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dimensional supergravity, we use a geometric technique known as the ‘normal coordinate’ method

to obtain the θ-expansion of the M2-brane action. We then present a method which allows us to

translate the knowledge of fermionic couplings on the M2-brane to knowledge of such couplings on the

D2-brane, and then to any Dp-brane. This method is based on superspace generalizations of both the

compactification taking 11-dimensional supergravity to type IIA supergravity and the T-duality rules

connecting the type IIA and type IIB supergravities.
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1 Introduction

String Theory concerns itself not only with objects extended in a single dimension, the eponymous

strings, but also with objects extended in many dimensions, namely branes. These extended objects,

as well as the quantum fields that live on them, are deeply consequential to modern String Theory

research in both its most formal and most phenomenological aspects. Despite the ubiquity of branes in

String Theory and the prominent position of fermions in physics, the fermionic fields living on branes

are often less well understood than their bosonic counterparts due in no small part to their inherent

technical complexities. Nevertheless, many phenomena in high-energy physics involve fermions, and in

a large variety of string theoretic scenarios branes are crucial tools, therefore a detailed understanding

of fermions on branes is of paramount importance.

Ever since the discovery that branes are objects intrinsic to string theories [1], they have been

extensively studied in a multitude of contexts. In type II theories, D-branes provide string theoretic

realizations of gauge theories, supersymmetry breaking, and inflation, among others. In many of these

studies their worldvolume fermions play central roles in the mechanisms under investigation. Of partic-

ular interest recently is the KKLT scenario [2], a proposal to generate de Sitter vacua in String Theory,

where branes are crucial for multiple purposes. The KKLT construction was originally described at an

effective 4-dimensional level and so the viability of the proposal has now got to be scrutinized at the

10-dimensional level. This has been done from many perspectives (see e.g. [3–21]). Initially, KKLT-

related works considering fermions on branes focused on counting zero modes of brane instantons (see

e.g. [22–24]). More recently new developments in this sector have lead to an interest in higher order

fermion terms on brane actions [25–32], bringing to this context open questions first posed by Hořava

and Witten [33–35]. In the well-understood case of non-localized gauginos, supersymmetry gives rise

to a ‘perfect square’ structure in the action [36], and it is not currently known how this structure

extends to the case of localized gauginos. Shedding light on these terms has been one of the main

motivations that has led us to study higher-order fermionic couplings in Dp-brane actions. Another

feature that makes branes extremely promising tools for model building resides in the fact that they

break half of the bulk supersymmetries (this was first observed in [37, 38]). Supersymmetry breaking

is still not completely understood in String Theory proposals, but Dp-branes are good candidates to

provide ways to achieve it without spoiling the solution to the Hierarchy Problem since their fermionic

degrees of freedom can realize supersymmetry non-linearly [37–41]. This is a key reason for devoting

our interest to the topic from a very generic point of view. In [24, 42–46], the worldvolume action of

Dp- and Mp-branes in an arbitrary bosonic background has been determined up to quadratic terms

in fermions. Our aim is to understand more deeply the mathematical structure underlying the action

of a Dp-brane, independently of the fermionic order of interest, and to set the stage for a concrete

determination of the order-4 fermionic terms in the imminent future. A fundamental feature will be

the structure inherited by the Dp-branes from the more fundamental underlying theory, the M2-brane

theory, as part of the web of string dualities. It would also be possible to inherit the structure from

the M5-brane action, but the simplicity of the M2-brane action makes this choice more practical.

It has been understood for quite some time that the five initially distinct-looking superstring

theories are in fact limiting cases of a single fundamental theory, M-theory [47]. The five string theories

and M-theory are related to each other via a web of dualities that we sketch in Fig. 1. In this work,

we are going to concentrate on three of these related theories, the dualities which connect them, and

the fermions on the branes that the theories contain. We will be investigating the M2-brane from M-

theory and the Dp-branes from the type IIA and type IIB superstring theories (more properly, we will
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Figure 1. A schematic of the web of dualities between the five 10-dimensional string theories and 11-
dimensional supergravity (and M-theory). We will use the superspace generalization of this web to investigate
the expansion in fermions of the superfields in different theories, and the expansion in fermions of the actions
for the branes those theories contain. The parts of the web relevant for this work have been highlighted with
thicker arrows. We begin with the superspace formulation of 11-dimensional supergravity. We find the ex-
pansion in fermions of the superfields therein, and use these to find the fermionic expansion of the M2-brane
action. Compactification on S1 is then performed in order to obtain the fermionic expansion of the fields in
type IIA, and of the D2-brane action. Finally, T-duality between type IIA and type IIB is used repeatedly to
obtain expansions of the fields in type IIB, and so the expansions for Dp-branes for all p.

be working with the low-energy supergravity limit of these theories, i.e. 11-dimensional supergravity,

from M-theory, and type IIA and type IIB supergravities, from type IIA and type IIB string theories).

Compactifying the 11-dimensional spacetime of M-theory on a circle transforms the M2-brane into a

D2-brane (when the circle is orthogonal to the brane), and then an arbitrary number of T-dualizations

along directions wrapped by the brane, or orthogonal to it, allow us to investigate descriptions of

any Dp-brane. Our goal when it comes to these branes is to explore how to explicitly obtain the

terms in the single-brane abelian actions corresponding to high-order couplings for the fermions. Of

critical importance to us is the requirement that our methods are, at least in principle, applicable to

arbitrary order in the fermions. As we will show, a central development consists of understanding how

to dimensionally reduce and T-dualize the theories into each other in a manifestly supersymmetric

way, by working in superspace.

We now outline the core details of the strategy that we follow in this work. Due to the existence

of the string duality web, if we have a method for obtaining the high-order fermion couplings in one

theory it can in principle be extended to the others. We start with 11-dimensional supergravity which

has a particularly simple formulation in superspace, wherein the usual dimensions of spacetime are

augmented with anticommuting dimensions with Grassman-valued coordinates. In this formulation

the usual fields are combined into superfields which contain both bosonic and fermionic degrees of

freedom. What we then require is a way of systematically extracting information about the fermionic

degrees of freedom from the superfield formulation. The technique used to do this in a complete
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way is called the ‘normal coordinate’ method,1 first developed in superspace in [48], and often simply

referred to as NORCOR. The question of determining fermionic couplings is turned into a question

of differential geometry in superspace in a way that is both elegant and powerful. In [49], many of

the results necessary for finding the expansion of the M2-brane action to fourth order in fermions

were developed, this is also the order up to which we will expand in the examples which accompany

our analysis. The NORCOR method can be applied to determine expansions of the superfields of

11-dimensional supergravity at all orders in fermions [50]. Nevertheless, we show that the usefulness

of the approach can be limited because the size of the formulae grows quickly as one computes terms

of higher θ-order in the superfields. This is the main obstacle we find in our computations, and it

will bring us to the conclusion that unless one succeeds in combing terms obtained with NORCOR

together into simple and manageable formulae, it remains extremely challenging to extract information

valuable for physics.

After setting up the problem in M-theory we are going to use the web of string dualities to carry

the information about fermionic expansions to the type II theories. However, in order to use the

above mentioned superspace formalism when considering the web of dualities, we promote the duality

procedures to superspace as well. This circumvents some of the difficulties in applying NORCOR

directly to the type II theories by instead only requiring the explicit use of NORCOR in the relatively

simple world of 11-dimensional supergravity. In this way a circle compactification will provide us with

the superspace formulation of the D2-brane action and T-dualities will allow us to obtain the Dp-brane

actions in superspace for an arbitrary value of p, in both type IIA and type IIB string theories. We will

take advantage of the T-duality rules for fermions [51–53] and express them in a convenient formalism

for our superspace approach, spinor doublet notation.

While our motivations are certainly braney in origin, the techniques we investigate and develop

are far more broadly applicable. The actions of the single M2-brane and for single Dp-branes are

just some examples of composite superfields that can be built from the fundamental superfields of

their respective theories, although, as we have discussed, even these abelian cases are particularly

relevant and interesting. We will structure our discussion, therefore, to concentrate on obtaining the

θ-expansions of certain superfields in each theory, and investigate how they can be combined in order

to obtain the brane action expansions in separate examples.

This paper is organized as follows. In section 2, we review background information about branes

which motivates the analysis of later sections. We concentrate on viewing branes as hypersurfaces

in curved superspace, and the role of the Goldstone fermions arising from the broken supersymmetry

caused by the presence of a brane. In section 3, we review the use of the ‘normal coordinate’ method to

provide an expansion in orders of fermions starting with the superspace formulation of the fields of 11-

dimensional supergravity. In section 4, we consider the application of the normal coordinate expansion

to the superspace formulation of the M2-brane action and we obtain expansions to quartic order in

fermions. In section 5, we investigate the superspace generalization of the dimensional reduction of

fields in 11-dimensional supergravity to type IIA. We use this to determine the D2-brane action to

quartic order in fermions. In section 6, we discuss the superspace generalization of the T-duality

relation between fields in type IIA and type IIB string theories. We demonstrate how this can be used

in principle to move from the action for the D2-brane at a given order in fermions, to that for any

Dp-brane at the same order, and give explicit examples at second order. We end in section 7 with a

summary of our results, our conclusions, and a discussion of future lines of inquiry. Our discussion

1We shall see in section 3 that for our purposes this name is an anachronism and that for the physics we investigate
we do not require the specific use of a normal coordinate system.
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is complemented by several appendices. Appendix A summarizes our spinor conventions. Appendix

B reviews 11-dimensional supergravity. Appendix C contains details about quartic-order fermionic

expansions in superspace. Appendix D contains a catalogue of useful identities for the dimensional

reduction from eleven to ten dimensions. Appendix E is reserved for a discussion of topics related to

T-duality.

Notes on notation

Throughout this work we perform a large number of steps on a large number of quantities. Making

our full discussion as clear as possible by avoiding notational clashes therefore necessitates the use

of a large range of notation. It is worth our time to take a moment to mention a few of the most

consequential choices and changes we make in this regard.

Indices

We are going to be working with many different sets of indices through this paper. We collect details

about all of these index choices here for easy reference. For easy reading we will repeat our conventions

in the context of the sections when appropriate.

In sections 2, 3 and 4, we will be working with (11|32)-dimensional superspace. Our superspace

conventions are the following. Superspace coordinates are ZM = (xm, θµ), where upper-case letters

in the middle of the alphabet are used to denote superspace coordinates, lower-case Latin letters

denote spacetime indices, m = 0, 1, . . . , 10, and lower-case Greek letters stand for Grassmann indices,

µ = 1, . . . , 32. We will use Latin and Greek indices in the beginning of the alphabet to refer to tangent

space directions as A = (a, α), with a = 0, 1, . . . , 10 and α = 1, . . . , 32. We will use lower-case Latin

indices like i, j, k for worldvolume directions, because we work only with the M2-brane this means that

i = 0, 1, 2.

In section 5, we will perform dimensional reduction from (11|32)-superspace to (10|32)-superspace.
All 11-dimensional spacetime or tangent spacetime indices will now receive hats such that m̂ =

0, 1, . . . , 10 and â = 0, 1, . . . , 10 whereas the 10-dimensional indices will not receive hats so that

m = 0, 1, . . . , 9 and a = 0, 1, . . . , 9. Under the dimensional reduction we perform the M2-brane

gets taken to the D2-brane. Therefore in section 5, where only the D2-brane is discussed, we still have

i = 0, 1, 2. The Grassman indices will remain unchanged.

Finally, in section 6 we perform T-duality on (10|32)-superspace. This involves singling out a

direction to take as a circle, which we will take to be the direction x9. We will then maintain the

convention that 10-dimensional indices will not receive hats so that m = 0, 1, . . . , 9, and we shall use a

dotted index if referring only to the directions transverse to the T-duality circle so that ṁ = 0, 1, . . . , 8.

We will also shift to using double spinor notation; however a detailed explanation of this change is

given in the section itself. When dealing with Dp-branes, T-duality maps the brane content of the type

IIA theory and the brane content of the type IIB theory into one another, changing the dimensionality.

As such, the worldvolume indices k, l run over all the p + 1 worldvolume directions, whereas indices

m′, n′ span the complementary transverse directions, with p always being clear in context. If the brane

wraps the T-dual direction, we will employ a dot-notation k̇, l̇ when referring to all the worldvolume

directions other than the T-dual one.

Hats

In sections 3 and 4, we will be working in eleven spacetime dimensions. Then, in section 5, we will be

reducing to ten dimensions many of the quantities from previous sections, and we will also work with

them in section 6. In order to distinguish 11-dimensional quantities from 10-dimensional ones when
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performing dimensional reduction in section 5 we place hats on all 11-dimensional objects and indices.

However, because our use of 11-dimensions is implicit in sections 3 and 4, and to avoid swamping the

notation in those sections with hats, we do not use the convention of hatting 11-dimensional quantities

until section 5 itself. Similarly, in appendices A and D, where we discuss both 11-dimensional and 10-

dimensional quantities, we are sure to distinguish them from one another with the hatting convention,

however in appendices B and C where everything is implicitly 11-dimensional, we drop them.

2 Branes, fermions, and superspace

In this section we provide some general background information about both M2-branes and Dp-branes.

This will motivate our discussion in the coming sections. For concreteness we mostly focus on the case

of a single M2-brane, but the ideas apply in a similar way for Dp-branes as well. The ideas in this

section also hold for the M5-brane and the Green-Schwarz string, but as we already mentioned we will

restrict ourselves to the M2-brane and Dp-brane cases.

M2-branes and Dp-branes are solitonic solutions of M-theory and type II supergravities, respec-

tively. ‘Brane-only’ solutions are characterized by the breaking of the 11- or 10-dimensional Poincaré

symmetry group down to the Poincaré group on the directions spanned by the brane times the

group of rotations in the transverse space, i.e. ISO(1, 10) → ISO(1, 2) × SO(8) for M2-branes and

ISO(1, 9) → ISO(1, p)× SO(9− p) for Dp-branes. The Goldstone modes associated to the breaking of

the Poincaré symmetry become bosonic degrees of freedom living on the brane worldvolume [54]. In

these cases, the brane solution also triggers a spontaneous breaking of half of the bulk supersymmetries

and the associated fermionic Goldstone modes turn into fermionic degrees of freedom on the brane.

In this paper we are interested in the action describing these localized branes, with a particular

interest in fermionic modes living on them and their couplings in the brane worldvolumes. For this

purpose it is convenient to approach branes from a slightly different perspective, that of the superspace

formulation of the supergravity theories. In this formulation, branes can be regarded as extended

objects in curved superspace. This is the approach taken in [55, 56] to construct the action of the

M2-brane: the M2-brane is a (2 + 1)-dimensional object in (11|32)-dimensional superspace and its

action consists of a brane worldvolume term, coupling the brane to the background metric, and a

Wess-Zumino term, coupling the brane to the background gauge sector. Denoting the coordinates

that span the worldvolume as ζi, with i = 0, 1, 2, this action reads

SM2 = −TM2

∫

d3ζ
√

−det (P [G](Z)) + µM2

∫

P [A](Z), (2.1)

where TM2 is the M2-brane tension, µM2 = TM2 is the brane charge, and P [G](Z) and P [A](Z) are the

pullbacks of the 11-dimensional supermetric and three-form gauge potential onto the brane worldvol-

ume respectively, with ZM representing the superspace coordinates. The pulled-back superfields are

built out of components of the supervielbein E A
M (Z) and the super-three-form AABC(Z).

The above action is a superspace generalization of the standard bosonic action of the M2-brane,

where all fields in the latter are replaced by their superfield counterparts. A product of superfields

is a superfield itself, so what we have above is the M2-brane action superfield. Of course, since all

superfields depend on superspace Grassmann coordinates θµ, so does the action, and both allow for

finite expansions in θ. Concretely, because the superfields in the action are the supervielbein E A
M (Z)

and the super three-form gauge potential AABC(Z), if one knows the θ-expansion of these superfields,

one can obtain the expansion of the action superfield. Both 11-dimensional supergravity, and the type

II supergravities in ten dimensions considered in this paper, have 32 supercharges and so the fermionic
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expansion of the superfields goes up to order 32 in Grassmann coordinates θµ. Note that although

we are dealing with the brane action, and the presence of the brane leads to partial supersymmetry

breaking, we construct the brane action using off-shell superfields.

We mentioned before that, from the perspective of the bulk, the presence of the brane in the brane-

only solutions only preserves half of the supersymmetries. Let us consider the bulk supercharges that

are preserved in this type of solutions separately from those that are spontaneously broken. The Gold-

stone modes associated to the latter are fermionic degrees of freedom localized on the brane, arising

from the θµ-directions that the broken supercharges generate on the (off-shell) superfields. The other

supercharges are not affected by the presence of the brane, and so the brane action must be invariant

under the shifts they generate in the corresponding Grassmann directions. Combining these ideas

together, we see that the superspace Grassmann coordinates on the brane action superfield are lifted

to localized fermions living on the brane θµ(ζi), with only half of them (the ones generated by spon-

taneously broken supercharges) being physical and the other half being associated to transformations

that leave the action invariant. From the brane worldvolume perspective, when we lift the Grassmann

coordinates θµ to fermions living on the brane, because we use the bulk off-shell superfields to write

the action, we find that half of these fermions are physical whereas the other half are not physical and

instead correspond to redundancies. The existence of these redundancies implies a fermionic gauge

symmetry of the action, commonly known as κ-symmetry. In [55] it was shown that the action (2.1)

is indeed invariant under κ-symmetry transformations. More comments about the interplay between

bulk supersymmetry and κ-symmetry are in section 4.

These arguments provide a clear approach for obtaining the fermion couplings of the M2-brane

action. One needs to obtain the θ-expansion of the superfields involved, plug them into the action

(2.1), and then lift the Grassmann coordinates to fermionic fields on the brane θµ(ζi). We will follow

this approach in order to obtain the M2-brane action at order (θ)4, and so obtain fermionic interaction

terms up to quartic order. The approach can in principle be used to obtain the action at all orders in

fermions.

Note that we used the brane-only solution to illustrate how to obtain fermion couplings on the

brane worldvolume, but our interest includes much more general solutions with the only demand being

that they include branes. Many points made above change when moving from the brane-only solution

to more general solutions with branes, for example some of the fermions on the brane can be massive

and not correspond to the goldstinos of the solution (points of this kind can be found in e.g. [57]).

Crucial for our purposes, the fermion couplings that are obtained in the superspace formulation are

completely general and do not restrict to couplings on the brane-only solution.

In the above analysis we focused on the M2-brane case, but the same ideas can be extended to

all other branes, and in particular to Dp-branes in type II supergravities. Hence, in order to obtain

the Dp-brane action superfields, one ‘only’ needs to know the superfields involved. Unfortunately,

there is no known simple approach to obtain the θ-expansion of superfields that appear in any of the

theories in which we are interested. The method we will use, based on a normal coordinate expansion,

is systematic but has limitations in its current form. While effective for the expansion of the M2-brane

action, computing the expansion of all superfields using this method turns out not to be the best

strategy for all Dp-branes, as we will explain in more detail later. In fact, our strategy will be to use

the ‘normal coordinate’ method to obtain the θ-expansion of the M2-brane action superfield, and then

pursue the results for Dp-branes using the superspace generalization of the duality web in Fig. 1.
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3 The ‘normal coordinate’ method

In section 2 we explained that in order to obtain a fermionic expansion of the M2-brane action one

requires the θ-expansions of the superfields involved. In this section we review a systematic approach

to obtain these θ-expansions. Later we will specialize and apply this approach to obtain the expansion

of some superfields in 11-dimensional supergravity, but the approach discussed here is completely

general.

Supergravity in eleven dimensions [58] has a well-established formulation in superspace2 [59, 60].

From this perspective, the θ-expansion of the superfields is just a Taylor expansion describing the

dependence of the superfields on the superspace Grassmann coordinates θµ. We will use this geomet-

ric interpretation in order to obtain the θ-expansions we are after. This approach is known as the

‘normal coordinate method’, or NORCOR, because the normal coordinate system was very useful for

performing the Taylor expansion of fields in spacetime when the method was originally proposed. We

will show, however, that the superspace analysis in which we are interested does not require any spe-

cial coordinate system. The normal coordinate method is a variant of the background field method to

obtain covariant expressions in Taylor expansions of fields. Relevant literature in the development and

application of NORCOR is [48, 49, 61–65]. In particular, [49] proposed the use of this method to ob-

tain the θ-expansion of the M2-brane action. In this section we provide an intuitive and self-contained

description of the method.

The purpose of the NORCOR approach is to obtain the value of a (super)field at a point zM1 in

(super)space by starting from the value of the (super)field, and its derivatives, at another point, zM0 ,

which is close to zM1 , with

zM1 = zM0 +ΣM . (3.1)

In other words, we obtain the value of the superfield at points in the proximity of a point zM0 by

performing a Taylor expansion around zM0 . This approach is useful when we have plenty of information

about the value of the superfield and its derivatives at the origin zM0 , but the information available

at zM1 is much more limited.

In our case, we want to Taylor-expand superfields in the Grassmann directions θµ: we will take

the spacetime, i.e. the subspace zM0 = (xm, θµ = 0), to be the origin, and perform the expansion along

a direction ΣM that is purely Grassmannian. So, let S = S(Z) be any superfield, and let zM0 = (xm, 0)

be the starting point. In order to determine the value S(zM1 ), we demand that there exists an auto-

parallel curve ZM (t) with parameter t connecting zM0 and zM1 , such that ZM (t = 0) = zM0 and

ZM (t = 1) = zM1 . The tangent vector of the curve is yM (t) ≡ dZM (t)/dt. This tangent vector obeys

the auto-parallel equation

yM (t)∇M yA(t) =
dyA(t)

dt
+ yM (t)ω A

M ByB(t) = 0, (3.2)

where yA(t) = yM (t)E A
M (ZN (t)) is written with the tangent superspace index because the superspace

covariant derivative ∇ comes with a superconnection ω generalizing the spin-connection, but nothing

analogously comparable to the affine connection. We are expanding along a purely Grassmannian

direction, so we want the tangent vector at the origin to point in Grassmann directions, i.e. yM (t =

0) = (ym = 0, yµ).

2Appendix A reports our spinor and Γ-matrix conventions. Appendix B provides notes on the supergravity constraints
and Bianchi identities necessary to carry out the analysis in this work.
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Before proceeding, let us explain why our approach does not need the normal coordinate system.

The point of the normal coordinate system is to simplify the auto-parallel equation at the origin. This

is usually achieved because the (affine) connection vanishes there. In our case of interest, however, we

can use local Lorentz transformations to set some components of the superconnection to vanish at the

origin of Grassmann coordinates, i.e. ω A
µ B (θµ = 0) = 0. So the auto-parallel equation simplifies at

θ = 0 regardless of the coordinate system used because the connection term vanishes there.

Moreover, yMyN∂E A
M /∂ZN = 0 at θ = 0,3 and so the auto-parallel equation at the origin is

simply dyM/dt = 0. The solution we are looking for is ZM (t) = zM0 + yM (t = 0) t , and it is a good

approximation at the origin and its surroundings. The point zM1 = (xm, θµ) is at t = 1 on the curve,

and this allows us to effectively identify the Grassmann coordinate and the origin tangent vector as

yµ(t = 0) ↔ θµ.

We are now ready to obtain the θ-expansion of any superfield S(z0). To do so, we first use the

curve above to compute the Taylor expansion with respect to the parameter t around the point at

t = 0, i.e.

S(ZM (t))
∣

∣

t=0
=

∞
∑

k=0

tk

k!

(

δ

δt

)k

S(ZM (t = 0)). (3.4)

Computing variations in t means comparing the superfield at the origin with the superfield after

dragging it along the auto-parallel curve, so we can replace the t variations with Lie derivatives,

denoted Ly, along the tangent vector field yM (t). Because we evaluate the derivatives at t = 0 the

vector y that appears in the Lie derivatives will also be evaluated at this point. From here on we

simply write it as y and drop that it is evaluated at t = 0, where it only has components in Grassmann

directions. Finally, we are interested in obtaining the value of the superfield at the point zM1 , where

t = 1. Putting these things together we find that

S(ZM (t = 1))
∣

∣

t=0
=

∞
∑

k=0

(Ly)
k

k!
S(ZM (t = 0)) = (eLyS)

∣

∣

t=0
. (3.5)

This means that the θ-expansion of any superfield in this approach is obtained by repeatedly acting

with the Lie derivative. This is effectively the approach followed in [48, 49, 61–65]. It is interesting to

point out that we can write the expansion using the exponential of a differential operator, because this

agrees with the fact that a product of superfields is a superfield itself: if S is a product of superfields,

using the Leibniz rule and the exponential expansion one finds that there will be an exponential acting

on each superfield involved in the product.

For applying the NORCOR procedure it is important to note that in superspace we have the

superconnection (that generalizes the spin connection), and we defined a Lorentz covariant derivative,

but we did not define the notion of an affine connection or a fully covariant derivative. For this reason

we are often interested in writing superfields with Lorentz indices. Regular Lie derivatives acting on

Lorentz tensors do not lead to Lorentz tensors. To fix this problem, we need to replace the regular

Lie derivative by the Lie-Lorentz derivative (see e.g. [66, 67] and the original reference [68]). This

is a Lorentz covariantization of the regular Lie derivative, wherein partial derivatives are replaced by

3This can be checked using the θ-expansion of the supervielbein components E A
µ (Z) that can be obtained e.g. using

the method described in this section. The expansion of these components is only useful at this point for our purposes,
so we omit the derivation and just give the necessary formulas here. They are

E a
µ = −

i

2
θνδαν (Γ

a)αβδ
β
µ +O(θ2), E α

µ = δαµ +O(θ2). (3.3)
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their Lorentz-covariant counterparts, complemented with the inclusion of an extra term that gives

an infinitesimal Lorentz transformation. The effect of this Lorentz transformation is to trivialize the

effect on the holonomy group driven by the inclusion of spin-connection terms in the covariantization.

For practical purposes we observe that in (2.1) there are no free Lorentz indices, so the extra terms

demanded by the Lie-Lorentz derivative will cancel each other in the expansions of the objects we

are interested in. For this reason we can (and will) safely ignore the presence of these extra terms.

Physics provides an alternative (and, dare we say it, more intuitive) description of the same idea: the

Lorentz-Lie derivative above is a combination of a supersymmetry transformation and a local Lorentz

transformation, and we will ignore the latter because brane actions have no free Lorentz indices. The

θ-expansion is therefore obtained by repeatedly taking supersymmetry variations of the fields.

Note that we have turned a problem about worldvolume couplings on branes into a differential

geometry problem in superspace, and there is a price to pay for it. If we wish to obtain the superfield

expansion systematically using this technique we are also required to do some extra work. On the

one hand, we need the value of the superfield at the origin of Grassmann coordinates θ = 0, and on

the other hand we need to be able to manipulate the outcome of the repeated application of the Lie

derivative to write the results in terms of familiar objects. This is substantially easier to accomplish

when we focus on computing the expansion of the individual superfields appearing in the action, rather

than trying to treat the full action superfield directly. We will use some examples to illustrate these

points.

As a first example consider the expansion of the 11-dimensional supervielbein that appears in the

M2-brane action. We will employ the conventions and the definitions of 11-dimensional supergravity

that are reviewed in appendix B. For the first term in the expansion one needs the Lie derivative

LyE
A

M = ∇MyA + yCE B
M T A

BC . (3.6)

This formula is obtained via integration by parts, and involves the (Lorentz) covariant exterior deriva-

tive, ∇yA = dyA − yBECω A
BC (where yA = yME A

M ), and the (superspace) torsion tensor T , whose

definition is given in (B.4). Note that we wrote the torsion tensor with all indices in tangent space by

introducing a supervielbein for convenience. Obtaining the order-(θ)1 term in the expansion requires

evaluating this expression at θ = 0, which in turn requires knowledge of the superspace torsion tensor

and the supervielbein evaluated on this subspace. We will shortly explain how to perform this evalu-

ation. For now let us point out that without the notion of e.g. the superspace torsion tensor, the Lie

derivative would be meaningless, and this makes manifest the need for extra structure to obtain any

useful information from this approach.

Let us provide some further formulae necessary to compute higher order terms of the supervielbein

expansion. In particular, we will need

LyG = yA∇AG, (3.7)

Lyy
A = 0, (3.8)

Ly(∇MyA) = −yBE C
M yDR A

DCB . (3.9)

The first formula indicates how the Lie derivative acts on any Lorentz tensor G. For the second

formula we used the previous one together with the auto-parallel equation. The last formula is also

obtained by using integration by parts and the auto-parallel equation, and R there is the superspace

Riemann tensor defined in (B.5). Again, we find the need of extra structure in order to make sense

of certain Lie derivatives. It turns out that the four expressions provided are enough to obtain the
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θ-expansion of the supervielbein at any order. We perform computations up to order four in section

4 and appendix C.1.

Once the necessary Lie derivatives have been computed, the next step is to evaluate them at

the reference point for the Taylor expansion, that we choose to be θ = 0. Again, we concentrate on

the 11-dimensional supervielbein for concreteness. The first object to evaluate at this point is the

supervielbein itself. We use local Lorentz transformations to fix the so-called Wess-Zumino (WZ)

gauge,4 i.e.

E A
M (θ = 0) =

(

e a
m (x) ψα

m(x)

0 δαµ

)

, (3.10)

where e a
m (x) is the 11-dimensional vielbein and ψα

m(x) the 11-dimensional gravitino. For all other

terms appearing in the derivatives, there are a few steps to follow. First we must decide which

component of the superfield we are assessing by choosing which of the free indices we would like to

be bosonic or Grassmann. Contractions over superspace indices involve both kind of indices, upon

expansion we will often find that only one of these kinds contributes. This can be for a number of

the reasons including: (1) The supervielbein in the WZ-gauge has some vanishing component. (2)

The vector tangent to the auto-parallel curve at the origin is constrained to be yM = (0, yµ) for our

particular expansion. Note that the WZ-gauge means that this is yA = (0, yα). (3) The tangent space

structure means no mixing between bosonic and fermionic indices in the superconnection (and so also

no mixing in the superspace Riemann tensor). This means ω d
γ = ω γ

d = R d
ABγ = R γ

ABd = 0.

For the terms that survive all of these constraints, one needs to evaluate the superspace tensors

involved and write them in terms of spacetime fields. To do this we make use of the supergravity

constraints and superspace Bianchi identities. It turns out that many components of superspace

tensors vanish (for example T c
αb = 0) or are constant (for example T c

αβ ) all over superspace [60].

Fixing the value of the latter is a matter of conventions. The value of all other components of

these superspace tensors can be obtained from superspace Bianchi identities. A list of supergravity

constraints can be found in (B.9a - B.9d) and a list of useful formulae derived from Bianchi identities

is given in (B.11a - B.11c).

As a clarifying example, we evaluate some components of (3.6), at θ = 0, using the ideas above.

In both cases we consider that the index M will be restricted to spacetime, and we evaluate the cases

where the tangent space index A is spacetime and Grassmann separately. We obtain,

LyE
a

m = ∇mya + yγE B
m T a

Bγ = ∇mya + yγE β
m T a

βγ
θ=0
= −iyγ(Γa)βγψ

β
m, (3.11a)

LyE
α

m = ∇myα + yγE B
m T α

Bγ = ∇myα + yγE b
m T α

bγ
θ=0
= ∇myα + yγe b

m T α
bγ . (3.11b)

In both cases we first fixed as many indices as possible to be either spacetime or Grassmann, leaving

only the contraction of B with both types involved, then we got rid of vanishing contributions by using

T a
bγ = T α

βγ = 0. Finally we evaluated the surviving terms using the WZ-gauge for the vielbein (3.10)

and our convention for the constant torsion component T a
βγ = −i(Γa)βγ . We left T α

bγ untouched

here, but it is a simple combination of Γ-matrices and four-form flux, as shown in (B.12a).

Once the formulae for the Lie derivatives have been evaluated at the origin of Grassmann coor-

dinates, and re-written as described above, one can write the superfield expansion. In order to do so

one must replace the tangent vector y by the Grassmann coordinate θ (this happens when we evaluate

the auto-parallel curve at t = 1). For the components of the supervielbein in the above example this

4We previously used local Lorentz transformations to set to zero the component ω AB
µ of the superconnection at the

origin. These two choices are compatible with one another (see e.g. section 5.6 of [69]).
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gives the expansions up to order (θ)1, i.e.

E a
m (Z) = e a

m (x)− iθ̄Γaψm(x) + . . . , (3.12a)

E α
m (Z) = ψα

m(x) +
(

Dm(x)θ
)α

+ . . . . (3.12b)

In the first formula we wrote the fermion bilinear with the Dirac conjugate θ̄ = θTC, with C being the

charge conjugation matrix, see appendix A for our conventions. For the second formula, we noted that

the torsion can be manipulated and combined with the covariant derivative into the supercovariant

derivative Dm = ∇m + Ťm, where Ťm is related to Tm by a transposition. An alert reader will notice

that the first order terms in the expansion are (unsurprisingly) the expressions that appear in the

supersymmetry variations of the vielbein and the gravitino.

The above method gives rise to a superfield expansion in terms of familiar objects. This is not

the end of the story, however. The method relies on writing all contractions in terms of tangent

space indices. This often requires including numerous supervielbeins, and these can result in a rapidly

growing number of terms when one computes higher and higher order Lie derivatives of any superfield.

Higher-order terms, written in terms of spacetime fields, therefore involve an increasing number of

contributions. This can cause the expansion to become enormously cumbersome unless one finds a

way to put contributions at each level together into more compact and tractable combinations. As a

simple example, recall that in the supervielbein expansion we combined the covariant derivative of θ

together with the term related to the torsion into the supercovariant derivative. At higher orders it

becomes increasingly complicated to combine terms together into manageable expressions. This will

be the primary cause of the limitations we find in our computations. We will make further comments

about this when we can make more precise statements.

Finally, we will concentrate on determining expressions for the case where the background is

bosonic. Practically speaking, we do this by turning to zero all the terms involving the 11-dimensional

gravitino. This means that we also turn to zero all superspace tensors with an odd number of Grass-

mann indices, since they involve the gravitinos when written in terms of spacetime objects. This

restriction causes many more terms in the expansions to vanish. The Lie derivative applied to a

bosonic field (a superspace tensor with an even number of Grassmann indices) an odd number of

times will always vanish in bosonic backgrounds, as will the expression for the Lie derivative applied

to a fermionic field an even number of times. In order to study completely general backgrounds, one

would simply not perform this step and maintain all the gravitino terms in the discussion as well.

Now that we have explained the approach, we are ready to spell out why it is more convenient to

only use NORCOR in eleven dimensions. In ten dimensions there are more fields and more superspace

tensors involved. This means that one needs to work harder in order to obtain all the supergravity

constraints and useful formulae from Bianchi identities in each theory, and of course applying them to

re-write the Taylor expansions requires performing even more computations. Moreover, the ‘simplicity’

of 11-dimensional supergravity enables us to more clearly capture the structure of the terms involved,

and we will show later that this structure is, in a sense, ‘inherited’ by the 10-dimensional theories.

We will make this statement more precise later. Nevertheless, we already mentioned that even in

this ‘more simple’ theory we encounter difficulties when manipulating higher-order terms. Clearly

this problem does not improve for 10-dimensional type II theories. Computing NORCOR expansions

in eleven dimensions is substantially cleaner and allows us to make insights and extract information

about structure more easily. It is a better strategy, then, to obtain all expansions in this theory and

then obtain expansions in ten dimensions via the superspace duality web, as we describe below.

A final compelling reason to use the method in eleven dimensions only is that higher order expan-
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sions of the M2-brane action can be obtained with essentially just the 11-dimensional supervielbein

expansion, whereas in all other cases one must compute the expansions of more fields. In order to

explain what we mean by ‘essentially’, we can consider the M2-brane action. We can first note that in

the volume term of the M2-brane action we find the (super)metric, whose expansion follows directly

from the supervielbein. For the Wess-Zumino term, what we find is a combination of the supervielbein

and of the super-three-form gauge potential. If we compute the Lie derivative of this combination we

find

Ly

(

E A
[m E B

n E C
p] AABC

)

= E A
[m E B

n E C
p] yDHDABC (3.13)

up to total derivatives. This formula is a consequence of how the flux field-strength superfield is

defined, in (B.8). We now apply supergravity constraints (B.9c - B.9d) which tell us that the only

components of the field-strength superfield that are non-vanishing are Habcd and Hαβab = i(Γab)αβ ,

which is constant. This has important consequences for expansions of the above combination, and the

M2-brane action as a whole, namely

(Ly)
n(yDHDABC) = 0, for n ≥ 1. (3.14)

Hence, if we apply more Lie derivatives on the combined superfield appearing in the WZ-part of the

M2-brane action, only the terms with Lie derivatives acting on the supervielbeins survive. This means

that knowledge of the supervielbein expansion is sufficient for computing the expansion of the whole

M2-brane action. This is the final argument supporting our general strategy.

For ease of use, we summarize the computational steps of the strategy here:

1. Compute the derivatives in the superfield expansion superfield. In practice this means using (3.6

- 3.9).

2. Evaluate the expressions at the origin, θ = 0.

3. Apply the relevant supergravity constraints from (B.9a - B.9d) and those arising as a consequence

of superspace Bianchi Identities (B.12a - B.15b) in order to write formulae in terms of familiar

fields.

4. Apply the constraints of the bosonic background if appropriate.

4 The M2-brane action

The expansion of the M2-brane action up to order four in fermions was first performed in [49]. In

this section, with the aid of appendices, we review and correct the main results; appendix B contains

a review of the 11-dimensional supergravity conventions and appendix C discusses useful superfield

expansions up to fermionic order four. Our conventions are described in appendices A and D.

Let the M2-brane worldvolume coordinates be defined as ζi, with i = 0, 1, 2. The superfield action

for the M2-brane in terms of the superspace embedding coordinates ZM (ζ) = (xm(ζ), θµ(ζ)) is given

in (2.1) which can be written as

SM2(Z) = −TM2

∫

d3ζ

[

√

−det (Gij(Z))−
1

6
εijkAijk(Z)

]

, (4.1)
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where, using the pullback of the supervielbein

E A
i (Z) =

∂ZM

∂ζi
E A

M (Z), (4.2)

we wrote the Dirac-Born-Infeld (DBI) term in terms of the pullback of the metric and the Wess-Zumino

(WZ) term in terms of the three-form pullback, which respectively read

Gij(Z) = E a
i (Z)E b

j (Z) ηab, (4.3)

Aijk(Z) = E A
i (Z)E B

j (Z)E C
k (Z)AABC(Z). (4.4)

We explained in section 2 that in order to obtain the θ-expansion of the action we need to obtain

the θ-expansions of the superfields involved. For the M2-brane we also showed that, because of

(3.13), the only superfield expansion we need is that of the supervielbein. Nevertheless, it is more

practical to work with Lorentz-invariant objects, so in what follows we will compute the expansion of

the (super)metric and the (super)three-form, that appear in the brane action. Obtaining the action

expansion from these is then simple. Working with these superfields is sufficient and is a convenient

middle-ground between dealing with the full action and dealing with the numerous supervielbeins

individually. For a large proportion of the coming sections we will compute the Lorentz-invariant

superfield expansions.

We start by applying the method to compute the metric superfield expansion. In order to write

the brane action up to order four in fermions, we need to expand the supermetric to the same order.

We write the necessary Lie derivatives acting on the supermetric in terms of Lie derivatives acting

on the supervielbeins involved and take into account the fact that we consider a bosonic background,

which means that several terms will actually vanish. With the understanding that everything outside

of Lie derivatives is evaluated at the origin, the relevant relations are

(Ly)
2
Gmn = 2

[

(Ly)
2
E a

(m

]

e b
n) ηab, (4.5a)

(Ly)
4Gmn = 2

[

(Ly)
4E a

(m

]

e b
n) ηab + 6

[

(Ly)
2E a

(m

][

(Ly)
2E b

n)

]

ηab. (4.5b)

For the WZ-term, the analysis is slightly more involved because one has both the supervielbein and the

three-form in the combination (E A
M E B

N E C
P AABC)(Z). We saw in the discussion around (3.13) how

to deal with this combination, so here we simply use those ideas and then follow the same procedure

as we did for the metric. The relevant relations up to fermionic order four in bosonic backgrounds are

(Ly)
2
Amnp = −3i yα

[

LyE
β

[m

]

e c
n e

d
p] (Γcd)βα, (4.6a)

(Ly)
4
Amnp = −3i yα

[

(Ly)
3
E β

[m

]

e c
n e d

p] (Γcd)βα − 18i yα
[

LyE
β

[m

][

(Ly)
2E c

n

]

e d
p] (Γcd)βα. (4.6b)

We see that we require different components of the supervielbein expansion for the metric and the

three-form. Happily, using the supergravity constraints it can be shown that in bosonic backgrounds

these components are related by the condition, [50],

(Ly)
2l+2

E a
m = −iyβ(Γa)βγ

[

(Ly)
2l+1

E γ
m

]

, (4.7)

where l is a natural number. Therefore, in order to obtain the action at order four in fermions, we
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only require two terms in the expansion of the supervielbein. These are

LyE
α

m = (Dm)αγy
γ , (4.8a)

(Ly)
3E α

m = −yβe c
m yδyǫ∇ǫ(R

α
δcβ −∇δT

α
cβ )− yβ(Dmyγ)yδR α

δγβ − i(ȳΓcDmy)yβT α
cβ . (4.8b)

Here the first equation involves the supercovariant derivative that was discussed around (3.12b). The

supercovariant derivative will turn out to be a very important operator for our purposes. In (4.8b)

we have left the expression written in terms of superspace components of the torsion and curvature

tensors. Manipulating this expression using superspace Bianchi identities in order to write it in terms

of spacetime fields, though important for our purposes, is a computation that does not add any insight

to the present discussion. For this reason we present the details of that analysis in appendix C.2. The

outcome of our manipulations is the expression

(Ly)
3E α

m = i(Γbcy)α(ȳWmbcy) + i(Ť dfgh
b y)α(ȳHb

mdfghy) (4.9)

where we have defined

Hb
mdfgh = ΓbHdfghDm − 6e b

m Γdf [Dg, Dh], (4.10a)

Wmbc = RbcDm +
1

8
Γm[Db, Dc] +

1

4
Γb[Dm, Dc], (4.10b)

Rbc =
1

576

(

ΓbcΓ
dfgh − 8δ

[d
[cΓb]Γ

fgh] − 12δ
[d
[c δ

f
b]Γ

gh]
)

Hdfgh, (4.10c)

Ť dfgh
c =

1

288

(

ΓcΓ
dfgh − 12δ[dc Γ

fgh]
)

. (4.10d)

There are some important points that need to be made about these formulae. First of all, manipulations

lead to some terms involving commutators of supercovariant derivatives. It can be seen in appendix

C.2 that these arise from the first term in (4.8b). There are also terms involving a single supercovariant

derivative and H(4)-flux. These contributions are the outcome of manipulating the last two terms in

(4.8b). We have so far been unable to write these parts of the expressions strictly in terms of the

supercovariant derivative. Note that this problem appears for the first time at order (θ)4 for the

M2-brane in bosonic backgrounds, and was therefore not observed in the order-(θ)2 analysis carried

out in [44–46, 70] where everything can be packaged up in a tidy and supercovariant way. The result

(4.9) agrees with [71], but there are strong indications that these formulae should allow for further

manipulation into a more compact expression where supercovariance is made manifest. We will see

later that dealing with these complicated objects is the chief source of the difficulty limiting our

computational ability when performing dimensional reduction of the M2-brane action to obtain the

D2-brane action. We conclude this section by stating plainly that our manipulation of the higher

order expansion of the supervielbein probably needs to be completed into a manifestly supercovariant

formulation that we would expect to be more compact and more manageable than the one presented

above.

4.1 M2-brane at fermionic order two

In this section we review the M2-brane action at order two in fermions. We will use this ‘simple’

analysis for two main purposes. First, it is a warm-up exercise that nicely illustrates how to proceed

at higher orders. Second, we will use it to make more precise the relation between κ-symmetry and

bulk supersymmetry discussed in section 2.
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Recall that we decided to perform expansions of Lorentz-invariant superfields in the action since

obtaining the full action expansion from these is simple. We begin with the metric expansion. We

ignore order-(θ)1 terms since they involve the gravitino and we are interested in bosonic backgrounds.

For the order-(θ)2 terms, we combine (4.5), (4.7), and (4.8) to obtain (Ly)
2
Gmn

θ=0
= −2iȳΓ(mDn)y.

We can use this to write a truncation of the metric superfield which includes only the terms relevant

for the brane action. We will use a boldface notation to refer to these truncated superfields. For the

metric, the combination is

gmn ≡ gmn(x) − iθ̄Γ(mDn)θ. (4.11)

The expansion of the three-form superfield can be similarly obtained. In fact, (4.6) and (4.8) combine

to give the order-2 correction in the combination Amnp(Z), whose truncated expansion reads

Amnp ≡ Amnp(x)−
3i

2
θ̄Γ[mnDp]θ. (4.12)

These combinations of bosonic and fermionic fields first appeared in [44, 70] in what was called a

‘superfield-like form of the action’, allowing one to write the order-(θ)2 expansion of the M2-brane

action in a compact way. Similar combinations appearing in other Dp-brane actions were found and

these allowed these actions to be written in a compact way as well.

Our discussion makes it manifest that the appearance of the truncated superfields is not a mere

trick valid only for the action up to this order, but rather a consequence of how the action superfield

is built in the superspace formulation of supergravity. This means it is valid at any order in fermions.

Therefore in what follows our goal is to provide a systematic approach to compute truncated superfields

of this type appearing in all brane actions. For practical purposes we will often refer to the metric

and three form without specifying if we refer to the field, the superfield, or the truncated superfield,

as this will always be clear from context.

We are now ready to write the M2-brane action at order (θ)2. Plugging the truncated superfields

(4.11) and (4.12) into the action (2.1) and then Taylor-expanding up to order (θ)2, we get

S
(2)
M2 = −TM2

∫

d3ζ

[

√

−det (g)− 1

6
εijkAijk

]

= −TM2

∫

d3ζ

[

√

−det (g)− 1

6
εijkAijk

]

+ iTM2

∫

d3ζ
√

−det (g)
[

θ̄P
(0)
− ΓiDiθ

]

.

(4.13)

In the last line, we combined the order-(θ)2 terms together forming the so-called κ-symmetry projector

at order (θ)0, i.e.

P
(0)
− =

1

2

(

1− Γ
(0)
M2

)

, (4.14)

where the Γ-matrix combination defining the operator is

Γ
(0)
M2 =

εijkΓijk

6
√

−det (g)
. (4.15)

This allows us to see explicitly the manifestation of κ-symmetry in the M2-brane action at fermionic

order (θ)2. We comment on κ-symmetry in detail now.

– 16 –



4.2 Supersymmetry and κ-symmetry

We are now in a position to make more precise comments about bulk supersymmetry and κ-symmetry.

As we already mentioned, it is worth taking two perspectives. First, from the bulk perspective,

the brane-only solution spontaneously breaks half of the supersymmetries, while the other half are

preserved on-shell. The corresponding goldstinos turn into the fermionic degrees of freedom on the

brane, θµ(ζ). Alternatively, from the brane worldvolume perspective, we construct the brane action

using off-shell superfields with all 32 Grassmann coordinates, therefore only half of them correspond

to actual degrees of freedom on the brane while the rest are redundancies. This means that there must

exist a fermionic gauge symmetry, known as κ-symmetry, that gets rid of these redundant directions.

The presence of such a fermionic gauge symmetry in the M2-brane action (2.1) was shown in [55]. The

κ-symmetry variations are

(δκZ
M )E a

M (Z) = 0, (4.16a)

(δκZ
M )E α

M (Z) = (1 + ΓM2(Z))
α
βκ

β, (4.16b)

where the operator

ΓM2(Z) =
εijkΓijk(Z)

6
√

− det(G(Z))
(4.17)

is a hermitian traceless matrix squaring as (ΓM2(Z))
2 = 1. In the transformations, κ is an arbitrary

32-component Majorana fermion in 11-dimensional spacetime. Note that these expressions are valid

all over superspace. If we evaluate them at the origin of Grassmann coordinates, using the WZ-gauge

(3.10) for the supervielbein, these variations read

δκx
m = 0, (4.18a)

(δκθ
µ)δαµ = (1 + Γ

(0)
M2)

α
βκ

β, (4.18b)

with the matrix Γ
(0)
M2 defined as in (4.15). Hence it is possible to use κ-symmetry transformations

to project out half of the Grassmann coordinates θµ. We see that the appearance of the orthogonal

projector P
(0)
− in the M2-brane action at order (θ)2 is not a coincidence, but rather it is a consequence

of κ-symmetry and what we did there was to write the action in such a way as to make this symmetry

manifest.

Let us now derive some bulk supersymmetry properties. We start with the M2-brane-only solution,

where the brane spontaneously breaks half of the supersymmetries. Here we use κ-symmetry to

determine whether a supersymmetry is preserved by the brane or spontaneously broken, following

[72, 73]. To make this point explicit, we need some of the symmetries of the M2-brane action (see e.g.

[56]). To start, recall that superfields transform under global supersymmetry variations, and so does

the brane action. Off-shell, supersymmetry variations are shifts in any Grassmann direction(s) θµ.

On-shell, in a background where the brane is present, only some of those shifts leave the background

invariant. We denote the variation generated by the surviving killing spinors in this background

δǫθ = ǫM2. The combination of surviving global supersymmetry and κ-symmetry leads to a total

variation (at the origin of Grassmann coordinates in order to connect with the above discussion)

δǫ,κθ = ǫM2 + (1 + Γ
(0)
M2)κ. (4.19)

In order to get rid of the fermionic redundancies on the brane, we write the κ-symmetry gauge-fixing
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condition as Pθ = 0, where P is a projector independent of background fields. This implies that the

physical fermions on the brane are such that θ = (1−P)θ. Once the gauge is fixed, in order to preserve

it, it is necessary that δǫ,κ(Pθ) = Pδǫ,κθ = 0 holds, and so δǫ,κθ = 0. The latter formula, together with

(4.19) implies that the surviving global supersymmetry transformations that are compatible with this

fact must satisfy

ǫM2 = −(1 + Γ
(0)
M2)κ (4.20)

on the brane locus. Using this relation, one easily finds that any surviving supersymmetry must satisfy

P
(0)
+ ǫM2 = ǫM2 (equivalently Γ

(0)
M2ǫM2 = ǫM2) on the brane locus, where P

(0)
+ = (1 + Γ

(0)
M2)/2. On the

other hand, the orthogonal projector P
(0)
− selects Grassmann coordinates generated by spontaneously

broken supercharges, the goldstinos on the brane-only solution. This is the reason why the combination

P
(0)
− θ appears on the brane action. (4.20) also shows that preserved bulk supersymmetries are of the

same aspect as κ-symmetry transformations (they both involve P
(0)
+ ) and so also leave the M2-brane

action invariant thanks to the presence of P
(0)
− in the brane action.

This physical picture is valid not only for the M2-brane, but also for all Dp-branes. In order to

study each case one must replace ΓM2 by the corresponding matrix ΓDp. In [45, 46] it was shown that

all Dp-brane actions at quadratic fermionic order can be written with the corresponding κ-symmetry

projector. In [41] the breaking of supersymmetry by Dp-branes was shown to correspond to a non-

linear realization of supersymmetry, generalizing first results of this type [37, 38].

The brane-only solution is illuminating for deriving multiple facts regarding bulk supersymmetry

and κ-symmetry, but our interest is in more general setups. In the previous configuration all fermions

on the brane are massless goldstinos and many fermionic couplings on the brane vanish. In general,

those couplings do not vanish and are physically relevant. For example, depending on the particular

solution, some (or all) worldvolume fermions will become massive and will no longer correspond to

goldstinos of the solution. The superspace approach in this paper includes all such couplings and

therefore captures all of the relevant physical features of these general solutions. Moreover, the argu-

ment above, telling which supersymmetries survive in the solutions involving branes, is also valid for

such solutions.

Finally, it is worth noting that we evaluated our expressions at the origin of Grassmann coordinates

and so formulae involved the zeroth order κ-symmetry matrix Γ
(0)
M2 and the projectors P

(0)
± , that we

used to connect with what we found for the brane action at order (θ)2. Nevertheless, the above

arguments work all over superspace and so the general formulas about preserved supercharges and

κ-symmetry involve ΓM2(Z) and P±(Z).

4.3 M2-brane at fermionic order four

In this section we apply what we learned at the second fermionic order to build the action at order four

in quite a direct way. We saw that in order to do so we need to find the metric and 3-form superfield

truncations up to order (θ)4.

We already provided all of the relevant formulae to write the supervielbein expansion at order (θ)4

in (4.7) and (4.9). By plugging those results into (4.5) and (4.6), one finds the metric and three-form

superfields up to order (θ)4. The metric is

gmn = gmn − i(θ̄Γ(mDn)θ)−
1

4
(θ̄ΓaD(mθ)(θ̄Γ

aDn)θ)

+
1

12
(θ̄Γ(m|Ť dfgh

b θ)(θ̄Hb
|n)dfghθ) +

1

12
(θ̄Γ(m|Γ

bcθ)(θ̄W|n)bcθ),

(4.21)
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where we used the operators defined in (4.10), and, similarly, the three-form is

Amnp = Amnp −
3

2
i(θ̄Γ[mnDp]θ)−

3

4
(θ̄Γa[mDnθ)(θ̄Γ

aDp]θ)

+
1

8
(θ̄Γ[mn|Ť dfgh

b θ)(θ̄Hb
|p]dfghθ) +

1

8
(θ̄Γ[mnΓ

bcθ)(θ̄Wp]bcθ).

(4.22)

In the same way as we did at second order, these expressions can be plugged into the action and then

we can perform a Taylor expansion to find the action at quartic order

S
(4)
M2 = − TM2

∫

d3ζ

[

√

−det (g)− 1

6
εijkAijk

]

= − TM2

∫

d3ζ
√

−det (g)

[

1− 1

6

εijk
√

−det (g)
Aijk

]

+ TM2

∫

d3ζ
√

−det (g)

[

i
(

θ̄P
(0)
− ΓiDiθ

)

+
1

8

(

θ̄ΓiDiθ
)2 − 1

8

(

θ̄ΓiDjθ
)(

θ̄ΓiDjθ
)

− 1

8

(

θ̄ΓiDjθ
)(

θ̄ΓjDiθ
)

+
1

8

(

θ̄ΓmD
iθ
)(

θ̄ΓmDiθ
)

− 1

8

εijk
√

−det (g)

(

θ̄Γm[iDjθ
)(

θ̄ΓmDk]θ
)

− 1

12

(

θ̄P
(0)
− ΓiŤ dfgh

b θ
)(

θ̄Hb
idfghθ

)

− 1

12

(

θ̄P
(0)
− ΓiΓbcθ

)(

θ̄Wibcθ
)

]

.

(4.23)

We see that some of the fourth-order terms, like the second-order terms, may be organized around

zeroth-order κ-symmetry projectors, whereas some cannot be. Those terms which cannot be (coming

with a factor of 1/8) are related to the higher-order fermionic expansion of the κ-symmetry projector

superfield. We leave the study of this for future work, and for now continue on without organising

these terms around a κ-symmetry principle.

This completes the expansion of the bosonic background M2-brane action to quartic order. In the

next section we will examine the dimensional reduction of these expansions to determine the D2-brane

action up to order four in fermions.

5 Superspace dimensional reduction and the D2-brane action

We now know how to obtain the fermion couplings in the M2-brane action up to arbitrary order, and

we have calculated them explicitly up to order four. Our plan is to use this knowledge to compute

equivalent couplings on all Dp-branes. The first step in doing this is compactifying M-theory on a circle,

connecting the M2-brane in 11-dimensional supergravity to the D2-brane in type IIA supergravity.

Then, by T-dualizing the theory, move to branes of arbitrary dimension in both type IIA and IIB

theories.

Dp-branes are solutions of 10-dimensional type II supergravities and it is therefore possible to

construct their action using the superspace formulation of those supergravity theories. This is indeed

what we will do in this section and the next one. However, as we previously explained, the approach

we will use to obtain the Dp-brane action superfields will not be a direct application of the NORCOR

approach of section 4. Instead, in this section we use a superspace generalization of the dimensional

reduction relating M2-branes and D2-branes. We start by quickly reviewing the S1-compactification

of the 11-dimensional spacetime that reproduces type IIA supergravity starting from 11-dimensional
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supergravity. We then consider the M2-brane and its dimensional reduction to the D2-brane. After

revisiting the purely bosonic calculation, we then extend the compactification method to superspace.

For a detailed account of the notation employed, see appendix A. See appendix D for an overview

of the relevant dimensional reductions.

5.1 Reduction of 11-dimensional supergravity to type IIA supergravity

Type IIA string theory can be obtained by dimensional reduction of 11-dimensional supergravity. In

this subsection we quickly review the main features of this dimensional reduction.

The notation for the dimensional reduction is as follows: 11-dimensional indices are hatted whereas

10-dimensional indices are not and 11-dimensional objects are also hatted whereas 10-dimensional

objects are not; indices a, b, ... are tangent space and m,n, ... are spacetime indices, with explicit

number indices underlined for tangent space and unadorned for spacetime, while i, j, ... are M2- and D2-

brane worldvolume indices; 11-dimensional spacetime coordinates are x̂m̂ and they split as (xm, x10),

while worldvolume coordinates are ζi; we will leave implicit that the pull-back to the brane of an

11-dimensional object is a different operation than the pull-back to the brane of a 10-dimensional

object, but we will keep track of this by observing whether the object is hatted or not, objects always

being pulled back in the appropriate way. Background fields are independent of x10.

To begin the dimensional reduction, we first deal with bosonic fields. Given the 11-dimensional

metric ĝm̂n̂ = ê â
m̂ ê b̂

n̂ η̂âb̂, where ê
â

m̂ is the 11-dimensional vielbein, the S1-compactification ansatz for

the vielbein leading to the type IIA action in the string frame is

ê â
m̂ =

(

e−
φ

3 e a
m e

2φ
3 Cm

0 e
2φ
3

)

, (5.1)

where e a
m is the 10-dimensional vielbein, φ is the dilaton, and Cm is the Ramond-Ramond one-

form. The 10-dimensional metric is gmn = e a
m e b

n ηab. The 11-dimensional three-form gauge potential

decomposes as

Âmnp = Cmnp, (5.2a)

Âmn 10 = Bmn, (5.2b)

where C3 is the Ramond-Ramond three-form potential and B2 is the Kalb-Ramond potential. Notice

that our RR-field sign conventions differ from those used in [44, 45]. There are many objects for which

we need the dimensional reduction. Those calculations are crucial, but laborious, so we provide a

catalogue of the dimensional reduction results in appendix D.

Fermions are of course highly relevant for our purposes and so we need many details from the

dimensional reduction of fermionic fields. The ansatz for the 11-dimensional gravitino ψ̂m̂ is

ψ̂m = e−φ/6

[

ψm − 1

6
Γmλ+

1

3
eφCmΓ∗λ

]

, (5.3a)

ψ̂10 = e−φ/6

[

1

3
eφΓ∗λ

]

, (5.3b)

where ψm is the 10-dimensional gravitino, λ is the dilatino, and Γ∗ is the 10-dimensonal chirality

matrix. Recall that we start with 11-dimensional Majorana fermions. Upon dimensional reduction,

these will split into pairs of 10-dimensional Majorana-Weyl fermions of opposite chiralities, so each
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10-dimensional fermion above should be interpreted as a pair of Majorana-Weyl fermions of opposite

chirality, e.g. λ = λ+ + λ−, where Γ∗λ± = ±λ±. This dimensional reduction leads to the type

IIA action in the fermionic frame of [74]. Moreover, any 11-dimensional Majorana fermion, like the

supersymmetry parameter or the fermions on the M2-brane, need to be dimensionally reduced like the

gravitino, with a rescaling involving the dilaton, and further need splitting into pairs of 10-dimensional

Majorana-Weyl fermions, so

θ̂ = e−φ/6 θ, θ = θ+ + θ−. (5.4)

Next, we are interested in the type IIA gravitino and dilatino supersymmetry variations arising

in the resulting 10-dimensional action. In 11-dimensional supergravity, the gravitino supersymmetry

variation reads

δǫ̂ψ̂m̂ = D̂m̂ǫ̂. (5.5)

In the type IIA theory, the supersymmetry variations of fermionic fields are

δǫψm = Dmǫ, (5.6a)

δǫλ = ∆ǫ, (5.6b)

with the 10-dimensional supercovariant derivative Dm and the operator ∆ being defined as,

Dm = ∇m +
1

4
H(3)

m Γ∗ − 1

8
eφ
(

F (2)Γ∗ + F (4)
)

Γm, (5.7a)

∆ = ∂φ+
1

2
H(3)Γ∗ − 1

8
eφΓm

(

F (2)Γ∗ + F (4)
)

Γm. (5.7b)

Using these definitions, the 11- and 10-dimensional operators are related as

D̂m = Dm − 1

6
Γm∆+

1

3
eφCmΓ∗∆+

1

6
∂mφ, (5.8a)

D̂10 =
1

3
eφΓ∗∆. (5.8b)

We see that the 11-dimensional supercovariant derivative essentially splits in terms of the operators

determining the type IIA gravitino and dilatino variations. Recall that we defined these operators from

the supersymmetry variations of the type IIA gravitinos and dilatinos, which depend on the chosen

fermionic frame. Therefore if one makes a different dimensional reduction ansatz for the 11-dimensional

gravitino (or equivalently some redefinition in the fermionic sector of type IIA), the definition of these

operators will be modified accordingly.

5.2 Bosonic D2-brane action

Once we know how to dimensionally reduce the background, we can dimensionally reduce the M2-

brane action. We compactify along one direction that is not spanned by the M2-brane, therefore the

result is the D2-brane of type IIA supergravity. We start from the bosonic part of the M2-brane action

(2.1). Following our compactification ansatz, the pull-backs of the 11-dimensional metric and of the

three-form can be written in terms of pullbacks of 10-dimensional fields as

ĝij = e−2φ/3gij + e4φ/3pipj, (5.9)

Âijk = Cijk − 3C[iBjk] + 3 p[iBjk], (5.10)
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where we defined the combination pi = ∂ix
10+∂ix

mCm. In terms of these fields, the bosonic M2-brane

action becomes the D2-brane action and it reads

S
(0)
D2 = −TD2

∫

d3ζ e−φ
√

−det (g)
√

1 + e2φp2 +
TD2

6

∫

d3ζ εijk
[

Cijk − 3CiBjk + 3 piBjk

]

, (5.11)

where TD2 = TM2 is the D2-brane tension. We would like to obtain the action for the D2-brane

in a fully 10-dimensional formulation. Currently, however, (5.11) contains factors of pi and so that

formulation of the action implicitly knows about the M-theory circle. We need to get rid of pi. We do

this by including a Lagrange multiplier term involving the one form p1 and its worldvolume dual, the

exact 2-form F2 = dA1, where A1 is the D2-brane worldvolume gauge field. This Lagrange multiplier

is

SLM =
TD2

2

∫

d3ζ εijk(pi − Ci)Fjk. (5.12)

A fully 10-dimensional D2-brane action follows from including this term in the action, and then

integrating out pi by plugging the solutions to its equation of motion back into the action. After doing

this, and with a little massaging, we arrive at the familiar form the bosonic D2-brane action

S
(0)
D2 = −TD2

∫

d3ζ e−φ
√

− det(g + f) + TD2

∫

(C3 − C1 ∧ f2), (5.13)

where we made the definition fij = Bij + Fij . This action, obtained from the M-theory dimensional

reduction, is in string frame. It is worth noting explicitly here that the worldvolume field fij is built

using one field that is pulled back from the bulk, Bij , and one that specifically lives only on the

worldvolume, Fij .

We have calculated a fully 10-dimensional formulation of the D2-brane bosonic action. Our next

goal is to find fermion couplings on the brane worldvolume. Therefore we turn to the superspace

generalization of the S1-compactification we have just used.

5.3 Superspace dimensional reduction and fermions on the D2-brane

In this section we obtain the fermion couplings on the D2-brane action. Following the same reasoning

as in the case of the M2-brane action discussed in section 4, this can be done by moving to the

superspace formulation of type IIA supergravity. One must promote fields in the bosonic action to

superfields and then find the corresponding θ-expansions. From the expansions of the constituent

superfields, the expansion of the brane action superfield may then be determined.

A possible method to obtain the superfield expansions would be to construct all the necessary

superfields using the same geometrical strategy as we applied to the M2-brane, i.e. NORCOR. How-

ever this requires more hard work than is necessary and there exists a better strategy. The key

of our approach is the following observation: the superspace formulation of M-theory is in (11|32)-
dimensional superspace, and the superspace formulation of type IIA strings is in (10|32)-superspace.
It is therefore natural to expect that, as for the basic spacetime case, both superspaces are related

via an S1-compactification of a bosonic direction. This superspace compactification and knowledge of

11-dimensional superfields in the M2-brane action are all we need to obtain the expansion of the type

IIA superfields that appear in the D2-brane action.

Now we have to determine those 10-dimensional superfields. Same as in the M2-brane case, at

zeroth order in the θ-expansion, the superfields are simply the bosonic fields. Those 10-dimensional

bosonic fields are related to the bosonic fields of 11-dimensional supergravity by the dimensional reduc-

tion ansatzes (5.1) and (5.2). The spacetime dimensional reduction is described by those equations,
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and it is natural to interpret all fields appearing there (both 11- and 10-dimensional fields) as the

leading-order terms of the corresponding superfield θ-expansions. The superspace dimensional reduc-

tion must be described by the superspace generalization of those equations. Our method to compute

the 10-dimensional superfields of interest will therefore be to use this superfield generalization together

with knowledge of the 11-dimensional superfields we already gleaned in the previous section. Before we

write the superspace compactification ansatz, recall that in eleven dimensions we did not compute the

whole expansion of superfields, but rather we restricted to even θ̂ powers because we were interested

in bosonic backgrounds and we considered truncations to quartic order in the fermions. The same

holds in ten dimensions, namely we are interested in explicitly obtaining the same type of restricted

and truncated superfield expansions. We promote (5.1) and (5.2) to the superfield level and use bold

notation to indicate that in practice we will expand and truncated them. We obtain the promoted

11-dimensional metric

ĝm̂n̂ =

(

e−2φ/3(gmn + e2φCmCn) e4φ/3Cm

e4φ/3Cn e4φ/3

)

(5.14)

and the promoted 11-dimensional three-form5

Âmnp = C ′
mnp, (5.15)

Âmn 10 = Bmn, (5.16)

where gmn is the truncated 10-dimensional supermetric, φ is the truncated dilaton superfield, Bmn is

the truncated Kalb-Ramond superfield, and Cm and C ′
mnp are the truncated Ramond-Ramond one-

and three-form superfields, respectively.

With these relations in hand, we are ready to obtain the θ-expansions of the 10-dimensional

superfields. We are going to first compute the expansions of the 10-dimensional superfields up to

order (θ)2 as an illustrative example. We will do this in detail. Then we will plug the expressions

we find into the expression for D2-brane action superfield, expand, and compare our findings with

previous results for the D2-brane in bosonic backgrounds at second order in fermions obtained with

alternative methods. The results match, confirming the validity of our approach. Finally, we will

compute the order-(θ)4 terms of the truncated superfields. We will use these results to support the

point we made in previous sections, i.e. that combining the terms in θ-expansions into a more compact

and manifestly supercovariant formulation is crucial. We argue strongly that this is the cornerstone of

plausible methods for making the calculation of high-order fermionic couplings in brane actions viable

in the future.

5.3.1 Order-(θ)2 terms

The superfield relations in (5.14 - 5.16) can be Taylor-expanded, and these expansions can be truncated

at a desired fermion order. This will lead to relations between 11- and 10-dimensional fields. We will

use the number of fermions (both in eleven and ten dimensions) as an ordering principle to relate

those 11- and 10-dimensional fields. At leading order, one finds the original bosonic ansatz, which

does not have any new information. For the bosonic backgrounds we are considering, at next order, in

eleven dimensions one finds fermion bilinears with Γ̂-matrices and the 11-dimensional supercovariant

5For future convenience, we place a prime on the 10-dimensional RR three-form superfield here. We ask that the
reader indulges us in doing this for the time being and promise that the reason will be made clear. The motivation of
this choice is explained in (6.33).
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derivative in which several bosonic fields appear. It is natural to expect a similar behaviour in ten

dimensions, namely that at this order each superfield involves a bilinear in θ as well as Γ-matrices

and operators involving 10-dimensional fields. We can therefore make an ansatz for each truncated

superfield involving a (for now) unknown fermion bilnear, i.e.

gmn = gmn + γmn, (5.17a)

φ = φ+ ρ, (5.17b)

Bmn = Bmn + βmn, (5.17c)

Cm = Cm + τm, (5.17d)

C′
mnp = Cmnp + α′

mnp. (5.17e)

We now need to obtain expressions for the unknown 10-dimensional bilinears. Our procedure is

to take each component of the 11-dimensional fields in (5.14) - (5.16) and then perform a Taylor

expansion in fermions. We do this by NORCOR for the 11-dimensional left-hand side and by plugging

in the ansatzes (5.17) for the 10-dimensional right-hand side. Then we identify the corresponding

11-dimensional bilinears with the unknown 10-dimensional ones. At that stage one has relations

between fermion bilinears in different theories. The equations indicate expressions for the unknown

10-dimensional bilinears in terms of 11-dimensional fields. In order to write the results for the 10-

dimensional bilinears in terms of 10-dimensional fields, we are required to dimensionally reduce the

11-dimensional expressions. To properly elucidate this procedure, which is critical to our overall

method, we will provide several examples at varying levels of technical complexity by calculating the

bilinear terms for some of fields in (5.17).

Example 1: dilaton

The simplest example case is that of the dilaton, for which we will provide every detail. We read from

(5.14) that it is related to the (10, 10)-component of the 11-dimensional supermetric as ĝ10 10 = e4φ/3.

We Taylor-expand both sides of this relation. For the 11-dimensional left-hand side we use the result

(4.11) from the NORCOR procedure. For the 10-dimensional right-hand side we use the expansion

ansatz for the dilaton superfield in (5.17b). Equating the fermion bilinear terms from each side, we

find that

− i ˆ̄θΓ̂10D̂10θ̂ = e4φ/3
4ρ

3
, (5.18)

In order to determine an expression for ρ in terms of 10-dimensional fields we are required to dimen-

sionally reduce the 11-dimensional bilinear. All the necessary results are given in appendix D. We can

eventually write

− i ˆ̄θΓ̂10D̂10θ̂ =
−i
3
e4φ/3θ̄∆θ, (5.19)

which means the dilaton superfield fermion bilinear contribution is

ρ = − i

4
θ̄∆θ. (5.20)

We have found an expression for the bilinear ρ that is associated to the operator ∆ which appears in

the supersymmetry variation of the dilatino. This was to be expected: recall that we obtain the θ-

expansion by taking supersymmetry variations. In the first supersymmetry variation of the dilaton one

finds the dilatino and so the supersymmetry variation of the dilatino appears when we take a second
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variation (on the dilaton). It is also worth remembering again at this point that, in ten dimensions, θ

represents a pair of Majorana-Weyl fermions of opposite chirality.

Example 2: Ramond-Ramond one-form

For this next example we will move through the steps a little faster. We read from (5.14) that the

Ramond-Ramond one-form superfield in ten dimensions is related to the (m, 10)-component of the 11-

dimensional supermetric as ĝm 10 = e4φ/3Cm. Taylor-expanding both sides using (4.11) and (5.17d),

and keeping fermion bilinear terms, we obtain

− i ˆ̄θΓ̂(mD̂10)θ̂ = e4φ/3τm − i

3
e4φ/3(θ̄∆θ)Cm. (5.21)

Note that because the superfield relation involved both the dilaton and the Ramond-Ramond one-form,

we were obliged to use (5.20). After a little work for the dimensional reduction of the 11-dimensional

bilinear (again, all the relevant results are given in appendix D), we arrive at

− i ˆ̄θΓ̂(mD̂10)θ̂ = − i

2
eφ/3 θ̄Γ∗

(

Dm − 1

2
Γm∆

)

θ − i

3
e4φ/3(θ̄∆θ)Cm, (5.22)

which indicates that the bilinear τm must be

τm = − i

2
e−φ θ̄Γ∗

(

Dm − 1

2
Γm∆

)

θ. (5.23)

Example 3: metric

The most complicated superfield relation is that of the (m,n)-component of the 11-dimensonal super-

metric. We read from (5.14) that it is related to the 10-dimensional supermetric, the Ramond-Ramond

one-form, and the dilaton as ĝmn = e−2φ/3(gmn + e2φCmCn). With the ansatz (5.17a) and the pre-

vious results (5.20) and (5.23) for ρ and τm, Taylor-expanding in exactly the way we have in previous

examples yields

−i ˆ̄θΓ̂(mD̂n)θ̂ = −i e−2φ/3

[

− 1

6
(θ̄∆θ)

(

gmn + e2φCmCn

)

+ iγmn

+ e2φ
(

1

2
(θ̄∆θ)CmCn + C(me

−φ θ̄Γ∗
(

Dn) −
1

2
Γn)∆

)

θ

)]

.

(5.24)

Once more applying the results of appendix D, the dimensional reduction of the 11-dimensional bilinear

can be determined to be

−i ˆ̄θΓ̂(mD̂n)θ̂ = −i e−2φ/3

[

− 1

6
(θ̄∆θ)

(

gmn + e2φCmCn

)

+ θ̄Γ(mDn)θ

+ e2φ
(

1

2
(θ̄∆θ)CmCn + C(me

−φ θ̄Γ∗
(

Dn) −
1

2
Γn)∆

)

θ

)]

.

(5.25)

By comparison, we are immediately able to discern the result

γmn = −iθ̄Γ(mDn)θ. (5.26)

One should observe that the metric superfield expansion takes on the same shape for the 11- and the

10-dimensional metrics. In each case the fields and operators involved are not the same, but equivalent
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objects appear in the same place. This is once again to be expected. The first-order θ-expansion of the

metric involves the (corresponding) gravitino, and we obtain the expansion by taking supersymmetry

variations. Upon a second variation we are therefore not surprised to find the supersymmetry operator

on the gravitino variation.

Application of our approach to the case of the relations (5.15) and (5.16) connecting the 11-

dimensional three-form superfield to the 10-dimensional superfields is essentially straightforward and

we leave the details of the calculation to the interested reader.

Full results

At the end of the day, the expansions of the 10-dimensional superfields for type IIA supergravity up

to quadratic order in fermions are

gmn = gmn − i θ̄Γ(mDn)θ, (5.27)

φ = φ− i

4
θ̄∆θ, (5.28)

Bmn = Bmn − i θ̄Γ∗Γ[mDn]θ, (5.29)

Cm = Cm − i

2
e−φ θ̄Γ∗

(

Dm − 1

2
Γm∆

)

θ, (5.30)

C′
mnp = Cmnp −

i

2
e−φ θ̄

(

3Γ[mnDp] −
1

2
Γmnp∆

)

θ − 3i C[m θ̄Γ∗ΓnDp]θ. (5.31)

All bilinears involve one or both of the operators appearing in the supersymmetry variation of the type

IIA gravitino and dilatino, i.e. the supercovariant derivativeDm and the operator ∆, respectively. The

Ramond-Ramond potential C(1) is also present in the expansion of C ′(3). We asked earlier that the

reader indulge us in defining the three-form superfield with a prime for the moment. The reason for

this is that it will later become advantageous to consider the three-form superfield expansion restricted

to that bilinear which does not come multiplied with C(1), and for notational convenience it will be

this restricted expansion which we shall call C(3). We will say more on this in the next section.

Our results precisely match with those used in [44],6 where, however, the approach followed

was morally quite different. They used the results of [45], where all Dp-brane actions at order (θ)2

were computed using a brute-force approach, and noticed that all Dp-brane actions could be written

in a particularly compact and convenient way using field combinations like the ones above. The

authors there labelled their observation a ‘superfield-like’ formulation. Using our more conceptually

sophisticated approach we can now confidently remove the ‘like’. We can see clearly that the reason

these particular field combinations proved to be so useful to previous authors is that they are indeed

born out of superfield considerations, namely the use of truncated superfield expansions as we have

developed here. Moreover, the brute force approach is very complicated to manage at higher orders in

θ. Our approach, though still somewhat complicated, does allow such computations to be performed.

D2-brane action at order (θ)2

What bosonic fields do, the superfields do better. Or rather, the superfields do morally the same thing

but carry with them all of the information about the fermion terms. So it went for the dimensional

reduction of individual (super)fields, and so it goes for manipulations of the (super)field quantities

built from these constituent (super)fields. The composite quantity we are concerned with now is the

D2-brane action.

6What we give as C
′

ijk here is denoted C
standard

ijk there.
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In section 5.2 we provided many details of the dimensional reduction of the bosonic M2-brane

action to the bosonic D2-brane one. Now its usefulness is apparent: we are going to interpret the

bosonic action as the zeroth-order fermionic expansion of the corresponding superfield. Based on this

idea, we start with the M2-brane superaction (4.13) and write it in terms of 10-dimensional superfields

by using the superspace dimensional reduction ansatzes (5.14) and (5.15, 5.16). The appearance of

pullbacks works exactly as in the bosonic case, and so the outcome is the D2-brane super action written

as

S
(2)
D2 = −TD2

∫

d3ζ e−φ
√

−det (g)
√

1 + e2φp2+
TD2

6

∫

d3ζ εijk
[

C ′
ijk − 3CiBjk +3piBjk

]

, (5.32)

where pi = ∂ix
10 + ∂ix

mCm. Once again we would like to write this action in a fully 10-dimensional

formulation, and so need to get rid of the explicit dependence on pi (which knows about the M-theory

S1). We do this by once again introducing the Lagrange multiplier (5.12). Notice that the bilinears

in the truncated expansions of pi and Ci cancel in the Lagrange multiplier which depends on the

difference (pi − Ci) and so in effect we can promote these bosonic fields to truncated superfields for

free. Integrating out pi proceeds in formally the same way as integrating out pi did in the bosonic

case. After doing so, we are arrive at the D2-brane action superfield

S
(2)
D2 = −TD2

∫

d3ζ e−φ
√

− det(gij + f ij) +
TD2

6

∫

d3ζ εijk(C′
ijk − 3Cif jk), (5.33)

where we have defined f ij = Bij + Fij . Note the worldvolume flux F2 = dA1 remains purely bosonic

because it is a brane worldvolume field, not a superfield.

Let us once again stress that this procedure is valid at any order in θ. The right-hand side of

(5.33) is the correct structure from which to obtain the D2-brane action to any order. All one needs

to do is plug in the expansions of the superfields truncated at a given order in θ. The problem of

obtaining the D2-brane action up to a given order in θ has been reduced to the problem of determining

the expansions of the individual superfields involved. Once these superfield expansions are known, the

D2-brane action can be written down immediately.

To elaborate further on this claim, we reproduce the familiar form for the D2-brane action at

second order in fermions. Starting with (5.33), in order to obtain explicit couplings we need only plug

in the truncated superfields (5.27 - 5.31). We successfully reproduce the quadratic D2-brane action

S
(2)
D2 = −TD2

∫

d3ζ e−φ

[

√

− det(g + f)

[

1− iθ̄P
(0)
−

(

MijΓiDj −
1

2
∆

)

θ

]

− (C3 − C1 ∧ f2)
]

, (5.34)

where Mij is the inverse of the combination Mij = (gij + Γ∗Bij) and we defined the (zeroth order)

D2-brane κ-symmetry projector

P
(0)
− ≡ 1

2

(

1− ΓD2

)

, (5.35)

where

ΓD2 =
1

√

− det(g + f)
εijk

(

1

6
Γijk − 1

2
Γ∗Γifjk

)

. (5.36)

Notice that this is slightly more involved than in the M2-brane case because of the inclusion of

worldvolume flux f2. The outcome is the full D2-brane action at second order in fermions, and it

matches exactly with the results in [45, 46]. This completes the fermionic second-order analysis to
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exemplify our alternative approach to obtain the D2-brane action at any fermion level.

5.3.2 Order-(θ)4 terms

We have developed an improved approach for determining superfield fermionic expansions of fields in

type IIA supergravity. We did this via NORCOR in 11-dimensional supergravity and the string duality

that gives the type IIA theory via an S1-compactification. In the above subsection we demonstrated

in detail how our approach can be used to obtain the known results at second order in fermions with

much less hassle than previous approaches. In this section we move to use our approach to calculate

the quartic θ terms for those same type IIA superfield expansions.

As we discussed above, using our approach, the problem of determining the D2-brane action super-

field expansion gets reduced to the problem of determining the fermionic expansion of the constituent

superfields. Once these expansions have been found, the D2-brane action follows immediately from

plugging them into (5.33). All of the necessary details for this to work function at fourth order just

as well as second order, and indeed at every order.

Since our method is applicable at every fermion order, to find the superfield expansions of the

type IIA fields we can proceed in the same way as we did for the quadratic case above. To start, we

make ansatzes for the order-four terms in the truncated expansions of the 10-dimensional superfields.

We have already determined the bilinear terms and so can include them immediately. We use the

same symbols as we did for the ansatzes in the order-two case, but now label the unknown quantities

with their fermion order. We have

gmn = gmn − i θ̄Γ(mDn)θ + γ(4)mn, (5.37a)

φ = φ− i

4
θ̄∆θ + ρ(4), (5.37b)

Bmn = Bmn − i θ̄Γ∗Γ[mDn]θ + β(4)
mn, (5.37c)

Cm = Cm − i

2
e−φ θ̄Γ∗

(

Dm − 1

2
Γm∆

)

θ + τ (4)m , (5.37d)

C ′
mnp = Cmnp −

i

2
e−φ θ̄

(

3Γ[mnDp] −
1

2
Γijk∆

)

θ − 3iC[m θ̄Γ∗ΓnDp]θ + α′(4)
mnp. (5.37e)

Once again, we must determine the expressions for these unknown shifts by Taylor-expanding both

sides of (5.14) and (5.15, 5.16), now to quartic order in θ. Again, we appeal to the results of the

NORCOR procedure to Taylor-expand the left-hand side, whereas we plug our quartic ansatzes in

to Taylor-expand the right-hand side. Upon rearrangement, this will result in expressions for the

unknowns which contain both 10- and 11-dimensional fields. We must then once again dimensionally

reduce the 11-dimensional quantities that appear in order to determine expressions for the unknowns

that are entirely in terms of 10-dimensional quantities.

The mixing of the 10-dimensional metric, the dilaton and the Ramond-Ramond one-form in (5.14)

causes the expressions for the quartic ansatzes to be quite complicated to deal with practically. For

ease of notation, let us denote the quartic terms in the truncated expansion of the 11-dimensional

supermetric (4.21) as γ̂
(4)
m̂n̂. Now, Taylor-expanding the relation ĝ10 10 = e4φ/3 and keeping only the

terms up to quartic order in fermions allows us to find that

ρ(4) =
1

24
(θ̄∆θ)2 +

3

4
e−4φ/3γ̂

(4)
10 10. (5.38)

Determining a 10-dimensional expression for ρ(4) now requires us to perform dimensional reduction on
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γ̂
(4)
10 10. Before that though we also note the results of Taylor-expanding and rearranging the relations

that allow us to determine expressions for τ
(4)
m and γ

(4)
mn. First, expanding both sides of the equation

ĝm 10 = e4φ/3Cm yields that the quartic shift on the 10-dimensional Ramond-Ramond one-form

superfield is given by

eφτ (4)m =
1

6
(θ̄∆θ)(θ̄Γ∗Dmθ)−

1

12
(θ̄∆θ)(θ̄Γ∗Γm∆θ) +

1

18
eφ(θ̄∆θ)2Cm

−4

3
eφρ(4)Cm + e−φ/3γ̂

(4)
m 10.

(5.39)

As with the quadratic case, the mixing of 10-dimensional superfields in the right-hand side of the

supermetric relation in (5.14) means we are required to use the expressions for the dilaton superfield

expansion in this calculation. Second, we Taylor-expand the relation ĝmn = e−2φ/3(gmn+e
2φCmCn)

in order to determine an expression for the quartic fermion term of the expansion of the 10-dimensional

supermetric, obtaining

γ(4)mn =
2

3
gmnρ

(4) +
1

4

(

θ̄Γ∗D(mθ
)(

θ̄Γ∗Dn)θ
)

− 1

4

(

θ̄Γ∗D(mθ
)(

θ̄Γ∗Γn)∆θ
)

+
1

16

(

θ̄Γ∗Γ(m∆θ
)(

θ̄Γ∗Γn)∆θ
)

− 1

6

(

θ̄∆θ
)(

θ̄Γ(mDn)θ
)

+
1

72
gmn

(

θ̄∆θ
)2

− 2 e2φC(mτ
(4)
n) +

1

3
eφC(m

(

θ̄∆θ
)(

θ̄Γ∗Dn)θ
)

− 1

6
eφC(m

(

θ̄∆θ
)(

θ̄Γ∗Γn)∆θ
)

− 4

3
e2φC(mCn)ρ

(4) +
1

18
e2φC(mCn)

(

θ̄∆θ
)2

+ e2φ/3γ̂(4)mn.

(5.40)

The mixing of 10-dimensional superfields in the relation for the 11-dimensional supermetric has again

meant that we must include the previously calculated quartic terms for the dilaton and the Ramond-

Ramond one-form when making this expansion. Already we can see that the relative complexity of

the relation of the 11-dimensional supermetric to the 10-dimensional superfields results in expressions

of some length even before we turn our attention to the dimensional reduction step of our procedure.

As with the quadratic case, the initial Taylor expansion and rearrangement of the relations in

(5.15, 5.16) concerning the 11-dimensional three-form at quartic order are essentially straightforward.

Denoting the quartic terms in the NORCOR expansion of the 11-dimensional super three-form (4.22)

as α̂
′(4)
m̂n̂p̂, it is clear that the quartic terms in the truncated expansion of the 10-dimensional Ramond-

Ramond three-form superfield is given by α
′(4)
mnp = α̂

′(4)
mnp, and for the 10-dimensional Kalb-Ramond

form superfield we have β
(4)
mn = α̂

′(4)
mn 10.

At this point, ‘all’ that is left to do in order to obtain expressions for the quartic terms in the

expansions of the 10-dimensional superfields is to dimensionally reduce the 11-dimensional quantities

that appear, namely the components of γ̂
(4)
m̂n̂ and α̂

(4)
m̂n̂p̂. The calculation is very lengthy, so we provide

all of the necessary tools and results in appendix D. Despite their cumulative length, all the steps

are the simple application of the dimensional reduction procedure we are now very familiar with. For

this reason, we place an example of the calculation in the case of the dilaton in appendix D.5, but

otherwise just report the results of the calculations here.
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Quartic θ-terms for type IIA superfield expansions

In order to simplify the statement of the results, it is convenient to first make a few definitions. Along

with the familiar Dm and ∆, we will use the combinations

Dm ≡ Dm − 1

6
Γm∆, (5.41)

Kq ≡
[

Dq,Γ
∗∆
]

+ (∂qφ)Γ
∗∆, (5.42)

Kpq ≡
[

Dp,Dq

]

+
1

3
eφF (2)

pq Γ∗∆, (5.43)

as well as

Rmn ≡ 1

24

[

Γmn

(

eφF (4) +H(3)Γ∗
)

− 2 Γm

(

eφF (4)
n +H(3)

n Γ∗
)

+
(

eφF (4)
mn +H(3)

mnΓ
∗
)

]

,

Rm ≡ 1

24

[

ΓmΓ∗eφF (4) + Γ∗eφF (4)
m

]

.

(5.44)

We are now ready to list the quartic terms in the superfield expansion of the 10-dimensional superfields

using only 10-dimensional operators. The quartic fermionic terms in the dilaton are given by

ρ(4) = − 1

768
(θ̄Γmnpqθ)(θ̄ΓmnKpqθ) +

1

576
(θ̄Γ∗Γmnpθ)

[

θ̄
[

3Γ∗ΓmKnp − ΓmnKp

]

θ
]

+
1

384
(θ̄Γ∗Γmnθ)

[

θ̄
[

3Γ∗Kmn − 2ΓmKn

]

θ
]

+
1

48
(θ̄Γ∗Γmnθ)(θ̄RmnΓ

∗∆θ)

− 1

48
(θ̄ΓmΓ∗∆θ)(θ̄ΓmΓ∗∆θ)− 1

576

[

θ̄
[

2Γ∗eφF (4)
m − ΓmH

(3)
]

θ
]

(θ̄ΓmΓ∗∆θ)

+
1

48
(θ̄∆θ)2 +

1

576

[

θ̄
[

eφF (4) − 2H(3)Γ∗
]

θ
]

(θ̄∆θ).

(5.45)

The quartic fermionic terms in the Ramond-Ramond one-form superfield are

eφτ (4)m =+
1

576

[

θ̄ΓmΓnpqθ
]

[

θ̄
[

3 Γ∗ΓnKpq − ΓnpKq

]

θ
]

+
1

192

[

θ̄Γ∗Γnpqθ
]

[

θ̄
[

ΓmnKpq + ΓnpKmq

]

θ
]

+
1

576

[

θ̄ΓmΓnpθ
]

[

θ̄
[

3Γ∗Knp − 2ΓnKp

]

θ
]

+
1

72

[

θ̄ΓmΓnpθ
][

θ̄RnpΓ
∗∆θ

]

+
1

192

[

θ̄Γ∗Γnpθ
]

[

θ̄
[

ΓmKnp + 2ΓnKmp

]

θ
]

+
1

24

[

θ̄Γ∗Γnpθ
][

θ̄RnpDmθ
]

+
1

144

[

θ̄ΓmΓnΓ∗θ
][

θ̄Γ∗Knθ
]

+
1

36

[

θ̄ΓmΓnΓ∗θ
][

θ̄RnΓ
∗∆θ

]

+
1

12
[θ̄∆θ][θ̄Γ∗Dmθ]−

1

18
[θ̄∆θ][θ̄Γ∗Γm∆θ]− 1

12

[

θ̄ΓnΓ
∗∆θ

][

θ̄ΓnDmθ
]

+
1

288

[

θ̄
[

eφF (4) − 2H(3)Γ∗
]

θ
]

[

θ̄Γ∗Dmθ
]

+
1

864

[

θ̄ΓmΓ∗
[

eφF (4) − 2H(3)Γ∗
]

θ
]

[

θ̄∆θ
]

+
1

288

[

θ̄
[

Γ∗Γne
φF (4) + ΓnH

(3) − 3 Γ∗eφF (4)
n

]

θ
]

[

θ̄ΓnDmθ
]

− 1

864

[

θ̄Γm

[

3H(3)
n Γ∗ − Γne

φF (4) + 3 eφF (4)
n − ΓnH

(3)Γ∗
]

θ
]

[

θ̄ΓnΓ∗∆θ
]

.

(5.46)
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The quartic fermionic terms for the 10-dimensional metric expansion read

γ(4)mn =− 1

384
gmn(θ̄Γ

pqrsθ)(θ̄ΓpqKrsθ) +
1

96

[

θ̄Γ(m|Γ
pqrθ

]

[

θ̄
[

Γ|n)pKqr + ΓpqK|n)r

]

θ
]

+
1

288

[

θ̄Γ(m|Γ
pqΓ∗θ

]

[

θ̄
[

2Γ|n)pKq + ΓpqK|n) + 3Γ|n)Γ
∗Kpq − 6ΓpΓ

∗K|n)q

]

θ
]

+
1

576
gmn(θ̄Γ

∗Γpqθ)
[

θ̄
[

3Γ∗Kpq − 2ΓpKq

]

θ
]

+
1

72
gmn(θ̄Γ

∗Γpqθ)(θ̄RpqΓ
∗∆θ)

+
1

96

[

θ̄Γ(m|Γ
pqθ
]

[

θ̄
[

Γ|n)Kpq + 2ΓpK|n)q

]

θ
]

+
1

12

[

θ̄Γ(m|Γ
pqθ
][

θ̄RpqD|n)θ
]

+
1

144

[

θ̄Γ(m|Γ
pΓ∗θ

]

[

θ̄
[

Γ|n)Kp + ΓpK|n) − 3Γ∗K|n)p

]

θ
]

+
1

6

[

θ̄Γ(m|Γ
pΓ∗θ

][

θ̄RpD|n)θ
]

− 1

72
gmn(θ̄ΓpΓ

∗∆θ)(θ̄ΓpΓ∗∆θ)− 1

4

[

θ̄ΓpD(mθ
][

θ̄ΓpDn)θ
]

+
1

36
(θ̄Γ∗Γ(m∆θ)(θ̄Γ∗Γn)∆θ)−

1

6
(θ̄Γ∗Γ(m∆θ)(θ̄Γ∗Dn)θ)−

1

6
(θ̄∆θ)(θ̄Γ(mDn)θ)

− 1

864
gmn

[

θ̄
[

2Γ∗eφF (4)
p − ΓpH

(3)
]

θ
]

(θ̄ΓpΓ∗∆θ)

− 1

144

[

θ̄Γ(m|

[

3H(3)
p Γ∗ − Γpe

φF (4) − ΓpH
(3)Γ∗ + 3eφF (4)

p

]

θ
]

[

θ̄ΓpD|n)θ
]

− 1

144

[

θ̄Γ(m|Γ
∗
[

2H(3)Γ∗ − eφF (4)
]

θ
]

[

θ̄Γ∗D|n)θ
]

+
1

864
gmn(θ̄∆θ)

[

θ̄
[

eφF (4) − 2H(3)Γ∗
]

θ
]

.

(5.47)

The quartic fermionic terms for the Kalb-Ramond two-form are

β(4)
mn = − 1

384
(θ̄Γ∗ΓmnΓ

pqrsθ)
[

θ̄ΓpqKrsθ
]

− 1

96
(θ̄Γ[m|Γ

∗Γpqrθ)
[

θ̄
[

Γ|n]pKqr + ΓpqK|n]r

]

θ
]

+
1

576
(θ̄ΓmnΓ

pqθ)
[

θ̄
[

3Γ∗Kpq − 2ΓpKq

]

θ
]

+
1

72
(θ̄ΓmnΓ

pqθ)
[

θ̄RpqΓ
∗∆θ

]

− 1

96
(θ̄Γ[m|Γ

∗Γpqθ)
[

θ̄
[

Γ|n]Kpq + 2ΓpK|n]q

]

θ
]

− 1

12
(θ̄Γ[m|Γ

∗Γpqθ)
[

θ̄RpqD|n]θ
]

− 1

288
(θ̄Γ[m|Γ

pqθ)
[

θ̄
[

2Γ|n]pKq + ΓpqK|n] + 3Γ|n]Γ
∗Kpq − 6ΓpΓ

∗K|n]q

]

θ
]

+
1

144
(θ̄ΓmnΓ

pΓ∗θ)
[

θ̄Γ∗Kpθ
]

+
1

36
(θ̄ΓmnΓ

pΓ∗θ)
[

θ̄ŘpΓ
∗∆θ

]

+
1

6
(θ̄Γ[m|Γ

pθ)
[

θ̄RpD|n]θ
]

+
1

144
(θ̄Γ[m|Γ

pθ)
[

θ̄
[

Γ|n]Kp + ΓpK|n] − 3Γ∗K|n]p

]

θ
]

− 1

12
(θ̄ΓpΓ[mDn]θ)(θ̄Γ

pΓ∗∆θ)

− 1

4
(θ̄ΓpΓ

∗D[mθ)(θ̄Γ
pDn]θ) +

1

12
(θ̄ΓpΓ[mΓ∗∆θ)(θ̄ΓpDn]θ)−

1

12
(θ̄Γ∗Γ[mDn]θ)(θ̄∆θ)

− 1

12
(θ̄Γ[m∆θ)(θ̄Γ∗Dn]θ)−

1

12
(θ̄Γ∗∆θ)(θ̄Γ[mDn]θ)−

1

12
(θ̄D[mθ)(θ̄Γn]Γ

∗∆θ)

− 1

144

[

θ̄Γ[m|

[

Γ∗Γpe
φF (4) + ΓpH

(3) − 3Γ∗eφF (4)
p − 3H(3)

p

]

θ
]

[

θ̄ΓpD|n]θ
]

+
1

864

[

θ̄Γmn

[

Γpe
φF (4) + ΓpH

(3)Γ∗ − 3H(3)
p Γ∗ − 3eφF (4)

p

]

θ
]

[

θ̄ΓpΓ∗∆θ
]

− 1

144

[

θ̄Γ[m|Γ
∗
[

eφΓ∗F (4) + 2H(3)
]

θ
]

[

θ̄Γ∗D|n]θ
]

+
1

864

[

θ̄Γmn

[

Γ∗eφF (4) + 2H(3)
]

θ
]

[

θ̄∆θ
]

.

(5.48)
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Finally, the quartic fermionic terms for the Ramond-Ramond three-form superfield can be written as

α′(4)
mnp = α′′(4)

mnp + 3β
(4)
[mnCp], (5.49)

where α
′′(4)
mnp is given by the expression,

eφα′′(4)
mnp =− 1

384
(θ̄ΓmnpΓ

qrstθ)
[

θ̄ΓqrKstθ
]

− 1

576
(θ̄ΓmnpΓ

qrsΓ∗θ)
[

θ̄
[

ΓqrKs − 3 Γ∗ΓqKrs

]

θ
]

+
1

64
(θ̄Γ[mn|Γ

qrsθ)
[

θ̄
[

Γ|p]qKrs + ΓqrK|p]s

]

θ
]

+
1

192
(θ̄Γ[mn|Γ

qrΓ∗θ)
[

θ̄
[

2Γ|p]qKr + ΓqrK|p] + 3Γ|p]Γ
∗Kqr − 6ΓqΓ

∗K|p]r

]

θ
]

+
1

64
(θ̄Γ[mn|Γ

qrθ)
[

θ̄
[

Γ|p]Kqr + 2ΓqK|p]r

]

θ
]

+
1

8
(θ̄Γ[mn|Γ

qrθ)
[

θ̄RqrD|p]θ
]

+
1

96
(θ̄Γ[mn|Γ

qΓ∗θ)
[

θ̄
[

Γ|p]Kq + ΓqK|p] − 3Γ∗K|p]q

]

θ
]

+
1

4
(θ̄Γ[mn|Γ

qΓ∗θ)(θ̄RqD|p]θ)

− 3

4
(θ̄ΓqΓ[mDnθ)(θ̄Γ

qDp]θ)−
3

4
(θ̄D[mθ)(θ̄ΓnDp]θ)−

3

4
(θ̄Γ∗Γ[mDnθ)(θ̄Γ

∗Dp]θ)

+
1

96

[

θ̄Γ[mn|

[

Γqe
φF (4) + ΓqH

(3)Γ∗ − 3eφF (4)
q − 3H(3)

q Γ∗
]

θ
]

[

θ̄ΓqD|p]θ
]

+
1

96

[

θ̄Γ[mn|

[

2H(3) + Γ∗eφF (4)
]

θ
]

[

θ̄Γ∗D|p]θ
]

.

(5.50)

A few comments are due, as in the above formulae the 10-dimensional quartic fermionic terms look

complicated and have an enormous length. With current understanding, the quartic fermion expan-

sions of type IIA superfields seem unavoidably lengthy, as also seen in [75]. We will discuss some

promising avenues for improving this quality of these results in what follows. On the other hand, the

most prominent feature of these results is their completeness. The robustness and systematicity of the

methods we have employed guarantee that these are the full and complete quartic fermion terms for

the type IIA superfield expansions. This is the first time that some of these terms have been calculated

and our results will serve as a foundation for future understanding of such expansions.

Avenues to simplification

Our current expressions for the results for the quartic order fermion terms in the type IIA super-

field expansions are unwieldy. It is therefore worthwhile to discuss how they might be made more

manageable.

The first thought that might occur is to try and tidy up the large number of ‘loose’ flux terms in

the expansions. One would do this by attempting to package these terms up using the operators Dm

and ∆ (or combinations thereof) just as everything at second order was packaged neatly. Indeed, this

idea is met with some initial success, for example, with a little effort, one can see that three of the

terms appearing above in the dilaton shift come together to give

1

128
(θ̄Γ∗Γmnθ)

(

θ̄Γ∗Kmnθ
)

+
1

48
(θ̄∆θ)2 +

1

576

[

θ̄
[

eφF (4) − 2H(3)Γ∗
]

θ
]

(θ̄∆θ) =

=
1

128
(θ̄Γ∗Γmnθ)

(

θ̄Γ∗
[

Dm , Dn

]

θ
)

+
1

72
(θ̄∆θ)2.

(5.51)

However, reorganizations along these lines often require spotting tricks in the calculations, for example

with Γ-matrix identities, with the symmetry properties of bilinears, and potentially with Fierz iden-
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tities. It rapidly becomes utterly impractical to hope to significantly reorganize these shifts as they

currently stand in this way. We must try and find a better strategy.

We can see in the quadratic and quartic cases that the process of dimensional reduction sharply

increases the number and complexity of terms in the expansions. However, dimensional reduction will

not generate the capacity for any significant recombination or reorganization of terms all by itself. Any

game-changing reorganizational principle for the 10-dimensional quartic terms should be identifiable in

the simpler quartic terms in the 11-dimensional description. The most promising line, therefore, is not

to try and massage the many terms appearing in ten dimensions, but to return to 11 dimensions and fix

them there. The quartic fermion terms in the expansions of the supermetric and super three-form in

11-dimensional supergravity are given in (4.21) and (4.22). We saw in our discussion of the M2-brane

that in actuality the only 11-dimensional superfield we need to expand using NORCOR in order to

obtain the expansions required for the brane action is the supervielbein E A
M (Z). All the components

of the expansion of this superfield that we require to get to quartic fermion order for the M2-brane

are given in (4.8) in conjucture with (4.7). Recall that we also performed significant manipulation of

the higher-order expansions using Bianchi identities until we arrived at (4.9). We can see then that

it is the relative unwieldiness of these expressions for components of the NORCOR expansion of the

11-dimensional supervielbein where the vastness of the quartic 10-dimensional terms has its origin.

Meaningful rearrangement or simplification of the quartic terms in the type IIA superfield expansion

will be identifiable at the level of improvements of (4.9). These improvements have the potential to

come from a couple of different lines of reasoning. The most obvious is by improving the application

of the Bianchi identities (and litany of other subtle identities that emerge in their combination) when

moving from (4.8) to (4.9). Another direction might be to improve the NORCOR procedure itself, or

making significant geometrical insight there, such that the left-hand side of (4.9) can be made more

and more amenable.

Crucial to note, however, is that even with these improvements to the treatment of the 11-

dimensional supervielbein, the best subsequent method for obtaining the type IIA quartic terms is

still the one we have presented here, when applied to the improved formulation. We will say some

more about how the quartic results might be improved once we have explored the next step in our

procedure and obtained information about both type II supergravities.

6 Superspace T-duality and Dp-brane actions

In this section we complete the task initiated in section 5 and provide a systematic method to compute

fermion couplings on all Dp-branes. The method is based on ideas analogous to the ones in section 5,

and for this reason we will make reference to explanations there when possible to avoid repetition.

Let us briefly summarize the approach. Our proposal relies on two facts. First, Dp-branes are

solutions of type II supergravities related by T-dualities. Second, fermion couplings on Dp-brane

actions arise naturally in the superspace formulation of the corresponding supergravity theory. For

reasons analogous to the ones in the previous section, here we combine those two facts and extend

the relation between the T-dual geometries to the superspace level. Using this generalization we

find relations between superfields in curved superspaces that are T-dual to each other. We use those

relations to find the θ-expansions of superfields appearing in Dp-brane actions. We already explained

that this is equivalent to finding fermion couplings on all Dp-brane actions.
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6.1 T-duality toolkit

With the general picture in mind, we can move into the details. In type II theories,7 T-duality

represents the equivalence of type IIA strings on a background with an isometry along a non-trivial

circle S1 of size R and type IIB strings compactified on another background also with an isometric on a

non-trivial circle S̃1, this time with size R̃ = l2s/R (in our conventions, the string length is ls = 2π
√
α′).

We are interested in this underlying structure that connects the two theories. The relations for Neveu-

Schwarz fields were first given by Buscher [76, 77] and expanded to Ramond-Ramond fields in [78],

and then they were extended to fermionic fields in [51–53].

6.1.1 Bosons

Analogously to the dimensional reduction, we begin with a reminder of the standard T-duality relations

for bosonic fields. We take the T-duality S1-direction to be x9. Our notation will be the following: the

indices m,n = 0, . . . , 9 run through all spacetime directions, and the indices ṁ, ṅ = 0, . . . , 8 through

all but the circle S1, that we take to be x9 ∼ x9 + R. We indicate which fields belong to each theory

by introducing a tilde for fields in one theory and no adornment of symbols for fields in the other one.

All fields are independent of the T-duality direction. We start by providing the well-known Buscher

rules8

φ̃ = φ− 1

2
ln g99, (6.1a)

g̃ṁṅ = gṁṅ − g−1
99

(

gṁ9gṅ9 −Bṁ9Bṅ9

)

, (6.1b)

g̃ṁ9 = g−1
99 Bṁ9, (6.1c)

g̃99 = g−1
99 , (6.1d)

B̃ṁṅ = gṁṅ − g−1
99

(

Bṁ9gṅ9 − gṁ9Bṅ9

)

, (6.1e)

B̃ṁ9 = g−1
99 gṁ9. (6.1f)

The Ramond-Ramond gauge potentials are related by the mutually implicative expressions

C̃
(n)
9ṁ2...ṁn

= C
(n−1)
ṁ2...ṁn

− (n− 1) g−1
99 g9[ṁ2

C
(n−1)
|9|ṁ3...ṁn]

, (6.2a)

C̃
(n)
ṁ1...ṁn

= C
(n+1)
9ṁ1...ṁn

− nB9[ṁ1
C

(n−1)
ṁ2...ṁn]

+ n(n− 1) g−1
99 g9[ṁ1|B9|ṁ2

C
(n−1)
ṁ3...ṁn]

. (6.2b)

6.1.2 Spinors, supersymmetry operators, and spinor doublet notation

When fermions are involved, T-duality becomes somewhat more subtle and complicated. The ground-

work for the treatment of fermions under T-duality is represented by the Hassan rules [51–53].

The intricate world of fermion T-duality begins with making an observation concerning the T-

duality rules for fields in the Neveu-Schwarz sector: there are two different vielbeins that are dual to

the original one. Properly dealing with this fact requires the introduction of some extra structure. We

denote the ‘initial’ vielbein as e m
a , and the two possible ‘final’ dual vielbeins as (ẽ+)

m
a and (ẽ−)

m
a .

Both choices give the correct T-dual metric. The initial and final vielbeins are related according to

7T-duality is a more general concept in String Theory and it also relates heterotic strings, but here we are interested
in type II theories only.

8Notice that fields are dimensionless in this setup, e.g. g99 = (R/ls)2. Forms therefore have length dimension
with the string length ls as a reference length. Integrals such as

∫
1

0
dx9

√
g99 = R give dimensionful volumes with the

appropriate dimension.
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the T-duality rules

(ẽ±)
n

a = e m
a (Q±)

n
m , (6.3a)

(ẽ±)
a

m = (Q−1
± ) n

m e a
n , (6.3b)

where we have defined

(Q±)
n

m =

(

δ ṅ
ṁ ∓(g9ṁ ± B9ṁ)

0 ∓g99

)

, (6.4a)

(Q−1
± ) n

m =

(

δ ṅ
ṁ −g−1

99 (g9ṁ ±B9ṁ)

0 ∓g−1
99

)

. (6.4b)

Notice that (Q̃−1
± ) n

m = (Q±)
n

m . The two vielbeins (ẽ+)
a

m and (ẽ−)
a

m are related to one another by

a local Lorentz transformation as (ẽ+)
a

m = Λa
b(ẽ−)

b
m , with Λa

b = e m
b (Q−)

p
m (Q−1

+ ) n
p e a

n . This is

irrelevant for the Lorentz-invariant quantities in the bosonic analysis, but it plays a vital role when

considering fermions. For example there are now two choices for Γ-matrices in the dual theory, i.e.

(Γ̃±)m = (Q−1
± ) n

m Γn = (ẽ±)
a

m Γa. (6.5)

These are naturally related by a spinorial representation Ω of the Lorentz transformation Λ, defined

via ΩΓa Ω
−1 = Γb (Λ

−1) ba, as

Ω (Γ̃+)m Ω−1 = (Γ̃−)m. (6.6)

It can be determined that this matrix reads (also notice it squares as Ω2 = −1)

Ω = Ω̃ =
1√
g99

Γ∗Γ9. (6.7)

The extra complication when T-dualizing objects that are sensitive to the difference between the two

choices of vielbein, such as spinors and Γ-matrices, is that for self-consistency it is necessary that all

Lorentz tensors in the dual theory are computed with respect to the same vielbein. We will choose

(ẽ−)
a

n as our reference dual vielbein. Let us point out that this does not imply that we will write all

duality relations using Q−: we will often find it convenient to transform objects using Q+ and then

perform Lorentz transformations.

With these tools in hand, we are in principle ready to provide all of the rules for fermion T-

dualization introduced by Hassan. Before doing so, however, we introduce a new notation that allows

us to perform computations in a clean and compact way: the spinor doublet notation. The spinor

doublet notation we introduce has differences to the ones found in the literature, e.g. in [19, 44–46, 79].

These differences will make performing the necessary T-duality computations cleaner. The motivation

for this new notation is the following: in type II theories spinors come in doublets of Majorana-Weyl

spinors. In type IIA theese have opposite chirality whereas in IIB they have the same chirality, which

we take to be positive for the gravitinos and supersymmetry parameters, and negative for dilatinos.

It is therefore convenient to use spinor doublet in the latter in order to write most combinations, such

as fermion bilinears, in a compact way. We define the IIB doublets

ǫB =

(

ǫ1
ǫ2

)

, ψB
m =

(

ψ1m

ψ2m

)

, λB =

(

λ1
λ2

)

. (6.8)
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It is also convenient to do the same in the type IIA theory. In this case, we must bear in mind that

chirality plays a crucial role in organizing fermion bilinears in this theory, and so we need to use

chirality as an organizing principle. Our convention will be to have positive chirality fermions on the

top of type IIA fermion doublets. We can now define

ǫA =

(

ǫ+
ǫ−

)

, ψA
m =

(

ψ+m

ψ−m

)

, λA =

(

λ+
λ−

)

. (6.9)

Given these doublets, the natural matrices that act on them can always be written in terms of the

2-dimensional identity 12 and the Pauli matrices σ1, σ2, σ3. This also comes with further implications.

For instance, chirality matrices in type IIA theory can always be replaced by σ3 in our conventions,

for instance as in Γ∗ǫA = σ3ǫA. Also, to account for the fact that multiplications by a Γ-matrix

flip chiralities, one must introduce a σ1 matrix for each Γ-matrix when moving to the spinor doublet

notation from the one in the previous section. The appearance of multiple Pauli matrices in this

notation change can make fomulae more complicated to read. In order to make them more readable,

we compute the product of Pauli matrices and just give the resulting one, such that all other operators

appearing in the expressions now come with 12. For example, the type IIA product ΓmΓ∗ǫ leads to

(σ1 ⊗ Γm)σ3ǫA = (12 ⊗ Γm)(−iσ2)ǫA = (−iσ2)⊗ Γmǫ
A in our doublet notation. We will omit ‘⊗’

symbols from now on. Hence operators implicitly come with 12. We will also write Γm = 12 ⊗Γm. In

type IIB strings, chirality cannot be used as an organizing principle, instead the Pauli-matrix structure

is inherited from type IIA.

As clarifying examples, and because they will be useful for later purposes, we provide here the

second-order truncated superfields (5.27 - 5.31) that appeared in the D2-brane action with fermion

bilinears written in this notation. These are

gmn = gmn − i θ̄Aσ1Γ(mDA
n)θ

A, (6.10)

φ = φ− i

4
θ̄A∆AθA, (6.11)

Bmn = Bmn − i θ̄A(iσ2)Γ[mDA
n]θ

A, (6.12)

Cm = Cm − i

2
e−φ θ̄Aσ3

(

DA
m − 1

2
σ1Γm∆A

)

θA, (6.13)

C ′
mnp = Cmnp −

i

2
e−φ θ̄A

(

3Γ[mnDA
p] −

1

2
σ1Γmnp∆

A
)

θA − 3i C[m θ̄A(iσ2)ΓnDA
p]θ

A. (6.14)

In order to write the superfields, we used the operators appearing in the type IIA gravitino and dilatino

supersymmetry variations, that in the spinor doublet notation are

δǫψ
A
m = DA

mǫ
A, (6.15)

δǫλ
A = ∆AǫA, (6.16)

with

DA
m ≡ 12∇m +

1

4
σ3H(3)

m − 1

8
eφ
[

iσ2F (2) + σ1F (4)
]

Γm, (6.17)

∆A ≡ σ1∂φ+
1

2
iσ2H(3) − 1

8
eφ Γm

[

σ3F (2) + 12F
(4)
]

Γm. (6.18)
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We also need to define the equivalent operators in type IIB. For doing so we first give the supersym-

metry variations in the spinor doublet notation

δǫψ
B
m = DB

mǫ
B, (6.19)

δǫλ
B = ∆BǫB, (6.20)

and this time

DB
m ≡ 12∇m +

1

4
σ3H(3)

m +
1

8
eφ
[

iσ2
(

F (1) + F (5)
)

+ σ1F (3)
]

Γm, (6.21)

∆B ≡ σ1∂φ+
1

2
iσ2H(3) +

1

8
eφ Γm

[

σ3
(

F (1) + F (5)
)

+ 12F
(3)
]

Γm. (6.22)

Now we have to express the basic T-duality relations in this spinor doublet notation. The exten-

sions of Q± and Ω can be simply achieved by defining

(Q±)
n

m =

(

(Q±)
n

m 0

0 (Q∓)
n

m

)

(6.23)

and

Υ =

(

1 0

0 Ω

)

. (6.24)

These definitions allow us to extend the T-duality rules for many objects to the spinor doublet notation

which will be used later on. For instance, once we take (ẽ−)
a

m as the reference frame in the dual

theory, the Γ-matrix rule can be manipulated to give

Γ̃m = (Q−1
− ) n

m ΥΓnΥ
−1. (6.25)

Adapting the notation of [44, 45, 51–53] to our conventions, spinors in type IIA and type IIB theories

are related to each other by the T-duality rules

ǫB = ΥǫA, (6.26)

ψB
m = (Q−1

+ ) n
m ΥψA

n , (6.27)

λB = (σ1Υσ1)
[

λA − 2 g−1
99 σ

1Γ9 ψ
A
9

]

, (6.28)

Related to the above formaulae, it is convenient to define the Dirac conjugate doublets because these

appear in fermion bilinears. Based on chirality arguments above this is ǭA = (ǭ−, ǭ+) for type IIA

and we extend the structure to IIB by defining ǭB = (ǭ2, ǭ1). The T-duality relation between them is

ǭB = ǭAσ1Υ−1σ1.

A point worth making here is that if we invert the relations above, the outcome is similar but

involves Υ−1, instead of Υ itself, so there is a slight difference between going from type IIA to type IIB

or taking the opposite route. This did not happen for bosonic fields above, where the relations found

worked the same regardless of the direction taken to perform the duality. To conclude, the T-duality

rules between the supersymmetry operators read

DB
m = (Q−1

+ ) n
m ΥDA

nΥ
−1, (6.29a)

∆B = σ1Υσ1
[

∆A − 2 g−1
99 σ

1Γ9D
A
9

]

Υ−1, (6.29b)
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The above results are in precise agreement with the existing literature. As should be apparent, the

spinor doublet notation approach we have employed here is highly successful in compactly capturing

the T-duality relationships for the fermions and supersymmetry variations in type IIA and type IIB

supergravity.

6.1.3 T-duality and bosonic Dp-branes

We will now review how bosonic Dp-brane actions are related to each other under T-duality. This

is instrumental in explaining our superspace approach below. In general, the basic idea is that T-

dualising a theory with a Dp-brane produces a theory with a D(p ± 1)-brane, depending on whether

the original brane wraps the T-duality circle S1 or not. This is consistent with the fact that type

IIA and type IIB theories are exchanged, as the former only admits even-p branes and the latter only

odd-p ones. Starting from the bosonic D2-brane action, one can repeatedly T-dualise the theory to

infer that the bosonic action of a generic Dp-brane is

S
(0)
Dp = −TDp

∫

dp+1ζ e−φ
√

− det (g + f) + TDp

∫

C e−f , (6.30)

where the brane tension is TDp = 2π/lp+1
s . All bulk fields are pulled-back onto the brane worldvolume.

The WZ-term contains a formal sum C =
∑

q C
(q) over forms of all degrees and we let the integral

pick out the appropriate forms each time.

In order to show in some detail how the machinery of T-duality works for Dp-branes, we consider a

bosonic Dp-brane wrapping the T-duality circle S1 in the direction x9 and, with simple manipulations,

we integrate its action over the circle S1 to obtain the action of the dual D(p−1)-brane that is localized

on the dual circle. The initial Dp-brane wraps a (p + 1)-cycle Σp+1 that is an S1-fibration over Σp,

which is the cycle wrapped by the final D(p− 1)-brane. Indices k = 0, . . . , p− 1, 9 span the Dp-brane

worldvolume and indices k̇ = 0, . . . , p − 1 are parallel to the D(p − 1)-brane, excluding the direction

x9. For simplicity, we fix the static gauge for the brane embedding, with all fields independent of the

S1-direction. For clarity, we manipulate the DBI- and the WZ-terms of the action separately. The

presentation here is sketchy and we refer the interested reader to [80, 81] for further details.

First, we deal with the DBI-action. Integrating over the circle S1 goes as

SDBI
Dp = −TDp

∫

Σp+1

dp+1ζ e−φ
√

− det
[

(g + f)kl
]

= −TDp

∫

Σp

dpζ

∫

dζ9 e−φ√g99
√

− det
[

(g + f)k̇l̇ − g−1
99 (g + f)k̇9(g + f)9l̇

]

= −T̃D(p−1)

∫

Σp

dpζ e−φ̃
√

− det
[

(g̃ + f̃)k̇l̇
]

.

(6.31)

To achieve this, we express the determinant of the block matrix singling out the S1-direction. Orga-

nizing the resulting formula as shown, one can identify the combinations appearing in the Buscher

rules (6.1), so the integrand after this manipulations has the appropriate shape to be the DBI-part of

the D(p − 1)-brane in the dual background to the initial one. Also, the result of the integration over

the circle transforms the Dp-brane tension leading to the D(p−1)-brane tension, i.e. TDpls = T̃D(p−1).

So the outcome of these manipulations is the DBI-term in the resulting D(p − 1)-brane action, also

in the static gauge, as expected. For later purposes, we emphasize that this computation provides an

alternative derivation of the Buscher rules (6.1).
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We can proceed analogously for the WZ-term. One can observe that the S1-integration gives

SWZ
Dp = TDp

∫

S1

∫

Σp

dζ9 ∧ dζ l̇1 ∧ · · · ∧ dζ l̇p
p+ 1

(p+ 1)!

(

C ∧ e−f
)

9l̇1...l̇p

= T̃D(p−1)

∫

Σp

dζ l̇1 ∧ · · · ∧ dζ l̇p
1

p!

(

C̃ ∧ e−f̃
)

l̇1...l̇p
.

(6.32)

To achieve this, we expand the integrand and upon performing the integral over ζ9 we recognize in it

the D(p− 1)-brane WZ-term with the appropriate charge. Similarly to the case of the Neveu-Schwarz

sector, we note that this reduction provides an alternative approach to obtain the T-duality rules for the

Ramond sector written as (C̃ e−B̃)
(n)
9ṁ2...ṁn

= (C e−B)
(n−1)
ṁ2...ṁn

and (C̃ e−B̃)
(n)
ṁ1...ṁn

= (C e−B)
(n+1)
9ṁ1...ṁn

,

that can be manipulated to give (6.2).

This completes our review of the behaviour of the bosonic brane actions under T-duality. One

should notice a fundamental fact: T-duality maps the DBI- and WZ-actions of a Dp-brane into the

DBI- and WZ-actions of a D(p− 1)-brane, respectively, and there is no mixing among the two in the

transformation. A similar calculation to the one above may be engineered to move from a Dp-brane

to a D(p+ 1)-brane.

6.2 A useful rearrangement

We just showed how to obtain all the bosonic Dp-brane actions by T-dualizing the bosonic D2-brane

one. Moreover, in the superspace formulation, the structure of the D2-brane action is formally the same

both at zeroth order and in superspace at any fermionic order. Therefore, the structure of fermion

couplings on all Dp-branes just follows from the D2-brane one. Because our goal is to compute

these fermionic couplings for all Dp-branes, here we present a useful rearrangement that simplifies

the computation of such couplings. In fact, because the fermion couplings are inherited from the

superfield expansions appearing on the brane, the rearrangement is a smart manipulation of the

superfields appearing on the D2-brane action that will simplify the computation of those appearing in

the rest of Dp-branes.

In section 5, we defined the promoted Ramond-Ramond three-form field in type IIA with a

prime symbol. That is the standard three-form superfield obtained from dimensional reduction of

11-dimensional supergravity. Rather than working with that superfield, it will be convenient to work

with a related one. We define a new unprimed three-form superfield as

Cmnp = C ′
mnp − 3C[m(Bnp] −Bnp]). (6.33)

From here on we will work using this unprimed three-form rather than the standard one. This new

superfield is such that the last term in the superfield C′
mnp in (6.14) is removed, and at order (θ)2 it

reads

Cmnp = Cmnp −
i

2
e−φ θ̄A

(

3Γ[mnDA
p] −

1

2
σ1Γmnp∆

A
)

θA. (6.34)

The reason why we defined this rearrangement is easily explained: the super-D2-brane action now

reads

SD2 = −TD2

∫

d3ζ e−φ
√

− det (g + f) +
TD2

6

∫

d3ζ εijk(Cijk − 3Cifjk). (6.35)

In other words, we have engineered a superspace action where the Neveu-Schwarz fields appear as

superfields in the DBI-term but only as bosonic fields in the WZ-term. Ramond-Ramond fields instead

appear as superfields in the WZ-term. From the discussion in section 6.1.3 we conclude that this
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combination of fields and superfields will hold for any Dp-brane if we obtain the brane superspace

actions by T-dualizing this one.

6.3 Superspace T-duality and fermions on Dp-branes

We will once again be following the reasoning of the example already laid out with dimensional

reduction in section 5. We interpret the bosonic T-duality relations (6.1) and (6.2) as the zeroth-order

terms in the fermionic expansions of superspace T-duality relationships and extend them to superspace

relations. T-duality in the context of full superfields was also discussed in [82].

Now, since T-duality maps the DBI-action of Dp-branes into the DBI-action of D(p ± 1)-branes,

and since this mapping allows one to derive the Buscher rules (6.1), one can simply conclude that the

Buscher rules for the Neveu-Schwarz fields in superspace read

φ̃ = φ− 1

2
ln g99, (6.36a)

g̃ṁṅ = gṁṅ − g−1
99

(

gṁ9gṅ9 −Bṁ9Bṅ9

)

, (6.36b)

g̃ṁ9 = g−1
99 Bṁ9, (6.36c)

g̃99 = g−1
99 , (6.36d)

B̃ṁṅ = gṁṅ − g−1
99

(

Bṁ9gṅ9 − gṁ9Bṅ9

)

, (6.36e)

B̃ṁ9 = g−1
99 gṁ9. (6.36f)

Some of these rules partially appeared in [70], where they found the T-duality relation between Green-

Schwarz superstrings in type IIA and type IIB with fermionic expansions up to quadratic terms.

Similarly, T-duality maps the WZ-action of Dp-branes into the WZ-action of D(p± 1)-branes and

this mapping allows one to derive the T-duality rules for Ramond-Ramond fields (6.37). Because in

the WZ-action of (6.35) the Neveu-Schwarz field appear only bosonically and the Ramond-Ramond

fields appear as superfields, we conclude that the Ramond-Ramond T-duality rules we will use are

C̃
(n)

9ṁ2...ṁn
= C

(n−1)
ṁ2...ṁn

− (n− 1)g−1
99 g9[ṁ2

C
(n−1)
|9|ṁ3...ṁn]

, (6.37a)

C̃
(n)

ṁ1...ṁn
= C

(n+1)
9ṁ1...ṁn

− nB9[ṁ1
C

(n−1)
ṁ2...ṁn]

+ n(n− 1) g−1
99 g9[ṁ1|B9|ṁ2

C
(n−1)
ṁ3...ṁn]

. (6.37b)

This mechanism was used in [45] for the quadratic fermionic action and we have extended that ob-

servation to any fermionic order. Note that without our manipulation on the super-three-form, one

would have obtained similar results involving Neveu-Schwarz superfields rather than fields. Those are

the actual superspace T-duality rules for Ramond-Ramond superfields, but for our purposes it will be

more convenient to use (6.37).

6.3.1 Order-(θ)2 terms

In the following, we will use the promoted T-duality relations (6.36) and (6.37) to calculate the

second-order fermionic expansions of all the superfields that appear in type IIA and type IIB under

repeated T-dualizations. Just as in section 5.3.1, we will provide illuminating examples of the necessary

calculations before listing the full results.
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Example: type IIB metric

We will now use the simplest superspace T-duality relationships in order to provide an example of

how to obtain the fermionic expansions of type IIB operators from type IIA description by using

the conventional T-duality rules applied to quadratic fermionic quantities. We will focus on the

supermetric.

Consider the superspace T-duality rule (6.36d), i.e. g̃99 = g−1
99 . Starting from the type IIA

supermetric gmn, in order to determine an expression for the quadratic fermionic expansion of the

type IIB supermetric g̃mn, we Taylor-expand both sides, concentrating on the components of interest.

On the type IIB left-hand side, we set the ansatz g̃99 = g̃99 + γ̃99, whereas on the type IIA right-

hand side we use the result of the dimensional reduction (6.10). Using the spinor doublet notation and

keeping only the second-order fermion terms from both sides (as the zeroth-order terms just reproduce

the bosonic identities), one determines an expression for the type IIB shift γ̃99 in terms of type IIA

quantities, i.e.

γ̃99 = ig−2
99 θ̄

Aσ1Γ9D
A
9 θ

A. (6.38)

We are now required to perform conventional T-duality on the term on the right-hand side in order to

determine an expression for the expansion ansatz of the type IIB metric in terms of type IIB quantities.

We can use the basic T-duality rules in spinor doublet notation in subsection 6.1.2 to write

γ̃99 = ig̃299 (θ̄
Bσ1Υσ1)σ1

[

(Q̃−1
− ) p

9 Υ−1Γ̃pΥ
][

(Q̃−1
+ ) q

9 Υ−1DB
q Υ
]

Υ−1θB

= ig̃299 θ̄
Bσ1(Q̃−1

− ) p
9 (Q̃−1

+ ) q
9 Γ̃pD

B
q θ

B

= ig̃299 θ̄
Bσ1(−g̃−1

99 σ
3)(g̃−1

99 σ
3)Γ̃9D

B
9 θ

B

= −i θ̄Bσ1Γ̃9D
B
9 θ

B.

(6.39)

The result is exactly as expected. The quadratic terms in the expansions of the type IIB metric take

precisely the same form as the type IIA metric, just with all of the operators and spinors being the type

IIB ones and not the type IIA versions. One can proceed analogously to get the generic second-order

shift of the type IIB dilaton and Kalb-Ramond superfields.

Example: Ramond-Ramond two-form

The superspace promotion of the dimensional reduction from 11-dimensional supergravity to type IIA

supergravity allowed us to determine the fermionic expansions for the Ramond-Ramond superfields of

degrees one and three. Now that we are considering T-duality between type IIA and type IIB, we must

confront the requirement that we calculate the fermionic expansions of Ramond-Ramond superfields

of any degree.

Our strategy will be to take the promoted Ramond-Ramond T-duality rule (6.37a), expand in

orders of fermions and keep only the quadratic contribution. Writing C(q) = C(q) + χ(q), where χ(q)

is the corresponding fermion bilinear, we are interested in obtaining χ(2). Following our standard

procedure, from (6.37a) we find

χ̃
(2)
9ṁ = χ

(1)
9ṁ − g−1

99 g9ṁχ
(1)
9

= − i

2
e−φ θ̄Aσ3

[

(

DA
ṁ − g−1

99 g9ṁDA
9

)

− 1

2

(

Γṁ − g−1
99 g9ṁΓ9

)

σ1∆A

]

θA
(6.40)

where for the one-form shift we have made use of (6.13). We now need to manipulate the right-hand

side in order to obtain an expression for the type IIB Ramond-Ramond two-form superfield in terms
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of type IIB operators. We will use identities similar to (6.25)

Υ
(

DA
ṁ − g−1

99 g9ṁDA
9

)

Υ−1 = DB
ṁ − g̃−1

99 g̃9ṁDB
9 , (6.41)

Υ
(

Γṁ − g−1
99 g9ṁΓ9

)

Υ−1 = Γ̃ṁ − g̃−1
99 g̃9ṁΓ̃9. (6.42)

and
√
g̃99 σ

1Υσ1σ3Υ−1 = Γ∗Γ̃9. Splitting the first and the second term in (6.40), using (6.41) and

(6.42), we find

e−φ θ̄Aσ3
(

DA
ṁ − g−1

99 g9ṁDA
9

)

θA = e−φ̃ θ̄BΓ∗
(

Γ̃9D
B
ṁ − g̃−1

99 g̃9ṁΓ̃9D
B
9

)

θB, (6.43)

e−φ θ̄Aσ3 σ1
(

Γṁ − g−1
99 g9ṁΓ9

)

∆AθA = e−φ̃ θ̄BΓ∗

[

σ1Γ̃9ṁ∆B + 2 g̃−1
99 (Γ̃9g̃ṁ9 − Γ̃ṁg̃99)D

B
9

]

θB. (6.44)

Therefore, putting together the expressions we have

χ̃
(2)
9ṁ =

i

2
e−φ̃ θ̄B

[

2 Γ̃[9D
B
ṁ] −

1

2
σ1Γ̃9ṁ∆B

]

θB. (6.45)

One can proceed analogously to obtain all the type IIA and type IIB bilinears in Ramond-Ramond

superfields, going up in the degree of the T-dualized form one at a time. Alternatively, a generalised

discussion of the Ramond-Ramond superfields in appendix E demonstrates that all of these expansions

can be calculated together.

Full results

To conclude, we list all the relevant superfields up to quadratic order both in the Neveu-Schwarz and

Ramond-Ramond sectors.

The expansions for the Neveu-Schwarz superfields at order (θ)2 look same in both theories in our

spinor doublet notation. They are

gmn = gmn − i θ̄IIσ1Γ(mDII
n)θ

II, (6.46)

φ = φ− i

4
θ̄II∆IIθII, (6.47)

Bmn = Bmn − i θ̄II(iσ2)Γ[mDII
n]θ

II, (6.48)

where the superscript ’II’ indicates that one must introduce the appropriate object in each theory.

The order-(θ)2 terms in the Ramond-Ramond superfields in type IIA and type IIB theories can also

be written compactly

C(n)
m1...mn

= C(n)
m1...mn

− i

2
e−φ θ̄II

[

(−1)n(σ3)1+⌊n2⌋

][

nΓ[m1
DII
...mn]

− 1

2
Γm1...mn

σ1∆II

]

θII, (6.49)

where the parity of n determines whether the spinor doublet and the supersymmetry operators are

the type IIA or type IIB ones.

Dp-branes

Now that we have determined the fermionic expansion of the all the fundamental superfields in type

IIA and type IIB theories, we can turn our attention to the composite superfields of greatest interest,

namely the worldvolume actions of a Dp-brane for arbitrary p.
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Since the formal structure of purely bosonic Dp-brane is equivalent to the structure of the action

in superspace, the T-duality mechanism is also the same as the one leading to the bosonic action

(6.30). The only precaution one needs to take regards the fact that the starting point, i.e. the

superspace D2-brane action (6.35), and consequently the T-duality rules, are such that the Neveu-

Scwharz T-duality rules see all fields in superspace whereas the Ramond-Ramond ones only contain

the Ramond-Ramond fields in superspace, as exemplified in (6.36) and (6.37). At the end of the day,

the action of any Dp-brane in superspace takes the form

SDp = −TDp

∫

dp+1ζ e−φ
√

− det(g + f) + TDp

∫

C e−f , (6.50)

where gij is the supermetric pullback, f ij = Bij + Fij is the natural superspace combination of the

Kalb-Ramond field with the worldvolume flux term, with fij = Bij +Fij being its bosonic component,

and where we have defined the formal sum C =
∑

q C
(q) over promoted Ramond-Ramond q-form

pulled-back superfields C(q). Once again, this result holds at all orders in fermions. In order to

determine the expansion of the Dp-brane action superfield to an arbitrary order in fermions, one needs

to plug the expansions of the fundamental superfields from the corresponding type II supergravity into

(6.50). The second-order expansions in spinor doublet notation are in (6.46) - (6.49) for both type II

theories.

6.3.2 Order-(θ)4 terms

We have already made some comments in section 5.3.2 regarding the unwieldy size of the expressions

obtained for the quartic fermionic couplings after dimensional reduction. There we also discussed

how these expressions might be improved and simplified going forward, in order that they become

more manageable. In their current formulation the calculation necessary for their full T-dualization

is impractically lengthy. Important to note, however, is that there is no technical impediment. Just

like the quadratic fermionic couplings, the quartic couplings may in principle be T-dualized using the

techniques and results we have reviewed and developed in this section. Actively pursuing this full

calculation is better delayed until such a time that the possible simplifying procedures for the quartic

terms have been implemented.

Nevertheless there are some observations that can be made concretely at quadratic fermion level

that we can fully expect to also happen at quartic level. Firstly, the NS superfield expansions take on

the same shape in both type II supergravities. The same holds for the expansion of the 11-dimensional

supermetric, that at order two has the same structure as the 10-dimensional supermetrics. This is not

a coincidence: the supervielbein expansion looks schematically the same in all these theories (even

though in each theory there is a different notion of what the gravitino or the supercovariant derivative

are) and the outcome of manipulations at quadratic order makes this point manifest. Moreover, the

existing relations go beyond that. The type IIA metric and B2 superfield expansions came from

different 11 dimensional superfields but at quadratic order turned out to be very similar. If it were

not for this, it would have been impossible to find again this structure in type IIB upon T-duality.

This extends to the whole NSNS sector, that allowed us to write those superfields up to quadratic

order at once both for type IIA and type IIB (6.46 - 6.48). In principle there is no argument against

the structure extending to all levels in θ, but unfortunately, the current form of quartic terms did not

quite allow us to make this point manifest. For example, the 10 dimensional metric expansion and

the 11-dimensional one do not seem to allow for such comparisons in their order (θ)4 terms. On the

other hand, there are indeed many similarities between the metric and the B2-field order (θ)4 terms
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(modulo (anti)symmetry of indices and chirality matrices), which is a positive observation, but there

are also differences on certain terms (that maybe could be manipulated to make them similar to each

other). These ideas could also be used e.g. to obtain quartic terms of NSNS fields in type IIB by

‘simply’ writing type IIA formulae (5.45), (5.47), and (5.48) in spinor doublet notation. It would be

nice to compare that with the outcome of performing the computation using the Hassan rules.

Finally, something that might be possible given the current formulation of the quartic order

fermionic couplings for the D2-brane is to identify those parts of the expressions which would lead to

particularly sought-after terms in Dp-brane actions. For example, the work in [32] posits a particular

quartic term in the action of the D7-brane. It could be possible to hunt for this term via T-dualization

without laboriously T-dualizing everything appearing after dimensional reduction, however we leave

this possibility for future study.

7 Conclusions and future work

In String Theory, branes are just as important as the strings themselves. The quantum field theories

living on their worldvolumes teem with rich dynamics that is both mathematically intriguing and

phenomenologically impactful. While the bosonic fields in these theories have received plentiful atten-

tion, the fermionic degrees of freedom are more challenging to study and are less well understood as a

result. We have drawn our primary motivation from the fact that the current level of knowledge about

the fermions living on branes requires significant improvement. One of the core reasons that fermions

on branes are under-studied is that obtaining their couplings explicitly turns out to be surprisingly

difficult. Higher-order couplings of fermions in brane actions have been invoked recently [25–31], how-

ever the impracticality of the existing methods used to obtain these terms limited their use. Very

recently, a proposal for obtaining specific quartic couplings on D7-branes that can be pertinent for

understanding KKLT has also been put forward [32]. In this work we have made significant progress

in improving both the conceptual understanding and the practical techniques needed to pursue these

terms. Furthermore, the insights we have had and connections we have made are applicable far be-

yond the calculation of specific couplings in brane worldvolume theories. In fact we have presented the

calculation of these terms as a single, if pertinent, example of a place where our more general methods

come into use.

Summary

The structure at the heart of this work is the web of string dualities given in Fig. 1. The approaches

that we have developed, and used to obtain brane actions, rest upon the generalizations of the con-

nections in this web. Such connections allowed us to take advantage of the elegance of techniques

applicable to a theory in one part of the web in order to achieve progress in others. More concretely,

the connections we have concentrated on are the circle compactification linking 11-dimensional to

type IIA supergravity and the T-duality relating type IIA and type IIB theories to each other. The

generalization we have explored is the promotion to a superspace formalism for the connections in the

web. Fig. 2 presents a map of the concepts used.

The reasons for which this particular generalization has proved to be so useful are twofold. Firstly,

our starting point, 11-dimensional supergravity, has a particularly elegant formulation in (11|32)-
superspace. Secondly, we have access to a systematic, complete, and manageable geometrical method

for determining explicit fermionic expansions of this theory’s superfields, namely NORCOR. The

small number of superfields in 11-dimensional supergravity in conjuction with NORCOR means we

can readily obtain the fermionic expansions of all the fundamental superfields in the theory. Obtaining
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11d spacetime

11d supergravity
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fermion expansion fermion expansion fermion expansion

NORCOR

Figure 2. A schematic map of the procedures investigated in this work. We work in superspace, and in order
to do so profitably we generalize the string duality web to superspace. We generalize the S1 compactification
from 11-dimensional supergravity to type IIA, and we generalize the T-duality procedure connecting type IIA
and type IIB to superspace. This allows us to carry the elegant geometric treatment of the ‘normal coordinate’
(NORCOR) method in 11-dimensional supergravity over to type II supergravity, circumventing the difficulty
in applying that treatment directly in those theories. This method allows us to calculate the expansion of
actions of branes in orders of the worldvolume fermions. We have presented example calculations up to quartic
order in fermions for the M2-brane and the D2-brane in this work, although the methods we have presented
are in principle applicable to any order in fermions.

the fermionic expansions for composite superfields built out of these fundamental superfields is then

a simple matter. The example composite superfield we have chosen to concentrate on in this case is

the action for a single M2-brane. This action is constructed using the pullbacks of the supervielbein

and super three-form in 11-dimensional supergravity.

With our starting point of 11-dimensional supergravity and the M2-brane firmly in hand, we

then pursued the superspace generalization of the S1-compactification to type IIA supergravity and

the D2-brane. Our goal was to use the expansion of the 11-dimensional superfields together with this

connection in the web to determine the expansion of the type IIA superfields. The regular dimensional

reduction ansatz relates the 11-dimensional vielbein and three-form to the 10-dimensional vielbein,

dilaton, Ramond-Ramond one-form, Kalb-Ramond two-form and Ramond-Ramond three-form. We

took the view that these bosonic relations represented the ‘zeroth-order’ fermionic expansion of the

corresponding superfield relations. As such, we promoted the dimensional reduction ansatz relations to

superfields, taking the fermionic expansions of the 10-dimensional superfields (to some desired order)

as unknowns to be determined. We then used the NORCOR results of the Taylor expansion of the

11-dimensional fields to determine explicit expressions for these 10-dimensional unknowns in terms

of 11-dimensional fields. Finally we dimensionally reduced the 11-dimensional fermionic terms and
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compared the results with the expansion in terms 10-dimensional unknown fermionic terms in order

to read off the desired results. We demonstrated how known second-order results for fundamental

superfield expansions in type IIA can be recovered painlessly using this method. Furthermore we

demonstrated how labourious manipulations of the D2-brane action can be completed almost trivially

in this superfield paradigm, and how the form for the quadratic fermion terms on the D2-brane can

be recovered, again relatively painlessly. Finally we calculated the fermionic expansion of the type

IIA fields relevant for the D2-brane all the way up to order four in fermions. Unfortunately these

terms, while systematic and complete, are unwieldy in their present formulation. We discussed some

promising lines of research regarding their simplification, something we will come back to in a moment.

Finally we turned our attention to the second strand on the web of dualities that we sought to

generalize to superspace. This was the T-duality relation between type IIA and type IIB theories.

The structure of work mirrored that of the generalization of the dimensional reduction just discussed.

We first observed what relations the T-duality demanded of the bosonic fields in either theory. These

were the Buscher rules and the Ramond-Ramond field rules. We once again interpreted these relations

as representing the ‘zeroth-order’ fermionic expansion of the corresponding superfield relations, and

as such promoted these T-duality rules to superfields. This required observing that the discussion of

the Ramond-Ramond sector can be substantially simplified by conveniently arranging the D2-brane

action. Then it was the repeated application of these promoted rules which we used to determine

the fermion terms in the superfield expansions for all the superfields in both type II supergravities.

When we performed the T-duality transformations, we had to become familiar with precisely how

fermions behaved. This transpired to be an area of much subtle complexity, but one which we greatly

streamlined by moving to spinor doublet notation. Once again, we chose as a crucial example case the

calculation of the fermionic expansion of brane actions. In this case repeated T-duality transforma-

tions allowed us to leverage the knowledge we had built about the D2-brane in the previous stage to

determine features of the Dp-brane actions in general. We once again wrote down a form of the action

which will yield the fermion couplings on the Dp-brane to any order if provided with the expansions

of the fundamental fields of the type II supergravity in which the brane lives. We noticed that in

this formulation Ramond-Ramond fields of every degree are used implicitly, yet the first dimensional

reduction step had furnished us with only degree 1 and 3. This is where the careful study of fermions

under T-duality became invaluable as explicit T-dualization of these two superfield expansions allowed

us to determine the expansions for all the fields we desired to quadratic order. The only remaining

impediments to a full calculation at quartic order for all Dp-branes are then of a practical nature. The

expressions we have obtained, since they represent all couplings of the brane fermions to an arbitrary

bosonic background, have many terms, and the calculation for each term is non-trivial. There is no

technical impediment to T-dualization and we provide all the necessary tools, however we consider

it prudent to first make a proper investigation of how the expressions we have obtained for type IIA

fields and D2-brane might be improved. We discuss this, and other future lines of work, next.

Future directions

The directions in which this work will progress in the future come in two main classes: those directions

that improve and build upon the work and those that use it.

The most obvious direction in which the present work might be improved is in seeking to simplify

the results at quartic order in fermions. We have already discussed at the end of section 5.3.2 how sig-

nificant simplifications of the current formulation of the complete quartic order terms for the superfield

expansions in type II supergravities will have their roots in a better treatment of the 11-dimensional

supervielbein expansion. This might be achieved via something as simple as a more adroit rearrange-
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ment and application of the constraints imposed by Bianchi identities than we have managed here, or

it could require an improvement at a higher level in the set-up of NORCOR. Pursuing such a better

treatment is an obvious and tantalising direction of future study.

For the brane actions specifically, these results might be improved by getting a firmer grasp of how

to arrange higher order fermionic expansions around a κ-symmetry organizational principle. As early

in our process as our expression for the M2-brane action in (4.23), we neglected to explicitly organize

all our terms around such a principle. When calculating the quartic terms in the M2 brane, one can

interpret all of the different terms as arising from the variation of different parts of the quadratic

fermionic term. Those quartic terms that came with the same, ‘zeroth-order’ projector as in the

quadratic term are interpreted as arising from varying the supercovariant derivative that appeared

in the quadratic term. The remaining quartic terms (coming with a factor 1
8 ) can be interpreted as

arising from further variations of the projector, inverse metric, etc, appearing at quadratic order. The

higher-order expansion of the kappa symmetry projector may be calculated directly by expanding the

superfield projector (4.17). Better understanding of the structure here could then be carried over to

type II theories using the duality promotion method we have presented. At second order the Dp-brane

actions were able to be organized into a similar form as the M2-brane, that is, a bilinear containing

a kappa projector and some operators. The expectation would be that whatever further structure is

found in the M2-brane should provide analogous arrangements of the Dp-brane action through the

promoted duality web.

With more agile control over Dp-brane actions, it becomes natural to revisit the D7-brane quartic

gaugino couplings and compare them with the existing literature, among other things. This would be

instrumental in shedding further light on gaugino condensation in the stabilization of volume moduli

à la KKLT. A proposal for the specific quartic gaugino terms on D7-branes necessary to achieve this

was recently put forward in [32], and hunting for the specific terms which that proposal requires within

our results is a promising line of inquiry. In a different area, a further result that is now in reach is

the determination of the F1-string action at arbitrary fermionic order. In fact, once the M2-brane

action is known at a given order, a circle compactification along a direction wrapped by the brane (a

double dimensional reduction) gives the Green-Schwarz-string action [70] in a similar way to the com-

pactification along an unwrapped direction, which gave the D2-brane action. Finally, we have worked

in bosonic backgrounds. To do so we simply set to zero those terms proportional to the gravitino in

the expansions of the superfields of 11-dimensional supergravity. By keeping these terms, however,

the methods we employed in this article can also be used to explore more general backgrounds than

purely bosonic ones. In this way, one would obtain the M2-brane couplings to the 11-dimensional

gravitino and hence, upon dimensional reduction and T-dualization, the Dp-brane couplings to the

10-dimensional gravitino and dilatino. Finally, we have concentrated in this work on obtaining the

fermion couplings on brane actions in the abelian case of a single brane. Expanding this work to

the non-abelian case of multiple branes, or to even more complicated brane set-ups, is yet another

promising line of inquiry.

Progress in an area as central to so many discussions as the fermionic couplings on brane world-

volumes is necessarily complex. What we have presented here is both an important step in this long

story, and a clear and insightful guide to what is known, and what remains to be investigated, in this

exciting and consequential line of research.
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A Spinor conventions

We summarize the conventions that we use in the main text regarding spinors defined in 11- and

10-dimensional spacetime. Here we denote terms intrinsically living in 11-dimensional spacetime with

a hat in order to distinguish them from the ones defined in 10-dimensional spacetime (with no hats).

This is also the case in appendix D, which explains the details about dimensional reduction. In the

main text we often drop hats for the sake of clarity, as the spacetime dimension is always clear from the

context, only using hats for 11-dimensional objects at the point of performing dimensional reduction.

In the 11-dimensional spacetime, we use real Majorana anticommuting 32-component spinors

denoted as θ̂µ, with µ representing spinor indices in the curved superspace manifold and α representing

spinor indices on the corresponding tangent space. Spinor indices can generally be suppressed without

loss of clarity. Explicitly, Dirac conjugation is defined in terms of the antisymmetric conjugation

matrix C = Cαβ , with Cαβ = −Cβα, as
ˆ̄θβ = θ̂αCαβ . (A.1)

More generally spinor indices are raised and lowered by the conjugation matrix and its inverse C−1 =

Cαβ , with CαβC
βγ = δγα, according to the rule

M β
α = CαγM

γ
δC

δβ . (A.2)

In the index-free notation, one can write ˆ̄θ = θ̂TC and ˆ̄θMθ̂ = ˆ̄θαM
α
β ξ̂

β = θ̂αMαβ ξ̂
β . We work with

the mostly-plus Minkowksi metric η̂âb̂, with signature (−1, (+1)10) and indices running as â = 0, . . . , 10,

and employ Γ-matrices Γ̂â fulfilling the Clifford algebra

{Γ̂â, Γ̂b̂} = 2η̂âb̂. (A.3)

The antisymmetrized Γ-matrix products are defined as

Γ̂â1â2...ân
= Γ̂[â1

Γ̂â2 . . . Γ̂ân]. (A.4)

The combinations (Γ̂â1â2...ân
)αβ are symmetrical in their spinor indices for n = 1, 2 mod 4 and anti-

symmetrical otherwise, i.e.

(Γ̂â1â2...ân
)αβ = +(Γ̂â1â2...ân

)βα, n = 1, 2 mod 4; (A.5a)

(Γ̂â1â2...ân
)αβ = −(Γ̂â1â2...ân

)βα, n = 0, 3 mod 4. (A.5b)
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The Majorana nature of the anticommuting fermions θ̂ means that ˆ̄θ Γ̂â1â2...ân
θ̂ = 0 for n = 1, 2 mod 4.

The master equation for practical Γ-matrix manipulation (in any number of dimensions) is

Γ̂â1...âm Γ̂b̂1...b̂n
=

min(m,n)
∑

r=0

r!

(

m

r

)(

n

r

)

δ
[âm

[b̂1
. . . δ

âm+1−r

b̂r
Γ̂
â1...âm−r]

b̂r+1...b̂n]
. (A.6)

After the dimensional reduction to a 10-dimensional space spanned by indices a = 0, . . . , 9, where

the direction x10 is compactified, it is necessary to introduce a chirality matrix. In tangent spacetime,

the first ten Γ-matrices are the same because the Clifford algebra reads {Γ̂a, Γ̂b} = 2η̂ab = 2ηab =

{Γa,Γb}, so Γ̂a = Γa, where ηab = η̂ab is the 10-dimensional Minkowski metric; the last 11-dimensional

Γ-matrix defined to be the 10-dimensional chirality matrix Γ̂10 ≡ Γ∗. All the other rules on spinor

indices are unchanged. Because in ten dimensions there is a notion of chirality, we split 11-dimensional

Majorana spinors into pairs of 10-dimensional Majorana-Weyl spinors as θ = θ+ + θ−, where Γ∗θ± =

±θ±. For type IIB strings, we relate the previous pair of Majorana-Weyl spinors to another pair of

Majorana-Weyl spinors, but this time with equal chirality, i.e. θ1,2 with Γ∗θ1,2 = +θ1,2. In this case

it is convenient to rearrange these fermion pairs into a Pauli matrix-valued spinor

θ =

(

θ1
θ2

)

, (A.7)

which is acted on by the 2-dimensional identity 12 and the three Pauli matrices σ1, σ2 and σ3. All

the Γ-matrices and the chirality matrix that need to act on the spinor θ can be redefined by means of

a tensor product with the 2-dimensional identity 12 in such a way as to act appropriately on the two

spinor components θ1,2.

Note on spinor indices

In dealing with spinor contractions, we often find it useful to rearrange expressions by moving spinor

indices. Given a matrix Mαβ acting on the spinor space, we define its transpose as the matrix

M̌αβ =Mβα. As an example, consider the torsion T̂â and its transpose ˆ̌Tâ

T̂â =
1

288

(

Γ̂ b̂ĉd̂ê
â + 8δb̂âΓ̂

ĉd̂ê
)

Ĥb̂ĉd̂ê,

ˆ̌Tâ =
1

288

(

Γ̂ b̂ĉd̂ê
â − 8δb̂âΓ̂

ĉd̂ê
)

Ĥb̂ĉd̂ê.

Notice that it is not the position of the spinor indices that is used to make the distinction between

T̂â and ˆ̌Tâ: both are defined as in the main text and the position of the indices can be changed

with the charge conjugation matrix Cαβ and its inverse Cαβ . In fact, we can write for instance

(T̂m̂) β
α = −( ˆ̌Tm̂)βα.

B 11-dimensional supergravity

Here we summarize the set-up and conventions for 11-dimensional supergravity [58–60], including the

field content, the constraints on the torsion which are equivalent to the equations of motions, and the

Bianchi identities [83].

In 11-dimensional supergravity, let us consider the (11|32)-dimensional supermanifold spanned

by coordinates ZM = (xm, θµ), where M is a generalized superspace index, with m = 0, . . . , 10
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representing the original spacetime directions and µ = 1, . . . , 32 representing the corresponding spinor

directions. In this formalism, one defines the supervielbein as

EA(x, θ) = dZME A
M (x, θ), (B.1)

where the index A corresponds to the tangent space, with the possibility to introduce local coordinates

yA = (ya, yα), with a = 0, . . . , 10 and α = 1, . . . , 32. Let us also introduce a superconnection, i.e. the

super-one-form ω B
A , with Lorentzian structure group, in terms of which we define the superspace

covariant derivative,

∇XA1...
B1...

= dXA1...
B1...

+XDA2...
B1...

ECω A1

CD · · ·+XA1...
DB2...

ECω D
B1C . . . . (B.2)

The superconnection is comnpatible with the structure of the tangent space Lorentz group, and it is

related to the spin connection according to

ω β
a = ω a

β = 0 , ω β
α =

1

4
ωab(Γ

ab) β
α (B.3)

We can then define the supertorsion TA and the supercurvature R A
B as

TA = ∇EA = dEA + EBω A
B =

1

2
ECEBT A

CB , (B.4)

R A
B = dω A

B + ω C
B ω A

C =
1

2
EDECR A

DCB . (B.5)

Finally, we define the super-three-form

A =
1

3!
ECEBEAACBA, (B.6)

along with its field-strength, i.e. the super-four-form

H = dA =
1

4!
EAEBECEDHDCBA, (B.7)

whose components explicitly read

HDCBA =
∑

(ABCD)

∇DACBA + T E
DC AEBA, (B.8)

where ∇A = (E−1) M
A ∇M .

In this formulation, 11-dimensional supergravity has only two dynamical superfields, namely the

vielbein E A
M (x, θ) and the super-three-form AMNP (x, θ). The equations of motion can be shown to

be equivalent to constraints placed upon the components of the supertorsion and the super-four-form

[59, 60, 83]. These supergravity constraints read

T a
γβ = −i(Γa)γβ, (B.9a)

T α
γβ = T a

γb = T a
cb = 0, (B.9b)

Hδγβα = Hδγβa = Hδcba = 0, (B.9c)

Hδγba = i(Γba)δγ . (B.9d)
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Using this superspace formulation, the physical fields of 11-dimensional supergravity only appear

through their covariant field strengths, namely the top component of the supercurvature R d
abc , the

supertorsion component T α
ab , and the four-form Habcd. To see exactly how this is the case, we must

use the Bianchi identities.

It is possible to observe that the supertorsion and the supercurvature obey the Bianchi identities

∇TA = EBR A
B , (B.10a)

∇R A
B = 0. (B.10b)

These, along with the closure relationship dH = 0, can be expressed more explicitly as

∑

(ABC)

(

R D
ABC −∇AT

D
BC − T E

AB T D
EC

)

= 0, (B.11a)

∑

(ABCD)

(

∇AR
E

BCD + T F
AB R E

FCD

)

= 0, (B.11b)

∑

(ABCDE)

(

∇AHBCDE + T F
AB HFCDE

)

= 0. (B.11c)

Starting from these identities, we can determine expressions concerning the remaining components of

the supertorsion, i.e.

T α
cβ =

1

288

(

Γ dfgh
c + 8δdcΓ

fgh
) α

β
Hdfgh =

(

T dfgh
c

) α

β
Hdfgh, (B.12a)

T α
ab =

i

42
(Γcd)αβ∇βHabcd, (B.12b)

(Γabc)αβT
β

bc = 0. (B.12c)

and the remaining components of the supercurvature, i.e.

Rδγba = −2i
(

ΓbŤ dfgh
a

)

(δγ)
Hdfgh, (B.13a)

Rδcba =
i

2

[

(Γc)δǫT
ǫ

ba + 2(Γ[a)δǫT
ǫ

b]c

]

, (B.13b)

R α
dcβ = 2∇[dT

α
c]β + 2T ǫ

[d|β T α
|c]ǫ +∇βT

α
dc , . (B.13c)

Note that the Riemann tensor is built from the superconnection and obeys

R β
DCa = R a

DCβ = 0 , R α
DCβ =

1

4
RDCba(Γ

ba) α
β . (B.14)

The Γ-matrix combination T is defined in (B.12a) and Ť is its transposition. Finally, the Bianchi

identities also give the expressions

∇αHbcde = −6i(Γ[bc)αβT
β

de] , (B.15a)

∇αRbcde = 2∇[b|Rα|c]de + 2T γ
[b|α Rγ|c]de − T γ

bc Rβαde. (B.15b)
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C Order-4 vielbein manipulations

Expansion of the M2-brane action only requires knowledge of the expansion of the supervielbein.

Therefore we record the expansion of the frame super-form to quartic order.

C.1 Normal coordinate expansion of frame super-form

Using the expressions for the behaviour of the Lie derivative Ly along the tangent field y = yM , it can

be established that the repeated action on the supervielbein EA gives [49]9

LyE
A = ∇yA + yCEBT A

BC , (C.1)

(

Ly

)2
EA = −yBECyDR A

DCB + yCEByD∇DT
A

BC + yC
(

∇yB + yEEDT B
DE

)

T A
BC , (C.2)

(

Ly

)3
EA =− yD

(

∇yB + yFEGT B
GF

)

yCR A
CBD − yDEByCyF∇FR

A
CBD

+ 2yC
(

∇yB + yFEGT B
GF

)

yD∇DT
A

BC + yCEByDyE∇E∇DT
A

BC

+ yCyG
(

∇yD + yEEFT D
FE

)

T B
DG T A

BC − yCyDEF yER B
EFD T A

BC

+ yCyFEDyE
(

∇ET
B

DF

)

T A
BC ,

(C.3)

(

Ly

)4
EA =+ 3yCyF

(

∇yE + yGEHT E
HG

)

T B
EF yD∇DT

A
BC

+ 3yC
(

∇yB + yFEGT B
GF

)

yDyE∇E∇DT
A

BC

− yCyD
(

∇yF + yGEHT F
HG

)

yER B
EFD T A

BC

+ 2yCyF
(

∇yD + yEEGT D
GE

)

yH
(

∇HT
B

DF

)

T A
BC

− yDyF
(

∇yE + yHEGT E
GH

)

T B
EF yCR A

CBD

− 2yD
(

∇yB + yFEGT B
GF

)

yCyE∇ER
A

CBD

+ yCyGyE
(

∇yF + yIEHT F
HI

)

T D
FE T B

DG T A
BC

+ yDyEEF yGR B
GFE yCR A

CBD − yDyFEGyE
(

∇ET
B

GF

)

yCR A
CBD

− yDEByCyEyF∇F∇ER
A

CBD + yCEByDyEyF∇F∇E∇DT
A

BC

− yCyDEF yEyG
(

∇GR
B

EFD

)

T A
BC − 3yCyDEF yER B

EFD yG∇GT
A

BC

− yCyEyFEGyHR D
HGF T B

DE T A
BC + yCyGyEEF yH

(

∇HT
D

FE

)

T B
DG T A

BC

+ yCyFEDyEyG
(

∇G∇ET
B

DF

)

T A
BC + 3yCyFEDyE

(

∇ET
B

DF

)

yG∇GT
A

BC .

(C.4)

Notice that many terms can be rearranged in terms of the supercovariant derivative. However, while

the order-1 variation can be written entirely in terms of this (in a bosonic bacgkround, one has

∇myα + yβe c
m T α

cβ = Dmy
α), higher orders contain components of the super-Riemann tensor and

operators involving the torsion that are difficult to rearrange in compact ways.

C.2 Rearranging the expanded supervielbein using Bianchi identities

Starting from the order-4 term in (4.8) and using (B.14) to perform some straightforward rearrange-

ment while making use of Γ-matrix symmetries, we may write

(

Ly

)4
E a

m =
i

4
(yδRδǫbcDmyǫ)(ȳΓabcy) + (ȳΓbDmy)(ȳΓaŤ dfgh

b y)Hdfgh

+
i

4
yδyχe e

m yδyξ∇ξ

(

Rδebc(Γ
bc) β

χ − 4∇δT
β

eχ

)

(Γa)βγ .

9Note that (C.3) corrects (4.7, [49]), in which there is an erroneous extra term.
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Now we will use (B.13a) in the first term and (B.12a, B.13b, B.15a) in the third term, and we also

split the third term. We also use the spinor index symmetry properties of Γ-matrices to write

(ΓbŤ dfgh
c )(δǫ) =

1

288

(

ΓbcΓ
dfgh − 8δ

[d
[cΓb]Γ

fgh] − 12δ
[d
[c δ

f
b]Γ

gh]
)

δǫ
Hdfgh ≡ 2R dfgh

bc Hdfgh,

so we eventually arrive at

(

Ly

)4
E a

m =
[

ȳ(R dfgh
bc HdfghDmy

]

(ȳΓabcy) + (ȳHdfghΓ
bDmy)(ȳΓaŤ dfgh

b y)

+
1

8
(ȳΓabcy)e e

m yδ
[

(Γe)δσy
ξ∇ξT

σ
bc + 2(Γb)δσy

ξ∇ξT
σ

ec

]

−6 (ȳΓaŤ dfgh
b y)e b

m yδ(Γdf )δσy
ξ∇ξT

σ
gh .

We see that a number of previously nasty-looking curvature and torsion terms are all reducible to

expressions involving gamma matrices and the spinor derivative of the supercovariantized gravitino

fields strength ∇ξT
σ

gh .

To assess this we step back to superspace momentarily. Using the superspace covariant derivative

∇Mv
B

A = ∂Mv
B

A + v C
A ω B

MC − ω C
MA v B

C ,

we have
[

∇M ,∇N

]

vA = −R B
MNA vB , and so

[

E M
A ∇M , E

N
B ∇N

]

vC =
(

E M
A E N

B

[

∇M ,∇N

]

− 2E M
[A E N

B] (∇ME D
N )∇D

)

vC

= −R D
ABC vD − T D

AB ∇DvC .

This means that we have R δ
abγ = −[∇a,∇b]

δ
γ −T µ

ab (∇µ)
δ

γ , which in bosonic backgrounds is R δ
abγ =

−[∇a,∇b]
δ

γ . Using Bianchi identity results, we have in bosonic backgrounds,

∇γT
δ

ab = R δ
abγ − 2∇[aT

δ
b]γ − 2T σ

[a|γ T δ
σ|b] = −

[

∇a + Ta,∇b + Tb
] δ

γ
.

In terms of the supercovariant derivative Dm we can eventually write ∇γT
δ

ab = e m
a e n

b

[

Dm, Dn

]δ

γ
.

Applying this result we see that the two objects defined in (4.9) arise naturally by combining terms,

as we have

(

Ly

)4
E a

m = (ȳΓabcy)

[

ȳ

(

R dfgh
bc HdfghDm +

1

8
Γee

e
m e p

b e
q
c [Dp, Dq] +

1

4
Γbe

q
c [Dm, Dq]

)

y

]

+(ȳΓaŤ dfgh
b y

)

[

ȳ
(

HdfghΓ
bDm − 6e b

m Γdfe
p

g e
q

h [Dp, Dq]
)

y

]

,

which means
(

Ly

)4
E a

m = (ȳΓabcy)(ȳWmbcy) + (ȳΓaŤ dfgh
b y)(ȳHb

mdfghy). (C.5)

D Catalogue of dimensional reductions

In this appendix we catalogue the details of the dimensional reductions of all the terms appearing in

the main text.
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Notation

In the M-theory formulation, we consider the 11-dimensional spacetime to be spanned by the coor-

dinates xm̂. This is reduced to a 10-dimensional string background via the split xm̂ = (xm, x10).

Unless differently stated, 11-dimensional indices are hatted whereas 10-dimensional indices are not;

11-dimensional objects are also hatted and 10-dimensional objects are not. So vectors in the 11- and

10-dimensional spacetimes read ω̂ = ω̂m̂ dxm̂ and ω = ωm dxm, respectively, and similarly for tensors

of arbitrary rank. Indices â, b̂ and a, b are 11- and 10-dimensional tangent spacetime indices, respec-

tively, with explicit number indices being underlined for tangent space and unadorned for spacetime.

Background fields are always independent of the extra M-theory coordinate x10.

The M2- and D2-brane 3-dimensional worldvolumes are spanned by the coordinates ξi. Pulling an

object back from eleven dimensions and pulling an object back from ten dimensions are different ma-

noeuvres: for ease of notation, instead of writing these pullbacks explicitly, we shall keep track of which

is being used by noting whether the object itself it hatted or not. For instance, denoting for a moment

the pullback from the 11-dimensional spacetime to the 3-dimensional M2-brane worldvolume with ϕ⋆

and the pullback from the 10-dimensional spacetime to the 3-dimensional D2-brane worldvolume with

φ⋆, for two vectors ω̂m̂ and ωm we will write ω̂i = (ϕ⋆ω̂)i = ∂ix
m̂ω̂m̂ and ωi = (φ⋆ω)i = ∂ix

mωm.

The n-dimensional Levi-Civita symbol εµ1...µn
is normalized as ε1...n = +1 and the Levi-Civita

tensor is defined as ǫµ1...µn
= (−det g)1/2 εµ1...µn

, where gµ1µ2 is the associated n-dimensional metric.

Similarly, we define the symbol εµ1...µn ≡ −εµ1...µn
and ǫµ1...µn = (−det g)−1/2 εµ1...µn .

Antisymmetric and symmetric combinations of a number n of indices are denoted by square

brackets and parentheses, respectively, and include a normalization factor 1/n!. For instance, we have

Γ[1 . . .Γn] =
∑

σ∈Sn
sgn(σ) Γσ(1) . . .Γσ(n)/n!, where σ ∈ Sn are the permutations of n elements.

D.1 Basic dimensional reductions

We report details about the dimensional reductions of the essential quantities that are needed in the

analysis of M2- and D2-branes.

Metric

In terms of 10-dimensional quantities, the 11-dimensional vielbein splits according to the standard

ansatz

ê â
m̂ =

(

e−
φ

3 e a
m e

2φ
3 Cm

0 e
2φ
3

)

, (D.1)

where e a
m is the 10-dimensional string frame vielbein, φ is the dilaton, and C(1) = dxmCm is the

Ramond-Ramond one-form. The vielbein is invertible and its inverse reads

ê m̂
â =

(

e
φ

3 e m
a −eφ

3Ca

0 e−
2φ
3

)

. (D.2)

The 11-dimensional metric is defined in terms of the vielbein as ĝm̂n̂ = ê â
m̂ ê b̂

n̂ η̂âb̂, where η̂âb̂ is the

11-dimensional Minkowski metric, so it reads

ĝm̂n̂ =

(

e−
2φ
3 gmn + e

4φ
3 CmCn e

4φ
3 Cm

e
4φ
3 Cn e

4φ
3

)

,
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where the 10-dimensional metric is defined as gmn = e a
m e b

n ηab, with ηab the 10-dimensional Minkowski

metric.

Three-form field

We describe the dimensional reduction of the 11-dimensional three-form Â = dxm̂∧dxn̂∧dxp̂Âp̂n̂m̂/3!

in terms of two 10-dimensional form fields C(3) = dxm∧dxn∧dxpCpnm/3! and B
(2) = dxm∧dxnBnm/2!

defined as

Âmnp = Cmnp, (D.3a)

Âmn 10 = Bmn, (D.3b)

The 11-dimensional flux is defined as Ĥ = dÂ, while in the 10-dimensional formulation we have

F (4) = dC(3) and H(3) = dB(2), so the 10-dimensional form field strengths are such that

Ĥmnpq = Fmnpq, (D.4a)

Ĥmnp 10 = Hmnp. (D.4b)

An analysis of the dimensional-reduction ansatz shows that the tangent-space 11-dimensional flux

is related to the 10-dimensional field-strength tensors as

Ĥabc10 = e
φ

3 e m
a e n

b e
p
c Hmnp, (D.5a)

Ĥabcd = e
4φ
3 e m

a e n
b e

p
c e

q
d (Fmnpq − 4H[mnpCq]) = e

4φ
3 e m

a e n
b e

p
c e

q
d F

(4)
mnpq, (D.5b)

where we defined the combination F (4) = dC(3) − C(1) ∧H(3).

Γ̂-matrices

In tangent spacetime, the first ten Γ̂-matrices are the same, i.e. Γ̂a = Γa, since the Clifford algebra is

the same as a consequence of the equality η̂ab = ηab; the last Γ̂-matrix defined as the chirality matrix

Γ̂10 ≡ Γ∗. In curved spacetime, the 11-dimensional Γ̂-matrices and 10-dimensional Γ-matrices are then

related as

Γ̂m = e−
φ

3

(

Γm + eφCmΓ∗
)

, (D.6)

Γ̂10 = e
2φ
3 Γ∗. (D.7)

One also finds,

Γ̂mn = e−
2φ
3

(

Γmn − 2 eφC[mΓn]Γ
∗
)

, (D.8)

Γ̂mnp = e−φ
(

Γmnp + 3 eφC[mΓnp]Γ
∗
)

. (D.9)

For contractions of the components of a form field ωp with a number n of 10-dimensional curved-

spacetime Γ-matrices Γm, we employ the underlined notation

ωq1 q2...qm =
1

n!
ωq1...qmp1...pn

Γp1...pn . (D.10)
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D.2 Supercovariant derivatives

Spin connection

The 11-dimensional spin connection is defined in terms of the anhomology coefficients as

ω̂ ĉ
âb̂

=
1

2

(

Ω̂ ĉ
âb̂

− Ω̂ ê
âd̂
η̂ĉd̂η̂b̂ê − Ω̂ ê

b̂d̂
η̂ĉd̂η̂âê

)

, (D.11)

where the latter read

Ω̂ ĉ
âb̂

= ê m̂
â ê n̂

b̂

(

∂̂m̂ê
ĉ

n̂ − ∂̂n̂ê
ĉ

m̂

)

.

These allow us to express the 11-dimensional spin connection in terms of 10-dimensional operators as

ω̂ c
ab = e

φ

3

[

ω c
ab +

1

3
∂bφδ

c
a −

1

3
∂cφηba

]

, (D.12a)

ω̂
10

ab =
1

2
e

4φ
3 Fab, (D.12b)

ω̂ c
10 a = ω̂ c

a10 = −1

2
e

4φ
3 F c

a , (D.12c)

ω̂
10

10 a = −2

3
e

φ

3 ∂aφ, (D.12d)

ω̂ c
10 10 =

2

3
e

φ

3 ∂cφ, (D.12e)

where all the remaining combinations are vanishing, i.e. ω̂
10

a10 = ω̂
10

10 10 = 0.

Torsion

The 11-dimensional torsion term that appears in the M2-brane action is the Γ-matrix valued term

ˆ̌Tâ =
1

288

(

Γ̂ b̂ĉd̂ê
â − 8δb̂âΓ̂

ĉd̂ê
)

Ĥb̂ĉd̂ê. (D.13)

In terms of 10-dimensional operators, the 11-dimensional torsion components can be seen to split as

ˆ̌Ta =
1

12
e

φ

3

[

Γa(e
φF (4) +H(3)Γ∗)− 3 e m

a (eφF (4)
m +H(3)

m Γ∗)
]

, (D.14a)

ˆ̌T10 =
1

12
e

φ

3

[

Γ∗(eφF (4) − 2H(3)Γ∗)
]

. (D.14b)

Supercovariant derivative

In dealing with the M2-brane action, the spinor kinetic term contains the worldvolume pullback of the

11-dimensional spacetime operator

D̂m̂ = ∇̂m̂ − ˆ̌Tm̂, (D.15)

where ∇̂m̂ is the 11-dimensional spinor covariant derivative and ˆ̌Tm̂ is the 11-dimensional torsion,

which are defined in the tangent spacetime as

∇â = ∂â +
1

4
ω̂ b̂ĉ
â Γ̂ĉd̂, (D.16a)

ˆ̌Tâ =
1

288

(

Γ̂ b̂ĉd̂ê
â − 8δb̂âΓ̂

ĉd̂ê
)

Ĥb̂ĉd̂ê. (D.16b)
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Using the above relations one can dimensionally reduce the 11 dimensional supercovariant derivative

and write it in terms of 10 dimensional operators (5.7), recovering the relations (5.8).

D.3 Pullbacks

We report details about the relationships between pullbacks onto M2- and D2-brane worldvolumes.

Metric

Defining the combination

pi = ∂ix
10 + ∂ix

mCm, (D.17)

which is the dual to the world volume flux on the D2-brane, we can express the metric pullback as

ĝij = e−
2φ
3 gij + e

4φ
3 pipj . (D.18)

Equivalently, the pullback of the vielbein is

ê a
i = e−

φ

3 e a
i , (D.19a)

ê
10
i = e

2φ
3 pi. (D.19b)

Since the pulled-back metrics are 3-dimensional, using the shorthand gijpipj = p2, we get the

exact relationship

det(ĝij) = e−2φ det(gij)
(

1 + e2φp2
)

, (D.20)

To conclude, the relationship between the inverses of the pulled-back metrics can be seen to be

ĝij = e
2φ
3

(

gij − e2φpipj

1 + e2φp2

)

. (D.21)

Three-form field

For the three-form field, we can write

Âijk = Cijk − 3C[iBjk] + 3 p[iBjk]. (D.22)

Γ̂-matrices

The relationship between the 11-dimensional Γ̂-matrix pullbacks and 10-dimensional Γ-matrix pull-

backs is

Γ̂i = e−
φ

3

(

Γi + eφpiΓ
∗
)

. (D.23)

Starting from this, we can then express the antisymmetric combinations of Γ̂-matrices as

Γ̂ij = e−
2φ
3

(

Γij − 2 eφ p[iΓj]Γ
∗
)

, (D.24)

Γ̂ijk = e−φ
(

Γijk + 3 eφ p[iΓjk]Γ
∗
)

. (D.25)

Matrices with upper indices are defined by use of the metric pullback inverse, i.e. Γ̂i = ĝijΓ̂j and

Γi = gijΓj , and they are related as

Γ̂i = e
φ

3

[

Γi +
eφpi

1 + e2φp2

(

Γ∗ − eφΓkpk

)

]

. (D.26)
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Supercovariant derivative pullback

The operator that appears in the M2-brane action is the 11-dimensional spinor covariant derivative

pullback D̂iθ̂. By making use of the results above, we can determine that in terms of the D2-brane

operators this reads

D̂iθ̂ = e−
φ

6

[

Di −
1

6
Γi∆+

1

3
eφpiΓ

∗∆

]

θ. (D.27)

D.4 Order-4 combinations

In the order-4 fermion expansions we find combinations of the operators that appear at second order.

These are discussed in detail below.

Γ̂-matrices and fluxes

We now treat the term

R̂b̂ĉ =
1

576

(

Γ̂b̂ĉΓ̂
d̂f̂ ĝĥ − 8δd̂[ĉΓ̂b̂]Γ̂

f̂ ĝĥ − 12δd̂[ĉδ
f̂

b̂]
Γ̂ĝĥ
)

Ĥd̂f̂ ĝĥ. (D.28)

Upon dimensional reduction, this allows us to define

Rbc ≡ e−
φ

3 R̂bc =
1

24

[

Γbc

(

eφF (4)+H(3)Γ∗
)

− 2Γ[b

(

eφF
(4)
c] +H

(3)
c] Γ

∗
)

+
(

eφF
(4)
bc +H

(3)
bc Γ∗

)

]

, (D.29a)

Rb ≡ e−
φ

3 R̂b 10 = − 1

24
eφΓ∗

[

ΓbF
(4)− F

(4)
b

]

. (D.29b)

Supercovariant derivative commutator

An operator appearing frequently in the order-4 fermionic expansion is the commutator of superco-

variant derivatives on which we must perform dimensional reduction. First of all, we have

[

D̂p, D̂10

]

ŷ =
1

3
e−

φ

6 eφKpθ,

where we have defined the operator

Kp ≡
[

Dp −
1

6
Γp∆,Γ

∗∆

]

+ (∂pφ)Γ
∗∆. (D.30)

The other non-zero commutator reads

[

D̂p, D̂q

]

ŷ = e−
φ

6Kpqθ −
2

3
e−

φ

6 eφC[pKq],

where we have defined the operator

Kpq =
[

Dp −
1

6
Γp∆, Dq −

1

6
Γq∆

]

+
1

3
eφF (2)

pq Γ∗∆. (D.31)

To conclude, we notice that ê p̂
10 ê

q̂
10

[

D̂p̂, D̂q̂

]

ŷ = ê 10
10 ê 10

10

[

D̂10, D̂10

]

ŷ = 0. From these results, one

can immediately derive

[D̂a, D̂b]θ̂ = e
φ

2 e p
a e

q
b Kpqθ, (D.32a)

[D̂a, D̂10]θ̂ =
1

3
e

φ

2 e p
a Kpθ. (D.32b)
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D.5 Dimensional reduction of the quartic 11-dimensional shifted fields for the dilaton

In this appendix we provide an example of the dimensional reduction calculation for the quartic

fermionic terms. We will concentrate on the dilaton as these terms are the least formidable, however

the approach is fundamentally the same for the dimensional reduction for all the quartic fermonic

terms in 11 dimensions. We will make heavy use of the results in appendix D.

The relationship between the quartic fermionic expansion of the 11-dimensional metric ĝm̂n̂ and

the quartic fermionic expansions of the 10-dimensional metric gmn, Ramond-Ramond one-form C(1)
m ,

and dilaton φ is (5.14). The expansion of the 11-dimensional metric is (4.21). Plugging in (4.10) we

can write the 11-dimensional shifted metric as

γ̂m̂n̂ = − 1

4

( ˆ̄θΓ̂âD̂(m̂θ̂
)( ˆ̄θΓ̂âD̂n̂)θ̂

)

+
1

12

( ˆ̄θΓ̂(m̂|
ˆ̌Tâ θ̂
)(ˆ̄θΓ̂âD̂|n̂)θ̂

)

− 1

576
ĝm̂n̂

( ˆ̄θΓ̂âb̂ĉd̂θ̂
)(ˆ̄θΓ̂âb̂[D̂ĉ, D̂d̂]θ̂

)

+
1

96

( ˆ̄θΓ̂(m̂Γ̂âb̂ĉθ̂
)( ˆ̄θΓ̂n̂)â[D̂b̂, D̂ĉ]θ̂

)

+
1

96

( ˆ̄θΓ̂(m̂Γ̂âb̂ĉ]θ̂
)(ˆ̄θΓ̂âb̂[D̂|n̂), D̂ĉ]θ̂

)

+
1

12

( ˆ̄θΓ̂(m̂|Γ̂
âb̂θ̂
)(ˆ̄θR̂

âb̂
D̂|n̂)θ̂

)

+
1

96

( ˆ̄θΓ̂(m̂|Γ̂
âb̂θ̂
)( ˆ̄θΓ̂n̂)[D̂â, D̂b̂]θ̂

)

+
1

48

( ˆ̄θΓ̂(m̂|Γ̂
âb̂θ̂
)(ˆ̄θΓ̂â[D̂|n̂), D̂b̂]θ̂

)

.

(D.33)

Plugging this into (5.38) allows us to write the dilaton quartic shift as

ρ(4) = − 1

768

( ˆ̄θΓ̂âb̂ĉd̂θ̂
)( ˆ̄θΓ̂âb̂[D̂ĉ, D̂d̂]θ̂

)

+
1

128
e−

4φ
3

(ˆ̄θΓ̂10Γ̂
âb̂ĉθ̂

)

(

ˆ̄θ
(

Γ̂10â[D̂b̂, D̂ĉ] + Γ̂âb̂[D̂10, D̂ĉ]
)

θ̂
)

+
1

128
e−

4φ
3

( ˆ̄θΓ̂10Γ̂
âb̂θ̂
)

(

ˆ̄θ
(

Γ̂10[D̂â, D̂b̂] + 2Γ̂â[D̂10, D̂b̂]
)

θ̂
)

− 3

16
e−

4φ
3

( ˆ̄θΓ̂âD̂10θ̂
)( ˆ̄θΓ̂âD̂10θ̂

)

+
1

16
e−

4φ
3

( ˆ̄θΓ̂10
ˆ̌Tâ θ̂
)( ˆ̄θΓ̂âD̂10θ̂

)

+
1

16
e−

4φ
3

( ˆ̄θΓ̂10Γ̂
âb̂θ̂
)( ˆ̄θR̂

âb̂
D̂10θ̂

)

+
1

24

(

θ̄∆θ
)2
.

We will demonstrate the dimensional reduction of these terms in detail. The dimensional reduction

of the terms involved in the quartic shifts of the other type IIA fields follows in a very similar way, so

we will forgo spelling these out. Let us tackle the dilaton shift one term at a time. We will variously

require, (D.7), (D.14a), (D.14b), (D.29a), (D.29b), (D.32a), and (D.32b), at different stages of the

calculations. In the order in which the terms appear, we have from the first term

− 1

768
(ˆ̄θΓ̂âb̂ĉd̂θ̂)(ˆ̄θΓ̂âb̂[D̂ĉ, D̂d̂]θ̂) =

= − 1

768
(ˆ̄θΓabcdθ̂)(ˆ̄θΓab[D̂c, D̂d]θ̂)−

1

192
(ˆ̄θΓ10bcdθ̂)(ˆ̄θΓ[10b[D̂c, D̂d]]θ̂)

= − 1

768
(θ̄Γmnpqθ)(θ̄ΓmnKpqθ)−

1

1152
(θ̄Γ∗Γmnpθ)

[

θ̄
[

3Γ∗ΓmKnp − ΓmnKp

]

θ
]

.

In moving to the final line we used many of the results derived previously, and we move vielbeins

around in order to write everything with spacetime indices rather than tangent space. In the second

term, we have

1

128
e−

4φ
3 (ˆ̄θΓ̂10Γ̂

âb̂ĉθ̂)(ˆ̄θ
(

Γ̂10â[D̂b̂, D̂ĉ] + Γ̂âb̂[D̂10, D̂ĉ]
)

θ̂) =
1

384
(θ̄Γ∗Γmnpθ)

[

θ̄
[

3Γ∗ΓmKnp − ΓmnKp

]

θ
]

,
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where the term with âb̂ĉ→ 10bc vanishes by symmetry of the first bilinear. Next, we have

1

128
e−

4φ
3 (ˆ̄θΓ̂10Γ̂

âb̂θ̂)(ˆ̄θ
(

Γ̂10[D̂â, D̂b̂] + 2Γ̂â[D̂10, D̂b̂]
)

θ̂) =
1

384
(θ̄Γ∗Γmnθ)

[

θ̄
[

3Γ∗Kmn − 2ΓmKn

]

θ
]

,

where symmetry considerations of the first bilinear causes the âb̂ → 10b terms to vanish. Moving to

the fourth term, we have

− 3

16
e−

4φ
3 (ˆ̄θΓ̂âD̂10θ̂)(

ˆ̄θΓ̂âD̂10θ̂) = − 1

48
(θ̄ΓmΓ∗∆θ)(θ̄ΓmΓ∗∆θ)− 1

48
(θ̄∆θ)2.

The fifth term gives us

1

16
e−

4φ
3 (ˆ̄θΓ̂10

ˆ̌Tâ θ̂)(
ˆ̄θΓ̂âD̂10θ̂) =

= − 1

576

[

θ̄
[

2Γ∗eφF (4)
m − ΓmH

(3)
]

θ
]

(θ̄ΓmΓ∗∆θ) +
1

576

[

θ̄
[

eφF (4) − 2H(3)Γ∗
]

θ
]

(θ̄∆θ),

where we have once again been able to use the symmetries of the Γ-matrices to combine some terms

together. Finally, we have

1

16
e−

4φ
3 (ˆ̄θΓ̂10Γ̂

âb̂θ̂)(ˆ̄θR̂
âb̂
D̂10θ̂) =

1

48
(θ̄Γ∗Γmnθ)(θ̄RmnΓ

∗∆θ).

We also must not forget the final term (θ̄∆θ)2/24 in the dilaton shift, which was already built out of

10-dimensional fields. If we combine everything together, we obtain the dilaton quartic order shift

ρ(4) = − 1

768
(θ̄Γmnpqθ)(θ̄ΓmnKpqθ) +

1

576
(θ̄Γ∗Γmnpθ)

[

θ̄
[

3Γ∗ΓmKnp − ΓmnKp

]

θ
]

+
1

384
(θ̄Γ∗Γmnθ)

[

θ̄
[

3Γ∗Kmn − 2ΓmKn

]

θ
]

+
1

48
(θ̄Γ∗Γmnθ)(θ̄RmnΓ

∗∆θ)

− 1

48
(θ̄ΓmΓ∗∆θ)(θ̄ΓmΓ∗∆θ)− 1

576

[

θ̄
[

2Γ∗eφF (4)
m − ΓmH

(3)
]

θ
]

(θ̄ΓmΓ∗∆θ)

+
1

48
(θ̄∆θ)2 +

1

576

[

θ̄
[

eφF (4) − 2H(3)Γ∗
]

θ
]

(θ̄∆θ).

(D.34)

This is the shift given in the main text for the dilaton.

For the sake of completion, let us also note here that the expanded expression for the quartic

terms in the expansion of the three-form superfield, obtained by plugging (4.10) into (4.22), is

α̂m̂n̂p̂ = − 3

4

(ˆ̄θΓ̂â[m̂D̂n̂θ̂
)( ˆ̄θΓ̂âD̂p̂])θ̂

)

+
1

8

( ˆ̄θΓ̂[m̂n̂|
ˆ̌Tâ θ̂
)( ˆ̄θΓ̂âD̂|p̂]θ̂

)

− 1

384

( ˆ̄θΓ̂m̂n̂p̂Γ̂
âb̂ĉd̂θ̂

)( ˆ̄θΓ̂âb̂[D̂ĉ, D̂d̂]θ̂
)

+
1

64

( ˆ̄θΓ̂[m̂n̂Γ̂
âb̂ĉθ̂

)( ˆ̄θΓ̂p̂]â[D̂b̂, D̂ĉ]θ̂
)

+
1

64

( ˆ̄θΓ̂[m̂n̂|Γ̂
âb̂ĉ]θ̂

)( ˆ̄θΓ̂âb̂[D̂|p̂], D̂ĉ]θ̂
)

+
1

8

( ˆ̄θΓ̂[m̂n̂|Γ̂
âb̂θ̂
)(ˆ̄θR̂

âb̂
D̂|p̂]θ̂

)

+
1

64

( ˆ̄θΓ̂[m̂n̂Γ̂
âb̂θ̂
)( ˆ̄θΓ̂p̂][D̂â, D̂b̂]θ̂

)

+
1

32

( ˆ̄θΓ̂[m̂n̂|Γ̂
âb̂θ̂
)( ˆ̄θΓ̂â[D̂|p̂], D̂b̂]θ̂

)

.

(D.35)

E Further comments on T-duality

Here we discuss the T-duality calculation for the general Ramond-Ramond superfield expansions at

second order in fermions. Notice that all three of the quadratic shifts so far calculated have been of
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the form

C(n)
m1...mn

= C(n)
m1...mn

−















i

2
e−φ θ̄Aan

[

nΓ[m1...mn−1
DA
mn]

− 1

2
Γm1...mn

σ1∆A

]

θA, n = 2p− 1,

i

2
e−φ̃ θ̄Bbn

[

n Γ̃[m1...mn−1
DB
mn]

− 1

2
Γ̃m1...mn

σ1∆B

]

θB, n = 2p,

where the an and bn are some Pauli matrix combinations that need to be determined. We will show

that this is the form for all the quadratic RR shifts, and determine an and bn for all n, starting

from the known results for n = 1, 3. The key equations to T-dualize these superfields into each

other is the Ramond-Ramond superfield T-duality rule (6.37). In particular, defining the quadratic

Ramond-Ramond superfield expansions as C(n) = C(n) + χ(n), one can write

χ̃
(n+1)
9ṁ2...ṁn+1

= χ
(n)
ṁ2...ṁn+1

− n g−1
99 g9[ṁ2

χ
(n)
|9|ṁ3...ṁn+1]

. (E.1)

Let us first concentrate on the terms outside of the square brackets. For now we will neglect to

write what appears inside the square brackets after applying (E.1), instead we shall just label it [IIA]

or [IIB] to keep track of whether it has yet been T-dualized. Under T-dualization, moving from type

IIA to type IIB we can write,

− i

2
e−φ θ̄Aa2p−1[IIA]θA = − i

2
e−φ̃

√

g̃99 (θ̄
Bσ1Υσ1)a2p−1Υ

−1Υ[IIA]Υ−1θB

= − i

2
e−φ̃ θ̄Bb2pΓ̃9Υ[IIA]Υ−1θB.

We will see shortly that we will require Γ̃9 when T-dualizing the terms inside the square brackets, so

write it separately in line two and treat that part in a moment. Moving from type IIB to type IIA,

instead, we can write

i

2
e−φ̃ θ̄Bb2p[IIB]θ

B = − i

2
e−φ√g99 (θ̄Aσ1Υ−1σ1)b2pΥΥ−1[IIB]ΥθA

= − i

2
e−φ θ̄Aa2p+1Γ9Υ

−1[IIB]ΥθA.

We know from the expansions in (6.49) that a1 = σ3 and a3 = 12. We also know from the def-

initions of the T-duality operators in section 6 that
√
g̃99 σ

1Υσ1σ3Υ−1 = Γ∗Γ̃9, which allows to

conclude that θ̄Bb2Γ̃9 = θ̄BΓ∗Γ̃9, meaning that b2 = −12. Similarly, from the series of conditions

θ̄Aa3Γ9 =
√
g99 θ̄

Aσ1Υ−1σ1b2Υ = −√
g99 θ̄

Aσ1Υ−1σ1Υ = θ̄AΓ9, we recover a3 = 12. Going on, from

θ̄Bb4Γ̃9 =
√
g̃99 θ̄

Bσ1Υσ1a3Υ
−1 = −σ3θ̄BΓ9, we find b4 = −σ3. Finally, from the chain of relationships

θ̄Aa5Γ9 =
√
g99 θ̄

Aσ1Υ−1σ1b4Υ = −√
g99 θ̄

Aσ1Υ−1σ1σ3Υ = σ3θ̄AΓ9, we obtain a5 = σ3. In conclusion

we have

a1 = σ3, b2 = −12, a3 = 12, b4 = −σ3, a5 = σ3. (E.2)

The pattern continues, multiplying by −12 when moving from IIB to IIA and by −σ3 when moving

from IIA to IIB.

Now let us concentrate on the expressions [IIA] and [IIB] inside the square brackets. Here we

will look at moving from type IIA to type IIB, however moving from type IIB to type IIA employs

an essentially identical structure. More specifically, when we use (E.1) to determine the shift on

C(n+1)
m1...mn+1

from the shift on C(n)
m1...mn

to move from IIA to IIB, we have to consider Γ̃9Υ[IIB]Υ−1,
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and vice versa. The explicit terms are

[IIA]
[χ̃(n+1)]
ṁ2...ṁn+1

= Γ̃9Υ

[

nΓ[ṁ2...ṁn
DA
ṁn+1]

− n(n− 1)g−1
99 g9[ṁ2

Γ|9|ṁ3...ṁn
DA
ṁn+1]

−(−1)n−1ng−1
99 g9[ṁ2

Γṁ3...ṁn+1]D
A
9

−1

2

(

Γṁ2...ṁn+1 − ng−1
99 g9[ṁ2

Γ|9|ṁ3...mn+1]

)

σ1∆A

]

Υ−1.

After a little work and using (−1)n−1ng−1
99 g9[ṁ2

Γṁ3...ṁn+1]D9 = ng−1
99 g9[ṁn+1

Γṁ2...ṁn]D9, this can be

written as

[IIA]
[χ̃(n+1)]
ṁ2...ṁn+1

= Γ̃9Υ

[

n
(

Γ[ṁ2
− g−1

99 g9[ṁ2|Γ9

)

. . .
(

Γṁn
− g−1

99 g9|ṁn|Γ9

)(

DA
ṁn+1]

− g−1
99 g9|ṁn+1]D

A
9

)

−1

2

(

Γ[ṁ2
− g−1

99 g9[ṁ2|Γ9

)

. . .
(

Γṁn+1] − g−1
99 g9|ṁn+1]Γ9

)

σ1∆A

]

Υ−1.

At this point, we can use (6.41) and (6.42) to T-dualize almost everything immediately, obtaining

[IIA]
[χ̃(n+1)]
ṁ2...ṁn+1

= Γ̃9

[

n
(

Γ̃[ṁ2
− g̃−1

99 g̃9[ṁ2|Γ̃9

)

. . .
(

Γ̃ṁn
− g̃−1

99 g̃9|ṁn|Γ̃9

)(

DB
ṁn+1]

− g̃−1
99 g̃9|ṁn+1]D

B
9

)

− 1

2

(

Γ̃[ṁ2
− g̃−1

99 g̃9[ṁ2|Γ̃9

)

. . .
(

Γ̃ṁn+1] − g̃−1
99 g̃9|ṁn+1]Γ̃9

)(

σ1∆B − 2g̃−1
99 Γ̃9D

B
9

)

]

=

[

n Γ̃9Γ̃[ṁ2...ṁn

(

DB
ṁn+1]

− g̃−1
99 g̃9|ṁn+1]D

B
9

)

− n(n− 1)g̃9[ṁ2
Γ̃ṁ3...ṁn

DB
ṁn+1]

− 1

2
Γ̃9Γ̃ṁ2...ṁn+1

(

σ1∆B − 2g̃−1
99 Γ̃9D

B
9

)

+
n

2
g̃9[ṁ2

Γ̃ṁ3...ṁn+1]

(

σ1∆B − 2g̃−1
99 Γ̃9D

B
9

)

]

=

[

n Γ̃9[ṁ2...ṁn
DB
ṁn+1]

− n Γ̃9[ṁ2...ṁn|g̃
−1
99 g̃9|ṁn+1]D

B
9

+ (−1)nΓ̃ṁ2...ṁn+19g̃
−1
99 Γ̃9D

B
9 − 1

2
Γ̃9ṁ2...ṁn+1σ

1∆B

]

,

where in the final step we combined some Γ-matrices, distributed the final term and eventually rear-

ranged some indices. A further use of useful Γ-matrix identities and a little further massaging results
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in some more cancellations, to give

[IIA]
[χ̃(n+1)]
ṁ2...ṁn+1

=

[

n Γ̃9[ṁ2...ṁn
DB
ṁn+1]

− n Γ̃9[ṁ2...ṁn|g̃
−1
99 g̃9|ṁn+1]D

B
9

+ (−1)n
(

Γ̃ṁ2...ṁn+1 Γ̃9 − n Γ̃[ṁ2...ṁn
g̃|9|ṁn+1]

)

g̃−1
99 Γ̃9D

B
9 − 1

2
Γ̃9ṁ2...ṁn+1σ

1∆B

]

=

[

n Γ̃9[ṁ2...ṁn
DB
ṁn+1]

+ (−1)nΓ̃ṁ2...ṁn+1 Γ̃9g̃
−1
99 Γ̃9D

B
9 − 1

2
Γ̃9ṁ2...ṁn+1σ

1∆B

− n Γ̃9[ṁ2...ṁn|g̃
−1
99 g̃9|ṁn+1]D

B
9 − (−1)nn Γ̃[ṁ2...ṁn

g̃|9|ṁn+1]g̃
−1
99 Γ̃9D

B
9

]

=

[

n Γ̃9[ṁ2...ṁn
DB
ṁn+1]

+ (−1)nΓ̃ṁ2...ṁn+1D
B
9 − 1

2
Γ̃9ṁ2...ṁn+1σ

1∆B

− n Γ̃9[ṁ2...ṁn|g̃
−1
99 g̃9|ṁn+1]D

B
9 − (−1)2n−1n Γ̃9[ṁ2...ṁn

g̃|9|ṁn+1]g̃
−1
99 DB

9

]

=

[

n Γ̃9[ṁ2...ṁn
DB
ṁn+1]

+ (−1)nΓ̃ṁ2...ṁn+1D
B
9 − 1

2
Γ̃9ṁ2...ṁn+1σ

1∆B

]

=

[

(n+ 1)Γ̃[9ṁ2...ṁn
DB
ṁn+1]

− 1

2
Γ̃9ṁ2...ṁn+1σ

1∆B

]

,

which is exactly the desired result. Note that while powers of (−1) depending on n appeared, nowhere

did we rely on n being odd for the specific case of moving from type IIA to type IIB, and indeed the

derivation moving the other way has precisely the same structure. Thanks to this procedure, one can

verify the general second-order Ramond-Ramond shifts in (6.49).
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