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Abstract We study here systems of distributed enti-

ties that can actively modify their communication net-

work. This gives rise to distributed algorithms that

apart from communication can also exploit network re-

configuration to carry out a given task. Also, the dis-

tributed task itself may now require a global reconfigu-

ration from a given initial network Gs to a target net-

work Gf from a desirable family of networks. To for-

mally capture costs associated with creating and main-

taining connections, we define three edge-complexity

measures: the total edge activations, the maximum ac-

tivated edges per round, and the maximum activated de-

gree of a node. We give (poly)log(n) time algorithms for

the task of transforming any Gs into a Gf of diameter

(poly)log(n), while minimizing the edge-complexity.

Our main lower bound shows that Ω(n) total
edge activations and Ω(n/ log n) activations per round

must be paid by any algorithm (even centralized) that

achieves an optimum of Θ(log n) rounds. We give three

distributed algorithms for our general task. The first
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runs in O(log n) time, with at most 2n active edges per

round, a total of O(n log n) edge activations, a maxi-

mum degree n− 1, and a target network of diameter 2.

The second achieves bounded degree by paying an ad-

ditional logarithmic factor in time and in total edge ac-

tivations. It gives a target network of diameter O(log n)

and uses O(n) active edges per round. Our third algo-

rithm shows that if we slightly increase the maximum

degree to polylog(n) then we can achieve o(log2 n) run-

ning time.
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1 Introduction

1.1 Dynamic Networks

The algorithmic theory of dynamic networks is a rel-

atively new area of research, concerned with studying

the algorithmic and structural properties of networked

systems whose structure changes with time. One way to

classify dynamic networks is based on who controls the

network dynamics. In passively dynamic networks the

changes are external to the algorithm, in the sense that

the algorithm has no control over them. Such dynamics

are usually modeled by sequences of events determined

by an adversary scheduler. This is for example the case
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when the computing entities must operate in a dynamic

environment, such as when being carried by a set of

transportation units. In other applications, the entities

can actively control the dynamics of their network, as is

the case in mobile or reconfigurable robotics and peer to

peer networks. Hybrid cases or cases of partial control

are less studied (cf. [15] for a relevant study).

Another level of classification comes from who con-

trols the algorithm. This gives rise to two main fami-

lies of models. One is fully centralized, in which a cen-

tral controller has global view of the system. In case

of active network dynamics, the centralized algorithm

typically designs a dynamic network by exploiting its

full knowledge about the system in a way that aims to

optimize some given objective function. If network dy-

namics are passive then the goal is typically to achieve

some global computation task, like foremost journeys

or dissemination, which may either be possible to com-

pute offline under full information about the evolution

of the network or required to compute online under lim-

ited or no knowledge about the future network struc-

ture. Similar objectives hold for the fully distributed

case, in which every node in the network is an inde-

pendent computing entity, like an automaton or Tur-

ing machine, typically equipped with computation and

communication capabilities, and in the case of active

dynamics, with the additional capability to locally mod-

ify the network structure, like activating a connection

to a new neighbor or eliminating an existing connec-

tion. One may also consider partial distributed control,

in which only k out of n nodes are occupied by com-

puting entities, but again not much is known about this

family of models.

1.2 An Actively Dynamic Distributed Model

In this paper, we consider an actively dynamic and fully

distributed system. In particular, there are n comput-

ing entities starting from an initial connected network

drawn from a family of initial networks. The entities are

typically equipped with unique IDs, can compute lo-

cally, can communicate with neighboring entities, and

can activate connections to new neighbors locally or

eliminate some of their existing connections. All these

take place in lock step through a standard synchronous

message passing model, extended to include the addi-

tional operations of edge activations and deactivations

within each round.

The goal is, generally speaking, to program all the

entities with a distributed algorithm that can trans-

form the initial network Gs into a target network Gf
from a family of target networks. The idea is that start-

ing from a Gs not necessarily having a good property,

like small diameter, the algorithm will be able to “effi-

ciently” reach a Gf satisfying the property. This gives

rise to two main objectives, which in some cases might

be possible to satisfy at the same time. One is to trans-

form a givenGs into a desired targetGf and the other is

to exploit some good properties of Gf in order to more

efficiently solve a distributed task, like computation of

a global function through information dissemination.

Even when edge activations are extremely local,

meaning that an edge uv can only be activated if there

exists a node w such that both uw and wv are already

active, there is a straightforward algorithmic strategy

that can successfully carry out most of the above tasks.

In every round, all nodes activate all of their possi-

ble new connections, which corresponds to each node

u connecting with all nodes vi that were at distance 2

from u in the beginning of the current round. By a sim-

ple induction, it can be shown that in any round r the

neighborhood of every node has size at least 2r, which

implies that a clique Kn is formed in O(log n) rounds.

Such a clique can then be used for global computations,

like electing the maximum UID as a leader, or for trans-

forming into any desired target network Gf through

eliminating the edges in E(Kn) \ E(Gf ). All these can

be performed within a single additional round.

Even though sublinear global computation and

network-to-network transformations are in principle

possible through the clique formation strategy de-

scribed above, this algorithmic strategy still has a num-

ber of properties which would make it impractical for

real distributed systems. As already highlighted in the

literature of dynamic networks, (i.e., [20]), activating

and maintaining a connection does not come for free

and is associated with a cost that the network designer

has to pay for. Even if we uniformly charge 1 for ev-

ery such active connection, the clique formation in-

curs a cost of Θ(n2) total edge activations in the worst

case and always produces instances (e.g., when Kn is

formed) with as many as Θ(n2) active edges in which

all nodes have degree Θ(n).

Our goal in this work is to formally define such cost

measures associated with the structure of the dynamic

network and to give improved algorithmic strategies

that maintain the time-efficiency of clique formation,

while substantially improving the edge complexity as

defined by those measures. In particular, we aim at

minimizing the edge complexity, given the constraint of

(poly)logarithmic running time. Observe at this point

that without any restriction on the running time, a

standard distributed dissemination solely through mes-

sage passing over the initial network, would solve global

computation without the need to activate any edges.

However, linear running times are considered insuffi-
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cient for our purposes (even when the goal is to solve

traditional distributed tasks). Moreover, strategies that

do not modify the input network cannot be useful for

achieving network-to-network transformations.

1.3 Contribution

We define three cost measures associated with the edge

complexity of our algorithms. One is the total number

of edge activations that the algorithm performed dur-

ing its course, the second one is the maximum number

of activated edges in any round by the algorithm, and

the third one is the maximum activated degree of a node

in any round, where the maximum activated degree of

a node is defined only by the edges that have been ac-

tivated by the algorithm.

Our ultimate goal in this paper is to give

(poly)logarithmic time algorithms which, starting from

any connected network Gs, transform Gs into a Gf of

(poly)logarithmic diameter and at the same time elect

a unique leader. Such algorithms can then be composed

with any algorithm B that assumes an initial network of

(poly)logarithmic diameter and has access to a unique

leader and unique ids. In case of a static network al-

gorithm B, this for example yields (poly)logarithmic

time information dissemination and computation of any

global function on inputs. In case of an actively dynamic

network algorithm B, it gives (poly)logarithmic time

transformation into any target network from a given

family which depends on restrictions related to the edge

complexity.

We restrict our focus on deterministic algorithms,

that is, the computational entities do not have access

to any random choices. Moreover, our algorithms never

break the connectivity of the network of active edges

as this would result in components that could never be

reconnected based on the permissible edge activations.

Temporary disconnections within a round may be per-

mitted but can always be avoided by first activating

all new edges and then deactivating any edges for the

current round.

There is a clear tradeoff between time and edge com-

plexity and we formally capture that with the lower

bounds presented in Section 7. In particular, we first

prove that Ω(log n) is a lower bound on time follow-

ing from an upper bound of 2 on the distance of new

connections and the Θ(n) worst-case diameter of the

initial network. Then we give an Ω(n) lower bound on

total edge activations and Ω(n/ log n) activations per

round for any centralized algorithm that achieves an

optimal Θ(log n) time. Our main lower bound is a total

of Ω(n log n) total edge activations that any logarith-

mic time deterministic distributed comparison based al-

gorithm must pay. This is in contrast to the Θ(n) total

edges that would be sufficient for a centralized algo-

rithm and is due to the distributed nature of the sys-

tems under consideration.

We then proceed to our main positive results. In

particular, we give three algorithms for transforming

any initial connected network Gs into a network Gf of

(poly)logarithmic diameter and at the same time elect-

ing a unique leader. Each of these algorithms makes

a different contribution to the time vs. edge complex-

ity trade-off. All of our main algorithms are built upon

the following general strategy. For each of them, we de-

fine a different gadget network and the algorithms are

developed in such a way that they always satisfy the

following invariants. In any round of an execution, the

network is the union of committees being such gadget

networks of varying sizes and some additional edges in-

cluding the initial edges and other edges used to join

the committees. Initially, every node forms its own com-

mittee and the algorithms progressively merge pairs or

larger groups of committees based on the rule that the

committee with the greater UID dominates. If prop-

erly performed, this ensures that eventually only one

committee remains, namely, the committee of the node

umax with maximum UID in the network. The diame-

ter of all our gadgets is (poly)logarithmic in their size,

which facilitates quick merging and ensures that the

final committee of umax satisfies the (poly)log(n) di-

ameter requirement for Gf . The algorithms also ensure

that, by the time the committee of umax is the unique

remaining committee, umax is the unique leader elected.

Our algorithms must achieve (poly)logarithmic time

and they do so by satisfying the invariant that sur-

viving committees always grow exponentially fast. This

growth is asynchronous in our algorithms for the fol-

lowing reason. In a typical configuration (of a phase)

the graph of mergings forms a spanning forest F of

committees such that any tree T in F is rooted at the

committee that will eventually consume all committees

in V (T ). Given that those trees may have different sizes

(even up to V (T ) = Θ(n)), the rounds in which various

committees finish merging may be different, but we can

still show that their amortized growth is exponential.

Our first algorithm, called GraphToStar and pre-

sented in Section 4, uses a star network as a gadget. Its

running time is O(log n) and it uses at most 2n active

edges per round and an optimal total of O(n log n) edge

activations. The target network Gf that it outputs is a

spanning star, thus, achieving a final diameter of 2.

Our second algorithm, called GraphToWreath and

presented in Section 5, uses as a gadget a graph we

call a wreath which is the union of a ring and a com-

plete binary tree spanning the ring. The main improve-
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ment compared to GraphToStar is that it maintains a

bounded maximum degree throughout its course (given

a bounded-degree Gs). It does this at the cost of in-

creasing the running time to O(log2 n) and the num-

ber of total edge activations to O(n log2 n). The active

edges per round remain O(n). The target network Gf
that it outputs is a complete binary spanning tree (after

deleting the original edges and the spanning ring), thus,

the algorithm achieves a final diameter of O(log n).

Our third algorithm, called GraphToThinWreath

and presented in Section 6, shows that if we slightly

increase the maximum degree to polylog(n) then we

can achieve a running time of o(log2 n) (more precisely,

O(log2 n/ log logk n), for some constant k ≥ 1).

If our model can be compared to models from the

area of overlay networks construction (see Section 2

for a discussion on this matter), then GraphToWreath

is, to the best of our knowledge, the first de-

terministic bounded-degree O(log2 n)-time algorithm

and GraphToThinWreath is the first deterministic

polylog(n)-degree o(log2 n)-time algorithm for the

problem of transforming any connected Gs into a

polylog(n) diameter Gf .

2 Further Related Work

Temporal Graphs. The algorithmic study of tempo-

ral graphs was initiated by Berman [9] and Kempe et

al. [17], who studied a special case of temporal graphs

in which every edge can be available at most once. The

problem of designing a cost-efficient temporal graph

satisfying some given connectivity properties was in-

troduced in [21]. The design task was carried out by

an offline centralized algorithm starting from an empty

edge set. Subsequent work [14], motivated by epidemiol-

ogy applications, considered the centralized algorithmic

problem of re-designing a given temporal graph through

edge deletions in order to end up with a temporal graph

with bounded temporal reachability, thus keeping the

spread of a disease to a minimum. Our work is related

to the temporal network (re-)design problem but our

model is fully distributed, allows for both edge activa-

tions and deletions, and our families of target networks

are different than those considered in the above papers.

Distributed Computation in Passively Dynamic

Networks. Probably the first authors to consider dis-

tributed computation in passively dynamic networks

were Angluin et al. [4–6]. Their population protocol

model, considered originally the computational power

of a population of n finite automata which interact in

pairs passively either under an eventual fairness con-

dition or under a uniform random scheduling assump-

tion. A variant of population protocols in which the au-

tomata can additionally create or destroy connections

between them was introduced in [22, 26]. It was shown

that in that model, called network constructors, com-

plex spanning networks can be created efficiently de-

spite the computational weakness of individual entities.

The closest to our approach from this area is [27], in

which the authors showed how to transform any con-

nected initial network into a spanning line which can

then be exploited to achieve global computation on in-

put values and termination. The main difference though

is that in all these models pairwise interactions are cho-

sen asynchronously by a scheduler, and connections can

be created between any pair of nodes during their inter-

action independently of the current network structure

and the distance between them.

Other papers [18, 23, 28] have studied distributed

computation in worst-case dynamic networks using a

traditional message-passing model and typically oper-

ating through local broadcast in the current neighbor-

hood. Our communication model is closer to those mod-

els but network dynamics there are always passive and

their main goal has been to revisit the complexity of

classical distributed tasks under a worst-case adversar-

ial network.

Finally the work by Casteigts et al. [12] is a uni-

fying framework for different dynamic network models

and our model falls more closely under the umbrella of

the graph-centric evolution discussed by the paper.

Construction of Overlay Networks. There is a rich

literature on the distributed construction of overlay net-

works. A typical assumption is that there is an overlay

(active) edge from a node u to a node v in a given round

iff u has obtained v’s UID through a message. With-

out further restrictions, the overlay in round r would

always correspond to the union of r consecutive transi-

tive extensions starting from the original edge set. The

main restriction imposed in the relevant literature is a

polylogarithmic (in bits) communication capacity per

node per round, which also implies that in every round

O(log n) new overlay connections per node are permit-

ted.

Our model and results, even though different in mo-

tivation, in the complexity measures considered, and in

the restrictions we impose, appear to have similarities

with some of the developments in this area. Unlike our

work, where our complexity measures are motivated by

the cost of creating and maintaining physical or virtual

connections, the algorithmic challenges in overlay net-

works are mainly due to restricting the communication

capacity of each node per round to a polylogarithmic

total number of bits.
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Research in this area started with seminal papers

such as Chord of Stoica et al. [31] and the Skip graphs

of Aspnes and Shah [7]. Probably the first authors to

have considered the problem of constructing an overlay

network of logarithmic diameter were Angluin et al. [3].

Their algorithm is randomized with O((d + W ) log n)

running time w.h.p., where W is the maximum size of

a unique UID. Then Aspnes and Wu [8] gave a ran-

domized O(log n) time algorithm for the special case in

which the initial network has outdegree 1. A very recent

work by Götte et al. [16] has improved the upper bound

of [3] to O(log3/2 n), w.h.p. It is a randomized algorithm

which uses a core deterministic procedure that has some

similarities to our algorithmic strategy of maintaining

and merging committees (called “supernodes” there)

whose size increases exponentially fast. Their model

keeps the polylogarithmic restriction on communication

and the polylogarithmic maximum degree.

To the best of our knowledge, the only previous

deterministic algorithm for the problem is the one by

Gmyr et al. [15]. Our algorithmic strategies appear to

have some similarities to their “Overlay Construction

Algorithm”, which in their work is used as a subrou-

tine for monitoring properties of a passively dynamic

network. Unlike our model, their model is hybrid in

the sense that algorithms have partial control over the

connections of an otherwise passively dynamic network.

Due to using different complexity measures and re-

strictions it is not totally clear to us yet whether a

direct comparison between them would be fair. Still,

we give some first observations. Their algorithm has

the same time complexity, i.e., O(log2 n), with our

GraphToWreath algorithm, while our GraphToStar al-

gorithm achieves O(log n) and our GraphToThinWreath

o(log2 n). Their overlays appear to maintain Θ(n log n)

active connections per round, while our algorithms

maintain O(n). Their maximum active degree is poly-

logarithmic, the same as GraphToThinWreath, while

GraphToStar uses linear and GraphToWreath always

bounded by a constant. Their model restricts the com-

munication capacity of every node to a polylogarithmic

number of bits per round, whereas we do not restrict

communication.

Scheideler and Setzer [30] recently studied the (cen-

tralized) computational complexity of computing the

optimum graph transformation and gave NP-hardness

results and a constant-factor approximation algorithm

for the problem.

Programmable Matter. There is a growing inter-

est in studying the algorithmic foundations of systems

that can change their physical properties through lo-

cal reconfigurations [1, 2, 10, 13, 24]. A prominent such

property is changing their shape. Typical examples of

systems in this area are reconfigurable robotics, swarm

robotics, and self-assembly systems [11,19,29]. In most

of these settings, modification of structure can be rep-

resented as a dynamic network, usually called shape,

with additional geometric restrictions coming from the

shape and the local reconfiguration mechanism of the

entities. The goal is to transform a given initial shape

into a desired target shape through a sequence of valid

local moves. Our network transformation problem can

be viewed as a non-geometric abstraction of these geo-

metric transformation problems. Apart from being mo-

tivated by this area, we also hope that the abstract

algorithmic principles of network reconfiguration might

promote our understanding of the geometrically con-

strained cases.

3 Preliminaries

3.1 Model

An actively dynamic network is modeled in this work

by a temporal graph D = (V,E), where V is a static

set of n nodes and E ⊆
(
V
2

)
× N is a set of undirected

time-edges. In particular, E(i) = {e : (e, i) ∈ E} is the

set of all edges that are active in the temporal graph

at the beginning of round i. Since V is static, E(i) can

be used to define a snapshot of the temporal graph at

round i, which is the static graph D(i) = (V,E(i)).

The temporal graph D of an execution is gener-

ated by local operations performed by the nodes of

the network, starting from an initial graph Gs = D(1).

Throughout this paper, Gs is assumed to be connected.

A node u can activate an edge with node v in round i,

if uv 6∈ E(i) and there exists a node w such that both

uw and wv are active at the beginning of round i. A

node u can deactivate an edge with node v in round i,

provided that uv ∈ E(i). An active edge remains ac-

tive indefinitely unless a node that is incident to that

edge deactivates it. There is at most one active edge

between any pair of nodes, that is multiple edges are

not allowed. If a node attempts to activate an edge

which is already active, the action has no effect and

the edge remains active; similarly for deactivating in-

active edges. Moreover, if a node u decides to activate

an edge with a node v in round i and v decides to ac-

tivate an edge with u in the same round, then only

one edge is activated between them. In case u and v

disagree on their decision about edge uv, then their ac-

tions have no effect on uv. We define Eac(i) as the set

of all edges that were activated in round i and Edac(i)

as the set of all edges that were deactivated in round i.

Then E(i+ 1) = (E(i) ∪ Eac(i)) \ Edac(i).
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We define set N i
1(u) of node u, where v ∈ N i

1(u)

iff uv ∈ E(i) which means that set N i
1(u) contains the

neighbors of node u in round i. Additionally, set N i
2(u)

of node u, where w ∈ N i
2(u) iff there exists v ∈ V s.t.

v ∈ N i
1(u) and v ∈ N i

1(w) and w 6∈ N i
1(u). That is,

set N i
2(u) of node u in round i contains the nodes at

distance 2 which we will refer to as potential neighbors.

We will omit the i index for rounds, when clear from

context.

Each node u ∈ V is identical to every other node

v but for the unique identifier (UID) that each node

possesses. Each node u starts with a UID that is drawn

from a namespace U . The maximum UID is represented

by O(log n) bits. An algorithm is called comparison

based if it manipulates the UIDs of the network using

comparison operations (<,>,=) only. All of the algo-

rithms and lower bounds presented in this paper are

comparison based.

The nodes represent agents equipped with compu-

tation, communication, and edge-modification capabil-

ities and they operate in synchronous rounds. In each

round all agents perform the following actions in se-

quence and in lock step: send messages to their neigh-

bors, receive messages from their neighbors, activate

edges with potential neighbors, deactivate edges with

neighbors, update their local state.

We note that a node may choose to send a differ-

ent message to different neighbors in a round and that

the time needed for internal computations is assumed

throughout to be O(1). We do not impose any restric-

tion on the size of the local memory of the agents, still

the space complexity of our algorithms is within a rea-

sonable polynomial in n.

3.2 Problem Definitions and Performance Measures

In this paper, we are mainly interested in the following

problems.

Leader Election. Every node u in graph D = (V,E)

has a variable statusu that can be set to a value in

{Follower, Leader}. An algorithm A solves leader elec-

tion if the algorithm has terminated and exactly one

node has its status set to Leader while all other nodes

have their status set to Follower.

Token Dissemination. Given an initial graph D =

(V,E) where each node u ∈ V starts with some unique

piece of information (token), every node u ∈ V must

terminate while having received that unique piece of

information from every other node v ∈ V \{u}. W.l.o.g.

we will consider that unique information to be the UID

of each node throughout the paper.

Depth-d Tree. Given any initial graph Gs from a

given family, the distributed algorithm must reconfigure

the graph into a target graph Gf , such that Gf is a

rooted tree of depth d with a unique leader elected at

the root.

Apart from studying the running time of our algo-

rithms, measured as their worst-case number of rounds

to carry out a given task, we also introduce the follow-

ing edge complexity measures.

Total Edge Activations. The total number

of edge activations of an algorithm is given by∑T
i=1 |Eac(i)|, where T is the running time of the al-

gorithm.

Maximum Activated Edges. It is defined as

maxi∈[T ] |E(i) \ E(1)|, that is, equal to the maximum

number of active edges of a round, disregarding the

edges of the initial network.

Maximum Activated Degree. The maximum de-

gree of a round, if we again only consider the edges

that have been activated by the algorithm. Let ∆(G)

denote the maximum degree of a graph G. Then,

formally, the maximum activated degree is equal to

maxi∈[T ]∆(D(i) \D(1)), where the graph difference is

defined through the difference of their edge sets.

In this paper, instead of measuring the maximum

activated degree we will focus on preserving the max-

imum degree of input networks from specific families.

For example, one of our algorithms solves the Depth-d

Tree problem on any input network and, if the input

network has bounded degree, then it guarantees that

the degree in any round is also bounded.

3.3 Basic Subroutines

We will now provide algorithms that transform initial

graphs into graphs with small diameter and which will

be used as subroutines in our general algorithms. The

first called TreeToStar transforms any initial rooted

tree graph into a spanning star in O(log n) time with

O(n log n) total edge activations and O(n) active edges

per round, provided that the nodes have a sense of ori-

entation on the tree (i.e., can distinguish which of their

neighbors is “closer” to the root of the tree). In every

round, each node activates an edge with the potential

neighbor that is its grandparent and deactivates the

edge with its parent. This process keeps being repeated

by each node until they activate an edge with the root

of the tree.

Proposition 1 Let T be any tree rooted at u0 of depth

d. If the nodes have a sense of orientation on the tree,
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then algorithm TreeToStar transforms T into a span-

ning star centered at u0 in dlog de ≤ log n rounds. Tree-

ToStar has at most 2n− 3 active edges per round.

Our next algorithm called LineToCompleteBinary-

Tree transforms any line into a binary tree in O(log n)

time, with O(n log n) total edge activations, O(n) ac-

tive edges per round and the degree of each node is at

most 4, provided that the nodes have a common sense of

orientation. In each round, each node activates an edge

with its grandparent and afterwards it deactivates its

edge with its parent. This process keeps being repeated

by each node until they activate an edge with the root

of the tree or if their grandparent has 2 children.

Proposition 2 Let T be any line rooted at u0 of di-

ameter d. If the nodes have a sense of orientation

on the line, then algorithm LineToCompleteBinary-

Tree transforms T into a binary tree centered at u0 in

dlog de ≤ log n time. LineToCompleteBinaryTree has at

most 2n − 3 active edges per round, n log n total edge

activations and bounded degree equal to 3.

3.4 General Strategy for Depth-d Tree

All algorithms developed in this paper solve the Depth-

d Tree problem starting from any connected initial net-

work Gs from a given family. Our aim is to always

achieve this in (poly)logarithmic time while minimiz-

ing some of the edge-complexity parameters. There is

a natural trade-off between time and edge complexity

and each of our algorithms makes a different contribu-

tion to this trade-off. In particular, by paying for linear

degree, our first algorithm manages to be optimal in all

other parameters. If we instead insist on bounded de-

gree, then our second algorithm shows that we can still

solve Depth-d Tree within an additional O(log n) factor

both in time and total edge activations. Finally, if the

bound on the degree is slightly relaxed to (poly)log(n),

our third algorithm achieves o(log2 n) time.

All three algorithms are built upon the same general

strategy that we now describe. For each of them we

choose an appropriate gadget network, which has the

properties of being “close” to the target network Gf to

be constructed and of facilitating efficient growth. For

example, the Gf of our first algorithm is a spanning star

and the chosen gadget is a star graph, while the Gf of

our second algorithm is a complete binary tree and the

chosen gadget is the union of a ring and a complete

binary tree spanning that ring (called a wreath).

Our algorithms satisfy the following properties. The

nodes are always partitioned into committees, where

each committee is internally organized according to

the corresponding gadget network of the algorithm and

has a unique leader, which is the node with maximum

UID in that committee. Initially, every node forms its

own trivial committee and committees increase their

size by competing with nearby committees. In particu-

lar, committees select and, if possible, merge with the

maximum-UID committee in their neighborhood. Prior

to merging, such selections may give rise to pairs of

committees, in which case merging is immediate, but

also to rooted trees of committees where all selections

are oriented towards the root and merging has to be

deferred. In the latter case, the winning committee will

eventually be the root of the tree, at which point all

other committees of the tree will have merged to it. In

all cases, merging must be done in such a way that the

gadget-like internal structure of the winning committee

is preserved. This growth guarantees that eventually

there will be a single committee spanning the network.

At that point, the leader of that committee (which is

always the node with maximum UID in the network) is

an elected unique leader. Moreover, the gadget-like in-

ternal structure of that committee can be quickly trans-

formed into the desired target network, due to the by-

design close distance between them. For example, in

the algorithm forming a star no further modification

is required, while in the algorithm forming a complete

binary tree, a ring is eliminated from a wreath so that

only the tree remains.

Our algorithms are designed to operate in asyn-

chronous phases, with the guarantee that in every phase

pairs of committees merge and trees of committees
halve their depth. This can be used to show that in all

our algorithms a single committee will remain within

O(log n) phases. Each phase lasts a number of rounds

which is within a constant factor of the maximum diam-

eter of a committee involved in it, which is in turn upper

bounded by the diameter of the final spanning commit-

tee. The latter is always equal to the diameter of the

chosen gadget as a function of its size. The total time is

then given by the product of the number of phases and

the diameter of the chosen gadget. For example, in our

first algorithm the gadget is a star and the running time

(in rounds) is O(1) · O(log n), in our second algorithm

the gadget is a wreath of diameter O(log n) and the

running time is O(log n) · O(log n) = O(log2 n), while

in our third algorithm the gadget is a modified wreath,

called ThinWreath, of diameter o(log n) and the run-

ning time is o(log n) · O(log n) = o(log2 n). Given that

every node activates at most one edge per round, the

total number of edge activations of our algorithms is

within a linear factor of their running time.
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4 An Edge Optimal Algorithm for General

Graphs

Our first algorithm, called GraphToStar, solves the

Depth-d Tree problem, for d = 1. In particular, by us-

ing a star gadget it transforms any initial graph Gs
into a target spanning star graph Gf . Its running time

is O(log n) and it uses an optimal number of O(n log n)

total edge activations and O(n) active edges per round.

Optimality is established by matching lower bounds,

presented in Section 7.

Algorithm GraphToStar

Each committee C(u) is a star graph where the cen-

ter node u is the leader of the committee and all other

nodes are followers. The leader node of each commit-

tee is the node with the greatest UID in that commit-

tee. The UID of each committee is defined by the UID

of that committee’s leader. The winning committee in

the final graph, denoted C(umax), is the one with the

greatest UID in the initial graph. Every node starts as

a leader and forms its own committee as a single node.

The original edges of Gs are assumed to be maintained

until the last round of the algorithm and the nodes

can always distinguish them. The algorithm proceeds

in phases, where in every phase each committee C(u)

executes in one of the following modes, always execut-

ing in selection mode in phase 1.

– Selection: If C(u) has a neighboring committee

C(z) such that UIDz > UIDu and C(z) is not in

pulling mode, then, from its neighboring commit-

tees not in pulling mode, C(u) selects the one with

the greatest UID; call the latter C(v). It does this,

by u first activating an edge e1 with a potential

neighbor in C(v). Then u activates an edge with v,

deactivates the previous edge e1, and C(u) enters

either the merging or pulling mode. In particular, if

C(v) did not select, then C(u) and C(v) form a pair

and C(u) enters the merging mode. If on the other

hand C(v) selected some C(w), then C(u) enters

the pulling mode. Otherwise, C(u) did not select. If

C(u) was selected then it enters the waiting mode,

else it remains in the selection mode. If C(u) has no

neighboring committees, then it enters the termina-

tion mode.

– Merging: Given that in the previous phase the

leader of C(u) activated an edge with the leader

of C(v), each follower x in C(u) activates the edge

xv and deactivates the edge xu. The result is that

C(u) and C(v) have merged into committee C(v),

which remains a star rooted at v now spanning all

nodes in V (C(u)) ∪ V (C(v)). Therefore, C(u) does

not exist any more.

– Pulling: Given that in the previous phase the

leader of C(u) activated an edge with the leader

of C(v) and the leader of C(v) activated an edge

with the leader of C(w), u activates uw, deactivates

uv, and C(u) remains in pulling mode. If, instead,

the leader of C(v) did not activate in the previous

phase, then C(u) enters the merging mode. On the

other hand, given that in the previous phase the

leader of C(u) activated an edge with the leader of

C(v) and in the current phase, committee C(v) does

not exist anymore, this means that v is currently in
some committee C(w), and u activates uw and C(u)

enters the merging mode.

– Waiting: If C(u) has no neighboring committees,

C(u) enters the termination mode. If in the previous

phase no committee C(v) activated an edge with

u, then C(u) enters the selection mode. Otherwise

C(u) remains in the waiting mode.

– Termination: C(u) deactivates every edge in

E(Gs) \ E(C(u)). In particular, each follower x in

C(u) deactivates all active edges incident to it but

xu.

Correctness

Lemma 1 Algorithm GraphToStar solves Depth-1

Tree.

Proof It suffices to prove that in any execution of the

algorithm, one committee eventually enters the ter-

mination mode and that this committee can only be

C(umax). If this holds, then by the end of the termi-

nation phase C(umax) forms a spanning star rooted at

umax and umax is the unique leader of the network.

This satisfies all requirements of Depth-1 Tree.

A committee dies (stops existing) only when it

merges with another committee by entering the merg-

ing mode. First observe that there is always at least

one alive committee. This is C(umax), because enter-

ing the merging mode would contradict maximality of

umax. We will prove that any other committee eventu-

ally dies or grows, which due to the finiteness of n will

imply that eventually C(umax) will be the only alive

committee.

In any phase, but the last one which is a termina-

tion phase, it holds that every alive committee C(u) is

in one of the selection, merging, pulling, and waiting

modes. If C(u) is in the merging mode, then by the

end of the current phase it will have died by merging

with another committee C(v). It, thus, remains to argue

about committees in the selection, pulling, and waiting

modes.

We first argue about committees in the pulling

mode. Denote their set by Cpull. Observe that, in any
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given phase, the committees in pulling mode form a

forest F , where each C(u) ∈ Cpull belongs to a pulling

tree T of F . Any such pulling tree mimicks the execu-

tion of the TreeToStar algorithm (from Proposition 1)

on the leaders of committees C(u) and satisfies the in-

variant that its root committee Cr is always in the wait-

ing mode and Cr’s children are in the merging mode.

In every phase, Cr’s children merge with Cr and their

children become the new children of Cr and enter the

merging mode. It follows that all non-root committees

in T will eventually merge with Cr. Thus, all commit-

tees in pulling mode eventually die.

It remains to argue about committees in the se-

lection and waiting modes. We start from the waiting

mode. Any committee C(u) in waiting mode is a root of

either a pulling tree in the forest F or of a star of com-

mittees in which all leaf-committees are merging with

C(u). In both cases, C(u) eventually exits the waiting

mode and enters the selection mode. This happens as

soon as all other committees in its pulling tree or star

have merged to it, thus C(u) has grown upon its exit.

Now, a committee C(u) in the selection mode can

enter any other mode. As argued above, if it enters the

merging or pulling modes it will eventually die and if it

enters the waiting mode it will eventually grow. Thus,

it suffices to consider the case in which it remains in

the selection mode indefinitely. This can only happen if

all current and future neighboring committees of C(u),

including the ones to eventually replace neighbors in

pulling mode, have a UID smaller than UIDu. But each

of these must have selected a neighboring C(w), such

that UIDw > UIDu, otherwise it would have selected

C(u). Any such selection results in C(w) (or a z, such

that UIDz > UIDw in case w belongs to a tree) becom-

ing a neighbor of C(u), thus contradicting the indefinite

local maximality of UIDu. ut

Time Complexity

Let us move on to proving the time complexity of

our algorithm. At the beginning, we are going to ignore

the number of rounds within a phase, and we are just

going to study the maximum number of phases before

a single committee is left. We define |C(u)s| to be the

size of committee C(u) in phase s, which is the number

of nodes in committee C(u) in phase s.

Lemma 2 Consider committee C(u) that is in waiting

mode between phases s and s + j. If the size of every

committee in phase s is at least 2k, then the size of

committee C(u) once it enters the selection mode in

phase s+ j + 1 is at least 2k+j−2.

Proof Any committee C(u) in waiting mode is a root

of either (i) a pulling tree in the forest F or (ii) a star

of committees in which all leaf-committees are merging

with C(u).

For case (i): root committee C(u) is always in wait-

ing mode and every other committee C(v) of T is ei-

ther in pulling or merging mode. It follows that all non-

root committees C(v) in the pulling tree will eventually

merge with C(u) in some phase s+ j. W.l.o.g. assume

that every committee C(v) that belongs to the pulling

tree T entered pulling or merging mode in phase s and

every committee C(v) will have merged with committee

C(v) by phase s+ j. Every committee C(v) will stay in

pulling mode for i < j phases and in merging mode for 1
phase. Consider the leaders v of every committee C(v)

and note that while in pulling mode, the leaders are

mimicking the execution of the TreeToStar algorithm,

where the leader of C(u) is the root of the tree, and the

leaders of C(v) are the non-root nodes of the tree. We

know by Proposition 1, that the running time of the al-

gorithm is log d, where d is the depth of the tree. Thus,

if every committee C(v) enters the pulling mode in

phase s and the last committee C(v) to exit the pulling

mode is in phase s+ i, s+ i− s = log d =⇒ i = log d.

This means that the depth of tree T is 2i. Since

the depth of the pulling tree T is 2i, the tree T

must contain at least 2i committees. Additionally note

that after the last committee C(v) exits the pulling

mode is in phase s+ k, in phase s+ k + 1 it enters

the merging mode and in phase s+ k + 2 every com-

mittee C(v) has merged with committee C(u). Thus,

s+ i+ 2 = s+ j =⇒ i = j − 2 and the size of C(u) in

phase s+ j + 1 is |C(u)s+j+1| ≥ 2k ∗ 2i = 2k+j−2.

For case (ii): root committee C(u) is in

waiting mode and has at least one leaf com-

mittee in phase s. After the leaf committee

merges in 1 phase, committee C(u) has size
|C(u)s+1| ≥ |C(u)s|+ |C(u)s| ≥ 2k + 2k = 2k+1. ut

Lemma 3 If committee C(u) stays in the selection

mode for p ≥ 4 consecutive phases, then C(u) has a

neighboring committee C(v) ∈ Cpull that belongs to a

pulling tree T for at least p phases.

Proof Let us assume that committee C(u) stays in the

selection mode for p ≥ 4 consecutive phases while hav-

ing a neighbor C(v) that does not belong to pulling tree

T .

– If C(v) does not belong to a pulling tree in phase k,

then it cannot be in pulling mode.

– If C(v) is in selection mode in phase k and

C(v) does not select C(u) and C(u) does not se-

lect C(v), then C(v) has a neighbor C(w) where

UIDw > UIDv > UIDu and C(v) selected C(w).

Then C(v) enters the merging mode in phase k + 1
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and gets merged with C(w). In phase k + 2 com-

mittee C(w) becomes a neighbor of C(u) and

C(w) enters the selection mode. Therefore, since

UIDw > UIDu, C(u) would select C(w) in phase

k + 2, and enter either the pulling or merging mode.

Thus, a contradiction.

– If C(v) is in waiting mode in phase k, it cannot

be the root of a pulling tree, and is the root of a

star. Therefore in phase k+ 1 it will enter the selec-

tion mode and based on the analysis of the previous

paragraph, in phase k+3 C(u) will exit the selection

mode. Thus, a contradiction.

ut

Lemma 4 Let us assume that the minimum size of a

committee in phase s is 2k. If committee C(u) stays in

the selection mode from phase s to phase s + p, where

p ≥ 4, then in phase s+p+1 it will select or get selected

by a committee C(v) of size at least 2k+p−2.

Proof From Lemma 3 it follows that, since C(u) is in

the selection mode for at least 4 phases, there exists a

neighbor C(v) that belongs to a pulling tree T . W.l.o.g.

assume that C(w) is the root of the pulling tree T and

C(w) has been in waiting mode between phases s and

s+ p. Note also that in phase s+ p+ 1, committees

C(u) and C(w) are neighboring committees and both

are in selection mode. Thus, C(u) will exit the selection

mode in phase s+ p+ 1, because either C(u) will se-

lect C(w) or C(w) will select C(u). Since C(w) was in
waiting mode for p phases, the size of C(w) is at least

2k+p−2 (based on Lemma 2). ut

Lemma 5 Assume that the minimum size of every

committee in phase s is 2k and that every committee

will have exited the selection mode in phase s + p at

least once. The size of all winning committees (com-

mittees that still exist) in phase s+ p+ 1 is at least

2k+p−2.

Proof Trivially, if p ≤ 4 the winning committee has size

at least 2k+1 in phase p + 1 since it has merged with

at least one other committee. From Lemma 4 it follows

that if p ≥ 4 the winning committee between C(w) and

C(u) will have size at least 2k+p−2 in phase s+p+1. ut

Lemma 6 After O(log n) phases, there is only a single

committee left in the graph.

Proof We trivially assume that committee C(umax)

has size |C(umax)1| = 1 in phase 1. Based on

Lemma 5, after O(log n) phases, C(umax) has

size |C(umax)O(logn)| ≥ 21+O(logn)−c ≥ 2logn ≥ n.

Therefore, committee C(umax) must contain every

single node of G. ut

Lemma 7 Each phase consists of at most 2 rounds.

Proof Based on the description of the algorithm, the se-

lection phase lasts 2 rounds and the rest of the phases

last 1 round. ut

Edge Complexity

It is very simple to prove the edge complexity for the

algorithm. Note that in each round i each node activates

at most 1 edge and based on Lemma 6 the algorithm

runs for O(log n) phases which means that there are

O(n log n) total edge activations. Furthermore, if a node

had activated an edge u in round i, and it activates

another edge v in round i+ 1, then it deactivates edge

u. Therefore, each node cannot have more than 2 active

edges that it has activated itself at any time and since

we have n nodes in the network, there can ever be at

most 2n active edges per round. Since the structure of

every committee is a star, the maximum activated de-

gree is O(n).

Theorem 1 For any initial connected graph Gs, the

GraphToStar algorithm solves the Depth-1 Tree prob-

lem in O(log n) time with at most O(n log n) total edge

activations, O(n) active edges per round and O(n) max-

imum activated degree.

5 Minimizing the Maximum Degree on General

Graphs

In this section we will create an algorithm that mini-

mizes the maximum activated degree to a constant but

has O(log2 n) running time and O(n log2 n) total edge

activations.

For this algorithm, our committees must have at

least Ω(log n) diameter in order to have a constant de-

gree and therefore merging two different committees in

constant time while keeping a specific structure proves

to be complicated. The new gadget of our committees is

going to be a graph we call wreath. A wreath graph is a

graph that has both a ring subgraph and a complete bi-

nary tree subgraph. We are going to use the edges of the

ring subgraph to merge committees and the binary tree

subgraph to exchange information between the nodes

of the graph. First, let us define the structure of the

wreath graph.

Definition 1 (Wreath graphs) A graph D = (V,E)

belongs to the class of wreath graphs if it has two sub-

graphs Dr = (V,Er) and Db = (V,Eb), where Dr be-

longs to the class of ring graphs, Db belongs to the class

of complete binary tree graphs, and E = Er ∪ Eb.
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u

Fig. 1 A wreath graph with 8 nodes. The ring subgraph
consists of the normal (black) and dashed (blue) edges. The
complete binary tree consists of the dotted (red) and dashed
(blue) edges. Node u is the root of the complete binary tree.

The O(log n) diameter that the wreath graph pos-

sesses will allow the leaders of committees C(u) to com-

municate with neighboring committees C(v) inO(log n)

time. Additionally, the merging phase of each pair of

committees will require only O(log n) time. The algo-

rithm is almost identical to the GraphToStar as far

as the high level strategy is concerned. Committees

select neighboring committees and merge with them.

The main difference is that when a tree with root v

is formed, we cannot use the pulling mode since this

would increase the degree significantly. We provide an

example of two committees merging in Fig. 2. In this

example, committee C(u) is merging with committee

C(v) and the merging happens through nodes x and y,

see Fig. 2(a). The committees on each tree merge in a

single ring that includes all committees in O(1) time

(ring merging mode), see Fig. 2(b),2(c). After this, v

deactivates one of its incident edges in order to create

a line subgraph, see Fig. 2(d). Once this happens, each

node on the line executes an asynchronous version of

the LineToCompleteBinaryTree subroutine in O(log n)

time using the orientation of the new ring, where root v

is the root of the line. Once the subroutine is finished,

the complete binary tree subgraph of the wreath graph

is ready. Therefore we have managed to merge a tree

graph of multiple committees into a single committee.
Fig. 2 does not include the asynchronous version of the

LineToCompleteBinaryTree subroutine since it is quite

involved to illustrate.

Algorithm GraphToWreath

The structure of each committee/node is the same

as the GraphToStar algorithm apart from the fact that

each committee C(u) is a wreath graph. Every node

is able to distinguish between the edges of the binary

tree and the edges of the ring by marking them and it

can also distinguish its clockwise neighbor and counter-

clockwise neighbor on the ring. Our algorithm proceeds

in phases, where in every phase each committee C(u)

executes in one of the following modes, always executing

in selection mode in phase 1.

– Selection: If C(u) has a neighboring committee

C(z) such that UIDz > UIDu and C(z) is not

in Ring Merging mode or Tree Merging mode then,

from its neighboring committees not in ring merging

or tree merging mode, C(u) selects the one with the

greatest UID; call the latter C(v). If C(u) selected

C(v) or C(u) was selected, C(u) enters the Ring

Merging mode. If C(u) did not select anyone and it

was not selected by anyone, it stays in the selection

mode. If C(u) has no neighboring committees, C(u)

enters the termination mode.

– Ring Merging: Given that in the previous phase,

C(u) selected C(v), committee C(u) merges its ring

component with the ring component of C(v) by the

following method: Let k ∈ C(u) and l ∈ C(v), such

that edge kl is active. k activates an edge with the

clockwise neighbor of l, call it l1, and l activates

an edge with the clockwise neighbor of k, call it k1.

Then they deactivate edges kk1, ll1, and kl. The two

rings have now merged into a single ring.

Given that in the previous phase, C(u) was selected

by C(k), committee C(k) merges its ring component

with the ring component of C(u). C(u) enters the

tree merging mode.

– Tree Merging: Every node x in C(u) executes

one round of an asynchronous version of the Line-

ToCompleteBinaryTree algorithm, which extends

the LineToCompleteBinaryTree algorithm with ex-

tra wait states. If there exists node x that has not

terminated the asynchronous LineToCompleteBina-

ryTree algorithm, C(u) stays in the Tree Merging

mode. If all nodes x have terminated the asyn-

chronous LineToCompleteBinaryTree algorithm, all

nodes x have now merged with committee C ′(u)

whose leader is the root of the complete binary tree

and C ′(u) enters the selection mode. C(u) does not

exist anymore.

– Termination: Each follower x in C(u) deactivates

every edge apart from the edges that define the

spanning complete binary tree of C(u).

5.1 Low Level Description of Modes

In this subsection, we are going to describe the low level

details of each mode since the communication process

is much more complicated than the GraphToStar algo-

rithm.

Selection. Consider committee C(u). Each follower

x in committee C(u) sends a message {myUIDx,

maxNeighborUID,maxNeighborDiameter} to its
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x y

u v

(a)

x y

u v

(b)

x y

u v

(c)

x y

u v

(d)

Fig. 2 Example where committee C(u) is merging with committee C(v) and the merging happens through nodes x and y.
Figure (a) shows the initial connections. Figure (b) shows that ring merging process where x and y activate edges with the
counterclockwise neighbors of each other. Figure (c) shows the deactivation of edges from x and y in order to form the cycle
which includes the black and blue edges. Figure (d) shows that node v deactivates its incident edge (dotted line) in order to
turn the cycle into a line where the asynchronous version of the LineToCompleteBinaryTree subroutine will be executed.

leader u via the binary tree subgraph, see Fig. 3.

Variable myUIDx contains the UID of node x,

maxNeighborUID contains the UID of the neigh-

boring committee with the greatest UID among all

neighboring committees that x has an edge with, and

maxNeighborDiameter contains the diameter of that
committee.

x y

u v

Fig. 3 Every follower in C(u) sends a message with the in-
formation of its neighboring committees to leader u via the
complete binary tree. For example, follower x sends the in-
formation for committee C(v)

.

After committee leader u receives all triplets,

u knows the UID of all neighboring committees.

If ∃ maxNeighborUID > UIDu, C(u) selects

the neighboring committee C(v) with the greatest

maxNeighborUID and broadcasts a message to x to

initiate the connection with that committee. Since,

it is possible that multiple followers x sent the same

maxNeighborUID, u picks the one with the greatest

UIDx. If @ maxNeighborUID > UIDu, committee

C(u) does not select another committee. Either way,

after the selection, u waits to see whether another com-

mittee has selected C(u). Committee leader u knows

the maximum waiting time since it just received the

maximum diameter of all neighboring committees.

After follower x receives the initiation message, it

sends a connection message to the leader v of the neigh-

bouring committee C(v) via followers x and y though

the binary tree subgraphs. See Fig. 4. After leader v

receives all possible requests, it sends back an approval

message to all nodes y with a timestamp that defines

in which round the merging should happen. See Fig. 5.

Therefore every committee C(u) can understand

which committee C(v) it has selected and whether any

committees C ′(v) have selected C(u). This means that

C(u) knows which mode it should enter after the selec-

tion phase.

Ring Merging. Assume that multiple committees

C(v1), C(v2), ..., C(vi) for i = 1, ..., n − 1 have selected

committee C(u) in the selection phase, via followers

y1, y2, ..., yi respectively, whose neighbour x ∈ C(u) will
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x y

u v

Fig. 4 Leader u sends a message to follower x to initiate a
connection with committee v. Follower x sends the request to
follower y who propagates it to leader v

.

x y

u v

Fig. 5 Leader v sends the approval message to follower y to
initiate the merging with committee u

.

initiate the connection. See Fig. 6(a) for an example.

Followers y1, y2, ..., yi, x execute the following steps in

order to complete the ring merging mode.

– Follower x sends a message to followers

y1, y2, ..., yi to rearrange themselves into

an inner-circle by activating edges {x, y1},
{y1, y2}, {y2, y3}, ...., {yi−1, yi}, {yi, x} and deac-

tivating edges {y1, x}, {y2, x}, ..., {yi, x}. See Fig.

6(b).

– Each follower activates an edge with the clockwise

neighbor of its inner-circle outgoing neighbor. See

Fig. 6(c).

– Each follower deactivates an edge with its clockwise

neighbor, as well as the edges of the inner-circle. See

Fig. 6(d).

Note that the orientation of the new ring is the same

as the orientation of committee C(u) and all nodes in

the committee have the same orientation.

Tree Merging. Note that we cannot use the Line-

ToCompleteBinary tree algorithm from Section 3.3 to

merge the tree component of the committees since that

algorithm assumes that every node starts the execu-

tion at the same time. But in our case, we have mul-

tiple committees that are merging together with differ-

ent sizes and therefore the nodes are not synchronized.

Thus, we introduce an asynchronous version of the algo-

rithm where nodes can start the execution at different

rounds.

Every node x executes the asynchronous LineTo-

CompleteBinaryTree algorithm which works as follows.

If node x was a committee leader, then leaderx = true

else leaderx = false. The acronym EA stands for Edge

Activations and DEA stands for Edge Deactivations.

Algorithm 1 Asynchronous LineToCompleteBinary-

Tree
Bstate : EA, DEA, awake, leader
Binitial state of node : EA = 0, DEA = 0, Awake =
false
if node receives awake signal OR leader = true then

Awake = true
end if
if awake = true then

Broadcast awake
if grandparent has only 1 child then

if EAmy = DEAmy = EAfather =
DEAfather then

Activate edge with grandparent
EAmy + +

end if
if EAmy = DEAmy + 1 = EAchild then

Deactivate edge with parent
DEAmy + +

end if
end if

end if

We are going to give an intuition on how this algo-

rithm works. First, the leader of each committee broad-

casts an awake signal to its own committee. Once a node

awakes, it starts executing the asynchronous LineTo-

CompleteBinaryTree algorithm. Since nodes have dif-

ferent waking points, we cannot use the synchronous

LineToCompleteBinaryTree that requires synchronized

clocks from each node. Therefore, we are going to use

other properties that are present for every node in the

synchronous LineToCompleteBinaryTree which are: (i)

Every node x has the same total number of activations

as its parent. (ii) Every node has the same number of to-

tal activations as total deactivations. The asynchronous

version tries to mimic that by having every node acti-

vate an edge, only when its parent has the same total

number of edge activations as itself. Similarly, for the

deactivations, every node checks that its child has the

same deactivations as itself before deactivating an edge.

This way, the synchronous LineToCompleteBinaryTree

is simulated by the asynchronous version.

Correctness

Lemma 8 Algorithm GraphToWreath solves Depth-

log n Tree.

Proof It suffices to prove that in any execution of the

algorithm, one committee eventually enters the ter-

mination mode and that this committee can only be
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(a) (b)

(c) (d)

Fig. 6 Example where 3 committees C(v1), C(v2), C(v3) have selected committee C(u). Figure (a) shows the initial connection.
In figure (b) committees rearrange themselves into an inner-circle. In figure (c) each committee activates an edge with the
clockwise neighbor of its inner-circle outgoing neighbor. In figure (d) each committee deactivates an edge with its clockwise
neighbor(based on the committee orientation), as well as the edges of the inner-circle.
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C(umax) where umax is the highest UID in the net-

work. If this holds, then by the end of the termination

phase C(umax) forms a complete binary spanning tree

rooted at umax and umax is the unique leader of the

network. This satisfies all requirements of Depth-log n

Tree.

A committee dies only when it merges with another

committee by entering the tree merging mode. First ob-

serve that there is always at least one alive committee.

This is C(umax), because when it enters the tree merg-

ing mode, it is always the root of the complete binary

tree. We will prove that any other committee eventu-

ally dies or grows, which due to the finiteness of n will

imply that eventually C(umax) will be the only alive

committee.

In any phase, but the last one which is a termination

phase, it holds that every alive committee C(u) is in

one of the selection, ring merging, and tree merging

modes. If C(u) is in the ring merging mode then it will

enter the tree merging mode and if its leader is not

the root of the complete binary tree, then by the end

of the current phase it will have died by merging with

another committee C ′(u). It, thus, remains to argue

about committees in the selection mode.

Now, a committee C(u) in the selection mode can

enter the tree merging mode. As argued above, if it

enters the ring merging and tree merging modes in

sequence it will either die or it will eventually grow.

Thus, it suffices to consider the case in which it re-

mains in the selection mode indefinitely. This can only

happen if all current and future neighboring commit-

tees of C(u) have a UID smaller than UIDu. But each

of these must have selected a neighboring C(w), such

that UIDw > UIDu, otherwise it would have selected

C(u). Any such selection, results in C(w) becoming a

neighbor of C(u), thus contradicting the indefinite local

maximality of UIDu. ut

Time Complexity

Let us move on to proving the time complexity of

our algorithm. At the beginning, we are going to ignore

the number of rounds within a phase, and we are just

going to study the maximum number of phases before

a single committee is left.

Lemma 9 After O(log n) phases, there is only a single

committee left in the graph.

Proof Note that there is a direct correspondence be-

tween the modes in the GraphToWreath algorithm and

the GraphToStar algorithm.

Both selection modes are used to decide the selec-

tions between the neighboring committees. The differ-

ence between the two algorithms is that each selec-

tion phase has a different running time. In particu-

lar, The GraphToStar selection phase required 2 rounds

while the selection phase of the GraphToWreath requires

O(log n) rounds due to the diameter of the Wreath

graph that each committee has. Therefore Lemma 3

that talks about the selection waiting time still holds.

The ring mode is always an intermediate phase

between the selection phase and the tree merging

phase that lasts for O(1) rounds. The purpose of this

mode is to turn the tree T created by the commit-

tees in the selection phase into a cycle so that the

LineToCompleteBinaryTree subroutine can work. The

pulling mode in the GraphToStar implements the Tree-

ToStar subroutine, while the tree merging mode in

the GraphToWreath implements the asynchronous ver-

sion of the LinetoCompleteBinaryTree. Both subrou-

tines are used to merge the Trees T of depth t cre-

ated by the committees in O(log t) time and recall from

the basic subroutines subsection that the TreeToStar

and the LineToCompleteBinaryTree have the same run-

ning time. Therefore both algorithms require the same

amount of phases. Therefore Lemmas 2, 4 and 5 that

show the growth of each committee still hold.

Note that there is no merging or waiting mode in

the GraphToWreath since those modes have also been

implemented by the merging tree mode.

Since all modes that have been implemented in

the GraphToWreath have equivalent modes in the

GraphToStar with similar running times and growths

for the committes, the GraphToWreath algorithm re-

quires at most O(log n) phases. ut

Lemma 10 Each phase in the GraphToWreath algo-

rithm, requires at most O(log n) rounds.

Proof First, we argue that the selection phase requires

O(log n) rounds since each committee C(u) has to ex-

change information with its neighboring committees in

order to decide which committee C(w) it is going to

merge with and whether any other committee C(v)

will decide to merge with C(u). This requires time that

is upper bounded by the diameter of each committee.

Based on the low level description of the selection mode,

the leader of committee C(u) learns the UID of ev-

ery neighboring committee in log d rounds and initiates

the connection with the chosen neighboring committee

C(w) in another log d rounds, where d is the diameter

of committee C(u). Another log dw rounds are required

in order for committee C(w) to accept and initiate the

connection with committee C(u), where dw is the di-

ameter of C(w). Since log d ≤ log n and log dw ≤ log n,
the selection mode requires O(log n) rounds.

The ring merging phase requires O(1) rounds since

every committee has to merge its ring component with
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committees C(v) and the running time does not depend

on the size of each committee participating.

Each tree merging mode implements one round

of the asynchronous LineToCompleteBinaryTree. Note

here that the asynchronous version of this algorithm

has the same running time as the synchronous version

if we consider round 0 to be the first round in which all

nodes are awake. Additionally, since every committee

leader broadcasts the awake message to its own com-

mittee, the time needed for all nodes to be awake is

log(max d) < log n. Thus, the running time of the asyn-
chronous LineToCompleteBinaryTree is O(log n). ut

Edge Complexity

The analysis for the total edge activations is simple.

The algorithm runs for O(log2 n) rounds and each node

activates at most 1 edge per round. Therefore the total

edge activations are O(n log2 n).

Let us consider the maximum incident edges that a

node can have, excluding the edges of the initial graph.

Each node has up to 2 edges for the ring component

of the wreath and 2 for the binary tree component of

the wreath graph. Based on the low level description

of the GraphToWreath algorithm, a node can have 1

active edge used for the ring merging phase. Addition-

ally, it can have 2 active edges for the execution of the

LineToCompleteBinaryTree. Therefore the number of

active edges per round is O(n) and the maximum de-

gree of each node is 7 + c, where c is the degree of each

node in the original graph.

Theorem 2 For any initial connected graph with

constant degree, the GraphToWreath algorithm solves

Depth-log n Tree problem in O(log2 n) time with
O(n log2 n) total edge activations, O(n) active edges per

round and O(1) maximum activated degree.

6 Trading the Degree for Time

In this section, we provide another algorithm aiming

at O( logn
log logn ) time for the merging but we are going

to allow the maximum degree to reach O(log2 n). This

requires a new graph for the committees where the di-

ameter of the shape is O( logn
log logn ), so that the commu-

nication within the committees is O( logn
log logn ) and a new

way to merge the committees in O( logn
log logn ) time. For

this algorithm only, we also make the assumption that

all nodes know the size of the initial graph. This yields

an interesting open problem on whether we can modify

the algorithm so that it will not require knowledge of

the initial network.

The new graph is very similar to the Wreath graph

and we call it ThinWreath. The main difference is that

instead of having a complete binary tree component, it

has a complete polylogarithmic degree tree component

with diameter O( logn
log logn ). The O( logn

log logn ) diameter

that the ThinWreath graph possesses will allow the

leaders of neighboring committees to communicate in

O( logn
log logn ) time.

Algorithm GraphToThinWreath

The structure of each committee is the same as in

GraphToStar algorithm, apart from the fact that each

committee C(u) is a ThinWreath graph. We also as-

sume that the nodes know the size of the initial graph.

Our algorithm proceeds in phases, where in every phase

each committee C(u) executes in one of the following

modes, always executing in selection mode in phase 1.

– Selection: If C(u) has a neighboring committee

C(z) such that UIDz > UIDu and C(z) is in selec-

tion mode, then, C(u) selects its neighboring com-

mittee with the greatest UID; call the latter C(v). If

C(u) was selected by another committee, C(u) en-

ters the Matchmaker mode. If C(u) was not selected

and C(u) selected C(v), C(u) enters the Matched

mode. If C(u) did not select anyone and it was not

selected by anyone, it stays in the selection mode. If

C(u) has no neighboring committees, it enters the

termination mode.

– Matchmaker: If multiple committees had se-

lected C(u) in the previous phase, committee C(u)

matches those committees in pairs. If the number of

committees that selected C(u) is odd, one commit-

tee is matched with C(u). C(u) enters the Matched

mode.

– Matched: If committee C(u) selected committee

C(v) in the last selection phase, committee C(u) is

matched with another committee. Committee C(u)

enters the Ring Merging mode.

– Ring Merging: Given that in the previous phase,

C(u) was matched with C(v), committee C(u)

merges its ring component with the ring compo-

nent of C(v) where the winning committee is C(u)

if UIDu > UIDv , otherwise C(v) is the winning

committee. Either way, committee C(u) enters the

Leader Merging mode.

– Leader Merging: Given that in the previous

mode, committee C(u) lost to committee C(w), the

leader of C(u) activates an edge with the leader of

C(w). If committee C(w) has lost to some other

committee C(z) in the previous phase, C(u) en-

ters the Tree Merging mode. If C(u) did not lose to

any other committee, C(u) enters the Tree Merging

mode where u is the root.

– Tree Merging: The leader of C(u) executes one

round of the asynchronous LineToCompletePoly-
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logarithmicTree algorithm, which is similar to

the asynchronous LineToCompleteBinaryTree algo-

rithm with a termination criterion of log n children

instead of 2. If there exists node x that has not

terminated the asynchronous LineToCompletePoly-

logarithmicTree algorithm, C(u) stays in the Tree

Merging mode. If all nodes x have terminated the

asynchronous LineToCompletePolylogarithmicTree

algorithm, all nodes x ∈ C(u) have now merged

with committee C ′(u) whose leader of C(u) is the

root of the complete polylogarithmic tree and C ′(u)

enters the selection mode. Committee C(u) does not

exist anymore.

– Termination: Each follower x ∈ C(u) deactivates

every edge apart from the edges that define the com-

plete polylogarithmic spanning tree subgraph.

6.1 Low Level Description of the Modes

We will now describe the low level operation of the

modes. The selection and ring merging modes are iden-

tical to the equivalent modes of the GraphToWreath al-

gorithm and therefore will not be described here.

Matchmaker. Before we begin the description of this

mode, we would like to give some insight on the Match-

maker/Matched modes and what they are trying to

achieve. After the selection mode, the graph of commit-

tees consists of directed trees, directed lines and pairs.

We want to break up the directed trees into lines and

pairs since directly merging the committees using the

directed trees might result in having a final committee

with linear degree due to the structure of the directed

tree. We break up the committees by pairing up the

multiple committees C(v) that have selected commit-

tee C(u). The difficulty here arises from the fact that

committees C(v) are not neighbours and they have to

use committee C(u) in order to become neighbours by

activating edges on C(u). While doing this, we have to

make sure that these edge activations don’t violate the

maximum degree of O(log n).

In this mode, we know that at least one committee

C(v) has selected committee C(u). Leader u sends a

synchronisation message with a timestamp to all leaders

v which dictates when the Matched mode algorithm

should begin. This timestamp is equal to 3 · d where

d is the diameter of the neighbouring committee with

the highest UID among all neighbouring committees

of C(u). This guarantees that the message can reach

every leader v in 2 · d time and d time for the v leaders

to send the message back to their followers. After this,

committee C(u) enters the Matched mode.

Matched. In this mode, after leader v receives the syn-

chronization message from leader u, leader v sends the

timestamp to follower y to begin the Matched algo-

rithm. Once follower y receives the message, it starts

executing the following algorithm on the round speci-

fied by the timestamp. Followers x ∈ C(u) are respon-

sible for Matching followers y.

Algorithm 2 Matched
Bstate : round, Matched
Binitial state of node : round = request, Matched =
{1,myUID},
if round == request then

Send Matched to follower x
end if
if round == receive then

Receive Matched′ = {Match, UID} from follower x
if Match == 0 then

Activate edge with parent of x
Deactivate edge with x

end if
if Match == 1 then

myMatch = C(UID)
round = terminate

end if
end if
if round == terminate then

Terminate with committee myMatch as its Matched
committee
end if
if round == request then

round = receive
else

round = request
end if

Follower x acts as a matchmaker in this mode. In ev-

ery round, each follower yi asks the current neighbour x

to be matched with another follower yj . If multiple fol-

lowers yi send a Matched message, follower x matched

them in pairs, using their UIDs in ascending order and

sends Matched = {1, UID} back to each follower yi
where UID is the committee that each follower yi is

matched with. See Figs. 7(c),7(d). If only one follower

yi sends a Matched message then follower x sends back

Matched = 0, UID to inform it that no matches are

present. See Figs. 7(a). After that follower yi moves on

to the next level of the polylogarithmic tree by acti-

vating an edge with the parent of follower x and looks

again for a match. See Fig. 7(b).

In short, followers yi might start at different levels of

the polylogarithmic tree of C(u). In each round, they

activate an edge with the next level until they find a

match at their current level. Note that all followers yi
will find a match, since they have a common destination

which is the root of committee C(u).
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Let us now consider the maximum activated degree

of each follower x during the Matched algorithm. In

each round, followers yi might activate an edge with

follower x while coming through the lower levels. Each

follower x has at most log n children and it is not pos-

sible for more than 1 follower yi to come through each

child since, if one child had multiple requests from fol-

lowers yi, they would get matched together and termi-

nate as in Fig. 7(d). Therefore the maximum activated

degree of each follower x can increase by at most log n.

Finally note that at this point, the graph of committees

consists of directed lines and pairs.

Leader Merging. In this mode, provided that com-

mittee C(v) has smaller UID than C(u), leader v acti-

vates an edge with leader u by activating edges on the

polylogarithmic trees of C(v) and C(u). This process is

bound by the diameter of the committees. If we focus

on any directed lines in the graph of committees, we

can see that we have created a path that consists only

of the leaders of the committees in the directed line.

Tree Merging. Every committee leader v executes the

asynchronous LineToCompletePolylogarithmicTree al-

gorithm which is the same as the asynchronous Line-

ToCompleteBinaryTree algorithm except that termina-

tion criteria requires that the grandfather of each node

has log n children instead of 2 children.

Note here that the whole merging process is finished

for this phase. Our final graph consists of a ring graph

created by the ring merging process and a collection

of wreath graphs with leader u as the root, created by

the Leader/Tree merging process. Because of the Tree

merging process, there is a polylogarithmic tree con-

sisting of leaders u and v with diameter O( logn
log logn ).

Additionally each leader v is the root of its own polylog-

arythmic tree with diameter O( logn
log logn ) from the pre-

vious phase. Therefore the diameter of the collection of

wreath graphs is O( logn
log logn ).

6.2 GraphToThinWreath Proof

For this algorithm’s proof, it is not possible to use the

same strategy as the previous algorithms. This is be-

cause, while we can prove that this algorithm also re-

quires O(log n) phases as the previous algorithms, all

of our modes require O( logn
log logn ) but for the tree merg-

ing mode which requires O(log n) and therefore similar

analysis would yield O(log2 n) running time. Our new

strategy is to show that after O(log n) rounds in which

at least one committee is in the tree merging mode in

each round, there is only a single committee left in the

graph.

Correctness

Lemma 11 Algorithm GraphToThinWreath solves the

Depth- logn
log logn Tree problem.

Proof Since the selection mode of the

GraphToThinWreath algorithm is identical with

the GraphToWreath algorithm, we argue that there

will be a single committee left in the final graph. This

committee consists of a ring subgraph and multiple

thinwreath subgraphs. Based on the low level descrip-

tion of the tree merging mode, the diameter of the

graph is O( logn
log logn ). ut

Time Complexity

Lemma 12 After O(log n) tree merging rounds, there

is only a single committee left in the graph.

Proof We define a tree merging round to be a round

in which at least one committee is in the tree merging

mode. For the purposes of this proof, we are going to

consider each tree merging round to be its own phase.

Consider the rounds in which a committee is in the

tree merging mode. Observe that in any such round, the

leaders of those committees form a forest F, where each

committee belongs to a tree of F. Any such tree executes

the asynchronous LineToCompletePolylogarithmicTree

algorithm. This structure is identical to the structure

in the pulling mode of the GraphToStar algorithm. The

only difference between the pulling mode and the tree

merging mode is that they are running different al-

gorithms. But, the asynchronous LineToCompletePoly-

logarithmicTree and the TreeToStar algorithm have the

same running time and both of them merge the trees

of committees into single committees. Therefore the

two algorithms will have the same number of rounds.

Based on Lemma 6, there at most O(log n) phases

for the GraphToStar algorithm to terminate and ev-

ery phase includes at most one round of pulling mode

and subsequently there are at most O(log n) rounds of

pulling mode. Therefore the GraphToThinWreath algo-

rithm can have at most O(log n) tree merging rounds

before a single committee is left in the graph. ut

Lemma 13 The GraphToThinWreath algorithm has

O( log2 n
log logn ) running time.

Proof In order for a committee to enter the tree merg-

ing mode, it has to go through some or all of the other

modes of the algorithm which have O( logn
log logn ) running

time since all of them are bound by the diameter of

the committee. Therefore, for every tree merging round,

there can be at most O( logn
log logn ) rounds from the other

modes. Then based on Lemma 12, the running time of

the algorithm is O( logn
log logn ) ·O(log n) = O( log2 n

log logn ). ut
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Fig. 7 Figures showing the Matched mode. Figure (a,b) show that committee C(v) goes up one level on the binary tree of
committee C(u) if follower y finds no match through follower x. On the other hand, figures (c,d) show that if two committees
are in the same round on the same follower x, they get matched together.

Edge complexity

Let us consider the maximum possible edges added

on each node throughout each phase. Based on the low

level description of the modes, each mode adds at most

O(log n) number of edges to each node. From Lemma

12, we implicitly know that there can be at most log n

phases until the algorithm terminates. Therefore, the

maximum degree of each node is O(log2 n). Similarly,

since in every round, each node activates at most 1 edge,

the maximum edges activated are O(n· log2 n
log logn ). Finally,

since in every mode, every edge activation is followed

by a deactivation, the maximum number of activated

edges in O(n).

Theorem 3 For any initial connected graph with poly-

logarithmic degree, the GraphToThinWreath algorithm

solves Depth- logn
log logn Tree in O( log2 n

log logn ) time with

O(n log2 n) total edge activations, O(n) active edges per

round and O(1) maximum activated degree.

7 Lower Bounds for the Depth-log n Tree

Problem

We will now shift our focus into proving lower bounds

for our model. We are going to provide lower bounds for

both a centralized model and a distributed one because

we want to show that there is an important difference

between the two of them.

7.1 Centralized Lower Bounds

In the centralized setting, everything we have previ-

ously defined in the model subsection stays the same

but now every node also has complete knowledge of the

graph and a centralized controller can decide what each

node will do in each round.

We begin by defining the potential of a UID to a

node v. The potential describes how far the UID is from

node v. We are going to use this definition to measure

how fast the identifier can be transmitted throughout

the graph.

Definition 2 We define the potential of a UIDu to

v as its minimum “distance” from v. The distance is

defined as follows: Consider all nodes w in the network

that know UIDu. Compute the length of the shortest

path between each node w and node v. The minimum

length among all shortest paths is the distance between

UIDu and node v. We denote the potential of UIDu to

v by φu,v.
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Note that in any initial graph D = (V,E), ∀u, v ∈
V, φu,v ≤ n− 1. Consider any pair of nodes u, v, where

φu,v = k. There are two ways to reduce φu,v in each

round i:

• Information Propagation. Consider all nodes w

that currently know UIDu. Compute the shortest path

between all pairs of w and v and pick node w that yields

the smallest shortest path. Node w can send UIDu to

one of its neighbors y that belong to the shortest path

between w and v to reduce φu,v by 1.

• Reduce Shortest Paths. Consider all nodes w

that currently know UIDu. Compute the shortest path

between all pairs of w and v and pick node w that yields

the smallest shortest path with size = k. Now consider

all pairs of nodes x, y that are potential neighbors and

also belong to the shortest path between w and v. Ac-

tivating xy between one pair of x, y reduces φu,v by 1.

Activating multiple xy between different pairs in one

round can reduce φu,v even more but at most by k/2.

Observation 1 In order for an algorithm to solve the

Depth-log n Tree Problem, ∀u, v ∈ V, φu,v ≤ log n.

Lemma 14 Any transformation strategy based on this

model requires Ω(log n) time to solve the Depth-log n

tree problem if the initial graph Gs is a spanning line.

Proof Consider a spanning line where, for simplicity, we

call the node that resides at the “left” endpoint of the

line u and the node that resides at the “right” endpoint

of the line v. According to Observation 1, in order for an

algorithm to solve the Depth-log n tree problem, φu,v ≤
log n. In the initial graph, φu,v = n− 1. We know that

by using edge activations, we can reduce φu,v by half in

each round, and by using Information Propagation we

can reduce φu,v by 1 in each round. Therefore in order

for φu,v = log n, any algorithm would require at least

Ω(log n) rounds. ut

Lemma 15 Any transformation strategy based on this

model that solves the Depth-log n Tree problem in

O(log n) time requires Ω(n) edge activations.

Proof Let us again consider a spanning line as the ini-

tial graph. W.l.o.g. let us assume that the size of the

network is odd. Let us call u the node that is the “left”

end point of the line and v the “right” endpoint of the

line.

Let us assume that in some round i, where i ≤ log n,

that φu,v ≤ log n. We can produce the following equa-

tion based on the two rules that allow us to reduce

the potential: InitialPotential−#EdgeActivations−
#MessagesSent ≤ log n. The maximum value of

MessagesSent is log n and InitialPotential = n − 1

and if we add those in the previous equation we get

#EdgeActivations ≥ n − 1 − 2 log n and therefore, in

order for φu,v ≤ log n at least n−1−2 log n edges have

to have been activated. ut

Lemma 16 Any transformation strategy based on this

model that solves the Depth-log n Tree problem in

O(log n) time, requires Ω(n/ log n) edge activations per

round.

Proof From Lemma 15 we know that in order to

have φu,v = 0, in log n time, there must be at least

EdgeActivations = n edge activations. Now, since we

are trying to find the minimum number of edge activa-

tions per round possible, we can easily do this by divid-

ing the total number of edge activations with the num-

ber of rounds. Therefore EdgeActivationsPerRound ≥
EdgeActivations

Rounds ≥ Ω(n)
logn . ut

Since we have just proven that Ω(n) edge activa-

tions are required in order to solve the Depth-log n

problem given any initial graph, we are now going to

prove that Θ(n) edges are sufficient in order to solve it.

First, we are going to informally prove it for the special

case of the spanning line graph and afterwards we are

going to prove it for general graphs.

Consider a spanning line with nodes u1, u2, . . . , uj
for j = 1, 2, . . . , n. For simplicity, assume that u1 is

the “left” endpoint of the line, u2 is the neighbor of

u1 etc, u3 is a neighbor of u2 etc. In each round i, we

activate edge uj , uj+2i ∀ {uj |(j mod (2i) = 1) ∧ (j +

2i ≤ n)}. After log n rounds, the diameter of the shape

is equal to log n. Let us now proceed to analyzing the

total edge activations. By definition of the algorithm, in

each round i, n
2i edges are activated. Since the algorithm

runs for log n rounds, we have
∑logn
i=1

n
2i = n − 1 total

edge activations. We call this algorithm CutInHalf.

Theorem 4 Given any initial graph D = (V,E), the

Depth-log n problem can be solved in O(log n) time, with

Θ(n) total edge activations.

Proof Since we are in a centralized setting, we are first

going to perform some global computations that are

going to output the specific edges that have to be ac-

tivated in order for the diameter of the shape to drop

to log n. We consider any initial graph D = (V,E) and

we pick an arbitrary node called u. First, we compute

a spanning tree that starts from node u. Afterwards we

compute an Eulerian tour starting from u. This way

we can create a virtual ring D′ = (V ′, E′) that has

|V ′| ≤ 2|V | and |E′| ≤ 2|E|. Now in this ring, node

u deactivates one of its incident edges and the graph

is now a line. We can now execute the CutInHalf algo-

rithm to solve the Depth-log n Tree problem in O(log n)

time, with Θ(n) total edge activations. ut
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7.2 Distributed Lower Bound

In this part, we are going to show that there is a dif-

ference in the minimum total edge activations required

for solving the Depth-log n problem between the cen-

tralized and the distributed model. At this point, we

would like to remind the reader that an algorithm is

called comparison based if it manipulates the UIDs

of the network using comparison operations (<,>,=)

only. Our main theorem will show that any determin-

istic distributed comparison based algorithm requires

Ω(n log n) total edge activations to solve the Depth-

log n Tree problem in O(log n) time. Consider two

nodes, called u and v , that have received increasing

order UIDs that are larger than both u and v during

the execution of a deterministic comparison based algo-

rithm. Since nodes are only allowed to compare UIDs

between them, the results of the comparison of u and

v are exactly the same and thus, u and v must have

the same behaviour until they find a different result by

comparing receiving UIDS. We are going to use this

behaviour to show that any algorithm must activate
Ω(n log n) total edge activations.

Definition 3 Let U = u1, u2, . . . , uk be a sequence of

UIDs of length k. We say that U is an increasing order

sequence if, for all i, j, 1 ≤ i, j ≤ k, we have i ≤ j iff

ui ≤ uj .

Definition 4 Let A be a comparison-based algorithm

executing on an increasing order ring graph. Let i and j

be two nodes in the ring graph. We say that i and j are

in corresponding states if the UIDs that they both have

received from counterclockwise neighbors are a decreas-

ing order sequence and the UIDs they have received

are an increasing order sequence and vice versa. Two

nodes in corresponding states in round i must have the

same behaviour during the execution of an algorithm

in round i

Definition 5 We define the increasing order ring R as

follows. Suppose we have an increasing order sequence

U of UIDs to be assigned on a ring with n nodes. We as-

sign the smallest UID from U = u1, u2, . . . , uk to an ar-

bitrary node and we continue assigning increasing UIDs

clockwise (or counterclockwise). We call this an increas-

ing order ring.

Definition 6 We define a round of an execu-

tion/algorithm to be active if at least one message is

sent in it or an edge is activated in it.

Definition 7 We define the k-expo-neighborhood of

node i in ring R of size n, where 0 ≤ k ≤ n/2, to

consist of the 2 · 2k + 1 nodes i− 2k, . . . , i+ 2k, that is,

those that are within distance at most 2k from node i

(including i itself).

Lemma 17 Consider an increasing order ring of size
n. Let dmin be the initial distance between node d and

the node with the minimum UID called d0. Let dmax
be the initial distance between node d and the node

with maximum UID called dn−1. Let i and j be two

nodes in A, where imin, imax is the minimum distance

between i and d0, dmax respectively, and jmin, jmax
is the minimum distance between j and d0, dmax re-

spectively. Let A be a comparison-based algorithm ex-

ecuting in the ring. Then, nodes i and j must be

in corresponding states for at least k rounds, where

2k = min(max(imin, imax),max(jmin, jmax)).

Proof Note here that nodes i and j are in corresponding

states as long as (((φd0,i > 0)∨(φdn−1,i > 0))∧((φd0,j >

0) ∨(φdn−1,j > 0)). In simple terms, i and j are in cor-

responding states as long as both of them do not know

both UIDd0 and UIDdn−1
which follows from definition

4. This means that i and j will stop being in correspond-

ing states once one of them learns both d0 and dmax. By

definition, 2k is the potential between i, j and d0, dmax
and we know that the potential of a UID can only be de-

creased by information propagation and reducing short-

est paths, where information propagation reduces the

potential by at most 1 per round and reducing shortest

paths reduces it by half. Thus, since the initial poten-

tial is 2k, by applying the potential reduction meth-

ods, any algorithm would need at least k− log k rounds

so that (((φd0,i = 0) ∨(φdn−1,i = 0)) ∧ ((φd0,j = 0)

∨(φdn−1,j = 0)). ut

Observation 2 Any transformation strategy based on

this model that solves the Depth-log n Tree problem in

O(log n) time in an increasing order ring, requires at

least log n active rounds.

Theorem 5 Any deterministic distributed algorithm

that solves the Depth-log n Tree problem in O(log n)

time, requires Ω(n log n) total edge activations.

Proof Consider an increasing order ring R with n nodes

and algorithm A that solves the Depth-log n problem.

Consider the node with the greatest UID in the net-

work, called umax, the node with the smallest UID in

the network, called u1, and the antipodal node of umax
called uc.

First of all, note that in the first round, all nodes

except from u1 and umax are in corresponding states.

We can generalize this statement by using Lemma 17

to state that in round i, each node whose i-expo-

neighborhood does not include both u1,umax is in a cor-

responding state with each such node. Therefore those
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nodes behave the same way e.g. if in round i, one of

those c nodes activates an edge, then all c nodes ac-

tivate an edge. For this proof, we define a round of

algorithm A to be live if the c nodes activate at least

one edge in it, we also define a round of algorithm A to

be asleep if none of the c nodes activate an edge in it.

We already know that we need at least log n active

rounds to connect umax with uc from Lemma 2. Our

goal here is to prove that log n of those active rounds

also have to be live rounds.

For simplicity, we define the set C where node u ∈ C
if u is in the same corresponding state as uc (including

uc), the set A where node u ∈ A if u is not in the same

corresponding state as uc.

Consider an arbitrary round i, where the shortest

path between umax and uc is |P | = k. This shortest

path can be split into two different paths. The one

called PA that includes nodes u ∈ A and the one called

PC that includes nodes v ∈ C. Essentially, the poten-

tial φumax,a ≥ |PC | since otherwise, some node v ∈ C
would know UIDumax which is impossible by definition

of set C. Let us divide our analysis between asleep and

live rounds and study how much the potential can be

reduced in each round.

• Asleep rounds. In each asleep round a, only

nodes u ∈ A can activate edges and |PC | can only be

reduced by at most l+ 1 where l is the total number of

live rounds before round a. We can reduce it l by having

u ∈ A activating an edge with each potential neighbor

v ∈ C, and reduce it 1 by having u send UIDumax
to

all v ∈ C.

• Live rounds. In each live round l, all nodes can

activate an edge so we can reduce |PC | by l + 1 by
following the above strategy and additionally, use edge

activations between nodes v ∈ C so that |PC | is reduced

by at most half.

Note here, that Asleep rounds are not enough to

reduce the potential to 0 in order to solve the Depth-

log n problem. After O log(n) asleep rounds, φumax,a ≥
InitialPotential − (log n)(l + 1) = n

2 − (log n)(l + 1).

Therefore we need at least log n live rounds to solve the

Depth-log n problem.

We are now examining how many edges are acti-

vated in each live round. Before we do that, we list some

abbreviations: CN : the number of nodes in the original

graph, NRL: number of nodes that were removed in

previous live rounds, NRA: number of nodes removed

in previous asleep rounds. Recall that in each live round

l , at least 1 node v ∈ C activates an edge and by

Lemma 17, all nodes v ∈ C activate an edge. The num-

ber of nodes v ∈ C in round i are |u| ≥ #CN −NRL−
NRA = (n− 2)− (

∑l−1
i=1 2i)(

∑a
i=1−i(l− 1))− a(l− 1).

The number of edges activated in each round l are at

least |C| ≥ |u|. Therefore the total number of edge ac-

tivations in live rounds after log n rounds is at least

(n − 2) − (
∑logn
i=1 2i)(

∑logn
i=1 −i(l − 1)) − a(l − 1) =

Θ(log n). ut

8 Conclusion and Open Problems

In this work we considered a distributed model for ac-

tively dynamic networks. The model can achieve global

distributed computation and network reconfiguration

in (poly)logarithmic time, but trivial solutions incur an

impractical cost, which is related to the creation and

maintenance of edges in the dynamic network gener-

ated by the algorithm. We defined natural cost mea-

sures associated with the edge complexity of actively

dynamic algorithms. It turns out that there is a natural

trade-off between the time and edge complexity of al-

gorithms. By focusing on the apparently representative

task of transforming any initial network from a given

family into a target network of (poly)logarithmic diam-

eter, which can then be exploited for global computa-

tion or further reconfiguration, we obtained non-trivial

insight into this trade-off.

Our model is inspired by recent developments in the

algorithmic theory of dynamic networks and in the the-

ory of reconfigurable robotics. Still, it turns out to be

very close to the interesting area of overlay network

construction. It is not clear yet what is the formal re-

lationship between the polylogarithmic restriction on

communication in overlay networks and our efforts to

minimize the total number of edge activations in our

algorithms. This remains an interesting question for fu-

ture research.

There is also a number of technical questions spe-

cific to our model and the obtained results. We do not

know yet what are the ultimate lower bounds on time

for different restrictions on the maximum degree. For

maximum degree bounded by a constant our best up-

per bound is O(log2 n) and if bounded by (poly)log(n)

this drops slightly by an O(log log n) factor. Can any

of these be improved to O(log n), that is, matching the

Ω(log n) lower bound on time? It would also be valu-

able to investigate randomized algorithms for the same

problems, like those already developed in overlay net-

works.

Finally, there are many variants of the proposed

model and complexity measures that would make sense

and might give rise into further interesting questions

and developments. Such variants include anonymous

distributed entities which are possibly restricted to

treat their neighbors identically even w.r.t. actions

(e.g., through local broadcast) and alternative poten-
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tial neighborhoods, e.g., activating edges at larger dis-

tances.
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