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Abstract

This paper presents a Markov sampling-based framework, called Asymptotic Bayesian Optimiza-

tion, for solving a class of constrained design optimization problems. The optimization problem

is converted into a unified two-phase sample generation problem which is solved by an effective

Markov chain Monte Carlo simulation scheme. First, an exploration phase generates designs dis-

tributed over the feasible design space. Based on this information, an exploitation phase obtains

a set of designs lying in the vicinity of the optimal solution set. The proposed formulation can

handle continuous, discrete, or mixed discrete-continuous design variables. Appropriate adaptive

proposal distributions for the continuous and discrete design variables are suggested. The set of

optimal solutions provides valuable sensitivity information of the different quantities involved in

the problem with respect to the design variables. Representative examples including an analytical

problem involving nonlinear benchmark functions, a classical engineering design problem, and a

performance-based design optimization problem of a structural system under stochastic excitation

are presented to show the effectiveness and potentiality of the proposed optimization scheme. Val-

idation calculations show that the scheme is a flexible, efficient and competitive choice for solving

a wide range of classical and complex engineering design problems.
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optimization.

1. Introduction

Constrained optimization problems originate from a large number of involved engineering de-

sign processes. The problem is generally formulated in terms of minimizing a cost function or

maximizing a utility function subject to multiple inequality constraints. In addition, and due to

manufacturing limitations, some design variables cannot be considered as continuous but should

be treated as discrete in many cases. Due to the significance of this type of problems, the devel-

opment of efficient and robust constrained optimization algorithms has been an important area of

research in engineering design [1, 2, 3].

One class of optimization schemes for solving constrained optimization problems is based on

traditional mathematical optimization algorithms [1, 4, 5, 6]. This type of schemes has been exten-

sively used in a large number of engineering design problems. Recently, stochastic-based search

algorithms have been also proposed for constrained optimization. This class of algorithms can

be classified into three main groups: evolution-based, physics-based, and swarm-based methods.

Evolution-based methods, which are inspired by the laws of natural evolution, include Genetic

Algorithms (GA) [7], Evolution Strategies (ES) [8], Genetic Programming (GP) [9], etc. On the

other hand, physics-based methods such as Simulated Annealing (SA) [10], Gravitational Search

Algorithm (GSA) [11], Subset Simulation-based algorithms (SuS) [12, 13], and Ray Optimiza-

tion (RO) [14], replicate physical rules. Finally, swarm-based techniques that imitate the social

behavior of different groups include Particle Swarm Optimization (PSO) [15], Ant Colony Opti-

mization (ACO) [16], Harmony Search (HS) [17], Artificial Bee Colony (ABC) [18], etc. Some

of the advantages of using stochastic search algorithms include their simplicity, flexibility, and

local optima avoidance. In this context, one important issue related to constrained optimization

is constraint-handling [19, 20, 21]. In this regard, a number of strategies have been suggested

in the context of specific stochastic optimization algorithms such as evolutionary algorithms [22],

simulated annealing [23], particle swarm optimization [24, 25], and subset simulation-based algo-

rithm [13]. The previous stochastic optimization algorithms have been applied in a number of

constrained optimization problems with different levels of efficiency and robustness.

Considering that design optimization of complex systems is a challenging problem, and the fact

that there is no single method capable of solving all types of constrained optimization problems,
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there is still room for further developments in this area. This motivates the attempt to develop an

effective and flexible framework for solving complex constrained optimization problems, includ-

ing problems with mixed discrete-continuous design variables. In the proposed scheme, which is

called Asymptotic Bayesian Optimization (ABO), the optimization problem is converted into a

problem of successively generating samples according to a sequence of probability distributions

with supports increasingly concentrated in a vicinity of the optimum solution set. The samples

are generated by a unified two-phase approach based on an efficient Markov chain Monte Carlo

technique [26, 27]. The first phase corresponds to an exploration state which generates designs

uniformly distributed over the feasible design space, while the second phase, which is an exploita-

tion state, generates a set of designs lying in the vicinity of the optimal solution set. The proposed

constraint-handling approach is direct and does not require special constraint-handling techniques.

In fact, the same framework for obtaining samples in the vicinity of the optimal solution set is

used for finding designs in the feasible space. The solution scheme can efficiently explore the

sensitivity of the objective function and constraints with respect to the design variables in the

feasible design space as well as in the neighborhood of the optimal solution set. In this context,

appropriate adaptive proposal distributions are suggested for the continuous and discrete design

variables. Moreover, the optimization algorithm can be implemented with few control parameters.

In summary, it is the objective of this contribution to propose a unified Markov sampling-

based framework for solving a class of constrained optimization problems with application to

design optimization. The contribution can be viewed as an extension and generalization of the

work presented in [28, 29, 30, 31] in the sense that the same formulation can be used for a wide

range of engineering design problems involving continuous, discrete, or mixed discrete-continuous

design variables. The structure of the paper is as follows. In Section 2, the general formulation

of the problem is presented. The relationship between the optimization and the sample gener-

ation problem is explained in Section 3. Section 4 outlines the sample generation scheme to be

implemented. The exploration and exploitation phases are discussed in Sections 5 and 6, respec-

tively. Some advantages of the proposed optimization scheme are highlighted in Section 7. The

performance and capabilities of the proposed algorithm are demonstrated in Section 8 by means

of three example problems. The paper closes with some final remarks.
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2. Problem Formulation

Consider the constrained optimization problem formulated as

Minx c(x)

s.t. gj(x) ≤ 0 , j = 1, . . . , ng

x ∈ X (1)

where c(x) is the objective function, gj(x) is the jth constraint function, ng is the number

of inequality constraints, x represents the set of design variables, and X is the search space.

The set of design variables is defined as x = 〈xTc ,xTd 〉T ∈ X = Xc × Xd ⊂ Rnc+nd , where

xc(xci, i = 1, . . . , nc) ∈ Xc ⊂ Rnc denotes the set of continuous design variables, nc is the number

of continuous design variables, xd(xdi, i = 1, . . . , nd) ∈ Xd ⊂ Rnd denotes the set of discrete design

variables, and nd is the number of discrete design variables. The side constraints for the continuous

design variables are given by xlci ≤ xci ≤ xuci, i = 1, . . . , nc, where xlci and xuci are the correspond-

ing lower and upper bounds. Finally, the set of available discrete values Xdi for the ith discrete

design variable is written as xdi ∈ Xdi = {xdi(j), j = 1, . . . , ndi}, i = 1, . . . , nd. For convenience,

the available discrete values are listed in an ascending order. The objective function c(x) can be

defined in terms of general cost functions, while the design constraints gj(x) ≤ 0, j = 1, . . . , ng

can be given in terms of different design specifications.

3. Relationship Between Optimization Problem and Sample Generation Problem

Based on the connection between statistical mechanics and combinatorial optimization pro-

posed in [10], with the idea of simulated annealing, the optimization problem in Eq. (1) can be

converted into a problem of generating sample points or designs according to a specially devised

distribution. To examine this connection, it is first observed that finding the minimum of the

objective function c(x) is equivalent to find the maximum of the function exp(−c(x)/K), for any

given value of K > 0 [10]. The parameter K is usually called temperature by analogy with the

Boltzmann-Gibbs distribution in statistical mechanics [32]. Next, artificially treating the design

variables as random variables distributed over the feasible design space Xfeasible, where

Xfeasible =
{
x = 〈xTc ,xTd 〉T : xc ∈ Xc ∧ xd ∈ Xd ∧ gj(x) ≤ 0, j = 1, . . . , ng

}
, (2)
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consider the non-normalized distribution

fK(x) ∝ exp

(
−c(x)

K

)
IXfeasible

(x) (3)

where IXfeasible
(x) is the indicator function of the feasible design space Xfeasible, that is, IXfeasible

(x) =

1, for x ∈ Xfeasible, and IXfeasible
(x) = 0, otherwise. The distribution fK(x) becomes proportional

to IXfeasible
(x) as K → ∞, and it becomes spikier as K → 0. The previous results correspond

to the concept of annealing which indicates that as K decreases, the distribution fK(x) puts

more and more of its probability mass into the set of feasible designs that maximize the function

exp(−c(x)/K). Thus, a sample or design drawn from fK(x) will be in a vicinity of the optimal

solution set X∗
c with very high probability when K → 0 [30, 31]. Then, if a number of samples

(designs) following the distribution fK(x) as K → 0 can be generated, the sample points with

the smallest value of c(x) among the generated designs can provide a good approximation for the

optimal solution set of the problem.

4. Sample Generation

As previously pointed out, the optimization problem can be converted into a problem of gen-

erating sample points (designs) according to the non-normalized distribution fK(x) with K → 0.

The generation of the required samples can be carried out by Markov chain Monte Carlo tech-

niques [33]. This is a family of stochastic simulation algorithms for sampling from arbitrary

probability density distributions. They are based on constructing a Markov chain whose state

probability distribution converges to any desired target distribution as its stationary distribu-

tion. In this context, a number of standard algorithms may be used, including the independent

Metropolis-Hastings algorithm [34], the random walk Metropolis-Hastings algorithm [35, 36], the

asymptotically independent Markov sampling scheme [37], etc. In the present formulation, a

highly effective Markov chain Monte Carlo simulation technique called the transitional Markov

chain Monte Carlo (TMCMC) method is employed [26, 27]. It is noted that the treatment of

the design variables as random variables is just a tool in the present formulation for setting the

optimization problem into a sample generation problem [30, 31, 38]. In the framework of the

TMCMC method, define a series of non-normalized intermediate distributions of the form

fK0(x) ∝ IXfeasible
(x) , fKj

(x) ∝ exp

(
−c(x)

Kj

)
IXfeasible

(x) , j = 1, 2, . . . (4)
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where ∞ = K0 > K1 > . . . > Kj > . . . is a sequence of monotonically decreasing parameters

with Kj → 0 as j → ∞. These parameters are constructed adaptively in such a way that the

distributions fKj
(x) and fKj+1

(x) be similar [26, 34, 39]. This small change of the shape between

consecutive distributions allows to efficiently obtain samples from fKj+1
(x) based on the samples

from fKj
(x). To this end, different criteria can be used. In particular, a criterion based on the

effective sample size technique [34, 39] is considered in the present implementation. According to

this criterion, the value of Kj+1, given Kj, is chosen to satisfy the equation

n∑
i=1

exp
(
−2c(xji )∆Kj

)
(

n∑
i=1

exp
(
−c(xji )∆Kj

))2 =
1

νn
(5)

where ∆Kj = 1/Kj+1−1/Kj, and ν ∈ (0, 1) is a user-defined parameter. At the zeroth level, j = 0,

uniformly distributed samples x0
1, . . . ,x

0
n are generated over the feasible design space Xfeasible,

where n is the number of samples per stage. The samples at stage j + 1, i.e., xj+1
1 , . . . ,xj+1

n ,

j = 0, 1, . . ., which are approximately distributed according to fKj+1
(x), are obtained by gener-

ating Markov chains using the Metropolis-Hastings algorithm [35, 36]. The lead sample of each

chain, x̃j+1, is a sample from the previous stage, xji , drawn with probability equal to its normalized

importance weight, w̄ji , i = 1, . . . , n (see Appendix A). Each candidate design x? = 〈x?cT ,x?dT 〉T

is generated from an adaptive proposal distribution with independent continuous and discrete

components [29] as described in appendices B and C, respectively. The candidate design is then

accepted or rejected according to the procedure described in Appendix D. The procedure is re-

peated until the required number of samples has been obtained. It is noted that when the number

of samples n → ∞, the samples generated by the previous procedure are actually distributed

according to the non-normalized intermediate distributions fKj
(x), j = 1, 2, . . . which ultimately

are densely concentrated near the optimum solution set. Furthermore, the target non-normalized

distribution fK(x) ∝ exp(−c(x)/K)IXfeasible
(x), K → 0, can be viewed as the posterior distribu-

tion of a Bayesian model updating problem where exp(−c(x)/K), K → 0, takes the role of the

likelihood function and IXfeasible
(x) of the prior distribution. These features are the reasons for

naming the proposed optimization scheme “Asymptotic Bayesian Optimization”. The generation

of samples at stage j+1, i.e., xj+1
1 , . . . ,xj+1

n , based on the samples generated at level j, is schemat-

ically represented in Fig. 1. A detailed implementation of the TMCMC method can be found in
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[26, 27].

Figure 1: Sample generation process (Flowchart 1).

5. Exploration Phase

The first step of the proposed solution scheme requires the generation of a set of samples

uniformly distributed over the feasible design space Xfeasible. To this end, an exploration phase

that investigates the feasible domain of the search space is introduced. Following some of the

ideas suggested in [28], define the auxiliary unconstrained optimization problem

Minx h(x) = Max{0,Maxj=1,...,ng {gj(x)}}

s.t. x ∈ X (6)
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where all terms have been previously defined. Note that the optimal solution set X∗
h of the

unconstrained optimization problem is given by

X∗
h =

{
x = 〈xTc ,xTd 〉T : xc ∈ Xc ∧ xd ∈ Xd ∧ gj(x) ≤ 0 , j = 1, . . . , ng

}
(7)

Figure 2: Exploration phase of ABO (Flowchart 2).

with minimum objective function value equal to 0. Thus, the optimal solution set X∗
h of the

unconstrained optimization problem given in Eq. (6) coincides with the feasible design space

defined in Eq. (2), i.e., Xfeasible = X∗
h. Note that the problem is unconstrained in the sense that

only side constraints on the design variables are considered. The previous optimization problem

can be solved as indicated in the previous section, that is, by means of the TMCMC method. In

this case, define the sequence of non-normalized intermediate distributions
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fK0(x) = UX(x) , fKj
(x) ∝ exp

(
−h(x)

Kj

)
UX(x) , j = 1, 2, . . . (8)

where UX(x) is the uniform distribution defined over the set that characterizes the side constraints,

i.e., X = {x = 〈xTc ,xTd 〉T : xc ∈ Xc ∧ xd ∈ Xd}. Therefore, the samples at the first phase

(K0 =∞) can be generated efficiently by direct Monte Carlo simulation. Furthermore, according

to the sample generation scheme described in the previous section, the samples at the last stage

of the process (Kj → 0) represent designs with objective function value h(x) = 0. In this phase,

the parameter Kj+1 satisfies the equation

n∑
i=1

exp
(
−2h(xji )∆Kj

)
(

n∑
i=1

exp
(
−h(xji )∆Kj

))2 =
1

νn
(9)

according to the effective sample size technique [34, 39]. It can be shown that all feasible designs

obtained during the different stages of the exploration phase are uniformly distributed over Xfeasible

[28]. Therefore, a possible stopping criterion is to obtain a sufficient amount of feasible designs

during all stages. In the proposed implementation, the sampling process stops when m ≥ nfeasible,

where m is the total number of feasible designs obtained during the entire simulation process, and

nfeasible is a user-defined target value. The procedure to generate samples in the feasible design

space is schematically shown in Fig. 2.

6. Exploitation Phase

6.1. Samples in the Optimal Solution Set

The exploitation phase uses the samples generated in the exploration phase to obtain a set

of designs lying in the vicinity of the optimal solution set X∗
c . In the context of the approach

presented in Section 4, the samples uniformly distributed over the feasible design space Xfeasible

are the ones obtained from the exploration phase. In addition, as Kj → 0, the distribution fKj
(x)

converges to a uniform distribution over the optimal solution set X∗
c and, therefore, the generated

samples become more and more concentrated around X∗
c as the iterations progress. Clearly, for

numerical implementation the algorithm should stop based on any suitable stopping rule. In

the present formulation, the sampling procedure stops if a user-defined number of stages, Nmax,

are completed or if the sample coefficient of variation (c.o.v.) of the objective function is below a
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certain threshold. In particular, the optimization process stops at stage j = 0, 1, . . . if j+1 = Nmax

or, alternatively, δj+1 < γδ0, where γ ∈ (0, 1) is a user-defined parameter, and

Figure 3: Exploitation phase of ABO (Flowchart 3).

δj =

√√√√ 1

n− 1

n∑
i=1

(
c(xji )−

[
1

n

n∑
l=1

c(xjl )

])2/(
1

n

n∑
l=1

c(xjl )

)
, j = 0, 1, . . . (10)

is the sample c.o.v. of the objective function during stage j. In other words, the algorithm runs

until a prescribed number of stages are completed or until δj+1 becomes less than some fraction

γ of the initial sample c.o.v. of the objective function, δ0. Smaller values for γ correspond to

better approximations of the optimal solution set. It is noted that alternative stopping criteria

can be implemented as well. The corresponding procedure to generate a set of candidate designs
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is illustrated in Fig. 3.

6.2. Additional Remarks

Due to the annealing property of the approach, candidate designs with objective function values

larger than those of the corresponding lead samples can be still accepted during the exploitation

phase (see Appendix D). Thus, the probability of accepting a worse candidate solution during the

initial stages is not negligible, but it decreases as the temperature parameter approaches zero. In

this manner, sub-optimal regions in the feasible design space are potentially visited during the

initial stages of the sampling process. The final stages, on the other hand, are almost completely

focused on improving the objective function values of the designs. This feature is beneficial towards

avoiding local optima and improving the robustness of the overall optimization scheme.

7. Practical Observations

Some practical benefits of using the proposed optimization scheme can be summarized as

follows.

Adequacy for high performance computing. The sampling simulation technique under consid-

eration, i.e., the TMCMC method, is very-well suited for parallel implementation in a computer

cluster. In fact, the first level of the exploration phase, which corresponds to direct Monte Carlo

simulation, can be fully scheduled in parallel. In addition, each of the subsequent levels of the

exploration and exploitation phases produces a set of Markov chains that are perfectly paral-

lel. Thus, a number of computer workers can handle the generation of samples corresponding to

the different chains. This is very important when dealing with optimization problems involving

expensive function evaluations.

Improved flexibility for decision making. Asymptotic Bayesian Optimization produces a set

of nearly optimal solutions instead of a single optimal solution as well as a number of designs

uniformly distributed over the feasible design space. In this manner, sensitivity information about

the feasible designs and the final design can be obtained directly. This type of information can

be advantageous in many practical cases where additional considerations or alternative criteria

can be taken into account to select the appropriate final design. Thus, the approach provides

flexibility to the decision-making process.

Robustness and effectiveness. Due to the theoretical basis of the formulation and the properties

of the TMCMC method, the Asymptotic Bayesian Optimization scheme has high chances to reach
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a vicinity of the global optimum in an effective manner, even in presence of multiple local optima,

complex feasible design spaces, and problems with multiple discontinuous sub-feasible regions.

Moreover, no restrictions are imposed on the number of constraints. Furthermore, due to the gen-

erality and flexibility of the formulation it can handle, in principle, different types of optimization

problems. From the structural optimization point of view, these problems may include discrete-

continuous design variables, complex linear and nonlinear systems, and performance-based design

problems.

Implementation simplicity. Special constraint-handling techniques, such as penalty function

methods or other approaches, are not necessary within the context of the proposed two-phase

scheme. In fact, the same framework for obtaining samples in the vicinity of the optimal solution

set (exploitation phase) is used for finding designs in the feasible set (exploration phase). In

addition, the proposed approach requires the definition of few control parameters. These features

represent an advantage from a practical viewpoint.

8. Examples

Due to the generality of the proposed optimization scheme, a wide range of optimization

problems can be considered for evaluating its effectiveness. For clarity and conciseness, three

representative numerical examples are chosen and presented in this section. First, a test problem

involving highly nonlinear benchmark functions with continuous design variables is examined to il-

lustrate the capabilities of the proposed method in detail and, in addition, to evaluate the effect of

the algorithm parameters on its performance. Then, the effectiveness of the Asymptotic Bayesian

Optimization scheme is demonstrated by two design optimization problems: a classical engineer-

ing design problem including mixed discrete-continuous design variables, and a performance-based

discrete-design optimization problem of a structural system under stochastic excitation. As pre-

viously pointed out, a number of additional or alternative engineering design problems can be

considered as well.

8.1. Example No. 1: Benchmark Functions

8.1.1. Optimization Problem

The constrained optimization problem of interest is stated as
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Minx c(x1, x2)

s.t. g(x1, x2) ≤ 0

− 3.0 ≤ xi ≤ 3.0 , i = 1, 2 (11)

where the objective function c(x1, x2) is the so-called six-hump camel back function given by

c(x1, x2) = 4.0x21 − 2.1x41 + x61/3.0 + x1x2 − 4.0x22 + 4.0x42 (12)

and the constraint function g(x1, x2) is defined in terms of the Schaffer function N.2 as

g(x1, x2) = 0.1 +
sin2(x21 − x22)− 0.5

[1 + 0.001(x21 − x22)]2
(13)

where x1 and x2 are the design variables which are treated as continuous variables. For illustration

purposes, the objective and constraint functions are shown in Fig. 4. The left figure shows the

objective function in the entire design space, while the right figure depicts the constraint function

which is quite involved with abrupt variations in the design space. The corresponding feasible

design space is illustrated in Fig. 5, where the two optimum solutions and some contours of the

objective function are also shown. It is seen that the feasible design space is rather complex,

as it involves several disconnected regions and some of them represent a small portion of the

search space. In addition, the objective contours indicate that this example problem involves

several disconnected sub-optimal regions. The optimal solutions of the optimization problem are

given by x∗ = 〈0.0898,−0.7126〉T and x∗ = 〈−0.0898, 0.7126〉T , with optimum objective function

c(x∗) = −1.0316.

8.1.2. Exploration Phase

The following parameter values of the proposed approach are considered for the numerical

implementation of the test problem: γ = 0.05 (stopping criterion parameter); ν = 0.5 (effective

sample size parameter); n = 1000 (number of samples per stage); and nfeasible = 5000 (target fea-

sible sample size). In addition, the scaling parameter β, associated with the proposal distribution

(see Appendix B), is determined by an adaptive scheme that monitors the acceptance rate of the

updating process [40]. Figure 6 shows the evolution of the samples during the different stages of
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Figure 4: Left: Objective function in the entire design space. Right: Constraint function. Example No. 1.

Figure 5: Sketch of the feasible design space (gray area), optimal solutions (*), and contours of the objective

function (dashed lines). Example No. 1.

the exploration phase. The process stops at stage j = 5. That is, a total of six stages are required

to verify the stopping criterion of the exploration phase. Thus, the samples generated at the final

stage correspond to stage 5. It is observed that the samples tend to populate the feasible design

space more effectively as the number of stages increases. In fact, the shape of the set of samples

at the final stage is very similar to the feasible design space shown in Fig. 5. During the different

stages, almost 5800 feasible samples are obtained. Thus, it is clear that the method generates a

set of samples uniformly distributed over the feasible design space in an effective manner for this

example.
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Figure 6: Samples generated during the different stages of the exploration phase. Example No. 1.

8.1.3. Exploitation Phase

Based on the set of feasible designs, the exploitation phase aims to obtain samples in a vicin-

ity of the optimal solution set. Figure 7 shows the evolution of the samples obtained during

the different stages of the exploitation phase. Note that the samples at the initial stage of the

exploitation phase (stage 0 in the figure) correspond to the approximately 5800 feasible designs

obtained during the exploration phase. It is seen that the intermediate distributions of the sam-

ples tend to be more and more concentrated near the two optimum solutions as the iterations

progress. Two clusters can be clearly seen at the last stage of the exploitation phase, whose mean

and optimum solutions are given in Table 1. The previous results indicate that the method ef-

fectively populates a vicinity of the optimal solution set during the final stages for this example,

which is consistent with the theoretical foundations of the proposed approach. In summary, the

preceding results show the applicability and effectiveness of the proposed approach in a rather

complex optimization problem involving a disconnected feasible design space with multiple global

optima and several disconnected sub-optimal regions.
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Figure 7: Evolution of samples obtained during the different stages of the exploitation phase. Example No. 1.

Design Upper cluster Lower cluster

Sample-based mean optimum x̄ x̄1 = −0.0905 , x̄2 = 0.7124 x̄1 = 0.0876 , x̄2 = −0.7124

Objective value c(x̄) -1.0316 -1.0316

Sample-based optimum x̂∗ x̂∗1 = −0.0901 , x̂∗2 = 0.7126 x̂∗1 = 0.0896 , x̂∗2 = −0.7126

Objective value c(x̂∗) -1.0316 -1.0316

Actual optimum x∗ x∗1 = −0.0898 , x∗2 = 0.7126 x∗1 = 0.0898 , x∗2 = −0.7126

Objective value c(x∗) -1.0316 -1.0316

Table 1: Sample-based mean, sample-based optimum, and actual optimum for each cluster. Example No. 1.
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8.1.4. Statistical Performance

Preliminary validation calculations show that the number of samples per stage, n, plays an

important role on the performance of the proposed approach. In this regard, a statistical analysis

is carried out to study the influence of this parameter on the quality of the results. In particular,

a total of 30 independent optimization runs are conducted for different numbers of samples per

stage. They range from 50 to 1000. For comparison purposes, the target number of feasible

samples is taken as nfeasible = 2n and the total number of stages during the exploitation phase

is limited to 8. The effective sample size parameter is taken as before, that is, ν = 0.5. The

statistical analysis is performed as follows. For the rth independent run (r = 1, . . . , Nr = 30),

the sample-based optimum cost cropt is obtained. In this framework, the optimum cost refers to

the smallest objective function value found in each independent run. Based on these values, four

statistical parameters are computed, namely, the best optimum cost cbestopt , the worst optimum cost

cworstopt , the average optimum cost cavgopt, and the coefficient of variation of the optimum cost cc.o.v.opt .

The statistical parameters are formally defined as

cbestopt = Minr=1,...,Nr c
r
opt , cworstopt = Maxr=1,...,Nr c

r
opt

cavgopt =
1

Nr

Nr∑
r=1

cropt , cc.o.v.opt =

√
1

Nr−1

∑Nr

r=1(c
r
opt − c

avg
opt)

2

| cavgopt |
(14)

Table 2 shows the performance of the method in terms of the number of samples per stage. It

is seen that the best optimum cost coincides with the reference value (-1.03163) even for a small

number of samples per stage. On the other hand, the best, average, and worst optimum costs

remain almost invariant, from the practical viewpoint, when the number of samples per stage is

greater than 200. Moreover, as expected, the corresponding c.o.v. of the optimum cost reduces

as n increases. The previous results indicate that the scheme is able to explore the design space

in a very effective manner, even with a relatively small number of samples per stage. Another

interpretation of these results is that the proposed method, which is based on Markov chain

Monte Carlo simulation, exhibits a good performance in terms of its ergodicity in this particular

problem. Although the appropriate value of n is problem-dependent, 200 samples per stage seem

to be suitable for this example.

Finally, the influence of the effective sample size parameter, ν, on the quality of the optimiza-

tion results is examined. Table 3 shows the best optimum cost, the worst optimum cost, the
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optimal cost

best mean worst c.o.v. (%)

n (cbestopt ) (cavgopt) (cworstopt ) (cc.o.v.opt )

50 -1.03163 -1.03003 -1.01513 3.5× 10−3

100 -1.03163 -1.03154 -1.03103 1.5× 10−4

150 -1.03163 -1.03157 -1.03096 1.2× 10−4

200 -1.03163 -1.03158 -1.03135 7.0× 10−5

500 -1.03163 -1.03162 -1.03158 8.0× 10−6

1000 -1.03163 -1.03163 -1.03162 2.0× 10−6

Table 2: Statistical performance of the proposed scheme (ABO) in terms of the number of samples per stage (n).

Example No. 1.

average optimum cost, and the c.o.v. of the optimum cost for different values of ν. The number

of samples per stage is set equal to 200. It is seen that the best and average optimum costs are

relatively similar to the reference solution, except for higher values of ν. In addition, the smallest

difference between the best and worst optimum costs is obtained for intermediate values of the

effective sample size parameter, that is, ν = 0.5. Similarly, the c.o.v. of the optimum cost tends to

decrease for intermediate values of ν. These results are reasonable due to the role that ν plays in

the optimization process. On the one hand, consecutive intermediate distributions become more

similar between each other for higher values of ν and, as a result, more stages are required to

obtain a distribution that is densely concentrated in a vicinity of the optimum solution set. This

slower converge leads to a higher variability of the sample-based optimum cost, since the number

of stages is limited to eight. On the other hand, smaller values for ν allow more abrupt changes

in the shape of consecutive intermediate distributions. This, in turn, can be detrimental to the

effectiveness of the Metropolis-Hastings method and, eventually, diminish the accuracy of the

sample-based optimum solution. Thus, intermediate values for ν (around 0.5) should be preferred

in this example to reduce the variability of the optimum solutions for a fixed computational cost.

A similar behavior of the method performance with respect to ν is observed for alternative

sample sizes. Analogously, the effect of n on the statistical performance of the method remains

similar for different values of the effective sample size parameter. Such results are not presented

here for conciseness and brevity. As indicated before, a number of samples per stage of around

200 and values for the effective sample size parameter roughly between 0.4 and 0.6 provide a

18



optimum cost

best mean worst c.o.v. (%)

ν (cbestopt ) (cavgopt) (cworstopt ) (cc.o.v.opt )

0.3 -1.03163 -1.03160 -1.03124 8.5× 10−5

0.5 -1.03163 -1.03158 -1.03135 7.0× 10−5

0.7 -1.03163 -1.03124 -1.02899 5.2× 10−4

0.9 -1.03091 -1.02093 -0.99980 9.1× 10−3

Table 3: Statistical performance of the proposed scheme (ABO) in terms of the effective sample size parameter

(ν). Example No. 1.

reasonable tradeoff between efficiency and accuracy for this problem.

8.2. Example No. 2: A Classical Engineering Design Problem

8.2.1. Speed Reducer Design

The objective of this problem is to minimize the weight of the speed reducer shown in Fig. 8.

A number of requirements associated with gear and shaft design practices, including bending and

clamp constraints, strength conditions on gear shafts, permissible magnitude of deflection, etc.,

must be satisfied [41]. Seven design variables are involved in the optimization problem (see Fig.

8): width of the gear face (x1), teeth module (x2), number of pinion teeth (x3), length between

bearings of shafts 1 and 2 (x4 and x5, respectively), and diameter of shafts 1 and 2 (x6 and x7,

respectively). The problem can be formulated as

Minx c(x)

s.t. gj(x) ≤ 0 , j = 1, . . . , 11

x ∈ X (15)

where the cost function is given by

c(x) = 0.7854x1x
2
2(3.3333x23 + 14.9334x3 − 43.0934)

− 1.508x1(x
2
6 + x27) + 7.4777(x36 + x37) + 0.7854(x4x

2
6 + x5x

2
7),

(16)

the constraint functions are defined as
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g1(x) =
27

x1x22x3
− 1 , g2(x) =

397.5

x1x22x
2
3

− 1 , g3(x) =
1.93x34
x2x46x3

− 1

g4(x) =
1.93x35
x2x47x3

− 1 , g5(x) =

√(
745x4
x2x3

)2

+ 16.9× 106

110.0x36
− 1

g6(x) =

√(
745x5
x2x3

)2

+ 157.5× 106

85.0x37
− 1 , g7(x) =

x2x3
40
− 1 , g8(x) =

5x2
x1
− 1

g9(x) =
x1

12x2
− 1 , g10(x) =

1.5x6 + 1.9

x4
− 1 , g11(x) =

1.1x7 + 1.9

x5
− 1 (17)

and the side constraints on the design variables are 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, x3 ∈

{17, 18, . . . , 28}, 7.3 ≤ x4 ≤ 8.3, 7.3 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, and 5.0 ≤ x7 ≤ 5.5. Note

that the number of pinion teeth (x3) is an integer quantity, whereas the rest of design variables

are continuous. Thus, this is a mixed discrete-continuous optimization problem. A thorough

description of the objective and constraint functions can be found in [41].

Figure 8: Schematic of the speed reducer design problem. Example No. 2.

The proposed approach is implemented to solve the speed reducer design problem. The effective

sample size parameter is taken as ν = 0.4 and n = 500 samples per stage are considered. The

exploration phase stops after obtaining nfeasible = 1000 feasible designs. For illustration purposes,

40 exploitation stages are considered in this case. In addition, the parameters of the discrete

proposal distribution (see Appendix C) are defined as λ∗ = 2 and τ = 0.05 for the exploration

phase, and as λ∗ = 1 and τ = 0 for the exploitation phase. Note that the parameter λ∗ is updated

at the beginning of each exploitation stage according to an adaptive scheme that reuses information

gathered during previous stages (see Appendix C). Preliminary validation calculations indicate
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that the previous parameter values are appropriate in the context of this mixed discrete-continuous

optimization problem.

First, an exploration phase is performed to generate samples uniformly distributed over the

feasible set. After seven stages, a total of 1304 feasible designs are obtained. These designs are

shown in Fig. 9 by means of two-dimensional projections and marginal histograms. It is noted

that the feasible supports of variables x1 and x2 present the largest reduction when compared with

the initial search space. This gives an insight on the sensitivity of the constraints with respect to

the design variables.

Figure 9: Samples uniformly distributed over the feasible design set. Example No. 2.
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The samples shown in Fig. 9 are used as the initial set of feasible designs for the exploita-

tion phase. During this phase, samples increasingly concentrated near the set that minimizes

the objective function are iteratively generated. To illustrate this, Fig. 10 presents the marginal

histograms obtained during stages j = 0, 5, 10, 15 and 39 (last stage). Note that the support

of x3 is reduced significantly during the initial stages. In addition, the vicinity of the opti-

mum solution set becomes more densely populated as the optimization process continues, as

expected. Correspondingly, the range of the objective function is also reduced during the dif-

ferent stages of the proposed approach. The corresponding sample-based optimum obtained is

x∗ = 〈3.50000, 0.70000, 17, 7.30001, 7.71533, 3.35022, 5.28665〉T with c(x∗) = 2994.4727.

Figure 10: Marginal histograms obtained during different stages of the exploitation phase. Example No. 2.

Finally, Table 4 presents the best solution obtained with the proposed approach across 30

independent runs. In addition, the table also shows the solution of this problem obtained by

other stochastic search techniques reported in several references. They include Social Behavior

inspired Optimization technique (SBO) [42], Particle Swarm Optimization with Differential Evo-

lution (PSO-DE) [43], Differential Evolution with Level Comparison (DELC) [44], and Mine Blast

Algorithm (MBA) [45]. For reference purposes, the number of function calls corresponding to

each solution is also reported in the table. It is seen that the solution obtained by the proposed
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approach for this application example is competitive with respect to the ones obtained by other

stochastic search techniques. Thus, the proposed framework can be an efficient choice for this

problem.

Design variables Optimal values

SBO [42] PSO-DE [43] DELC [44] MBA [45] ABO

x1 3.500 000 3.500 000 3.500 000 3.500 000 3.500 000

x2 0.700 000 0.700 000 0.700 000 0.700 000 0.700 000

x3 17 17 17 17 17

x4 7.300 000 7.300 000 7.300 000 7.300 033 7.300 004

x5 7.800 000 7.800 000 7.715 319 7.715 772 7.715 321

x6 3.350 215 3.350 215 3.350 240 3.350 218 3.350 215

x7 5.286 683 5.286 683 5.286 654 5.286 654 5.286 655

Weight (lb) 2996.232 157 2996.348 165 2994.471 066 2994.482 453 2994.471 550

Function calls 70000 54350 30000 25000 24000

Table 4: Best solutions reported by different algorithms. Example No. 2.

8.3. Example No. 3: A Performance-Based Optimization Problem

8.3.1. Description of the Model

The structural model under stochastic excitation shown in Figure 11, which has been borrowed

from [29], is considered in this example. Each floor is supported by 48 columns as shown in Fig.

11. The columns on axes A, C, D, and F contribute to the horizontal resistance of the floors in

the x direction, while those on axes B and E work primarily in the y direction. In addition, a

bracing system consisting of tubular steel brace elements is placed in axes A, C, D and F acting

in the x direction, and in axes 1, 2, 7 and 8 acting in the y direction. A typical configuration of

the brace elements is shown in Fig. 12. Thus, a total of 128 brace elements are used in the model,

with Young’s modulus E = 2.1× 1011 N/m2 and weight density ρ = 7.42 ton/m3. All floors have

a constant height equal to 3.2 m, leading to a total height of 12.8 m. For a given floor, all columns

are assumed to be equal and their specifications are given in Table 5 [46]. It is assumed that each

floor may be represented with sufficient accuracy as rigid within the x−y plane when compared to

the flexibility of the horizontal resistant elements. Hence, each floor can be represented by three
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degrees of freedom, i.e., two translational displacements along the x and y axes, and a rotational

displacement about the z axis. The associated masses mx = my and mz are taken as constant

for all floors and equal to 5.98 × 105 kg and 1.10 × 108 kg m2, respectively. In addition, a 2% of

critical damping is assumed in the model. It is noted that no attempt has been made to consider a

more detailed structural model since the objective of this example is to evaluate the effectiveness

of the proposed optimization scheme in a performance-based optimization problem involving a

structural dynamical system under stochastic excitation.

Figure 11: Isometric (left) and plan (right) view of the structural model. Example No. 3.

Figure 12: Typical configuration of brace elements. (a) Brace system in axes 2 and 7. (b) Brace system in axes A,

C, D, F, 1 and 8. Example No. 3.

The system is subjected to a base acceleration modeled as a non-stationary stochastic process.

In particular, a stochastic model based on a point-source model is considered [47, 48]. The model is

characterized by a white noise sequence and a series of parameters such as radiation pattern, shear
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Floor Type of section

1 W24 × 131

2 W24 × 131

3 W24 × 104

4 W24 × 104

Table 5: Specification of column elements. Example No. 3.

wave velocity in the vicinity of the source, corner frequencies, local site conditions, velocity pulse

parameters, and additional seismicity parameters such as the moment magnitude and rupture

distance. Details of the procedure can be found in [47, 48, 49, 50]. The excitation is applied at

45◦ with respect to the x axis and its duration is taken as T = 15 s with a sampling interval

equal to ∆t = 0.01 s. Based on these values and according to the stochastic excitation model

under consideration, it can be shown that more than 1500 random variables are involved in the

generation of base acceleration samples [47]. Thus, a high-dimensional uncertain parameter space

is involved in this problem. For illustration purposes, Fig. 13 shows a synthetic ground motion

sample corresponding to the stochastic point-source model.

Figure 13: Synthetic ground acceleration sample from the stochastic point-source model. Example No. 3.

For improved seismic behavior, the model is reinforced with nonlinear devices at each floor.

At each floor, six devices are implemented as shown in the floor plan of the model (see Fig. 11).

Specifically, four devices in the x direction and two devices in the y direction are considered. These

elements provide additional resistance against relative displacements between floors. The devices

follow the inter-story restoring force law κ(t) = kd

(
δ(t) − γ1(t) + γ2(t)

)
, where kd denotes the
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initial stiffness of the device, δ(t) is the relative displacement between floors, and γ1(t) and γ2(t)

denote the plastic elongations of the device. Using the auxiliary variable µ(t) = δ(t)−γ1(t)+γ2(t),

the plastic elongations γ1(t) and γ2(t) are specified by the differential equations [51]

γ̇i(t) =ς(i)δ̇(t)H(ς(i)δ̇(t))×[
H(ς(i)µ(t)− µy)

ς(i)µ(t)− µy
µp − µy

H(µp − ς(i)µ(t)) +H(ς(i)µ(t)− µp)
]
, i = 1, 2 (18)

where H(·) denotes the Heaviside step function, ς(1) = 1, ς(2) = −1, µy is a parameter specifying

the onset of yielding, and kd µp is the maximum restoring force of the device. The values µp =

6.0× 10−3 m, µy = 0.7up, and kd = 6.0× 108 N/m are used for the nonlinear elements. A typical

displacement-restoring force curve of the nonlinear devices is shown in Fig. 14. Note that, because

of yielding, energy dissipation due to hysteresis is introduced in the structural response.

Figure 14: Typical displacement-restoring force curve of the nonlinear device. Example No. 3.

8.3.2. Design Problem

The objective function for the optimization problem is defined in terms of the expected value

of the root-mean-square (RMS) of the displacement response at the top floor, while the design

constraints are given in terms of cost limitations, geometric requirements and availability of section

sizes. The vector of design variables x is defined in terms of the areas of the cross-sections of the

steel brace elements. For illustration purposes, the brace elements located every two floors are

linked to two design variables, one associated with the x direction and one with the y direction.
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This leads to four design variables in total. The axes and stories corresponding to each design

variable are given in Table 6. In this setting, x1 and x3 are associated with the brace elements

pointing in the x direction, while x3 and x4 with those pointing in the y direction. The values for

the different design variables (areas of tubular cross-sections) must be selected from the discrete

set of available member sizes presented in Table 7. Thus, each design variable can be chosen from

a discrete set of 48 tubular elements and, therefore, more than 5× 106 different configurations for

the bracing system can be devised.

Design variables Stories Axes

x1 1-2 A C D F

x2 1-2 1 2 7 8

x3 3-4 A C D F

x4 3-4 1 2 7 8

Table 6: Design variables. Example No. 3.

The design problem is written as

Minx c(x)

s.t. g1(x) = v̄(x)− 1 ≤ 0

g2(x) = x3/x1 − 1 ≤ 0

g3(x) = x4/x2 − 1 ≤ 0

xi ∈ X , i = 1, . . . , 4 (19)

where x = 〈x1, x2, x3, x4〉T is the vector of design variables, c(x) is the objective function, v̄(x) is a

normalized cost function associated with the total volume of the bracing system, and X represents

the set of available discrete values for the design variables given in Table 7. It is noted that g1(x) is

associated with cost limitations, whereas g2(x) and g3(x) impose geometric conditions on the final

design. As previously pointed out, the objective function corresponds to the expected value of the

root-mean-square of the displacement response at the top floor, that is, c(x) = Eθ[RMSd(x,θ)]

where θ is the vector of uncertain parameters involved in the stochastic excitation model, Eθ(·)

denotes the expectation with respect to the distribution of θ, and
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D (in) A (mm2) D (in) A (mm2) D (in) A (mm2)

2 719 4 1517 6 2315

2 1/8 769 4 1/8 1567 6 1/8 2365

2 1/4 819 4 1/4 1617 6 1/4 2415

2 3/8 869 4 3/8 1667 6 3/8 2465

2 1/2 919 4 1/2 1717 6 1/2 2515

2 5/8 969 4 5/8 1767 6 5/8 2565

2 3/4 1019 4 3/4 1817 6 3/4 2615

2 7/8 1069 4 7/8 1866 6 7/8 2664

3 1118 5 1916 7 2714

3 1/8 1168 5 1/8 1966 7 1/8 2764

3 1/4 1218 5 1/4 2016 7 1/4 2814

3 3/8 1268 5 3/8 2066 7 3/8 2864

3 1/2 1318 5 1/2 2116 7 1/2 2914

3 5/8 1368 5 5/8 2166 7 5/8 2964

3 3/4 1418 5 3/4 2216 7 3/4 3014

3 7/8 1468 5 7/8 2265 7 7/8 3063

Table 7: Available values for the design variables. Example No. 3.
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RMSd(x,θ) =
1

NT

√√√√ NT∑
k=1

{u2x(tk,x,θ) + u2y(tk,x,θ)} (20)

where ux(tk,x,θ) and uy(tk,x,θ) are the x and y components, respectively, of the roof displace-

ment at time instant tk, k = 1, . . . , NT , NT = 1500, for a given realization of θ. The estimate

of c(x) is evaluated by means of Monte Carlo simulation [33]. In particular, 2000 samples are

considered, that is, the evaluation of the objective function at each design involves 2000 dynamic

analyses in this case. In addition, the normalized cost function is defined as v̄(x) =
∑4

i=1 v
∗
i xi,

with normalized constants v∗1 = v∗3 = 0.9402× 10−4 and v∗2 = v∗4 = 1.2363× 10−4.

8.3.3. Results

The proposed optimization framework is implemented to handle this performance-based de-

sign problem considering n = 200 samples per stage and ν = 0.5 for the effective sample size

parameter. In addition, the stopping criteria for the exploration and exploitation phases are to

obtain nfeasible = 400 feasible designs and to verify δj+1 < γδ0 with γ = 0.01 (see Section 6.1),

respectively. Moreover, the proposal distributions for the discrete design variables (see Appendix

C) are defined by λ∗l = 3, τl = 0.05, l = 1, . . . , 4, for the exploration phase, and by λ∗l = 1,

τl = 0, l = 1, . . . , 4, for the exploitation phase. As in the previous example, the parameters λ∗l are

updated during the different stages of the exploitation phase according to the strategy presented

in Appendix C. Additional validation computations indicate that the previous implementation

details are adequate in the context of this application.

Feasible designs are first obtained during an exploration phase. In this case, a total of 544

designs uniformly distributed over the feasible region are obtained after four TMCMC stages,

which are shown in Fig. 15 by means of two-dimensional projections and marginal histograms.

Note that the projections x1−x3 and x2−x4 show some interaction between the design variables,

which is associated with the effect of the geometric constraints. In this regard, the results of

the exploration phase provide an insight on the sensitivity of the constraints with respect to the

design variables. Starting with this set of feasible designs, an exploitation phase is then carried

out to generate a set of designs lying in a vicinity of the optimal solution set. For illustration

purposes, Fig. 16 shows the minimum and maximum objective function values obtained during

the different stages of the exploitation phase. Note that the difference between both values reduces
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Figure 15: Two-dimensional sample projections and marginal histograms of the feasible samples. Example No. 3.

as the optimization process continues, which is consistent with the theoretical foundations of the

proposed approach.

Figure 16: Maximum and minimum objective function values obtained during the different stages of the exploitation

phase. Example No. 3.

Figure 17 shows the samples, in terms of marginal histograms, obtained during exploitation
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stages j = 0, 2, 4, and 6 (final stage). It is seen that the designs are increasingly concentrated

near the set that minimizes the objective function, as expected. The reduction in the RMS

of the displacement at the top floor is attained by selecting higher values for x1 and x2, and

intermediate values for x3 and x4. In other words, larger section sizes are preferred for the

braces allocated in the lower stories, which is reasonable from the structural viewpoint. This

provides valuable information on the sensitivity of the objective function with respect to the design

variables. Furthermore, the last stage of the optimization procedure provides several designs with

very similar objective function values (see Fig. 16) which, due to the variability in the estimation

of this quantity, can be regarded as equivalent from the objective function viewpoint. Therefore,

the final design can be selected by considering alternative criteria. This highlights one of the

advantages of the proposed optimization framework, that is, a set of candidate designs is obtained

instead of a single solution, which provides additional flexibility for the overall decision-making

process.

Figure 17: Marginal histograms obtained during different stages of the exploitation phase. Example No. 3.

For reference and comparison purposes, Table 8 shows the best solution obtained by the pro-

posed approach. In addition, the optimum design obtained by means of Genetic Algorithms (GA)

[7], which considers a population size of 200 individuals is also reported in the table. It is seen
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that both solutions are qualitatively similar and, taking into account the variability in the esti-

mation of the objective function value, they can be regarded as equivalent from the optimization

viewpoint. However, it is observed that the cost constraint is slightly violated in the GA-based

solution. Finally, in terms of numerical efforts, the total number of function calls (expected value

of the root-mean-square of the displacement response at the top floor) is in the order of 2000 for

both cases.

Design variables Optimal values

ABO GA

x1 3063 2963

x2 2714 2864

x3 2265 2116

x4 1318 1368

Eθ[RMSd(x,θ)] 5.70× 10−3 5.70× 10−3

g1(x) −5.8× 10−4 8.3× 10−4

g2(x) −2.61 −0.37

g3(x) −0.51 −0.68

Function calls 2000 2138

Table 8: Best solutions reported by the proposed method (ABO) and Genetic Algorithms (GA). Example No. 3.

The results presented in this section and additional validation calculations illustrate that the

proposed optimization framework is an effective tool to handle complex constrained optimization

problems, such as those involving performance-based measures, nonlinear structural systems under

stochastic excitation, and discrete design variables. Thus, the proposed approach is a competitive,

general and flexible choice for dealing with a general class of constrained design optimization

problems.

9. Conclusions

A general Markov sampling-based framework for solving a class of constrained design opti-

mization problems has been presented. The design problem is reformulated as the equivalent

task of obtaining samples uniformly distributed over the optimum solution set. To generate such

samples, a sequence of distributions increasingly concentrated around the optimum solution set
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is introduced. Furthermore, a unified two-phase strategy is developed. An exploration phase

generates an initial set of designs uniformly distributed over the feasible domain, and then an

exploitation phase generates designs increasingly concentrated in a vicinity of the optimum solu-

tion set. The transitional Markov chain Monte Carlo method is adapted to generate the required

samples during both phases, and appropriate adaptive proposal distributions are implemented for

the continuous and discrete design variables. The capabilities of the proposed approach, which

is quite general, have been demonstrated in different types of representative design optimization

problems. Numerical results have shown some of the advantages and benefits of the proposed

Asymptotic Bayesian Optimization scheme.

� First, the proposed method can handle complex feasible design spaces. In fact, the ex-

ploration phase is able to deal with linear and nonlinear constraint functions, and feasible

designs can be efficiently generated in cases involving non-trivial geometries for the feasible

design space such as disconnected regions.

� Second, the exploitation phase successfully generates designs in a vicinity of the optimum

solution set for relatively complex objective functions. Moreover, the method can also handle

problems involving single and multiple optima. In general, few stages are required to identify

a region that lies close to the optimum solution set.

� Third, the same framework can be used for continuous, discrete, or mixed discrete-continuous

design variables. In this context, suitable adaptive proposal distributions for the continuous

and discrete design variables are suggested.

� Fourth, the approach provides benefits from the practical viewpoint. In this regard, rela-

tively few user-defined parameters are involved in the proposed approach. Numerical results

indicate that sample sizes in the range of 200-500 and intermediate values for the effective

sample size parameter, e.g. 0.5, yield a good tradeoff between efficiency and accuracy for the

design problems investigated in this work. In addition, constraints are handled directly dur-

ing the sampling process. Therefore, special constraint-handling techniques are not required

by the proposed optimization scheme.

� Fifth, information on the sensitivity of the constraint and objective functions with respect

to the design variables is provided as a by-product of the sampling process. This feature is
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particularly valuable in situations where problem functions are not known explicitly. Thus,

additional insight for design purposes is obtained without any additional computational effort

and, as a result, improved flexibility can be accomplished throughout the overall decision

making process.

� Sixth, the same stochastic sampling technique is used to explore the feasible and optimum

sets, which is advantageous from the implementation viewpoint.

� Finally, the example problems considered in this contribution and additional validation

calculations indicate that the method is very competitive with respect to other state-of-the-

art stochastic search techniques. Overall, the proposed Markov sampling-based framework

is a valuable tool to deal with a wide range of constrained design optimization problems. In

this regard, it is stressed that the proposed Asymptotic Bayesian Optimization scheme is

quite general. In other words, it is not customized to a particular class of engineering design

problems.

Future research efforts aim to extend the proposed framework to more complex structural

optimization problems, including general performance-based design optimization problems. In

this context, suitable strategies based on parametric reduced-order models can be integrated

to increase the overall efficiency of the optimization procedure. The treatment of multiobjective

optimization problems by means of the proposed approach is an additional subject for future work.

Another research direction involves the implementation and assessment of alternative sampling

schemes within the two-phase framework. Some of these topics are currently under consideration.
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10. Appendix A

The lead sample in terms of the continuous and discrete design variables, that is, x̃j+1 =

〈x̃j+1T

c , x̃j+1T

d 〉T , is a sample from stage j that is selected according to a probability equal to the

normalized importance weight w̄ji of the samples xji , i = 1, . . . , n, that is,

w̄ji =
wji∑n
l=1w

j
l

, wji =
fKj+1

(xji )

fKj
(xji )

, i = 1, . . . , n (21)

where wji , i = 1, . . . , n are the importance weights given by

wji = exp

(
−h(xji )

[
1

Kj+1

− 1

Kj

])
(22)

for the exploration phase, and

wji = exp

(
−c(xji )

[
1

Kj+1

− 1

Kj

])
(23)

for the exploitation phase. If a sample xji has been already drawn, then the last sample of its

corresponding Markov chain is selected as the lead sample.

11. Appendix B

A symmetric local proposal distribution pc is considered for the continuous design variables.

The proposal is taken as a Gaussian distribution centered at the lead sample, say x̃j+1
c , whose

covariance matrix Σj is equal to a scaled version of the estimate covariance matrix of the continuous

design variables following the intermediate distribution fKj
(x). That is,

Σj = β2

n∑
i=1

w̄ji
(
xjci − x̄jc

) (
xjci − x̄jc

)T
(24)

where β is a scaling parameter, xjci, i = 1, . . . , n are the samples at stage j, w̄ji , i = 1, . . . , n are

the normalized importance weights, and x̄jc =
∑n

i=1 w̄
j
ix

j
ci is the estimate mean of the continuous

design variables following fKj+1
(x). The scaling parameter β can be defined directly by the user,

or it can be determined by an adaptive scheme that monitors the acceptance rate in the context

of the Metropolis-Hastings algorithm [27, 40]. It is noted that alternative sampling schemes in the

so-called underlying normal space [27] can be also considered in the context of the ABO method.
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12. Appendix C

The proposal distribution pd for the vector of discrete design variables xd is defined in terms

of independent proposal distributions corresponding to each discrete variable, that is,

pd(x
?
d|x̃

j+1
d ) =

nd∏
l=1

pdl(x
?
dl|x̃

j+1
dl ) (25)

where x?d = 〈x?d1, . . . , x?dnd
〉T is the candidate sample, x̃j+1

d = 〈x̃j+1
d1 , . . . , x̃j+1

dnd
〉T is the lead sample

of the discrete design variables, and pdl(x
?
dl|x̃

j+1
dl ) is the local proposal distribution for the discrete

design variable x?dl. The candidate sample x?dl is selected from the set of discrete values adjacent

to x̃j+1
dl , i.e., Adj(x̃j+1

dl ), which is defined as

Adj(x̃j+1
dl ) = {xdl(i)i=1,...,ndi

: λ(x̃j+1
dl , xdl(i)) ≤ λ∗l } (26)

where λ(x̃j+1
dl , xdl(i)) is the distance between the lead sample x̃j+1

dl and the sample xdl(i). For

example, if the lead sample corresponds to the sth available value of the discrete variable xdl, that is,

x̃j+1
dl = xdl(s), the distance between these two samples is given by λ(x̃j+1

dl , xdl(i)) = λ(xdl(s), xdl(i)) =

|s− i|. The proposal distribution for the lth discrete design variable is defined as [29]

pdl(x
?
dl|x̃

j+1
dl ) =


1−τ

Card(Adj(x̃j+1
dl ))

if x?dl ∈ Adj(x̃
j+1
dl )

τ

Card(Adjc(x̃j+1
dl ))

if x?dl /∈ Adj(x̃
j+1
dl )

(27)

where τ represents a small probability of randomly selecting a nonadjacent value of the lead

sample x̃j+1
dl , Adjc(x̃j+1

dl ) is the complement set of Adj(x̃j+1
dl ), and Card(·) is the number of discrete

available values in the corresponding set.

It is noted that the values for the distribution parameters λ∗l and τ are problem-dependent.

Such parameters can be selected directly by the user or adaptively tuned during the sampling

process. In this contribution, an adaptive strategy is implemented. At the beginning of each ex-

ploitation stage, the parameter λ∗l is updated by reusing information obtained during the previous

stage. The procedure is carried out as follows. First, the elements of Xdl that were observed dur-

ing the previous stage are identified. Then, the maximum number of consecutive values observed

during the previous stage, denoted by η, is obtained. Based on this number, the parameter λ∗l is

updated as

λ∗l = min {λ∗l ,m} (28)
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where m is the largest integer such that m ≤ (η− 1)/2. The process is repeated for l = 1, . . . , nd.

This scheme tends to decrease the value of λ∗l for advanced exploitation stages, which can improve

the efficiency of the proposed approach. Certainly, alternative strategies can be implemented as

well.

13. Appendix D

The implementation of the acceptance/rejection test, in the context of the Metropolis-Hastings

algorithm, is as follows. The candidate sample x? = 〈x?Tc ,x?Td 〉T , is accepted with probability ρ?,

where

ρ? = Min

{
1, IX(x?)

exp (−h(x?)/Kj+1)

exp
(
−h(x̃j+1)/Kj+1

) pd(x̃j+1
d |x?d)

pd(x?d|x̃
j+1
d )

}
(29)

for the exploration phase, where IX(x?) = 1 if x? ∈ X and IX(x?) = 0 otherwise, and

ρ? = Min

{
1, IXfeasible

(x?)
exp (−c(x?)/Kj+1)

exp
(
−c(x̃j+1)/Kj+1

) pd(x̃j+1
d |x?d)

pd(x?d|x̃
j+1
d )

}
(30)

for the exploitation phase. According to the definition of the proposal distribution pd, the ratio

pd(x̃
j+1
d |x?d)/pd(x?d|x̃

j+1
d ) is given by

pd(x̃
j+1
d |x?d)

pd(x?d|x̃
j+1
d )

=

nd∏
l=1


Card(Adj(x̃j+1

dl ))

Card(Adj(x?dl))
if x?dl ∈ Adj(x̃

j+1
dl )

Card(Adjc(x̃j+1
dl ))

Card(Adjc(x?dl))
if x?dl /∈ Adj(x̃

j+1
dl )

(31)

If the candidate state x? is rejected, the lead sample x̃j+1 is repeated. More information about

the Metropolis-Hastings algorithm can be found in [35, 36].
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