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Conventional methods for sampling from posterior distributions, such as Markov
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Monte Carlo sampler (SMCS). An advantage of the SMCS method is that, unlike
the EnKF method that only computes a Gaussian approximation of the posterior
distribution, SMCS can draw samples directly from the posterior. Its performance,
however, depends critically upon the kernels that are used. In this work, we present
a method that constructs the kernels of SMCS using an EnKF formulation, and
we demonstrate the performance of the method with numerical examples.
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1 Introduction

Bayesian inference is a popular method for estimating unknown parameters from
data, largely due to its ability to quantify uncertainty in the estimation results [16].
In the current work we consider a special class of Bayesian inference problem where
data have to be collected in a sequential manner. A typical example of this type of
problem is the estimation of parameters, such as the initial states or the equation
coefficients, in a dynamical system from observations related to the state vector
at discrete times. Such problems arise from many real-world applications, ranging
from weather prediction [1] to biochemical networks [20]. It should be emphasized
that, unlike many data assimilation problems that seek to estimate the time-
dependent states in dynamical systems, the parameters that we want to estimate
here are assumed do not vary in time. To distinguish the two types of problems,
we refer to the former as state estimation problems and the latter as parameter
estimation. We should also note that in this work we focus on methods which
use samples to represent the posterior distribution, and that approximation based
methods, such as the Variational Bayes [6] and the Expectation Propagation [30]
will not be discussed here. Conventional sampling methods, such as Markov Chain
Monte Carlo (MCMC) simulations [19], use all the data in a single batch, are
unable to take advantage of the sequential structure of the problems. On the
other hand, sequential methods utilize the sequential structure of the problem and
update the posterior whenever a new collection of data become available, which
makes them particularly convenient and efficient for sequential inference problems.

A popular sequential method for parameter estimation is the Ensemble Kalman
filtering (EnKF) algorithm, which was initially developed to address the dynam-
ical state estimation problems [13]. The EnKF method was extended to estimate
parameters in many practical problems, e.g., [1,2], and more recently it was gener-
ically formulated as a derivative-free optimization based parameter estimation
method in [26]. The EnKF method for parameter estimation was further developed
and analyzed in [4,25,33], etc. The basic idea of the EnKF method for parameter
estimation is to construct an artificial dynamical system, turning the parameters
of interest into the states of the constructed dynamical system, before applying
the standard EnKF procedure to estimate the states of the system. A major lim-
itation of the EnKF method is that, just like the original version for dynamical
state estimation, it can only compute a Gaussian approximation of the poste-
rior distribution, and thus methods directly sampling the posterior distribution
are certainly desirable. To this end, the Sequential Monte Carlo sampler (SMCS)
method [11], can draw samples directly from the posterior distribution.The SMCS
algorithm is a generalisation of the particle filter [5,12] for dynamic state esti-
mation, generating weighted samples from the posterior distribution. Since the
SMCS algorithm was proposed in [11], considerable improvements and extensions
of the method have been proposed, such as, [15,7,22,14], and more information on
the developments of the SMCS methods can be found in the recent reviews [10,
9] On the other hand, we need to note that there are other parameter estimation
schemes also based on particle filtering, e.g., [18,8], and the differences and connec-
tions between SMCS and these schemes are discussed in [11]. The SMCS method
makes no assumption or approximation of the posterior distribution, and can di-
rectly draw (weighted) samples from any posterior. As will be discussed later, a
key issue in the implementation of SMCS is the choice of suitable forward and
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backward kernels, as the performance of SMCS depends critically on the choices
of these kernels. As has been shown in [11], the optimal forward and backward
kernels exist in principle, but designing effective kernels for specific problems is
nevertheless a highly challenging task. In dynamic state estimation problems, often
the EnKF approximation is used as the proposal distribution in the particle filter-
ing algorithm [31,36], especially for problems in which the posteriors are modestly
non-Gaussian. Building upon similar ideas, we propose in this work to construct
the kernels in SMCS by using an EnKF framework. Specifically, the forward ker-
nel is obtained directly from an EnKF approximation, and the backward kernel
is derived by making a Gaussian approximation of the optimal backward kernel.
With several numerical examples we illustrate that the proposed method performs
competitively relative to the EnKF approach.

The remaining work is organized as follows. In Section 2 we present the generic
setup of the sequential inference problems that we consider in this work. In Sec-
tions 3 and 4 we respectively review the SMCS and the EnKF methods for solving
sequential inference problems. In Section 5 we present the proposed EnkF-SMCS
method and in Section 6 we provide several numerical examples to illustrate the
performance of the proposed method. Finally Section 7 offers some concluding
remarks.

2 Problem setup

We consider a sequential inference problem formulated as follows. Suppose that we
want to estimate the parameter x ∈ Rnx from data y1, ..., yt, ..., yT which become
available sequentially in time. In particular the data yt ∈ Rny is related to the
parameter of interest x via the follow model,

yt = Gt(x) + ηt, t = 1...T,

where each Gt(·) is a mapping from Rnx to Rny , and the observation noise ηt ∼
N (0, Rt). It follows that the likelihood function can be written as,

π(yt|x) = N (Gt(x), Rt), t = 1...T. (2.1)

It is important to note here that the restriction that the error model has to be
additive Gaussian as is in Eq. (2.1) is due to the use of EnKF. While noting that
relaxing such a restriction is possible, we emphasize here that additive Gaussian
assumption noise is reasonable for a wide range of practical problems. We can now
write the posterior distribution in a sequential form:

πt(x) = π(x|y1, ...yt) ∝ π0(x)
t∏
i=1

π(yi|x), (2.2)

where π0(x) is the prior distribution of x, and our goal is to draw samples from
πt for any 0 < t ≤ T .

The posterior in Eq. (2.2) is essential in a data tempering formulation, and as
is pointed out in [15,37], such problems pose challenges for usual MCMC methods
especially when the amount of data is large, as they cannot conveniently exploit the
sequential structure of the problem. In what follows, we first discuss two sequential
methods for this type of problems: the EnKF and the SMCS algorithms, and we
then propose a scheme to combine these two methods.
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3 Sequential Monte Carlo Sampler

We first give a brief introduction to the SMCS method for sampling the posterior
distribution πt(x), following [11]. The key idea of SMCS is to construct a joint
distribution π(x1, ..., xt), the marginal of which is equal to the target distribution
πt(·). Note here that π(x1, ..., xt) needs only to be known up to a normalization
constant. One then applies the sequential importance sampling algorithm [5,12]
to draw weighted samples from π(x1, ..., xt), which after being marginalized over
x1, ..., xt−1, yields samples from πt(·).

Next we describe SMCS in a recursive formulation where, given an arbitrary
conditional distribution Lt−1(xt−1|xt), we can construct a joint distribution of
xt−1 and xt in the form of,

pt(xt−1, xt) = πt(xt)Lt−1(xt−1|xt). (3.1)

such that the marginal distribution of pt(xt−1, xt) over xt−1 is πt(xt). Now, given
a marginal distribution qt−1(xt−1) and a conditional distribution Kt(xt|xt−1), we
can construct an importance sampling (IS) distribution for pt(xt−1, xt) in the form
of

qt(xt−1, xt) = qt−1(xt−1)Kt(xt|xt−1). (3.2)

It is important to note here that a key requirement of the IS distribution qt(xt−1, xt)
is that we can directly draw samples from it. We let {xmt−1:t}Mm=1 be an ensemble
drawn from qt(xt−1, xt), and note that the weighted ensemble {(xmt−1:t, w

m
t )}Mm=1

follows the distribution pt(xt−1:t), where the weights are computed according to

wt(xt−1:t) =
pt(xt−1, xt)

qt(xt−1, xt)
=

πt(xt)Lt−1(xt−1|xt)
qt−1(xt−1)Kt(xt|xt−1)

= wt−1(xt−1)αt(xt−1, xt), (3.3a)

where

wt−1(xt−1) =
πt−1(xt−1)

qt−1(xt−1)
, αt(xt−1, xt) =

πt(xt)Lt−1(xt−1|xt)
πt−1(xt−1)Kt(xt|xt−1)

. (3.3b)

As can be seen here, once the two conditional distributions Kt and Lt−1 (respec-
tively referred to as the forward and backward kernels in the rest of the paper) are
chosen, we can draw samples from Eq. (3.2) and compute the associated weights
from Eq. (3.3), obtaining weighted samples from pt(xt−1, xt) as well as its marginal
πt(xt). The SMCS essentially conducts this procedure in the following sequential
manner:

1. let t = 0, draw an ensemble {xm0 }Mm=1 from q0(x0), and compute wm0 =
π0(xm0 )/q0(xm0 ) for m = 1...M ;

2. let t = t+ 1;
3. draw xmt from K(·|xmt−1) for each m = 1...M ;
4. compute wmt using Eq. (3.3);
5. return to step 2 if t < T .

Note here that, a resampling step is often used in SMCS algorithm to al-
leviate the “sample degeneracy” issue [11]. The resampling techniques are well
documented in the PF literature, e.g., [5,12], and so are not discussed here.
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As can be seen from the discussion above, to use SMCS one must choose the two
kernels. In principle, optimal choices of these kernels are available. For example,
it is known that once Kt(xt|xt−1) is provided, one can derive that the optimal
choice of Lt−1(xt−1|xt) is [11]:

Lopt
t−1(xt−1|xt) =

qt−1(xt−1)Kt(xt|xt−1)

qt(xt)

=
qt−1(xt−1)Kt(xt|xt−1)∫

qt−1(xt−1)Kt(xt|xt−1)dxt−1
, (3.4)

where the optimality is in the sense of yielding the minimal estimator variance.
We also note that use of the optimal L-kernel allows the weights to be written as

wt(xt−1:t) =
πt(xt)

qt(xt)
. (3.5)

Moreover, we can see here that if we can choose Kt such that qt = πt, then the
weight function is always unity, which means that we now sample directly from
the target distribution (the ideal case). While obtaining such an ideal Kt is usually
not possible in practice, it nevertheless provides useful guideline regarding choice
of the forward kernel Kt i.e. it should be chosen such that the resulting qt is
close to πt. For example, it is proposed in [11] to use the MCMC moves as the
forward kernel. A main limitation of the MCMC kernel is that it typically requires
a number of MCMC moves to propose a “good” particle, and since each MCMC
move involves an evaluation of the underlying mathematical model, Gt, the total
computational cost can be high when Gt is computationally intensive.

In this work we consider an alternative to the use of MCMC kernels. Specifically
we propose to choose Kt of the form

Kt(·|xt−1) = N (·|Tt(xt−1), ΣKt ), (3.6)

i.e., a Gaussian distribution with mean Tt(xt−1) and variance ΣKt , where Tt(·) is
a Rnx → Rnx transformation. We shall compute Tt and ΣKt (or equivalently the
forward kernel Kt) using the EnKF method.

4 Ensemble Kalman Filter

In this section we give a brief overview of the EnKF parameter estimation method
proposed in [26], which essentially aims to compute a Gaussian approximation of
πt(xt) in each time step t. To formulate the problem in an EnKF framework, we
first construct an artificial dynamical system denoted by Ft; at any time t, we
have the states ut = [xt, zt]

T where zt = Gt(xt), and the dynamical model,

ut = Ft(ut−1), xt = xt−1, zt = Gt(xt). (4.1)

The data is associated to the states through yt = zt + ηt, or equivalently

yt = Hut + ηt = [0ny×nx , Iny×ny ]ut + ηt ,

where Iny×ny is a ny × ny identity matrix and 0ny×nx is a ny × nx zero matrix.
We emphasize here that once we have the posterior distribution π(ut|y1:t), we can
obtain the posterior πt(xt) = π(xt|y1:t) by marginalizing π(ut|y1:t) over zt.
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Now let us see how the EnKF proceeds to compute a Gaussian approximation of
the posterior distribution π(ut|y1:t). At time t, suppose that the prior π(ut|y1:t−1)
can be approximated by a Gaussian distribution with mean µ̃t and covariance C̃t.
It follows that the posterior distribution π(ut|y1:t) is also Gaussian and its mean
and covariance can be obtained analytically:

µt = µ̃t +Qt(yt −Hµ̃t), Ct = (I −QtH)C̃t, (4.2)

where I is the identity matrix and

Qt = C̃tH
T (HC̃tH

T +Rt)
−1 (4.3)

is the so-called Kalman gain matrix.
In the EnKF method, one avoids computing the mean and the covariance di-

rectly in each step. Instead, both the prior and the posterior distributions are rep-
resented with a set of samples. Suppose that at time t−1, we have an ensemble of
particles {umt−1}Mm=1 drawn according to the posterior distribution π(ut−1|y1:t−1),
we can propagate the particles via the dynamical model (4.1):

ũmt = Ft(u
m
t−1), (4.4)

for m = 1...M , obtaining an assemble {ũmt }Mm=1 following the prior π(ut|y1:t−1).
We can compute a Gaussian approximation, N (ut|µ̃t, C̃t), of π(ut|y1:t−1), where
the mean and the covariance of π(ut|y1:t−1) are estimated from the samples:

µ̃t =
1

M

M∑
m=1

ũmt , C̃t =
1

M − 1

M∑
m=1

(ũmt − µ̃t)(ũmt − µ̃t)T . (4.5)

Once µ̃t and C̃t are obtained, we then can compute µt and Ct directly from
Eq. (4.2), and by design, the posterior distribution π(ut|y1:t) is approximated by
N (µt, Ct). Moreover it can be verified that the samples

umt = ũmt +Qt(yt − (Hũmt − ηmt )), ηmt ∼ N (0, Rt), m = 1...M, (4.6)

withQt computed by Eq. (4.3), follow the distribution N (µt, Ct). That is, {umt }Mm=1

are the approximate ensemble of π(ut|y1:t), and consequently the associated {xmt }Mm=1

approximately follows distribution πt(xt) = π(xt|y1:t).

5 EnKF-SMCS

Now we shall discuss how to use the EnKF scheme to construct the forward ker-
nel Kt for SMCS. First recall that ut = [xt, zt]

T , H = [0ny×nx , Iny×ny ] and the
propagation model xt = xt−1, and we can derive from Eq. (4.6) that,

xt = xt−1 +Qxt (yt −Gt(xt−1)) +Qxt ηt + η′t, (5.1a)

ηt ∼ N (0, Rt), η
′
t ∼ N (0, δ2Σqt−1), (5.1b)

where δ is a small constant, Σqt−1 is the covariance of qt−1 (the evaluation of Σqt−1

is provided in Eq. (5.5b)), and Qxt is a submatrix of Qt formed taking the first nx
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rows and the first ny columns of Qt, denoted as Qxt = Qt[1 : nx, 1 : ny]. Eq. (5.1a)
can also be written as a conditional distribution:

Kt(·|xt−1) = N (·|Tt(xt−1), ΣKt ), (5.2a)

where

Tt(xt−1) = xt−1+Qxt (yt−Gt(xt−1)) and ΣKt = QxtRt(Q
x
t )T +δ2Σqt−1. (5.2b)

Note that the purpose of introducing the small noise term, η′t, in Eq. (5.1a) is to
ensure thatΣKt is strictly positive definite and soKt is a valid Gaussian conditional
distribution. In all the numerical implementations performed in this work, δ is set
to be 10−4. According to the discussion in Section 4, we have, if qt−1 is a good
approximation to πt−1

qt(xt) =

∫
Kt(xt|xt−1)qt−1(xt−1)dxt−1 ≈ πt(xt). (5.3)

That is, Eq. (5.2) provides a good forward Kernel for the SMC sampler. It should be
noted here that since Tt is a nonlinear transform, in general, we can not derive the
analytical expression for qt and as a result, we can not use the optimal backward
kernel given in Eq. (3.4). Nonetheless, we can use a sub-optimal backward kernel:

L̂t−1(xt−1|xt) =
q̂t−1(xt−1)K̂t(xt|xt−1)∫

q̂t−1(xt−1)K̂t(xt|xt−1)dxt−1

, (5.4)

where q̂t−1 is the Gaussian approximation of qt−1, and K̂t is an approximation of
Kt. Next we need to determine q̂t−1 and K̂t. Here q̂t−1 can be estimated from the
ensemble {xmt−1}Mm=1:

q̂t−1(·) = N (·|ξt−1, Σ
q
t−1), (5.5a)

ξt−1 =
1

M

M∑
m=1

xmt−1, Σqt−1 =
1

M − 1

M∑
m=1

(xmt−1 − ξt−1)(xmt−1 − ξt−1)T .

(5.5b)

Now recall that the issue with the optimal backward kernel Lopt
t−1 is that the trans-

form Tt inside the forward kernel Kt is nonlinear, and as a result qt can not be
computed analytically. Here to obtain L̂t−1 in Eq. (5.4) explicitly, we take

K̂t(·|xt−1) = N (·|xt−1 +Qxt (yt − ȳt), ΣKt ), with ȳt = Ext−1|y1:t−1
[Gt(xt−1)],

(5.6)
and in practice ȳ is evaluated from the particles, i.e.,

ȳ =
1

M

M∑
m=1

Gt(x
m
t−1). (5.7)

It follows that the backward kernel L̂t−1, given by Eq. (5.4), is also Gaussian and
is given by

L̂t−1(·|xt) = N (·|TLt−1(xt), Σ
L
t−1), (5.8a)
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where

TLt−1(xt) = (I −ΣKt (ΣKt +Σqt−1)−1)(xt −Qxt (yt − ȳt))

+ (I −Σqt−1(Σqt−1 +ΣKt )−1)ξt−1, (5.8b)

and

ΣLt = Σqt−1 −Σ
q
t−1(Σqt−1 +ΣKt )−1Σqt−1. (5.8c)

It follows that the resulting incremental weight function is

αt(xt−1, xt) =
πt(xt)L̂t−1(xt−1|xt)
πt−1(xt−1)Kt(xt|xt−1)

. (5.9)

Now using the ingredients presented above, we summarize the EnKF-SMCS scheme
in Algorithm 1.

Algorithm 1 The EnKF-SMCS algorithm

Initialization: draw sample {xm0 }Mm=1 from distribution q0(x0); compute the weights wm0 =

π0(xm0 )/q0(xm0 ) for m = 1...M and renormalize {wm0 }Mm=1 so that
∑M
m=1 w

m
0 = 1;

for t = 1 to T do
estimate ξt−1 and Σqt−1 from the ensemble {(xmt−1, w

m
t−1)}Mm=1 using Eq. (5.5b);

let ũmt = [xmt−1, Gt(xt−1)m]T for m = 1...M ;

evaluate µ̃t and C̃t with Eq. (4.5), and compute Qt with Eq. (4.3);
draw xmt ∼ Kt(xt|xmt−1) for m = 1...M with Kt given by Eq. (5.2);

compute L̂t−1 from Eq. (5.8);
update the weights:

wmt = wmt−1

πt(xmt )L̂t−1(xmt−1|xmt )

πt−1(xmt−1)Kt(xmt |xmt−1)

and renormalize {wmt }Mm=1 so that
∑M
m=1 w

m
t = 1;

resample if needed.
end

It is important to note that a key challenge is yet to be addressed in Algo-
rithm 1, namely the computational cost of computing the particle weight. First
recall that the main computational cost arises from the evaluation of the forward
model Gt, and therefore, the total computational cost can be approximately mea-
sured by the number of evaluations of Gt. We can see from Eq. (5.9) that when
updating the particle weight, we need to compute πt(xt), which involves the evalu-
ation of the forward model from G1 to Gt. This operation is required at each time
step, and as a result the number of the model evaluations is at the order of O(T 2)
for each particle. Therefore, the total computational cost can be prohibitive if T
is large. We propose a method to tackle the issue, which is based on the following
two observations. First, here we mainly consider the sequential inference problems
where one is primarily interested in the posterior distribution at the final step
where all data are incorporated (we appreciate that there are problems where all
the intermediate posteriors are of interest and in this case the method proposed
here does not apply). Second, in many practical problems, after some number
of observations, the posteriors may not vary substantially in several consecutive
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steps. It therefore may not be necessary to exactly compute the posterior distri-
bution at each time step and, as a result, we only need to sample the posterior
distribution in a relatively small number of selected steps. Based on this idea, we
propose the following scheme in each time step to reduce the computational cost:
we first compute an approximate weight for each particle, and then assess that
if some prescribed conditions (based on the approximate weights) are satisfied. If
such conditions are satisfied, we evaluate the actual weights of the particles. To
implement this scheme, we have to address the following issues:

– First we need a method to compute the approximate weight, which should be
much easier to compute than the exact weight. Recall that in Eq. (5.9) one has
to evaluate πt(xt)/πt−1(xt−1) which involves computing the forward models
from G1(xt) all the way to Gt(xt), and so the computational cost is high. To
reduce the computational cost, we propose the following approximate method
to evaluate Eq. (5.9). Namely we first write πt(xt)/πt−1(xt−1) as,

πt(xt)

πt−1(xt−1)
=

πt−1(xt)

πt−1(xt−1)
π(yt|xt),

and naturally we can approximate πt−1 with qt−1, yielding,

πt(xt)

πt−1(xt−1)
≈ qt−1(xt)

qt−1(xt−1)
π(yt|xt).

Though qt−1 is formally given by Eq. (5.3), it is not computationally tractable.
Thus we make another approximation, replacing qt−1 with q̂t−1, where q̂t−1

is the Gaussian approximation of qt−1 given by Eqs. (5.5), and as a result, we
obtain

αt(xt−1, xt) ≈
q̂t−1(xt)π(yt|xt)L̂t−1(xt−1|xt)

q̂t−1(xt−1)Kt(xt|xt−1)
, (5.10)

which is used to compute the approximate weights.
– Second we need to prescribe the conditions for triggering the computation of

the actual weights. Following [21], we use the Effective Sample Size (ESS) [12]
(based on the approximate weights) as the main indicator for computing the
actual weights. Namely if the ESS calculated with the approximate weights is
smaller than a threshold value, the actual weights are computed. Moreover we
also have two additional conditions that can also trigger the computation of
the actual weights: 1) if the actual weights have not been computed for a given
number of steps; 2) if the inference reaches the final step, i.e., t = T . We refer
to such a step as a weight refinement.

– Finally we shall discuss how to compute the actual weight wt. It should be
noted here that the recursive formulas (3.3) can not be used here since the
actual value of wt−1 is not available. However, letting t0 be the preceding step
where the actual weights are computed, and it can be shown that

wt = wt0
πt(xt)

πt0(xt0)

t−1∏
i=t0

L̂i(xi|xi+1)

Ki+1(xi+1|xi)
, (5.11)

which is used to calculate the actual weights of the particles.
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We refer to this modified scheme as EnKF-SMCS with weight refinement (EnKF-
SMCS-WR), the complete procedure of which is described in Algorithm 2. Note
here that in both EnKF-SMCS algorithms, a resampling step is needed. Finally we
can see that, in EnKF-SMCS-WR, the number of forward model evaluations can
potentially be significantly reduced, and the actual number of evaluations depends
on how frequently the weight refinement is triggered.

Algorithm 2 The EnKF-SMCS-WR algorithm

Initialization: draw sample {xm0 }Mm=1 from distribution q0(x0); compute the weights wm0 =

π0(xm0 )/q0(xm0 ) for m = 1...M and renormalize {wm0 }Mm=1 so that
∑M
m=1 w

m
0 = 1;

let t0 = 0;
for t = 1 to T do

estimate ξt−1 and Σqt−1 from the ensemble {(xmt−1, w
m
t−1)}Mm=1 using Eq. (5.5b);

let ũmt = [xmt−1, Gt(xt−1)m]T for m = 1...M ;

evaluate µ̃t and C̃t with Eq. (4.5), and compute Qt with Eq. (4.3);
draw xmt ∼ Kt(xt|xmt−1) for m = 1...M with Kt given by Eq. (5.2);
calculate the approximate weights for m = 1...M :

wmt = wmt−1α
m
t , αmt =

q̂t−1(xmt )π(yt|xmt )L̂t−1(xmt−1|xmt )

q̂t−1(xmt−1)Kt(xmt |xmt−1)
,

and renormalize {wmt }Mm=1 so that
∑M
m=1 w

m
t = 1;

calculate the ESS of the approximate weights {wmt }Mm=1;
if ESS< ESSmin ∨ t− t0 > ∆Tmax ∨ t = T then

compute L̂t−1 from Eq. (5.8);
calculate the weights for m = 1...M :

wmt = wmt0
πt(xmt )

πt0 (xmt0 )

t−1∏
i=t0

L̂i(x
m
i |xmi+1)

Ki+1(xmi+1|xmi )
,

and renormalize {wmt }Mm=1 so that
∑M
m=1 w

m
t = 1;

calculate the ESS of the weights {wmt }Mm=1;
if ESS< ESSresamp then

resample;
end
let t0 = t;

end

end

6 Numerical examples

We provide three examples in this section to demonstrate the performance of the
proposed method. We emphasize here that in all these examples, we assume that
the forward model Gt is computationally intensive and thus the main computa-
tional cost arises from the simulation of Gt. As a result, the main computational
cost of all methods is measured by the number of forward model evaluations, which
in all the methods used in this section is equal to the product of the number of
steps and that of the particles.
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Fig. 1 The simulated data for σ = 0.4 (left) and σ = 0.8 (right). The lines show the simulated
states in continuous time and the dots are the noisy observations.
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Fig. 2 The average bias error (the difference between the sample mean and the ground truth)
plotted at each time step where the insets are the same plots on a logarithmic scale. The left
plot is the error for σ = 0.4 and the right figure is that for σ = 0.8.

6.1 The Bernoulli model

Our first example is the Bernoulli equation,

dv

dτ
− v = −v3, v(0) = x, (6.1a)

which has an analytical solution,

v(τ) = G(x, τ) = x(x2 + (1− x2)e−2τ )−1/2. (6.1b)

This model is an often-used benchmark problem for data assimilation methods as it
exhibits certain non-Gaussian behavior [3]. Here we pose it as a sequential inference
problem. Namely, suppose that we can observe the solution of the equation, v(τ),
at different times τ = t · ∆t for t = 1, ..., T , and we aim to estimate the initial
condition x from the sequentially observed data. The observation noise is assumed
to follow a zero-mean Gaussian distribution with standard deviation σ. In this
example, we take T = 50, and ∆t = 0.3 and, moreover, we consider two different
noise levels: σ = 0.4 and σ = 0.8. In the numerical experiments, we set the ground
truth to be x = 10−4 and the data is simulated from the model (6.1) for σ = 0.4
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Fig. 3 The posterior marginal distributions at t = 50 and their Gaussian fits. Left σ = 0.4
and right: σ = 0.8.

and σ = 0.8, which are shown in Figs. 1. In the experiments the prior distribution
for x is taken to be uniform: U [−1, 10].

We sample the posterior distribution with four methods: the EnKF method
in [26], EnKF-SMCS (Algorithm 1), EnKF-SMCS-WR (Algorithm 2) and MH-
SMCS. Note that MH-SMCS is the SMCS with a Metropolis-Hastings forward
proposal, a commonly used implementation of SMCS (we provide a detailed de-
scription of the algorithm in Appendix A). In each method, we use 200 particles,
and the bias error, i.e., the difference between the sample mean, which is a com-
monly used estimator, and the ground truth is then computed at each time step.
The procedure is repeated 100 times and the averaged results are shown in Figs. 2
where the left figure show the results for the small noise case (σ = 0.4) and the
right figure shows those for the large noise case (σ = 0.8). First, one can see from
the figures that all the methods perform better in the small noise case, which is
sensible as intuitively the inference should be more accurate when the observation
noise is small. More importantly, we can also see that in both cases, the EnKF
results in significantly higher errors than the three SMCS methods, suggesting
that EnKF performs poorly for this example. On the other hand, we observe that
the three SMCS algorithms produce largely the same results in both cases, while
EnKF-SMCS-WR only calculates the actual sample weights at 9 time steps on av-
erage in the small noise case and 6 in the large noise case, as is compared to 50 in
the EnKF-SMCS. Such a difference suggests that the EnKF-SMCS-WR algorithm
can significantly reduce the computational cost associated with the weight compu-
tation. The two EnKF-SMCS algorithms and MH-SMCS yield similar results, but
we need to emphasize that the MH-SMCS is substantially more expensive than
EnKF-SMCS-WR, as its procedure is similar to that of MCMC (see Appendix
A for details). Finally in Fig. 3 we show that the obtained posteriors at t = 50
and their Gaussian fits, which demonstrates that the posteriors are evidently non-
Gaussian.

6.2 Lorenz 63 model

Our second example is the Lorenz 63 model, a popular example used in several
works on parameter estimation, such as [1,29]. Specifically the model consists of
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Fig. 4 The simulated data for the Lorenz 63 example. The lines show the simulated states in
continuous time and the dots are the noisy observations.

three variables x, y and z, evolving according to the differential equations

dx

dτ
= α(y − x), (6.2a)

dy

dτ
= x(ρ− z)− y, (6.2b)

dz

dτ
= xy − βz, (6.2c)

where α, ρ and β are three constant parameters. In this example we take the true
values of the three parameters to be α = 10, β = 8/3 and ρ = 28, which we assume
that we have no knowledge of. Now suppose that observations of (x, y, z) are made
at a sequence of discrete time points: τ = t · ∆t for ∆t = 0.1 and t = 1, ..., 50,
and we want to estimate the three parameters (α, β, ρ) from these observed data.
The measurement noise here is taken to be zero-mean Gaussian with variance 32,
and the priors of the three parameters are also taken to be Gaussian with means
[6, 0, 24], and variances [1, 1, 1] (the prior is chosen so that it covers the regime
that can result in chaotic behavior) . The data used in our numerical experiments
are shown in Fig. 4.

In the numerical experiments, we conduct inference for two different cases: one
is that variable x is observed and the other is that y is observed. In each case
we draw samples from the posterior distributions with EnKF, EnKF-SMCS and
EnKF-SMCS-WR, MH-SMCS, where 500 samples are drawn with each method.
All the numerical experiments are repeated 10 times. We plot the average errors
for the case that x is observed in Fig. 5 and those for that with y being observed
in Fig. 6. One can see that, in both cases, the errors in the EnKF is larger than
those in the three SMCS methods, especially for parameter α. Once again, the
three SMCS methods yield similar errors while EnKF-SMCS-WR employs much
less computations of the actual weight: on average 9 time steps in the first case
and 8 in the second. In Fig. 7 we show the marginal posteriors at t = 50 ant their
Gaussian fits, where one can see that they are reasonably close to each other. The
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Fig. 5 The average estimation error of each parameter when x is observed.

example shows that even for problems where the posterior distributions are rather
close to Gaussian, the SMCS can further improve the estimation accuracy.

6.3 A kinetic model of the ERK pathway

In the last example we consider the parameter estimation problems in kinetic mod-
els of biochemical networks. Estimating the kinetic parameters is an essential task
in kinetic modeling of the biochemical reaction networks, including genetic regu-
latory networks and signal transduction pathways [32]. In particular we consider
the kinetic model of the Extracellular signal Regulated Kinase (ERK) pathway
suppressed by Raf-1 kinase inhibitor protein (RKIP) [27,35]. Here we shall omit
further details of biological background of the problem and proceed directly to
the mathematical formulation of the problem; readers who are interested in more
application-related information may consult [27,35].
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Fig. 6 The average estimation error of each parameter when y is observed.

In this problem the mathematical model that is derived based on enzyme ki-
netics, and is represented by a dynamical system:

dx

dτ
= SV (x), (6.3)

where τ is the time, x is a vector of state variables which are concentrations of
metabolites, enzyme and proteins or gene expression levels, S is a stoichiometric
matrix that describes the biochemical transformation in a biochemical network,
and V (x) is the vector of reaction rates and is usually the vector of nonlinear
function of the state and input variables. Specifically, in this ERK pathway model
we have

x = [x1, x2, ..., x11]T , V (x) = [v1, v2, ..., v7]T ,
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Fig. 7 The marginal posterior distributions at t = 50. Top: x is observed; bottom: y is
observed.
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which forms a system of 11 ordinary differential equations. Moreover the rates of
reactions V (x) are [27,35]:

v1 = k1x1x2 − k2x3, v2 = k3x3x9 − k4x4,
v3 = k5x4, v4 = k6x5x7 − k7x8,
v5 = k8x8, v6 = k9x6x10 − k10x11, v7 = k11x11,
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Fig. 10 The marginal posterior distributions at t = 50 and their Gaussian fits.

where k1, ..., k11 are the kinetic parameters, and the stoichiometric matrix S is
given by [27,35]:

S =



−1 0 1 0 0 0 0
−1 0 0 0 0 0 1
1 −1 0 0 0 0 0
0 1 −1 0 0 0 0
0 0 1 −1 0 0 0
0 0 1 0 0 −1 0
0 0 0 −1 1 0 0
0 0 0 1 −1 0 0
0 −1 0 0 1 0 0
0 0 0 0 0 −1 1
0 0 0 0 0 1 −1


.
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In this problem, we can make observations of some of the concentrations
x1, ...x11 at different times, from which we estimate the 11 kinetic parameters
k1, ..., k11. In our numerical experiments the specific setup is the following. In
many practical problems, not all the species’ concentrations can be conveniently
observed [27,35]. To mimic the situation we assume that the observations can
only be made on 4 of the states: {x1, x4, x7, x10}, and {x2, x3, x5, x6, x8, x9, x11}
are not observed. Second the observation is made 50 times with each time spacing
is ∆t = 0.001, and the measurement noise is taken to be zero-mean Gaussian with
standard deviation (STD) shown in Table 1. The initial values of the concentra-
tions are also given in Table 1. We use simulated data in this example where the
true values of the eleven parameters are shown in Table 2. The prior of the eleven
parameters are also taken to be Gaussian with means and standard deviations
both shown in Table 2.

In this example we focus on the four SMCS algorithms: EnKF-SMC, EnKF-
SMC-WR, MH-SMCS, and IS-SMCS (a special MH-SMCS implementation with
an independent proposal; see Appendix A for details), where the main purpose is
to compare the EnKF based and the MH based forward proposals. We test two
sample sizes M = 5000 and M = 10000 for each method and all the tests are
repeated 10 times.

First we want to examine the computational cost of EnKF-SMCS and EnKF-
SMCS-WR. To do this, we plot the CPU time of the two algorithms as a function
of t, where in each algorithm we show both the total time cost and that used
for evaluating the forward model. First, we can see from the figure that, in both
algorithms the main computational cost arises from the forward model evaluation;
second, the EnKF-SMCS-WR can significantly reduce the computational cost by
using less forward model evaluations. As discussed earlier, for the purpose of se-
quential inference, we should devote the majority of our attention to the estimator
accuracy at the final step, and therefore in Table 3 we show the estimation error
for each parameter at the final step t = 50. Specifically, we provide in the ta-
ble the mean-squared errors (MSE) of the estimation results. We can see from
the table that the two EnKF-SMCS algorithms yield lower estimation errors than
MH-SMCS in all the cases, and in particular the difference is substantially large
for parameters k1, k4, k5 k6, k8, k9 and k11, with both sample sizes. The results
of IS-SMCS are considerably better than those of MH-SMCS, suggesting that the
posterior distributions in this problem may be reasonably close to Gaussian. That
said, IS-SMCS results in clearly higher MSE for k1 and k9 (in the M = 10000
case). On the other hand, the two EnKF based SMCS algorithms yield similar
performance in terms of the estimation error, but the EnKF-SMCS-WR method
only conducts WR at 12 steps on average for both sample sizes, resulting in much
higher computational efficiency than EnKF-SMCS. To further compare the per-
formance of the methods, we perform simulations without resampling and plot the
resulting ESS in Fig. 9. The figure shows that the two EnKF based methods result
in evidently higher ESS in this example, agreeing with the results in Table 3. For
illustration purpose, we also plot the marginal posterior distributions at t = 50
and their Gaussian fits in Fig. 10.
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Table 1 The initial values and observation noise of the concentrations (states xi)

x1 x2 x3 x4 x5 x6
initial values 66 0.054 0.019 59 0.09 0.012
noise STD 0.005 5× 10−5 2× 10−5 0.035 0.0005 5× 10−6

x7 x8 x9 x10 x11
initial values 65 26 175 161 2.18
noise STD 0.05 0.02 0.03 0.003 0.002

Table 2 The true values and priors of the kinetic parameters

k1 k2 k3 k4 k5 k6
truth 0.5242 0.0075 0.6108 0.0025 0.0371 0.8101

prior mean 0.5 0.1 0.62 0.04 -0.5 0.8
prior STD 0.05 0.03 0.01 0.04 0.5 0.02

k7 k8 k9 k10 k11
truth 0.0713 0.0687 0.96 0.0012 0.872

prior mean 0 0.4 0.9 0 0.9
prior STD 0.05 0.3 0.1 0.005 0.05

Table 3 Comparison of the MSE results of the kinetic model at t=50.

M = 5000 M = 10000
EnKF EnKF MH IS EnKF EnKF MH IS

SMCS−WR SMCS SMCS SMCS SMCS−WR SMCS SMCS SMCS
k1 0.0078 0.0094 0.0287 0.0215 0.0092 0.0082 0.0429 0.0213
k2 0.0877 0.0915 0.1011 0.0920 0.0906 0.0928 0.0942 0.0922
k3 0.0093 0.0091 0.0119 0.0094 0.0095 0.0101 0.0113 0.0092
k4 0.0080 0.0078 0.0201 0.0075 0.0080 0.0082 0.0128 0.0071
k5 0.0003 0.0002 0.0011 0.0001 0.0001 0.0002 0.0027 0.0001
k6 0.0091 0.0092 0.0202 0.0100 0.0101 0.0097 0.0177 0.0106
k7 0.0668 0.0651 0.0936 0.0669 0.0695 0.0687 0.0946 0.0653
k8 0.0199 0.0191 0.0421 0.0307 0.0207 0.0206 0.0373 0.0289
k9 0.0108 0.0065 0.0888 0.0111 0.0023 0.0040 0.0532 0.0125
k10 0.0012 0.0011 0.0016 0.0015 0.0014 0.0015 0.0028 0.0014
k11 0.0068 0.0056 0.0299 0.0045 0.0023 0.0036 0.0652 0.0058

7 Conclusions

In this work we propose a sampling method to compute the posterior distribution
that arises in sequential Bayesian inference problems. The method is based on
SMCS, which seeks to generate weighted samples from the posterior in a sequential
manner and, specifically, we propose to construct the forward kernel in SMCS
using an EnKF framework and also derive a backward kernel associated to it. With
numerical examples, we demonstrate that the EnKF-SMCS method can often yield
more accurate estimations than the direct use of either SMCS or EnKF for a class
of problems. We believe that the method can be useful in a large range of real-
world parameter estimation problems where data becomes available sequentially
in time.

Some extensions and improvements of the EnKF-SMCS algorithm are possi-
ble. First in this work we focus on problems with a sequential structure, but we
expect that the method can be applied to batch-inference problems (where the
data are available and used for inference altogether) as well. In fact, many batch
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inference problems can be artificially “sequentialized” by some data tempering
treatments [17] and, consequently, the EnKF-SMCS algorithm can be applied
in these scenarios. In this respect, combining data tempering methods and the
EnKF-SMCS method to address batch inference problems can be a highly inter-
esting research problem. Second, as has been discussed previously, the proposed
method relies on the assumption that the posterior distributions do not deviate
strongly from being Gaussian. For problems with highly nonlinear models, the
posterior distributions may depart far from Gaussian, and as result the kernels
obtained with the EnKF method may not be effective for SMCS. In this case, the
performance of the EnKF-SMCS method may be improved by approximating the
posterior with a mixture distribution (e.g. [23,34]). Finally, as the method is based
on an EnKF scheme, it requires that the observation noise is additive Gaussian.
In the EnKF literature, a number of methods have been developed to deal with
non-Gaussian observations. One simple approach is to calculate the Kalman gain
matrix using the sample covariance between ut and yt [24], and another example
is the EnKF variant proposed in [28]. In principle, all these ideas can be used in
our method to construct the EnKF forward kernel, and to this end an important
question is how to effectively incorporate them in the EnKF-SMCS framework.
We plan to investigate these issues in the future.

A The MH-SMCS algorithms

In this section we provide a brief description of the MH-SMCS algorithm, largely following
[11]. As is mentioned in section 6.1, a commonly used forward proposal is the MH kernel, which
generates a new sample xt with the following procedure,

– Draw x∗ from a condition distribution q(·|xt−1);

– Calculate the acceptance probability a(x∗, xt−1) = min{1, πt(x
∗)

πt(xt−1)

q(xt−1|x∗)
q(x∗|xt−1)

};
– Draw ν from U [0, 1];
– If ν ≤ a, let xt = x∗; otherwise let xt = xt−1.

We then choose the backward kernel given by Eq. (32) in [11], and the resulting incremental
weight is

αt =
πt(xt−1)

πt−1(xt−1)
.

It is worth mentioning that, since the MH kernel includes an acceptance-rejection step that

involves πt(·), the number of forward model evaluations is also at the order of O(T 2) where T is

the total number of time steps. Finally we note that, in the numerical experiments, we choose

two proposal distribution within the MH kernel: (1) a random walk proposal, q(·|xt−1) =

N (xt−1, λ2I), and the variance λ2 is adjusted so that the average acceptance rate is about

50%; (2) an independence sampler proposal q(·|xt−1) = q̂t−1(·) where q̂t−1(·) is given by

Eq. (5.5). We refer to the former as MH-SMCS and the latter as IS (independent
sampler)-SMCS. Finally we note that, in principle multiple-iteration MH proposal
can be used in SMCS; however, since each MH iteration requires an evaluation
of the forward model, which may result in formidable computational cost, in this
work we only perform one MH iteration in both MH-SMCS and IS-SMCS.
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