has had all calls to agents familiar with A removed, e′ contains no c-calls. Hence,
c′(root)c = c′.e′(root)c, and so c′.e′.ca is also a prefix of P . (As e′ contains no call to
or from agents familiar with A, e′ can now occur before ca, because none of the calls
can involve c or a.) As ca does not change the set of secrets known by d, and da does
not change the set of secrets known by c, we get that both c′.e′.ca.da and c′.e′.da.ca
are also prefixes of P .

As c′.e′.ca is prefix of P , c′.e′ does not have any a-calls and c′.e′ |= FcB then
from Lemma 9 we get that c′.e′.f.bc is also a prefix of P for some f .

We know that c′.e′.f |= ¬FbC, because otherwise bc would not be possible due to
Lemma 6. We can then remove all calls of agents familiar with C in f and obtain f ′. Due
to Lemma 5, c′.e′.f(root)b = c′.e′.f ′(root)b, so c′.e′.f ′.bc is also a prefix of P .
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Note that c′.e′.f ′.bc(root)d = c′.e′(root)d, because all calls of agents familiar with
C were removed from f ′ and d is familiar with C already after c′. Hence, c′.e′.f ′.bc.da
is also a prefix of P , because da can take place immediately after c′.e′.

Now due to Lemma 9 we get that c′.e′.f ′.bc.da.g.bd is also a prefix of P , because
c′.e′.f ′.bc does not have any a-calls and c′.e′.f ′.bc |= FdB, because c′ |= FdB. We now
get a contradiction with Lemma 6, because in this prefix b calls d even though b already
knows D after the bc call in c′.e′.f ′.bc.da.g.bd.

4 Minimal number of calls

In this section we establish a lower bound on the number of calls needed for a proposi-
tional protocol to terminate in a state were all agents are experts. First, we start with one
very useful observation.

Lemma 12 (Conversation). For a protocol on n agents to correctly terminate in m
calls, every agent must be involved in a call after at most m− n+ 2 calls. Furthermore,
after m− n+ p calls, each secret must be known by at least p agents.

Proof. For an agent a and its secret A, each call can increase the number of agents that
know A by at most 1. If a has not yet been involved in any calls, then the only agent
which knows A is a. If after m− n+ 2 calls, a has not yet been involved in a call, then
a is the only agent which knows A. However, only n− 2 calls remain for n− 1 agents
to learn A, which is impossible.

Similarly, if after m − n + p calls, fewer than p know A, then n − p calls remain
for at least n− p+ 1 agents to learn A. Again this is impossible as at most 1 agent can
learn A in each call.

We are now ready to partially resolve Problem 6 from [9] for the special case of
propositional protocols.

Theorem 13. No correct proposition protocol on n agents exists with fewer than 2n− 3
calls.

Proof. Let us assume a correct propositional protocol P exists which always terminates
after at most 2n− 4 calls.

First, Lemma 5 in [9] shows that every gossip protocol has a computation that starts
with the same agent being involved in its first two calls. By relabelling the names of the
agents, we can assume that we have a call between a and b, followed by a call between b
and c. Wl̇ȯġ,̇ we can assume that these two calls are ab.bc, because the resulting gossip
situation is always (AB,ABC,ABC) for a, b, c, respectively, and all other agents know
just their own secret.

We claim that there must be a prefix of P of the form ab.bc.c.ac (or equivalently
ab.cb.c.ac) where c does not involve agents familiar with C. First of all, a has to learn
C eventually. From Lemma 6, we know that after ab.bc agent c will not call a, because
he already knows A. Furthermore, due to Lemma 6, no agent that will learn C later will
initiate a call with a, because he will learn A at the same time as C. So the only option
left is that a learns C by calling another agent. Let ab.bc.d.ad be such a prefix of P
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where a learns C from d. Clearly d cannot be b due to Lemma 6 and if d is c we are
done. Thanks to Lemma 5 we can remove all calls in d that involve agents familiar with
C and get a new prefix ab.bc.d′.ad of P after which a still does not know C. Therefore,
there has to be an extension ab.bc.d′.ad.e.ae of this prefix after which a learns C. If e
is c we are done. Otherwise, we again remove all calls in e that involve agents familiar
with C. We continue this process until finally a calls c. This has to happen eventually,
because a can call each agent at most once and a has to learn C at some point.

Now, consider any prefix ab.bc.c.ac of P where c does not involve agents familiar
with C, or any agents familiar with a secret which a is not familiar with after ac. This
can be done by repeated use of Lemma 5 on c as necessary.

The length of c can be between 0 and n− 4, by Lemma 12. If more calls were in c
then after n − 1 calls only two agents would know C, leaving at most n − 3 calls for
n− 2 agents to learn C. This implies not every agent can be involved in c.

Let the number of calls in c be p. At most p agents (not including a) can be involved
in c. Hence, after ac, at most p+ 3 agents have been involved in a call, after p+ 3 calls.
This leaves n− p− 5 calls for all remaining agents to have been involved in a call, with
at least n− p− 3 agents still to have a call.

From here, if we take every call either directly from or directly to this connected
component which we shall now refer to a CC. These calls must be made and be available
without any calls between two agents not in CC. Hence, at most 1 extra agent can be
involved in a call for each of these call. Therefore, we can say that after q + 3 calls, we
have n− q− 5 calls remaining before all must have been in a call with at least n− q− 3
agents still to have a call. We shall now refer to all agents yet to be in a call when there
are no calls left directly to or from CC as NCC. The next call then must be between two
NCC agents (if any such agents exist).

If NCC is empty, then either the last agent called was called after n calls and hence
we are done by Lemma 12, or ac was the final call, in which case after n calls only three
agents know C after n calls, and we are also done by Lemma 12.

Assume then that NCC is non-empty. We know that the next call cannot be directly
involved with CC, hence the call must be between two agents in NCC, say a′ and b′. If
a′ or b′ can now make a call to CC, then we have added 2 agents and their secrets to CC,
whilst having 2 extra calls, so we are in the same situation and can repeat. If we ever end
up with 2 or fewer agents in NCC then by Lemma 12 this can no longer be completed in
2n− 4 calls, as at least n− 2 calls will have now taken place.

Again, due to Lemma 5 in [9] it must be possible for the next two calls between
agents in NCC to involve the same agent (denoted by b̄). If this was not the case then
the protocol would either terminate, or these agents would be communicating with CC,
as NCC is initially totally disconnected. Let ā and c̄ be the other agents involved. By
relabelling the names of the agents, we can assume that these two calls are āb̄.b̄c̄. We
now repeat the process as for CC, noting that ā must call c̄ eventually. This includes
another r calls involving at most r agents and their secrets. By repeating this argument
we get the desired result.

We can even strengthen our lower bound further in the case of 4 agents.

Theorem 14. No correct proposition protocol for 4 agents exists with fewer than 6 calls.



12

5 Decision Problems for Propositional Protocols

We now move on to analysing the computation complexity of important decision prob-
lems for propositional gossip protocols such as checking termination, partial correctness
and correctness. We say a protocol terminates if all computations are finite, i.e., there
is no way for the scheduler to force the protocol to make an infinite number of calls.
We first establish the necessary and sufficient condition for a propositional protocol to
terminate.

Lemma 15. A protocol will not terminate if and only if a call is made without the caller
gaining new information within the first |A|2 calls.

Proof. (⇐) Consider a propositional gossip protocol P . Let c.ab be a prefix of P such
that c(root)a = c.ab(root)a. Hence there exists a rule ψ → ab for agent a such that
c |= ψ. But we clearly have then c.ab |= ψ, because ψ only depends on the secrets agent
a knows and they do not change after ab is made. Therefore, call ab can be performed
again after c.ab. It is easy to see that c(root)a = c.(ab)k(root)a and that c.(ab)k is a
prefix of P for any k, so P may not terminate.

(⇒) Consider any infinite computation c of P . Along this computation, the current
gossip situation can change at most |A|2 times, because each agent can be familiar with
at most A secrets. So within the first |A|2 calls of c there has to be a call after which the
caller does not learn any new secrets.

As we will see, the previous lemma suffices to establish that all the decision problems
studied in this section are in co-NP. To show them to be co-NP-hard, we show three
different but similar reductions from the well-known 3-SAT problem.

Theorem 16. The problem of checking if a given propositional gossip protocol P termi-
nates is co-NP-complete.

Proof (sketch). First, we show the problem to be in co-NP. Due to Lemma 15, to show
non-termination, it suffices to guess a call sequence c of length |A|2 and a rule ψ → ab
of P such that c |= ψ and c(root)a = c.ab(root)a. All of that is of polynomial size and
can be checked in polynomial time.

To show the problem is co-NP-hard we will create a polynomial time reduction from
the 3-SAT problem, such that termination’s NO instances match with 3-SAT’s YES
instances. The basic idea of this is to have an agent which will become an expert iff the
original problem is satisfiable. Once this agent becomes an expert, the scheduler can
make that call indefinitely.

One final agent, f , is created. Three agents are created for each variable, one for true
(true agent), one for false (false agent), and one to decide the truth assignment to this
variable (trigger agent). One agent is created for each variable for each clause, to pass on
information for the option above not chosen to the final agent (loser agents). One agent
is created for each variable for each clause, to pass on information for the option above
chosen to relevant clauses (winner agents). One agent is created for each variable for
each clause, to pass on information for the option chosen to the final agent (pass agents).
One agent is created for each clause.
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The protocol is now set up in such a way that the scheduler has very few options, and
each agent has very few calls. For each trigger agent, t, while this agent only knows its
own secret T , t wants to call agent tv (variable true) or agent tf (variable false) and the
scheduler will choose which. This is essentially the same as determining if the variable
is true or false. Whichever is called first, we will take the opposite. Whichever is called
first will know only its only secret, and T . At this stage the agent knows it has lost, as it
does not know its negation’s secret. It still calls the same agents as if it has won, however,
these become losers agents when they realise they do not know the extra secret. These
now call f and terminate.

t now makes a second call to the winner, and terminates. The winner now knows
secrets TV and F . It calls the winner agents in turn. Firstly, these agents call its unique
pass agent, which then passes the secrets on to f . This is to ensure that f can become
an expert even if a variable is not used to satisfy any clauses. There is one winner agent
for every clause. A call is made to the particular clause agent if it will satisfy the clause.
This would be easy to do in the set up, as we know what is needed to satisfy each clause.
Once a clause is satisfied, it will initiate a call with f . This call is only made once. If we
assume the scheduler wants the protocol to not terminate, we just need 3 functions, one
for each variable (and accompanying secrets), however, as there are only 7 permutations,
we can include all of these to ensure the clause calls f in any circumstance.

Now, f will learn all secrets, apart from clause secrets in any scenario, but will only
learn a clause secret if that clause is satisfied. Therefore, f becomes an expert iff all
clauses are satisfied. f only makes a call if it becomes an expert, and trivially once this
call is made the protocol will never terminate, as it can be repeated indefinitely. It is easy
to see that this whole construction can be done in polynomial time and size.

Using similar techniques we can show the other two problems are co-NP-complete.

Theorem 17. The problem of checking if a given propositional gossip protocol P is
partially correct is co-NP-complete.

Theorem 18. The problem of checking if a given propositional gossip protocol P is
correct is co-NP-complete.

Experimental evaluation. With the knowledge that the correctness check for a proposi-
tional gossip protocol is co-NP-complete, we ran experiments using NUXMV [13,11]
in order to see for how many agents a computer can solve this problem in a reasonable
amount of time. The experiments were run on an OMEN by HP Laptop PC - 15-ax000na
(ENERGY STAR), with Intel R© CoreTM i5-6300HQ (2.3 GHz, up to 3.2 GHz, 6 MB
cache, 4 cores) microprocessor and 8 GB DDR4-2133 SDRAM (2 x 4 GB) memory.

Experiments were carried out on LNS protocol, which would return a positive result,
and LNS with a single link missing between two agents, which would return a negative
result. We simulate the behaviour of the LNS gossip protocol with several optimization
as NUXMV processes.

For the correct LNS protocol on 3 and 4 agents the results were almost instant,
however on 5 agents results took 4 minutes, rising to over an hour and a half by 6
agents. At the same time, running the program on the incorrect LNS (when one edge was
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removed) on 6 agents gave a result in 9 minutes. This suggests that on large protocols
simply running a model checker on the direct encoding of the gossip protocol is not a
practical algorithm for checking its correctness.

6 Conclusions

In this paper we solved several open problems about propositional gossip problems
proposed in [9], but many interesting questions remain open. One is to further increase
the lower bound on the minimal number of calls needed by a correct propositional
protocol. No linear upper bound is known at the moment (the 2n − 3 upper bound
from [9] applies to general gossip protocols only). Another is to study simulation and
bisimulation between such protocols as proposed in [9]. Finally, finding a practical
correctness checking algorithm for propositional protocols would be a challenge as we
established its co-NP-hardness.
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