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Abstract. Zielonka’s classic recursive algorithm for solving parity games is perhaps the
simplest among the many existing parity game algorithms. However, its complexity is
exponential, while currently the state-of-the-art algorithms have quasipolynomial complexity.
Here, we present a modification of Zielonka’s classic algorithm that brings its complexity

down to n
O

(
log

(
1+ d

log n

))
, for parity games of size n with d priorities, in line with previous

quasipolynomial-time solutions.

1. Introduction

A parity game is an infinite two-player game in which Even and her opponent Odd build an
infinite path along the edges of a graph labelled with integer priorities. Even’s goal is for the
highest priority seen infinitely often on this path to be even, while Odd tries to stop her.

Parity games are a central tool in automata theory, logic, and their applications to
verification. In particular, the model-checking problem for the modal µ calculus [EJS01] and
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the synthesis problem for LTL [PR89] reduce to solving parity games. Solutions to parity
games have also influenced work on ω-word automata translations [BL18, DJL19], linear
optimisation [Fri11b, FHZ11] and stochastic planning [Fea10].

The complexity of solving parity games, that is, deciding which player has a winning
strategy, is a long standing open problem. The problem is known to be both in UP
and coUP [Jur98] but a polynomial algorithm remains, so far, out of reach. In 2017
Calude et al. published the first quasipolynomial-time algorithm [CJK+17], which was
followed by several alternative algorithms [JL17, Leh18], variations and improvements
thereupon [FJdK+19, Par20, DJT20]. The progress-measure approach [JL17] is based on
succinct encodings of classical progress measures, while the register-game approach [Leh18]
is based on a relatively involved analysis of the structure of winning strategies in parity
games.

In this paper we present a quasipolynomial-time parity-game algorithm based on
Zielonka’s classic recursive algorithm. Zielonka’s algorithm [Zie98], based on McNaughton’s
algorithm for solving Muller games [McN93], is perhaps the (conceptually) simplest parity
game algorithm to date. Despite its exponential worst-case complexity, it is also one of the
most performant algorithms in practice [vD18]. Here we show how to adapt this algorithm
to make its worst-case complexity quasipolynomial. Our algorithm, its correctness proof,
and complexity analysis are all remarkably simple. Its runtime complexity is roughly in line
with previous quasipolynomial-time algorithms.

Our key insight is that, instead of each recursive call solving a subgame, we use a
weakened induction hypothesis, which postulates that each call should return a partition
that separates the small dominions of both players, up to a size specified by a pair of
parameters. Generalising the observation that only one dominion can be larger than half
the arena, we then use these parameterised calls to build an algorithm that only makes a
quasipolynomial number of calls, but still finds the winning regions of each player.

The time complexity of our algorithm, which is in n
O
(

log
(

1+ d
logn

))
for games with n

vertices and d priorities, is similar to the complexity of previous quasipolynomial-time
algorithms. This also provides fixed-parameter tractability when d, the number of priorities,
is treated as the parameter, as well as a polynomial bound for the common case where the
number of priorities is logarithmic in the number of states. In a fine grained comparison
our algorithm (similarly to the original Zielonka’s algorithms, on which it is based) operates
symmetrically, going through every priority, rather than just half of them (as in previous

quasipolynomial-time algorithms), meaning that the O
(

1 + log d
logn

)
in the exponent hides

a factor of 2. Thus, a very careful analysis still reveals a small gap, when compared to
previous quasipolynomial-time algorithms.

We provide two versions of our algorithm. One has better worst-case complexity
(outlined above), while the other turns out to be somewhat better in practice. We evaluate
both versions against Zielonka’s classic algorithm, which, despite its exponential worst-case
behaviour, is in most cases faster than our quasipolynomial-time versions. In line with
the theory, both our algorithms outperform Zielonka’s algorithm on the families of games
designed to exhibit its exponential worst-case behaviour.

We also briefly comment on the relationship between this recursive algorithm and
universal trees, but refer the reader to Jurdziński and Morvan’s work [JM20] for a more
thorough analysis, which also addresses the symbolic implementation of recursive algorithms.
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This is a journal version of Parys’ paper [Par19], in which he turns Zielonka’s exponential-
time algorithm into a quasipolynomial-time one; additionally, it includes theoretical improve-
ments suggested by Lehtinen, Schewe, and Wojtczak [LSW19], which bring the complexity
of the algorithm down to roughly match the state of the art.

2. Preliminaries

A parity game is a two-player game between players Even and Odd played on a game graph
defined as a tuple G = (V, VE, E, π), where (V,E) is a finite directed graph in which every
vertex has at least one successor; its vertices are labelled with positive integer priorities
by π : V → {1, 2, . . . , d} (for some d ∈ N), and partitioned between vertices VE belonging to
Even and vertices VO = V \ VE belonging to Odd. As usual for directed graphs, we forbid
self-loops (i.e., edges from a vertex to itself). We sometimes abbreviate Even and Odd to
E and O, we use the symbol ℘ for a player (either Even or Odd), and we write ℘̄ for the
opponent of ℘.

A play ρ is an infinite path through the game graph. It is winning for Even if the
highest priority occurring infinitely often on it is even; otherwise it is winning for Odd. We
write ρ[i] for the ith vertex in ρ (zero based) and ρ[0, j] for its prefix of length j + 1.

A strategy from a vertex v for a player ℘ is a function that

• takes any prefix of a play starting in v and ending in a vertex that belongs to ℘, and
• returns one of successors of the latter vertex.

A strategy σ from v for Even (Odd) agrees with a play ρ if ρ[0] = v and, whenever ρ[i] ∈ VE
(VO, respectively), then ρ[i+ 1] = σ(ρ[0, i]) (and σ agrees with a finite path, if it agrees with
some infinite play extending the path). A strategy for a player is winning if it agrees only
with plays winning for that player. Parity games are determined: from every vertex, one of
the two players has a winning strategy [Mar75].

The winning region of a player ℘ is the set of vertices from which ℘ has a winning
strategy. We are interested in the problem of computing, given a parity game G, the winning
regions of each player.

Given a set of vertices G ⊆ V , we can consider a subgame of G induced by G, which is
obtained simply by restricting all components of G to G. Notice, however, that not every set
G induces a valid subgame: every vertex in G should have at least one successor in G. In
the sequel, we often write “the subgame G” instead of the more precise “the subgame of G
induced by G”. For the definitions below, we assume some set G ⊆ V inducing a subgame
of G.

A dominion of a player ℘ in a subgame G is a set of vertices D ⊆ G such that from
every vertex v ∈ D the player ℘ has, in the subgame G, a winning strategy that agrees only
with plays staying forever in D.

Given a set S ⊆ G, the ℘-attractor of S in the subgame G, written Attr℘(S,G), is
the set of vertices from which the player ℘ has a strategy in G that agrees only with plays
reaching S. A set S ⊆ G is ℘-closed in the subgame G if Attr℘̄(G \ S,G) = G \ S. More
concretely, this means that ℘ can ensure to stay inside S: every vertex of ℘ in S has at least
one successor in S, and every vertex of ℘̄ in S has no successor in G \ S.

Observe that the set G \Attr℘(S,G), for any S ⊆ G, always induces a subgame: if
all successors of a vertex belong to Attr℘(S,G), then this vertex belongs there as well.
Observe also that every dominion of ℘ is ℘-closed, and that the winning region of ℘ is a
dominion of ℘.
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We use the following simple lemmata to prove correctness of our algorithm:

Lemma 2.1. Let D be a dominion of a player ℘ in a subgame G, and let X ⊆ G. If D
does not intersect with X, then D is also a dominion of ℘ in G \Attr℘̄(X,G).

Proof. By the definition of a dominion, from every vertex v ∈ D player ℘ has a winning
strategy that agrees only with plays staying in D. Observe that a play agreeing with such
a strategy cannot reach a vertex in the ℘̄-attractor of X, because from such a vertex the
opponent can force to leave D and enter X. Thus, the same strategies (after restricting
them appropriately) witness that D is also a dominion in the smaller subgame; in particular
D does not intersect with Attr℘̄(X,G).

Lemma 2.2. Let D be a dominion of a player ℘ in a subgame G, and let X ⊆ G be ℘̄-closed
in G. Then D ∩X is a dominion of ℘ in X.

Proof. Because X is ℘̄-closed in G, no vertex of ℘ in D ∩X has a successor in G \X. In
consequence, strategies that witness D being a dominion of ℘ in G, after restricting them
appropriately, witness D ∩X being a dominion of ℘ in X.

Lemma 2.3. If all priorities in a non-empty dominion D of a player ℘ are at most d′, and
d′ is not of ℘’s parity, then D contains a non-empty sub-dominion C without vertices of
priority d′.

Proof. Fix a strategy σ for ℘ from some vertex v0 ∈ D that is winning and agrees only with
plays staying in D. To C we take all vertices v of D such that

• there exists a finite path ρv that ends in v and agrees with σ, and
• there is no finite path ρ′ that extends ρv, agrees with σ, and ends in a vertex of priority
d′ (in particular, v itself is not of priority d′).

Such a set C is nonempty; otherwise, it would be easy to construct a play that agrees with
σ and visits priority d′ infinitely often (start from v0, continue to a vertex of priority d′,
which is possible because v0 6∈ C, continue to an arbitrary successor v1, continue to a vertex
of priority d′, which is possible because v1 6∈ C, and so on). Then, for a vertex v ∈ C we
consider a strategy σv such that σv(ρ) = σ(ρv · ρ) for all plays ρ starting in v; this strategy
is winning for ℘ (if σv agrees with a play ρ, then σ agrees with ρv · ρ, and hence both these
plays are winning) and agrees only with plays staying in C (by the definition of C).

3. A first quasipolynomial-time version

In this section we present our first quasipolynomial-time algorithm solving parity games.
Informally, we refer to it as the Liverpool variant, since it is (close to) an algorithm introduced
by Lehtinen, Schewe, and Wojtczak [LSW19], working at University of Liverpool.

We remark that, historically, the Liverpool variant came after the Warsaw variant,
presented in the next section. We present the Liverpool variant first, as the “main variant”,
because it has better theoretical complexity and because we think that it is more elegant.
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3.1. The algorithm. First, recall Zielonka’s classic recursive algorithm. Each iteration first
identifies the set Nd of vertices of the highest priority, which we can assume to be even as
the odd case is symmetric, and the E-attractor of Nd. It then makes a recursive call to solve
the rest of the game, which has one fewer priority. Odd’s winning region in this subgame, as
well as its O-attractor, is winning for Odd in the whole game, and is considered solved. The
algorithm then iterates on the remaining arena, which is smaller than the original arena,
until no more winning region for Odd is found, and the rest of the arena can be declared
winning for Even. The depth of the recursion is bounded by the number of priorities, while
the number of iterations of the while loop is bounded by the size of the arena. This yields
an exponential complexity for the algorithm of roughly O(nd).

To make this algorithm quasipolynomial-time, we weaken and parameterise the inductive
guarantees of recursive calls. Instead of expecting a recursive call to solve a subgame, we ask
that it provides a partition of the subgame into two regions, one which contains all of Odd’s
dominions of size up to a given parameter, and one which contains all of Even’s dominions of
size up to another parameter. These two parameters determine the precision of the recursive
call; if they are both the size of the whole subgame, this corresponds to solving it entirely.

Using three recursive calls, our algorithm consecutively computes three regions, G \G1,
G1 \G2, and G2 \G3, which, together, contain all Odd’s dominions of size up to the first
parameter and no Even’s dominion of size up to the second parameter. The first and the
third region are based on calls that use half the precision parameter for Odd’s dominions,
and only the second region is computed using the full precision. Correctness of the algorithm
hinges on proving that G \G1 and G1 \G2 together cover already over the half of any small
Odd’s dominion, and hence the last call handles correctly what is left.

We present SolveE(G, d, pE, pO), which, given a subgame G with priorities up to an
even number d, returns a set of vertices containing all of Even’s small dominions (of size
up to pE) and not intersecting any of Odd’s small dominions (of size up to pO). The dual,
SolveO, is defined for odd d by swapping E with O.

Algorithm 1 SolveE(G, d, pE, pO)

1: if G = ∅ or pO ≤ 1 then
2: return G
3: G1 = SolveE(G, d, pE, bpO/2c)
4: Nd := {v ∈ G1 | π(v) = d}
5: H := G1 \AttrE(Nd, G1)
6: WO := SolveO(H, d− 1, pO, pE)
7: G2 := G1 \AttrO(WO, G1)
8: G3 := SolveE(G2, d, pE, bpO/2c)
9: return G3

Remark 3.1. In Lehtinen, Schewe, and Wojtczak [LSW19], Line 3 of the above algorithm
was replaced by G1 = G \AttrO(G \ SolveE(G, d, pE, bpO/2c), G). We can see, however,
that the call to AttrO in this expression adds no new vertices, meaning that such a line
computes exactly the same set G1 as our Line 3. Indeed, below, in Lemma 3.2, we show
that the set returned by SolveE(G, d, pE, bpO/2c) is E-closed. Thus, on the one hand, the
presence of AttrO is redundant here; on the other hand, after adding this AttrO one can
simplify a bit the correctness proof: Item i) of Lemma 3.2 ceases to be needed.
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3.2. Correctness. We prove the following lemma, which guarantees that SolveE(G, d, pE,
pO) and SolveO(G, d, pO, pE) partition a subgame G of maximal priority at most d into a
region that contains all Odd’s dominions of size up to pO and a region that contains all Even’s
dominions of size up to pE. Then SolveE(G, d, |G|, |G|) (if d is even) or SolveO(G, d, |G|, |G|)
(if d is odd) solves G completely.

Lemma 3.2. The procedure SolveE(G, d, pE, pO), where d is even and not smaller than the
maximal priority in G, returns a set that

i) is E-closed in G,
ii) contains all Even’s dominions in G of size up to pE, and
iii) does not intersect with any Odd’s dominion in G of size up to pO.

Similarly, SolveO(G, d, pO, pE), where d is odd and not smaller than the maximal priority
in G, returns a set that

i) is O-closed in G,
ii) contains all Odd’s dominions in G of size up to pO, and
iii) does not intersect with any Even’s dominion in G of size up to pE.

Proof. The proof is by induction on the sum d+pE+pO. We present only the part concerning
SolveE(G, d, pE, pO), as the other part is similar.

When G = ∅ or pO ≤ 1, the whole G returned in Line 2 clearly satisfies the thesis: there
exist no Odd’s dominions of size 1. We proceed with G 6= ∅ and pO > 1.

We first show Item i). By the induction hypotheses we know that G1 is E-closed in G
(which, in particular, allows us to use G1 as a subgame in Line 5) and that G3 is E-closed
in G2. Moreover, G2 is E-closed in G1, because G1 \G2 = AttrO(WO, G1) is invariant under
the AttrO operation. In consequence the returned set G3 is E-closed in G as needed. This
is because every Even’s vertex in G3 has at least one successor in G3 since G3 is E-closed
in G2; at the same time, every Odd’s vertex in G3 ⊆ G2 ⊆ G1 has no successor in G \G1

(as G1 is E-closed in G), nor in G1 \G2 (as G2 is E-closed in G1), nor in G2 \G3 (as G3 is
E-closed in G2).

Next, we show Item ii), saying that the set returned by SolveE(G, d, pE, pO) contains
all Even’s dominions of size up to pE. Let D be such a dominion. According to the
induction hypothesis, D is contained in G1, and it is, moreover, an Even’s dominion in
G1 = G \AttrO(G \G1, G) (cf. Lemma 2.1). Since H is O-closed in G1, the intersection D′

of D and H is an Even’s dominion in H (cf. Lemma 2.2) and therefore, from the induction
hypothesis, neither D′ nor D (containing additionally only vertices not in H) intersects
with WO. In consequence, D is a dominion in G2 (cf. Lemma 2.1) and, by the induction
hypothesis, it is contained in the returned set G3.

We proceed with showing Item iii), saying that the set returned by SolveE(G, d, pE, pO)
does not intersect with Odd’s dominions of size up to pO. Let D be such a dominion, let S
be the union of Odd’s dominions of size up to bpO/2c in the subgame induced by D, and let
A be the O-attractor of S in this subgame.

Because D is O-closed in G (i.e., Even cannot force to leave D), A is contained in
the O-attractor of S in the whole G. For the same reason, every Odd’s dominion in the
subgame D is an Odd’s dominion in the whole G. Thus, by the induction hypothesis, S
does not intersect with G1. Since (again by the induction hypothesis) G1 is E-closed in G,
this implies that AttrO(S,G) (hence also its subset A) does not intersect with G1: because
of S ⊆ G \G1 we have that AttrO(S,G) ⊆ AttrO(G \G1, G) = G \G1. If A = D, then
D does not intersect with G3 ⊆ G1, and we are done.
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We consider the case of A 6= D. Notice that D is a dominion not only in the whole G,
but also in the subgame induced by D. In consequence, D \A is a dominion in the subgame
induced by D \A (cf. Lemma 2.2; D \A is E-closed in D). It contains a nonempty Odd’s
dominion C without vertices of priority d (cf. Lemma 2.3). The union C ∪A is an Odd’s
dominion in D: inside C Odd has a winning strategy, which is valid as long as the play does
not leave D \A entering A; in A \ S Odd uses his strategy to reach S, and in S he uses his
strategy from one of the small dominions covering S. Moreover, because D is O-closed in G,
C ∪A is an Odd’s dominion also in the whole G. Since it is not contained in S, it is of size
greater than bpO/2c. We now show that C ∪A does not intersect with G2.

Recall that A ∩ G1 = ∅. Since G1 is E-closed in G, the set (C ∪ A) ∩ G1 is an Odd’s
dominion in G1 (cf. Lemma 2.2), and since (C ∪A)∩G1 ⊆ C contains no vertices of priority
d, also in H = G1 \ AttrE(Nd, G1) (cf. Lemma 2.1). By the induction hypothesis, it is
contained in WO, and therefore C ∪A does not intersect with G2 ⊆ G1 \WO.

Note that the proof of Item i) above also shows that G2 is E-closed in G. Now, since D is
a dominion in G, Lemma 2.2 implies that the set D ∩G2 is a dominion in G2. Moreover, its
size is at most pO − (bpO/2c+ 1) ≤ bpO/2c, because D is of size at most pO and A ∪C ⊆ D
(not intersecting with G2) is of size greater than bpO/2c. So, by the induction hypothesis,
D∩G2 does not intersect with the returned set G3. The same holds for the whole D, because
G3 ⊆ G2.

3.3. Analysis. Let R(d, `) be the maximal number of calls to SolveE and SolveO per-
formed during an execution of SolveE(G, d, pE, pO) if d is even or of SolveO(G, d, pO, pE)
if d is odd, where ` = blog pEc+ blog pOc (in this paper, log denotes the binary logarithm).
We assume that pE ≥ 1 and pO ≥ 1.

An induction on `+ d shows that R(d, `) ≤ 2`+1 ·
(
d+`
`

)
− 1. Indeed, if d = 0 (implying

G = ∅) or ` = 0 (implying pE = pO = 1), then the execution finishes immediately, so

R(d, `) = 1 ≤ 2`+1 ·
(
d+`
`

)
− 1. For positive d and ` we have

R(d, `) ≤ 1 + 2 ·R(d, `− 1) +R(d− 1, `),

where 1 counts the main call itself, 2 · R(d, ` − 1) counts calls performed while executing
Lines 3 and 8, and R(d− 1, `) counts calls performed while executing Line 6. Then, applying
the induction hypothesis, we obtain that

R(d, `) ≤ 1 + 2 ·
(

2`−1+1 ·
(
d+ `− 1

`− 1

)
− 1

)
+ 2`+1 ·

(
d− 1 + `

`

)
− 1

= 2`+1 ·
(
d+ `

`

)
− 2 ≤ 2`+1 ·

(
d+ `

`

)
− 1.

We now apply the inequality
(
k
`

)
≤

(
ek
`

)`
for k = d+ `, obtaining

R(d, `) ≤ 2`+1 ·
(
e · (d+ `)

`

)`

= 2 · 2`(1+log e+log(1+ d
` )).

Recall that while solving a parity game with n vertices, we start with pE = pO = n, that
is, with ` = 2 · blog nc. One can check that the above function is increasing, meaning that
we can replace ` by 2 · log n. We obtain that

R(d, 2 · blog nc) ≤ 2 · 22·(logn)·
(

1+log e+log
(

1+ d
2·logn

))
= 2 · n2·

(
1+log e+log

(
1+ d

2·logn

))
.
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Observe that the cost of each call, excluding the cost of further calls performed recursively,
is dominated by the attractor construction in Lines 5 and 7, which is linear in the number
of edges in the game. We can also estimate log e ≤ 1.45.

Regarding the space complexity, we notice that the recursion has depth O(log n), and
at each level of recursion we only need to store some sets of vertices of size O(n).

The complexity is summarised in the following theorem:

Theorem 3.3. Algorithm 1 computes winning regions in a given parity game. For a parity
game with n vertices, m edges, and maximal priority d, its memory usage is in O(m+n·log n),
and its running time is in

O
(
m · n4.9+2·log

(
1+ d

2·logn

))
= n

O
(

log
(

1+ d
logn

))
.

The complexity result can be reformulated as follows:

• When d = o(log n), the component d
2·logn converges to 0, meaning that the complexity

becomes O
(
m · n4.9

)
(for n large enough we have that log

(
1 + d

2·logn

)
≤ 1.45− log e).

• This implies that our algorithm is an fpt-algorithm when d is treated as a parameter.
• When d = O(log n), the component d

2·logn is in O(1), so the complexity of the algorithm

is polynomial (with an exponent depending on the precise relation between d and log n).
• When d = ω(log n), the component d

2·logn dominates the component 1, implying that

log
(

1 + d
2·logn

)
= log d

logn − 1 + o(1); in consequence, the complexity can be written as

O
(
m · n2.9+2·log d

logn

)
or n

O
(

log d
logn

)
.

4. A variation

We now present Algorithm 2, the original algorithm of Parys [Par19], as a variation, which
we refer to as the Warsaw version.

In Algorithm 1 there is one “central” call to SolveO for a subgame with less priorities,
with unchanged precision parameters. This call is surrounded by two calls to SolveE, where
we do not decrease the number of priorities, but we divide the precision parameter pO by 2.
While executing each of these calls, we perform one call to SolveO for a subgame with less
priorities, with pO divided by 2, which is now surrounded by two calls to SolveE for pO
divided by 4. Thus, while looking at calls to SolveO for subgames with less priorities, we
see that there is one central call with unchanged pO; it is surrounded by two call with pO
divided by 2; each of them is surrounded by two call with pO divided by 4, surrounded, in
turn, by calls with pO divided by 8, and so on (this ends when the result of the division
becomes smaller than 2).

In the variation, which we now present, this structure of recursive calls to SolveO is
modified: we again perform one call with unchanged pO, but this time all the surrouning
recursive calls use pO divided by 2 (not by powers of 2).
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4.1. The algorithm. As previously, the procedure SolveE(G, d, pE, pO), given a subgame
G with priorities up to an even number d, returns a set of vertices containing all of Even’s
small dominions (of size up to pE) and not intersecting any of Odd’s small dominions (of
size up to pO). The dual, SolveO, is defined for odd d by swapping E with O.

Algorithm 2 SolveE(G, d, pE, pO)

1: if G = ∅ or pE ≤ 1 then
2: return ∅
3: repeat
4: Nd := {v ∈ G | π(v) = d}
5: H := G \AttrE(Nd, G)
6: WO := SolveO(H, d− 1, bpO/2c, pE)
7: G := G \AttrO(WO, G)
8: until WO = ∅
9: WO := SolveO(H, d− 1, pO, pE)

10: G := G \AttrO(WO, G)
11: while WO 6= ∅ do
12: Nd := {v ∈ G | π(v) = d}
13: H := G \AttrE(Nd, G)
14: WO := SolveO(H, d− 1, bpO/2c, pE)
15: G := G \AttrO(WO, G)
16: end while
17: return G

The variation is closer to the classic recursive algorithms, using only calls to games with
less priorities. As a consequence, the number of calls is not capped (beyond the trivial cap
of up to n calls for games with n vertices), but all calls refer to sub-games with reduced
maximal priority, while all but one asks for lesser guarantees.

4.2. Correctness. We prove the following lemma, which guarantees that SolveE(G, d, pE,
pO) and SolveO(G, d, pO, pE), for a subgame G of maximal priority at most d, returns two
regions that contain all Even’s dominions of size up to pE and all Odd’s dominions of size
up to pO, respectively. Then SolveE(G, d, |G|, |G|) (if d is even) or SolveO(G, d, |G|, |G|)
(if d is odd) solves G completely.

We remark that, although the correctness proofs of Algorithms 1 and 2 are quite similar,
there is also a lot of differences in details. For readability reasons, we have choosen to leave
the two proofs independent.

Lemma 4.1. The procedure SolveE(G, d, pE, pO), where d is even and not smaller than the
maximal priority in G, returns a set that

i) contains all Even’s dominions in G of size up to pE, and
ii) does not intersect with any Odd’s dominion in G of size up to pO.

Similarly, SolveO(G, d, pO, pE), where d is odd and not smaller than the maximal priority
in G, returns a set that

i) contains all Odd’s dominions in G of size up to pO, and
ii) does not intersect with any Even’s dominion in G of size up to pE.



10 K. LEHTINEN, P. PARYS, S. SCHEWE, AND D. WOJTCZAK

Proof. The proof is by induction on the sum d+pE+pO. We present only the part concerning
SolveE(G, d, pE, pO), as the other part is similar.

When G = ∅ or pE ≤ 1, the empty set returned in Line 2 clearly satisfies the thesis:
there exist no Even’s dominions of size 1. We proceed with G 6= ∅ and pE > 1.

Before starting, we remark that the loops terminate, as G shrinks in size in all iterations
but the last one of each loop.

We first show Item i), saying that the set returned by SolveE(G, d, pE, pO) contains all
Even’s dominions of size up to pE. Let D be such a dominion.

For each repetition of the body of the repeat (Lines 4–7) and while (Lines 12–15)
loops, as well as for Lines 9–10, we have the following inductive argument. Initially, D is
an Even’s dominion in G. Since H is O-closed in G, the intersection D′ of D and H is
an Even’s dominion in H (cf. Lemma 2.2) and therefore, from the induction hypothesis,
neither D′ nor D (containing additionally only vertices not in H) intersects with the set
WO (computed in Line 6/9/14). In consequence, D is a dominion in the newly computed
set G in Line 7/10/15 (cf. Lemma 2.1).

From this argument it follows that D is contained in the set G when it is returned in
Line 17.

We proceed with showing Item ii), saying that the set returned by SolveE(G, d, pE, pO)
does not intersect with Odd’s dominions of size up to pO. Let D be such a dominion.

For each repetition of the body of the repeat (Lines 4–7) and while (Lines 12–15)
loops, as well as for Lines 9–10, we have the following inductive argument. Initially, D ∩G
is an Odd’s dominion in G. Due to Lemma 2.2, D ∩G is then again an odd dominion in G
after execution of Line 7/10/15 (independent of how the respective set WO is calculated).

We now assume for contradiction that the intersection of D and G is non-empty in Line
17, and therefore that this intersection is non-empty throughout the whole execution of the
procedure.

To establish the contradiction, we first observe that, in the last iteration of the repeat
loop, WO is empty. By Lemma 2.3, the intersection of D and G, being non-empty, contains
a nonempty Odd’s dominion C in G without vertices of priority d and, by Lemma 2.1, C
is an Odd’s dominion in the subgame H = G \AttrE(Nd, G) computed in Line 5. As WO

is empty, C (as well as its superset H) must be of size greater than bpO/2c, as C would
otherwise be contained in the empty set WO by the induction hypothesis.

As the set H from Line 5 is re-used in Line 9, it therefore contains the same Odd’s
dominion C. By the induction hypothesis, C is also contained in the region WO computed
in Line 9. The intersection of D and the remaining game G produced in Line 10 is of size
at most pO − (bpO/2c+ 1) ≤ bpO/2c, because all vertices in C are removed from G at that
point.

Then, the same argument as for the repeat loop ensures that when the while loop
finishes, the intersection of D and G contains an Odd’s dominion C ′ of size greater than
bpO/2c. This leads to a contradiction with the upper bound on the size of D ∩G established
in the previous paragraph.

4.3. Analysis. As in the previous section, let R(d, `) be the maximal number of calls to
SolveE and SolveO performed during an execution of SolveE(G, d, pE, pO) if d is even or
of SolveO(G, d, pO, pE) if d is odd, where ` = blog pEc+ blog pOc. We assume that pE ≥ 1
and pO ≥ 1.
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An induction on `+ d shows that R(d, `) ≤ 2 · n` ·
(
d+`
`

)
− 1, where n ≥ 1 is the number

of vertices in the considered game G. Indeed, if d = 0 (implying G = ∅) or ` = 0 (implying

pE = pO = 1), then the execution finishes immediately, so R(d, `) = 1 ≤ 2 · n` ·
(
d+`
`

)
− 1.

For positive d and ` we have

R(d, `) ≤ 1 + n ·R(d− 1, `− 1) +R(d− 1, `),

where 1 counts the main call itself, n ·R(d− 1, `− 1) counts calls performed while executing
Lines 6 and 14, and R(d − 1, `) counts calls performed while executing Line 9. The calls
with reduced parameters (Lines 6 and 14) are always done with games of decreasing size,
and there is no game of size 1; thus, there is at most n of these calls (for games of size
n, n− 1, . . . , 2 and then 0). Then, applying the induction hypothesis to the above formula,
we obtain that

R(d, `) ≤ 1 + n ·
(

2 · n`−1 ·
(
d− 1 + `− 1

`− 1

)
− 1

)
+ 2 · n` ·

(
d− 1 + `

`

)
− 1

≤ 2 · n` ·
((

d− 1 + `

`− 1

)
+

(
d− 1 + `

`

))
− 1 = 2 · n` ·

(
d+ `

`

)
− 1.

We now apply the inequality
(
k
`

)
≤

(
ek
`

)`
for k = d+ `, obtaining

R(d, `) ≤ 2 · n` ·
(
e · (d+ `)

`

)`

= 2 · 2`(logn+log e+log(1+ d
` )).

Recall that while solving a parity game with n vertices, we start with pE = pO = n, that
is, with ` = 2 · blog nc. One can check that the above function is increasing, meaning that
we can replace ` by 2 · log n. We obtain that

R(d, 2 · blog nc) ≤ 2 · 22·(logn)·
(

logn+log e+log
(

1+ d
2·logn

))
= 2 · n2·

(
logn+log e+log

(
1+ d

2·logn

))
.

This time, to each call to the procedure we associate the cost of the two attractor constructions,
preceding and following this call. In consequence, the cost allocated to each call is again
linear in the number of edges. Estimating log e ≤ 1.45, we obtain the following theorem:

Theorem 4.2. Algorithm 2 computes winning regions in a given parity game. For a parity
game with n vertices, m edges, and maximal priority d, its memory usage is in O(m+n·log n),
and its running time is in

O
(
m · n2.9+2·logn+2·log

(
1+ d

2·logn

))
= n

O
(

logn+log
(

1+ d
logn

))
= nO(logn).

The last equality above holds under the assumption d ≤ n. This is a reasonable
assumption: clearly there are at most d different priorities, and they can be renumbered so
that only consecutive numbers, from 1 to some upper bound, are used.

The main difference between the complexity here and in Section 3 is that here we have
log n in the exponent. This means that the algorithm does not speed up in the common
case where the number of priorities is significantly smaller than the number of vertices.
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5. Optimisations

In this section we present some optimisations that can be applied to Algorithms 1 and 2.
They do not improve the theoretical complexity, but they may (and actually they do) speed
up the algorithm in practice, on some inputs.

(1) After the repeat loop in Algorithm 2 we can check whether |H| ≤ bpO/2c, and if this
is the case, we can return G immediately, without executing Lines 9-16. Indeed, the
induction hypothesis guarantees that WO, calculated as SolveO(H, d− 1, bpO/2c, pE),
contains all Odd’s dominions in H of size up to bpO/2c. When |H| ≤ bpO/2c, then these
are actually all Odd’s dominions in H, and it makes no sense to call SolveO again with
precision pO.

(2) Likewise, in Algorithm 1, if |G| ≤ bpO/2c, then the first call to SolveE handles already
all Odd’s dominions in G; we can return G1 immediately after Line 3.

(3) To strengthen the effect of testing whether |G| ≤ bpO/2c or |H| ≤ bpO/2c in Algorithms

1 and 2, respectively, the initial call can be made with pE = pO = 2blog |G|c+1 − 1 instead
of pE = pO = |G|. The former number is slightly greater, but the depth of the recursion
remains unchanged.

(4) In Algorithm 2, if during the recursive evaluation of the last call to SolveO in the
repeat loop, the condition “pO ≤ 1” (Line 1 of SolveE) was never true, then, again,
we can return G immediately after this loop, without executing Lines 9-16. Indeed, in
such a case, the call SolveO(H, d− 1, bpO/2c, pE) is equivalent to a call with any greater
value (e.g., |H|) in place of bpO/2c, so the the returned set contains all Odd’s dominions
in H, and there is no need to call SolveO with precision pO.

The check can be implemented by returning and using a “dirty” flag that marks
whether the “pO ≤ 1” condition has been true in any of the sub-routines.

(5) As in implementations of standard Zielonka’s algorithm, the conditions in the repeat
and while loops in Algorithm 2 can be changed from “WO = ∅” to WO being invariant
under O-attractor (i.e., to “AttrO(WO, G) = WO” for the value of G before it is updated
in Lines 7, 10, or 15). This requires to re-calculate H after the repeat loop, before
Line 9. While this is clearly compatible with the optimisations above, it complicates the
correctness argument, namely the part where we follow what the algorithm does to a
small (size up to pO) Odd’s dominion D.

For the basic version of the algorithm, at every step we were considering a nonempty
Odd’s dominion C in the subgame D ∩G, not containing vertices of priority d. Now,
instead of choosing such a dominion C arbitrarily, we should take the greatest one (it
exists, because the union of two dominions is a dominion). This maximality implies
that if C is strictly smaller than D ∩G, then AttrO(C,D ∩G) contains a vertex of the
maximal priority d. Indeed, note that AttrO(C,D ∩ G) is itself an Odd’s dominion
in D ∩G; thus it either equals C or contains a vertex of priority d. In the latter case
we are done. In the former case, there is a nonempty dominion C ′ in (D ∩ G) \ C,
not containing vertices of priority d; the union C ′ ∪ C is an Odd’s dominion in D ∩G,
contradicting the maximality of C.

Having this, we observe as previously that if |C| ≤ bpO/2c, then C is included in
WO and thus removed from G. Moreover, if C does not cover the whole D ∩G, then
AttrO(C,D ∩G) ⊆ AttrO(WO, G) contains a vertex of priority d; this vertex is not
included in G \Nd ⊇ H ⊇WO, so the current loop continues. If |C| > bpO/2c, then the
repeat loop may finish without removing the whole C from G, and the remaining part
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of C is removed from G by the full precision call in Lines 9–10 (since clearly |C| ≤ pO).
After that, in the while loop, we always have |C| ≤ |D ∩G| ≤ bpO/2c, which, by the
above, guarantees removal of all remaining vertices of D.

(6) With a similar argument, the third call of Algorithm 1 (Line 8) can be skipped if the
O-attractor of WO in G1 equals WO.

6. Evaluation

Our evaluation focuses on the performance of the presented algorithms on random parity
games on the one hand and on so-called worst-case families on the other hand. In a nutshell,
the results are without great surprises. On random games, which usually don’t present
much of a challenge for Zielonka’s algorithm, its quasipolynomial-time variations are in
general orders of magnitude slower. The exception is games that can be solved in very few
iterations by Zielonka, such as random high-degree games, which seem to be solvable by the
Warsaw quasipolynomial-time algorithm in just as few iteration. Furthermore, the Liverpool
quasipolynomial-time algorithm, which has the best worst-case complexity, reliably requires
more iterations than the Warsaw version, which has a higher worst-case complexity. On the
families designed to trigger worst-case complexity in Zielonka’s algorithm [Fri11b, BDM20,
Gaz16], the story is different. By game-size 54, both quasipolynomial-time algorithms require
fewer iterations than the standard recursive algorithm, and the difference in performance
from then on grows at an exponential rate. On these families of worst-case games, as
the theory predicts, the algorithm with better worst-case behaviour indeed requires fewer
iterations.

6.1. Implementation. We have implemented the two algorithms presented in the paper,
using all the optimisations from Section 5. For comparison, we have also implemented
standard Zielonka’s algorithm, where we apply Optimisation 5 from Section 5 (i.e., we
use “AttrO(WO, G) = WO” instead of “WO = ∅” for the condition of a loop). Our
implementation involves the Oink framework [vD18] to read files with games and to confirm
correctness of our solutions, but apart from that the implementation is independent.

To compare performance of the three algorithms, we use the number of iterations.
Because the most costly operation in the procedure is the computation of an attractor,
as a single iteration we count the fragment of code where an attractor for one player is
computed, a subprocedure is called, and an attractor for the other player is computed (the
first computation of an attractor is not present in Lines 9–10 of Algorithm 2, but anyway we
count these two lines as an iteration). Note, however, that iterations are exactly the places
where a subprocedure is called, so the number of iterations is actually equal to the number
of recursive calls, minus one.

With the number of iterations as a convenient running time measure, our evaluation
becomes independent from low-level optimisations or from a choice of hardware.

The implementations, together with detailed results of the evaluation, are available at
https://github.com/pparys/qpt-parity.

https://github.com/pparys/qpt-parity


14 K. LEHTINEN, P. PARYS, S. SCHEWE, AND D. WOJTCZAK

6.2. Benchmarks.

Constructed parity games. Friedmann [Fri11a] was the first to show an exponential lower
bound to the running time of Zielonka’s recursive algorithm. Since then, several families
designed to trigger worst-case behaviour in recursive algorithms have been proposed: some are
more robust [BDM20], in the sense that they also provide lower bounds for many variations
and optimisations of the standard algorithm; others provide stronger lower bounds [Gaz16].
Since here we do not study optimisation strategies, we choose to present the performance
of our algorithm on Gazda’s family of games, which provide the strongest lower bound we
are aware of to date, namely Ω(2

n
3 ) [Gaz16]. From our observations, this is representative

of the algorithms’ performance on any of the mentioned families. We have run the three
algorithms on games of size up to 231, above which point all the three algorithms time out
at 15 minutes.

Random parity games. We use the PG-solver tools [FL14] to generate random parity games.
We study the algorithms both on games with high vertex degree and with low vertex degree.
Overall, we have run our algorithms on 320 random games of sizes ranging from 100 to 2000;
the number of priorities always corresponds to the number of vertices. For random games,
the game size is a poor predictor of how many iterations are needed—for instance, in our
sample, Zielonka’s algorithm solves more random games with high degree of size 2000 than
of size 200 in two iterations—we therefore don’t report the sizes of the sample games in our
graphs.

6.3. Results. We compare the implementations of the three algorithms, with all the optimi-
sations from Section 5 included. We use the number of iterations required by each algorithm
as a proxy for their performance.

Constructed parity games. As shown in Figure 1, on parity games of Gazda’s family, the
performance of both quasipolynomial-time versions overtake the standard version of Zielonka’s
algorithm around size 50. From there on, the performance gap grows exponentially. The
Liverpool version of the algorithm, which enjoys better worst-case complexity, outperforms
the Warsaw version consistently. Note that the logarithmic scale hides the growth of
this performance gap. The number of iterations required by both quasipolynomial-time
algorithms seems to jump abruptly at parity games of size 30, 63 and 126 (these sizes are
around the powers of 2, where the search depth of the algorithms change); this behaviour is
persistent throughout the different worst-case families.

Random parity games. The size of randomly generated games does not generally predict
the performance of the algorithms. On games of high degree, the algorithms agree on
the relative difficulty of games; see Figure 2. Both Zielonka’s algorithm and the Warsaw
quasipolynomial-time version consistently solve these games in under 15 iterations, while the
Liverpool version needs one to two orders of magnitude more iterations. The reason why the
Warsaw version behaves like Zielonka’s algorithm in this case is that differences only start if
the recursion depth of the algorithms exceeds the logarithm of the game size; here the Warsaw
version never runs out of bound, its call structure is the same as Zielonka’s. On random
games of low degree, see Figure 3, the two quasipolynomial-time versions only broadly tend
to agree with Zielonka’s algorithm on the relative difficulty of games. Again, the Warsaw



A RECURSIVE QUASIPOLYNOMIAL SOLUTION TO PARITY GAMES 15

Figure 1: Number of iterations needed by each algorithm on Gazda’s family of games

Figure 2: Number of iterations needed by each algorithm on randomly generated games of
high degree with between 100 and 2000 vertices
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Figure 3: Number of iterations needed by each algorithm on randomly generated games of
low degree with between 100 and 500 vertices

quasipolynomial-time version seems to match Zielonka’s algorithm on the easiest games,
namely those that Zielonka’s algorithm solves in under 15 iterations. However, in general
both the Warsaw and Liverpool version require several orders of magnitude more iterations
and the Warsaw version consistently outperforms the Liverpool version throughout.

7. Conclusion

We have presented two quasipolynomial-time algorithms solving parity games, working
recursively. The main advantage of our recursive approach over previous quasipolynomial-
time algorithms solving parity games lies in its simplicity: we perform a small modification
of the straightforward Zielonka’s algorithm.

Our original hope was that, in practice, the quasipolynomial-time algorithms can be as
fast as standard Zielonka’s algorithm on typical inputs, while being faster (quasipolynomial
instead of exponential) on worst-case inputs. This turned out to be only partially true:
although our algorithms are not dramatically slower, a significant slowdown is visible (except
for the Warsaw variant, in case of a really small number of iterations).

Czerwiński et al. [CDF+19] argue that previous quasipolynomial-time algorithms solv-
ing parity games [CJK+17, JL17, Leh18, FJdK+19] are instances of a so-called separator
approach. Then, they prove that every algorithm accomplishing this approach has to follow
a structure of a universal tree (a tree into which every tree of a given size can be embedded),
and they show a quasipolynomial lower bound for the size of such a tree—hence also for the
running time of the algorithm. Our algorithms, on the one hand, are of a different style; they
cannot be seen as instances of the separator approach, hence the lower bound does not apply
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to them. On the other hand, however, one can see that the trees of recursive calls in our two
algorithms follow two particular constructions of universal trees. Furthermore, Jurdziński
and Morvan [JM20] generalise our algorithms to a generic algorithm parameterised by a
universal tree (any universal tree gives a correct algorithm, while our two variants are
obtained by using particular universal trees). Arnold, Niwiński, and Parys [ANP21] show a
similar generalisation, from a slightly different perspective of fixed-point evaluation; they
also prove that universal trees are persistently present in their approach, resulting in a
quasipolynomial lower bound for the number of recursive calls.

Finally, let us mention a recent result of Jurdziński, Morvan, Ohlmann, and The-
jaswini [JMOT20]: they design an algorithm solving parity games that is symmetric (like
our recursive algorithms), but simultaneously works in time proportional to the size of one
universal tree, not to the size of a product of two such trees (thus the logarithm in the
exponent is not multiplicated by 2, unlike for our Liverpool variant).
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