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ABSTRACT

All the realistic free fermionic models utilize a set of basis vectors, the NAHE set,
that correspond to Z2×Z2 orbifold compactification with nontrivial background
fields. I argue that the realistic features of free fermionic models, like the number
of generations and the fermion mass spectrum are due to the underlying Z2×Z2

orbifold compactification.

As a unified theory of gravity and the gauge interactions, heterotic string theory1

should reproduce the matter and symmetry content of the Standard Model and de-

termine the fermion mass spectrum. Presently we do not know what is the dynamical
mechanism that selects the unique string vacuum, and, a priori, there is a large num-

ber of potentially viable superstring models.
The notion, however, that there is a huge number of string models is somewhat

misleading. By just imposing one or two phenomenological criteria, like three gen-
erations and a gauge group that can be reduced at low energies to the standard

model gauge group, already one finds that the number of possibilities is substantially

reduced. Imposing further phenomenological constraints may indeed single out a
unique superstring model. If such a model is constructed, it will certainly be of use

in trying to learn about the dynamical mechanism that chooses the string vacuum.
The task of constructing phenomenologically viable string models seems hopeless.

While in ten dimensions the string vacuum is more or less unique, in four dimensions
there is a huge number of equivalent candidates. The string consistency constraints

impose a number of degrees of freedom and those degrees of freedom produce a
symmetry that is larger than the observed symmetry at low energies. Furthermore

the number of chiral generations is also determined in the four dimensional vacuum
and is correlated with the gauge degrees of freedom. A bottom–up approach, in which

different blocks of the standard model are assembled together piece by piece, is not
adequate. Rather, what is required is a top–bottom approach in which the features

of the standard model are carved out of the more symmetric string vacua.
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Is there a guiding principle that may distinguish among the equivalent string
vacuum ? String vacua exhibits a new kind of symmetry, usually referred to as target–

space duality2, which is a generalization of the R → 1/R duality in the case of S1. At
the self–dual point, Rj = 1/Rj , space–time symmetries are enhanced. For appropriate

choices of the background fields the space–time symmetries are maximally enhanced3.
At the maximally symmetric point the internal degrees of freedom that are needed to

cancel the conformal anomaly may be represented in terms of internal free fermions

propagating on the string world–sheet. It is plausible that if string theory is realized
in nature then the true string vacuum is in the vicinity of the highly symmetric self–

dual point. It may turn out that near that point the free fermionic formulation4

provides a good approximation to the true string vacuum. However, the number of

consistent free fermionic models is still enormous.
As is well known in (2,2) string models that admit a geometrical interpretation

the number of chiral generations is half the Euler number of the six dimensional
compactified manifold. Following LEP data it is plausible to assume that only three

complete generations exist in nature. How can three generations arise from a six
dimensional compactified space. The answer may be simple. The six dimensional

compactified space is divided into three factors of two. In the orbifold language5,
divide the six dimensional space, which is compactified on a flat torus, by a Z2 × Z2

discrete symmetry. In that case the Z2 × Z2 orbifold model produces exactly three
twisted sectors. In the Z2×Z2 orbifold on a six dimensional space, the number three

is deeply rooted in the structure of the models. Thus, the Z2×Z2 can very naturally

lead to models with three generations. Namely, each light generation comes from a
different twisted sector of the Z2 × Z2 orbifold model.

It appears that Z2×Z2 orbifold on the flat torus of the six dimensional compactified
space, can very naturally lead to three generations. However, in general, Z2 × Z2

orbifold on generic lattices do not lead to three generation models. For example the
Z2×Z2 orbifold on SO(4)3 lattice did not yield three generation models. In contrast,

the Z2 × Z2 models at the free fermionic point in toroidal compactification space,
realized by the NAHE set6,7, do produce three generation models. The difference is

seen by examining the number of fixed points in the two compactifications with (2,2)
world–sheet supersymmetry. On the SO(4)3 lattice the Z2 × Z2 produces sixteen

generations, from each twisted sector. On the SO(12) lattice, which corresponds to
the free fermionic point in the toroidal compactification space, it produces eight chiral

generations, from each twisted sector. In the fermionic three generation constructions
each one of the complex planes of the Z2 × Z2 orbifold is modded out by additional

Z3

2
symmetries, thus reducing the number of generations to one generation from each

twisted sector.
In the (2,2) fermionic constructions one starts from a set of boundary condition

vectors that produces an N = 4 supersymmetric model with SO(12) × E8 × E8

gauge group3. One then adds two boundary condition vectors that correspond to the



Z2×Z2 twisting. The resulting gauge group is SO(4)3×E6×U(1)2×E8 with N = 1
space–time supersymmetry. In this model there are twenty four chiral generations

from the boundary condition vectors that correspond to twisted sectors and three
pairs of chiral and anti chiral generations from the untwisted sector. The number of

twisted and untwisted moduli is equal to the number of generations. In addition the
untwisted and twisted sectors produce E6 × E8 singlets that are obtained by acting

on the vacuum with oscillators that arise from the fermionic degrees of freedom that

correspond to the six internal compactified dimensions.
In the orbifold formulation5 the same model is obtained by applying a Z2 × Z2

twist to a torodialy compactified SO(12) lattice and E8 × E8 gauge symmetry. The
36 free parameters of the six dimensional metric and the antisymmetric tensor field

parameterize the six dimensional compactified space. For generic values of these
parameters the gauge symmetry that arises from the six dimensional compactified

torus is U(1)6. For specific choices of the background parameters the U(1)6 of the
compactified torus is enlarged. To reproduce the SO(12) × E8 × E8 gauge group

of the free fermionic model, the metric Gij is the Cartan matrix of SO(12) and the
antisymmetric tensor field is given by, Bij = Gij for i > j; Bij = 0 for i = j and

Bij = −Gij for i < j. For RI =
√
2 and with the chosen background fields, the

right–moving momenta produce the root vectors of SO(12), thus reproducing the

same gauge group as in the free fermionic model. The orbifold model is obtained by
moding out the six dimensional torus by a discrete symmetry group. The massless

spectrum contains states from the untwisted and twisted sectors. In the case of

“standard embedding” the number of chiral families is given by one half of the Euler
characteristic. To translate the fermionic boundary conditions to twists and shifts in

the bosonic formulation the real fermionic degrees of freedom that correspond to the
compactified dimensions are bosonized. The fermionic boundary condition vectors, b1
and b2, then translate to Z2 × Z2 twist on the compactified coordinates and to shifts
on the gauge degrees of freedom. It is then seen that symmetries and spectrum of

the orbifold model coincide with those of the corresponding fermionic model3.
The realistic free fermionic models correspond to models with (2,0), rather than

(2,2), world–sheet supersymmetry. The transition from the (2,2) models to the (2,0)
models can be regarded as choosing a GSO phase between the two boundary condition

vectors that produce the spinorial of SO(16). The GSO projection projects out the
massless states from these sectors and the resulting gauge group is SO(12)×SO(16)×
SO(16), with N = 4 space–time supersymmetry. Alternatively, one of the spinorial
vectors may be enlarged with additional four periodic complex fermions in the hidden

sector. The E8 × E8 gauge group is modified to SO(16) × SO(16), as in the first

construction. The analysis with respect to the number of fixed points is identical to
the case with (2,2) world–sheet supersymmetry. However, in this case the observable

gauge group after applying the Z2 × Z2 is SO(10) × U(1) rather than E6, and the
U(1) is “anomalous”. The twisted sectors produce spinorial and vectorial sixteen of



the observable SO(10) and hidden SO(16) gauge groups, respectively.
The structure of the Z2 × Z2 orbifold with (2,0) world–sheet supersymmetry and

standard embedding, is common to all the realistic free fermionic models. Three
generation models are obtained by adding three additional boundary condition basis

vectors, beyond the NAHE set. The additional boundary condition vectors mod out
each of the three complex planes of the Z2×Z2 orbifold by a Z3

2
symmetry and break

the observable SO(10) symmetry to one of its maximal subgroups SU(5) × U(1),

SO(6)× SO(4) or SU(3)× SU(2)× U(1)2.
The fermion mass spectrum is also seen to originate from the Z2 × Z2 orbifold

structure, realized by the NAHE set. The untwisted sector produces three pairs
of Higgs doublets and a combination of the vectors that break the SO(10) symme-

try produces one or two additional pairs. Due to the horizontal symmetries in the
Z2×Z2 orbifold models, each pair of Higgs doublets couples only to states from one of

the twisted sectors, producing couplings 16j16j10j j = 1, 2, 3. The cancelation of the
anomalous U(1) D–term equation by singlet VEVs, gives Planck scale mass to several

Higgs doublets. As a result, there exist models in which only one mass term, namely
the top quark mass term, exist at the cubic level of the superpotential. The mass

terms for the lighter quarks and leptons are obtained from nonrenormalizable terms.
The nonrenormalizable terms contain SO(10) singlets with nonvanishing VEVs, that

are required to cancel the anomalous U(1) D–term equation. Thus, the nonrenormal-
izable terms become effective renormalizable terms that are suppressed relative to the

leading cubic level terms. Due to the horizontal symmetries and the singlet VEVs

one generation is necessarily light8. Similarly, the mixing terms arise generically from
nonrenormalizable terms of the form 16i16j1016i16jφ

n, where the first two 16 are in

the spinorial representation of the observable SO(10), the 10 is in the vector represen-
tation of the observable SO(10), the last two 16 are in the vector representation of the

hidden SO(16) and φn is a combination of SO(10)× SO(16) scalar singlets9,3. The
Z2×Z2 orbifold structure gives rise to the horizontal symmetries that may be needed

to understand the matter mass spectrum. Requiring adequate generation mixing and
the form of the mixing terms necessitates that we give nonvanishing VEVs to some of

the hidden sector 16 representations. In Ref. [10] it was shown that this is possibly
the source of supersymmetry breaking in these models.
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