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Abstract 21 

Carboxysomes are anabolic bacterial microcompartments that play an essential role in carbon fixation 22 

in cyanobacteria and some chemoautotrophs. This self-assembling organelle encapsulates the key CO2-23 

fixing enzymes, Rubisco, and carbonic anhydrase using a polyhedral protein shell that is constructed by 24 

hundreds of shell protein paralogs. The α-carboxysome from the chemoautotroph Halothiobacillus 25 

neapolitanus serves as a model system in fundamental studies and synthetic engineering of 26 

carboxysomes. Here we adopt a QconCAT-based quantitative mass spectrometry to determine the 27 

absolute stoichiometric composition of native α-carboxysomes from H. neapolitanus. We further 28 

performed an in-depth comparison of the protein stoichiometry of native and recombinant α-29 

carboxysomes heterologously generated in Escherichia coli to evaluate the structural variability and 30 

remodeling of α-carboxysomes. Our results provide insight into the molecular principles that mediate 31 

carboxysome assembly, which may aid in rational design and reprogramming of carboxysomes in new 32 

contexts for biotechnological applications.  33 
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 2 

Introduction 34 

Bacterial microcompartments (BMCs) are self-assembling proteinaceous organelles that are 35 

widespread among bacterial phyla (Axen et al., 2014; Sutter et al., 2021). The BMC is composed of a 36 

virus-like polyhedral protein shell that sequesters a series of enzymes to segregate their metabolic 37 

processes from the cytoplasm and provide specific local microenvironments to favor enzymatic 38 

activities (Kerfeld et al., 2018; Liu, 2021a; Liu, 2021b; Yeates et al., 2008). Increasing evidence has 39 

been achieved to highlight the significant roles of BMCs in enhancing the metabolism of various 40 

carbon sources, alleviating metabolic crosstalk, and encapsulating toxic/volatile metabolites (Bobik et 41 

al., 2015; Chowdhury et al., 2014; Greening and Lithgow, 2020).  42 

 43 

Carboxysomes are anabolic BMCs for autotrophic CO2 fixation in all identified cyanobacteria and 44 

some chemoautotrophs (Borden and Savage, 2021; Kerfeld et al., 2018; Liu, 2021a; Rae et al., 2013; 45 

Sun et al., 2020). They encase the CO2-fixing enzymes, Ribulose-1,5-bisphosphate carboxylase 46 

oxygenase (Rubisco) and carbonic anhydrase (CA), using a semi-permeable shell, which allows the 47 

passage of negatively charged HCO3- and Ribulose 1,5-bisphosphate (RuBP) and probably preclude O2 48 

influx and leakage of CO2 from the carboxysome to the cytoplasm (Dou et al., 2008; Faulkner et al., 49 

2020; Mahinthichaichan et al., 2018). In the carboxysome lumen, HCO3- is dehydrated to CO2 by CA, 50 

ensuring elevated CO2 levels around Rubisco to facilitate Rubisco carboxylation and reduce wasteful 51 

photorespiration (Long et al., 2021; Price et al., 2008). Collectively, the intriguing self-assembly and 52 

selective permeability features of carboxysomes provide the structural basis for enhanced CO2 53 

assimilation and substantial contributions to global primary production (Hennacy and Jonikas, 2020; 54 

Rae et al., 2013; Rae et al., 2017).  55 

 56 

According to the forms of encapsulated Rubisco and protein composition, carboxysomes can be 57 

categorized into two sub-classes, α- and β-carboxysomes (Kerfeld and Melnicki, 2016; Rae et al., 58 

2013). The α-carboxysome of the chemoautotrophic bacterium Halothiobacillus neapolitanus 59 

(hereafter as H. neapolitanus) has been chosen as a model carboxysome in fundamental studies and 60 

synthetic engineering. The genes encoding α-carboxysome-related proteins are clustered mainly in the 61 

cso operon in the H. neapolitanus genome (Figure 1). The shell is constructed by six types of 62 

paralogous proteins, including the hexameric proteins (BMC-H) CsoS1A, CsoS1B and CsoS1C that 63 

tile the major facet of shells, the pentamers (BMC-P) CsoS4A and CsoS4B that sit at the vertexes, and 64 

the trimeric pseudo-hexamer (BMC-T) CsoS1D that possesses a larger central pore than other shell 65 

proteins, which was proposed to play a role in mediating the passage of large metabolite molecules, 66 
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such as RuBP and 3-phosphoglycerate (3-PGA) (Bonacci et al., 2012; Faulkner et al., 2020; Klein et al., 67 

2009; Roberts et al., 2012). Among the BMC-H proteins, CsoS1A and CsoS1C have a high sequence 68 

similarity, differing in only 2 amino acids out of 98 (Heinhorst and Cannon, 2020; Tsai et al., 2007), 69 

whereas CsoS1B contains a 12-residue C-terminal extension (Tsai et al., 2007). The cargo enzymes 70 

include Rubisco and CA. Rubisco is assembled by the large and small subunits CbbL and CbbS that 71 

form an L8S8 hexadecamer. CsoSCA acts as the functional CA in the α-carboxysome, existing as a 72 

dimer (Sawaya et al., 2006), and was suggested to associate with the shell inner surface (Cai et al., 73 

2015; Dou et al., 2008). The linker protein CsoS2 in the H. neapolitanus α-carboxysome has two 74 

isoforms, a shorter polypeptide CsoS2A (C-terminus truncated) and a full-length CsoS2B, translated 75 

via programmed ribosomal frame shifting (Chaijarasphong et al., 2016). CsoS2A and CsoS2B shared 76 

the middle region and the N-terminal domain that binds with Rubisco and induces Rubisco 77 

condensation (Oltrogge et al., 2020). The C-terminus of CsoS2B, which is absent in CsoS2A, is 78 

presumed to bind with the shell and can serve as an encapsulation peptide to recruit non-native cargos 79 

(Cai et al., 2015; Li et al., 2020). In addition, CbbO and CbbQ function as the Rubisco activases, 80 

forming a bipartite complex comprising one CbbQ hexamer and one CbbO monomer, to remove 81 

inhibitors from the Rubisco catalytic site to restore its carboxylation (Chen et al., 2021; Sutter et al., 82 

2015; Tsai et al., 2015; Tsai et al., 2020). 83 

 84 

Given the significance of metabolic improvement and synthetic engineering potential, substantial 85 

efforts have been made to uncover the assembly and structural principles of carboxysomes. However, 86 

our knowledge about the accurate stoichiometric composition of carboxysomes, which plays an 87 

essential role in determining their size, shape, structural integrity, permeability, and catalytic 88 

performance (Liu et al., 2021), is still primitive. Label-free quantitative mass spectrometry has been 89 

used to determine the relative content of protein compositions within the BMCs (Faulkner et al., 2017; 90 

Havemann and Bobik, 2003; Long et al., 2005; Mayer et al., 2016). Furthermore, our recent work has 91 

applied mass spectrometry-based absolute quantification and a QconCAT (concatamer of standard 92 

peptides for absolute quantification) strategy to examine the precise stoichiometric composition of 1,2-93 

propanediol utilization (PDU) metabolosomes from Salmonella enterica serovar Typhimurium LT2 94 

(Yang et al., 2020). In addition, fluorescence labeling and microscopic imaging have been utilized to 95 

characterize the protein stoichiometry of β-carboxysomes from the cyanobacterium Synechococcus 96 

elongatus PCC 7942 (Syn7942) (Sun et al., 2019). However, the precise stoichiometric composition of 97 

α-carboxysomes has not been well characterized, despite the crude estimates based on protein 98 
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electrophoresis profiles reported in previous studies (Cannon and Shively, 1983; Heinhorst et al., 2006a; 99 

Roberts et al., 2012). 100 

 101 

Here, we perform absolute quantification of protein components within native α-carboxysomes from H. 102 

neapolitanus and recombinant α-carboxysomes produced in Escherichia coli (E. coli), using 103 

QconCAT-assisted quantitative mass spectrometry in combination with biochemical analysis, electron 104 

microscopy (EM) and enzymatic assays. Our results shed light on the molecular principles underlying 105 

the assembly and structural plasticity of α-carboxysomes, and provide essential information required 106 

for design and engineering of carboxysomes in synthetic biology. 107 

 108 

Results 109 

Quantifying the protein stoichiometry of native α-carboxysomes from H. neapolitanus 110 

The QconCAT-assisted mass spectrometry approach permitted a precise quantification of the absolute 111 

abundance of proteins (Johnson et al., 2021; Rivers et al., 2007; Simpson and Beynon, 2012). This 112 

approach has been recently applied to quantify the stoichiometric composition of protein components 113 

within the Pdu metabolosome (Yang et al., 2020). To determine the stoichiometry of α-carboxysome 114 

components, native α-carboxysomes were first isolated from H. neapolitanus using sucrose gradient 115 

ultracentrifugation (Figure S1A). Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-116 

PAGE) indicated that CsoS2A/B, CbbL/S, and CsoS1A/B/C are the major α-carboxysomes proteins 117 

(Figure S1B). NADH-coupled CO2-fixation activity assays confirmed the functionality of isolated α-118 

carboxysomes, with a measured carbon fixation Vmax of 2.96 ± 0.09 μmol.mg-1.min-1, and Km(RuBP) at 119 

0.20 ± 0.02 mM (n = 4) (Figure S1C). EM showed that the isolated α-carboxysomes form intact and 120 

canonical polyhedral shape, with an average diameter of 124.6 ± 9.6 nm (n = 272) (Figure S1D, S1E), 121 

consistent with previous results (Holthuijzen et al., 1986; Shively et al., 1973; Sutter et al., 2015). 122 

 123 

To establish the accurate stoichiometry of all proteins within the isolated α-carboxysomes, we used 124 

high-resolution liquid chromatography-mass spectrometry (LC-MS) calibrated with protein-specific 125 

stable-isotope labeled internal standards generated via the QconCAT strategy (Figure 1, Figure S2) 126 

(Johnson et al., 2021; Pratt et al., 2006). The designed single QconCAT peptide is composed of 3 127 

unique peptides for CbbL, CbbS, CsoSCA, CbbO, CbbQ, CsoS1D, CsoS4A and CsoS2AB shared 128 

region, 2 peptides for CsoS2B and CsoS1ABC shared region, as well as 1 peptide for the CsoS1B and 129 

CsoS1AC shared region (Figure S2A, Table S1). Due to the high sequence similarity, CsoS1A and 130 

CsoS1C could not be distinguished in the current QconCAT design. The QconCAT peptide also 131 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.471529doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.06.471529
http://creativecommons.org/licenses/by/4.0/


 5 

contains peptides of the form II Rubisco CbbM. Since CbbM was not presumed to be a component of 132 

the H. neapolitanus α-carboxysome (Baker et al., 1998), we used CbbM as a reference to validate the 133 

quality of α-carboxysome isolation. The genes encoding these selected peptide candidates were 134 

assembled, following the Qbrick assembly strategy (Johnson et al., 2021), to form the QconCAT DNA 135 

sequence (Table S2). The designed QconCAT peptide was then produced by cell-free synthesis 136 

(Takemori et al., 2017) and was further isolated, validated by SDS-PAGE (Figure S2B). 137 

 138 

MS1 precursor QconCAT quantification was then carried out using four batches of independently 139 

isolated α-carboxysomes (Figure 1A, Figure S3). The purified α-carboxysomes were mixed with the 140 

QconCAT standard, co-digested, and analyzed by label-free MS quantification. All carboxysomal 141 

proteins were detected in the isolated carboxysomes, whereas CbbM was not detectable in the isolated 142 

samples. The carboxysomal proteins account for 99.5 ± 0.2% of the total proteins in the samples, 143 

confirming the high purity of isolated carboxysomes (Figure S4A). Accuracy and reliability of protein 144 

quantification were verified by a good agreement of the peptides for each carboxysome protein in the 145 

four biological replicates (Figure S4C).  146 

 147 

We quantified the abundance of protein components within one H. neapolitanus carboxysome structure, 148 

based on the shell surface area of a typical icosahedron (Whitehead et al., 2014) and the average 149 

carboxysome size (124.6 ± 9.6 nm, n = 272) measured in EM (Figure 1C, Table 1, Table S3, see details 150 

in Methods). The results revealed that the most abundant proteins in the H. neapolitanus α-151 

carboxysome are CsoS1AC hexamers (863 copies), followed by Rubisco (447 copies, estimated by the 152 

CbbL content), CsoS2A (248 copies), CsoS2B (192 copies), CsoS1B hexamers (112 copies), and 58 153 

copies of CsoSCA dimers. The H. neapolitanus α-carboxysome has a molecular weight (MW) of ~346 154 

MDa and the Rubisco enzymes account for ~66% of the total MW. The hexameric shell proteins 155 

CsoS1A/C and CsoS1B make up ~17.1% of the total MW. Additionally, 11 copies of CsoS4A/B 156 

pentamers (CsoS4A: 8.8; CsoS4B: 2.2) are integrated within the α-carboxysome, slightly less than 12 157 

that is typically assumed to cap the vertices of an icosahedron. CsoS1D pseudo-hexamers have a low 158 

abundance in the shell, with 2.9 copies per carboxysome. Moreover, the linker proteins, CsoS2A and 159 

CsoS2B, account for 13.5% of the total MW. 160 

 161 

Approximately 15 copies of CbbQO complexes, each composed of one CbbQ hexamer and one CbbO 162 

monomer, were identified in the carboxysome, indicating that the CbbQO complex is a structural 163 

component of native α-carboxysomes in H. neapolitanus. Consistently, CbbQ has been indicated to be 164 
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 6 

tightly associated with the H. neapolitanus carboxysome shell (Sutter et al., 2015) and CbbQO can be 165 

incorporated into recombinant α-carboxysomes (Chen et al., 2021). Likewise, our mass spectrometry 166 

results showed the presence of McdAB-like proteins in purified native α-carboxysomes (Figure S4A, 167 

Supplemental File 1), implicating the association of McdAB-like proteins with α-carboxysomes, which 168 

was proposed to ensure proper distribution of α-carboxysomes in H. neapolitanus and carboxysome 169 

inheritance during cell division (MacCready et al., 2021). Some chemoautotrophs, including H. 170 

neapolitanus, contain the cbbM gene encoding Form II Rubisco and its activases CbbQ1 and CbbO1 171 

(Tsai et al., 2015). These proteins were not detected in the purified carboxysomes (Supplemental File 172 

1), suggesting that they are not the organizational components of or associated with the α-173 

carboxysomes in H. neapolitanus. 174 

 175 

Stoichiometric composition of recombinant α-carboxysomes 176 

Previous studies have demonstrated that heterologous engineering of the H. neapolitanus α-177 

carboxysomes could result in functional α-carboxysome structures (Baumgart et al., 2017; Bonacci et 178 

al., 2012; Chen et al., 2021; Flamholz et al., 2020). To verify the compositional similarity between 179 

native and recombinant α-carboxysomes, we reconstituted H. neapolitanus α-carboxysomes by 180 

expressing the cso operon with csoS1D using an arabinose-inducible pBAD33 vector in E. coli (Figure 181 

S1G). SDS-PAGE revealed an overall similar content of protein components within the isolated native 182 

and recombinant α-carboxysomes, except for a reduction in the CsoSCA content in recombinant 183 

carboxysomes (Figure S1B, S3). Carbon-fixation kinetics as a function of RuBP concentrations 184 

confirmed the function of recombinant α-carboxysomes, with a Vmax of 2.07 ± 0.12 μmol·mg-1·min-1 (n 185 

= 4) and a Km(RuBP) of 0.08 ± 0.02 mM (n = 4), although both were lower than those of native α-186 

carboxysomes (Figure S1C). EM indicated that recombinant α-carboxysomes possess a polyhedral 187 

shape and an average diameter of 131.8 ± 18.0 nm (n = 152), slightly larger than native α-188 

carboxysomes (Figure S1D, S1E). Analysis of EM images showed that both native and recombinant α-189 

carboxysomes possess single-layer shells (5.3 ± 0.6 nm and 5.5 ± 0.8 nm, respectively, n = 100, Figure 190 

S1F), consistent with previous observations (Faulkner et al., 2017). 191 

 192 

Isolated recombinant α-carboxysomes were then subject to MS1 precursor QconCAT quantification 193 

and normalization to retrieve the stoichiometric content of a single carboxysome (Figure 1, Table 2, 194 

Table S3). Within the recombinant α-carboxysome, the most abundant proteins are CsoS1AC hexamers 195 

(1001 copies), followed by Rubisco (426 copies), CsoS2A (305 copies), CsoS2B (249 copies), and 196 

CsoS1B hexamers (79 copies). The recombinant α-carboxysome has a molecular mass of ~336 MDa, 197 
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and has significantly reduced Rubisco copy numbers compared with the native α-carboxysome (p < 198 

0.05, Figure 2). The content of CsoSCA in the recombinant α-carboxysome is reduced by 29-fold 199 

compared to that in the native α-carboxysome, resulting in only ~2 CsoSCA dimers per recombinant α-200 

carboxysome, consistent with SDS-PAGE analysis (Figure S1B). The hexameric shell proteins, 201 

CsoS1AC and CsoS1B, account for 19.4% of the total MW in recombinant α-carboxysomes (Table 2). 202 

The CsoS1B content is reduced by ~30% (79 copies) compared to that in native α-carboxysomes (112 203 

copies, p < 0.05, Figure 2). There are on average 7.1 copies of pentameric proteins (CsoS4A: 6.3; 204 

CsoS4B: 0.8) in recombinant α-carboxysomes, less than the hypothetical 12 pentamers for a typical 205 

icosahedral structure. It suggests that some vertices are not capped by CsoS4 pentamers. Similar 206 

features have also been observed in β-carboxysomes and synthetic BMC shells (Hagen et al., 2018; Sun 207 

et al., 2019; Sutter et al., 2019), presumably providing a mechanism for regulating shell architecture 208 

and permeability. CsoS1D has ~0.8 copies per recombinant α-carboxysome, less than that in the native 209 

α-carboxysome (p < 0.001, Table 2). CsoS2A and CsoS2B have 305 and 249 copies, respectively, per 210 

recombinant α-carboxysome, collectively accounting for 17.6% of the total MW. CsoS2B has an 211 

increased content in the recombinant α-carboxysome than in the native form (Figure 2).  212 

 213 

Discussion 214 

In this study, we performed absolute quantification using QconCAT-based mass spectrometry to 215 

determine the stoichiometric composition of the H. neapolitanus α-carboxysomes, which represent a 216 

step toward gaining a comprehensive understanding of the structure and function of the model 217 

carboxysome.  218 

 219 

Given that BMC components have a notable variation in protein abundance (Yang et al., 2020) and 220 

some minor proteins were not identifiable as well as the protein paralogs with similar molecular were 221 

not distinguishable in SDS-PAGE gels (Figure 1, Figure S2), it is difficult to obtain the accurate protein 222 

stoichiometry of carboxysomes based on protein electrophoresis profiles. Comparison of QconCAT 223 

and label-free quantification results illustrated marked deviations in the abundance of some 224 

carboxysomal proteins (Figure S4B). The results demonstrated that label-free quantification could 225 

potentially underestimate the content of CsoS1B, CsoSCA, CsoS4A, and CsoS4B by 48/32%, 64/95%, 226 

144/142%, and 119/105% (native/recombinant carboxysomes), respectively, highlighting the necessity 227 

of QconCAT-based quantification in studying the protein stoichiometric composition of BMCs. 228 

 229 

Stoichiometric variability and structural plasticity of α-carboxysomes 230 
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Characterization of the absolute stoichiometric compositions for native and recombinant carboxysomes 231 

provides insight into the organizational principles and plasticity of the H. neapolitanus α-carboxysome 232 

(Figure 3). It becomes apparent that the BMC shells are amendable to integrate different copies or 233 

types of shell proteins, and the absence of specific components or the changes in the ratios of protein 234 

paralogs may not necessarily impede the overall shell assembly (Garcia-Alles et al., 2019; Long et al., 235 

2018; Sommer et al., 2019; Yang et al., 2020). The total copy number of shell pentamers (CsoS4A and 236 

CsoS4B) is 11.0 for native α-carboxysomes and 7.1 for recombinant α-carboxysomes, both less than 12 237 

pentamers that are postulated to occupy all the vertices of a regular icosahedron (Bobik et al., 2015; 238 

Kerfeld et al., 2018). These results elucidated that it is not a prerequisite to cap all the vertices with 239 

pentamers in a functional carboxysome. In support of this, polyhedral carboxysomes and BMC shells 240 

deficient in pentamers could still be formed (Cai et al., 2009; Hagen et al., 2018; Lassila et al., 2014; 241 

Long et al., 2018). Our previous study has also demonstrated that variable copies of CcmL pentamers 242 

are integrated in Syn7942 β-carboxysomes under different growth conditions (Sun et al., 2019). The 243 

lack of pentamers at some vertices might result in observable structural heterogeneity and reduced 244 

integrity of the entire α-carboxysomes (Figure S1D). 245 

 246 

Rubisco in carboxysomes was proposed to adopt a Kepler packing, filling maximally 74% of the 247 

internal carboxysome volume (Long et al., 2011; Whitehead et al., 2014). Quantification based upon 248 

the CbbL content indicates that the native H. neapolitanus α-carboxysome can accommodate 249 

approximately 447 Rubisco (the CbbL:CbbS ratio is 8:7.3), in agreement with the theoretical 250 

estimation based on the Kepler packing (411 Rubisco, Table S3). In contrast, recombinant α-251 

carboxysomes encapsulate 426 Rubisco (the CbbL:CbbS ratio is 8:5.7), lower than the estimated copy 252 

number of 491 based on measured recombinant carboxysome size (Table S3). The increased 253 

shell:interior ratio (from 0.8:1 to 1:1, Table. 3) and carboxysome size specified a lower packing density 254 

of Rubisco within recombinant carboxysomes (Figure 3). Moreover, the perturbed formation of 255 

Rubisco (L8S8) as indicated by the changes in the CbbL:CbbS ratio has also been determined in 256 

recombinant carboxysomes (Table 3). Our results also showed that the Rubisco/CA (CbbL:CsoSCA) 257 

ratio varies drastically between native and recombinant α-carboxysomes (Table 3). It has been 258 

postulated that too little or too much carboxysomal CA activity, which could cause limited CO2 supply 259 

or substantial leakage of CO2, may interfere with CO2 fixation of carboxysomes (Rae et al., 2013). 260 

Other changes that occurred in recombinant carboxysomes involve the increased content of CsoS1 shell 261 

proteins, the reduced CsoS1D abundance, as well as the absence of CbbQO (the cbbQ and cbbO genes 262 

were not included in the expression construct) (Figure 3). All these structural alternations may 263 
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collectively result in the higher size variation of recombinant α-carboxysomes and the discrepancy in 264 

the carbon-fixation performance between native and recombinant α-carboxysomes (Figure S1C-1E).  265 

 266 

CsoS2 in α-carboxysomes serve as the scaffolding protein that interlinks Rubisco and shells (Cai et al., 267 

2015; Chaijarasphong et al., 2016; Rae et al., 2013). The CbbL:CsoS2 ratios in native and recombinant 268 

α-carboxysomes remain within a narrow range between 8:1 and 8:1.3 (Table 3), implicating the 269 

correlation between Rubisco and CsoS2, which is fundamental for Rubisco condensation and internal 270 

packing. Likewise, the CsoS2A:CsoS2B ratio remains relatively unaltered in native (ratio of 1.3:1) and 271 

recombinant (ratio of 1.2:1) α-carboxysomes.  272 

 273 

Organizational features of diverse carboxysomes 274 

Peptide composition of the α-carboxysomes from the α-cyanobacterium Prochlorococcus marinus 275 

MED4 has been estimated based on standard protein gel profiles (Roberts et al., 2012). The H. 276 

neapolitanus α-carboxysomes (~125 nm in diameter) are larger in diameter than the Prochlorococcus 277 

α-carboxysomes (~90 nm in diameter). Consistently, the H. neapolitanus α-carboxysome has a 1.8-fold 278 

increased content of CsoS1 hexameric shell proteins (975 versus 539 copies) and encapsulates double 279 

copy numbers of CsoSCA proteins (58 versus 29) and nearly 3-fold more Rubisco enzymes (447 versus 280 

152 copies). The experimentally determined Rubisco content fits well the theoretical estimate (411 281 

copies for the H. neapolitanus carboxysome and 143 copies for the Prochlorococcus carboxysome), 282 

which were based on the carboxysome size and Kepler packing (Long et al., 2011; Whitehead et al., 283 

2014). In contrast, Pdu microcompartments, with the diameter ranging from 90 to 130 nm, have a 284 

drastically higher shell:interior ratio (4.6:1) (Yang et al., 2020) than the H. neapolitanus α-285 

carboxysome (0.8:1, Table 3), implying that Kepler packing of cargo enzymes is unlikely applicable to 286 

metabolosomes. The CsoSCA:CsoS1 ratio retain relatively constant in both native α-carboxysomes, 287 

presumably implicating their specific association within the carboxysomes. In contrast, CA in the 288 

Syn7942 β-carboxysomes, which encoded by the ccaA gene that is distant from the ccm operon, was 289 

demonstrated to have a varying abundance per carboxysome under different environmental conditions 290 

(Sun et al., 2019). It remains to be investigated if the CsoSCA content in α-carboxysomes is subject to 291 

environmental modulation. 292 

 293 

A noteworthy feature of the Prochlorococcus α-carboxysome is that it contains only the full length of 294 

CsoS2 without the short isoform as the H. neapolitanus counterpart does, which might lead to 295 

formation of carboxysomes with reduced Rubisco loading capacity and overall size. However, the 296 
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Rubisco:CsoS2 ratios in the α-carboxysomes from H. neapolitanus and Prochlorococcus remain 297 

relatively comparable (1:1 and 1:1.1, respectively), indicative of a general Rubisco encapsulation 298 

mechanism of α-carboxysomes. In the Syn7942 β-carboxysome, the ratio between Rubisco and the 299 

scaffolding protein CcmM varied in a range of 1:0.8 to 1:1.3, depending upon environmental 300 

conditions (Sun et al., 2019). Unlike the similar CsoS2A:CsoS2B ratios in native and recombinant α-301 

carboxysomes, the CcmM35:CcmM58 ratios in the Syn7942 β-carboxysomes have a wide range of 1:1 302 

to 11:1, and have been proved to be vital for carboxysome assembly (Long et al., 2011; Long et al., 303 

2010). 304 

 305 

Carboxysomes are highly modular structures with the capacity of incorporating foreign cargos, 306 

representing an ideal system in synthetic biology (Li et al., 2020). Advanced knowledge about the 307 

precise protein stoichiometry of functional carboxysome structures is essential for fine-tuning and 308 

reprogramming carboxysomes in native and heterogeneous organisms for metabolic enhancement and 309 

diverse biotechnological applications in new contexts (Liu et al., 2021). The QconCAT-based protein 310 

quantification technique could be broadly used in the studies of diverse BMC paralogs and protein 311 

organelles from their native origins and heterologous hosts. 312 

 313 

 314 

Methods 315 

Bacterial strains, growth conditions and carboxysome production 316 

H. neapolitanus (Halothiobacillus neapolitanus Parker, Kelly and Wood ATCC 23641 C2) used in this 317 

work was acquired from ATCC (The American Type Culture Collection) as freeze-dried powder 318 

(Cannon et al., 2001; Hutchinson et al., 1965). Stock cells were maintained in liquid ATCC medium 319 

290 (Hutchinson et al., 1967) or on ATCC 290 1.5% agar plates. Scale-up culture was grown similar to 320 

the protocol described previously (Dou et al., 2008), in the Vishniac and Santer medium (Vishniac and 321 

Santer, 1957) in a 5-liter fermenter (BioFlo 115, New Brunswick Scientific, USA) at 30°C. The pH of 322 

growth medium was maintained at 7.6 by constant supplement of 3 M KOH. Air supply was set at 500 323 

L.min-1 for initial growth and reduced to 200 L.min-1 24-48 hours prior to harvesting. Agitation was kept 324 

at 250-300 RPM. For expression of recombinant carboxysomes, the entire cso operon, as designed on 325 

pHnCBS1D reported previously (Bonacci et al., 2012), was fused on a pBAD33 arabinose inducible 326 

expression vector (Aigner and Wilson, 2017) using Gibson Assembly strategy (Gibson et al., 2009) 327 

with Gibson Assembly® Master Mix from NEB. Primer sets used for assembly were listed in Table S5. 328 

For recombinant carboxysome expression in E. coli, seeding cultures containing chloramphenicol at a 329 
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final concentration of 50 μg mL-1 were inoculated at 37°C in LB broth until reaching OD600 at 0.6, and 330 

then scaled up for induction with 1mM Arabinose at 20°C overnight. 331 

 332 

Carboxysome purification from H. neapolitanus and E. coli 333 

The α-carboxysome purification from H. neapolitanus was modified from the protocol described 334 

previously (Heinhorst et al., 2006b). Sulfur-free Cells fractions were obtained by subsequential 335 

centrifugation at 12,000 g for 10 min, 300 g for 15 min and 12,000 g for 10 min in TEMB buffer (10 336 

mM Tris-HCl, pH 8.0, 10 mM MgCl2, 20 mM NaHCO3, 1 mM EDTA). Cells in 15ml of TEMB were 337 

then incubated with egg lysosome for 1 hour at 30°C, and disrupted via glass beads beating (150-212 338 

μm glass bead, acid washed, Sigma-Aldrich). The lysates were further treated with 33% (v/v) B-PERII 339 

(ThermoFisher Scientific, UK) and 0.5% (v/v) IGEPAL CA630 (Sigma-Aldrich) and placed on a rotary 340 

mixer for 2 hours. The unbroken cells and large membrane debris were removed by centrifugation at 341 

9,000g for 10min. Crude CB enrichment was pelleted at 48,000 g for 30 min. The pellet was 342 

resuspended, briefly centrifuged at 9,000 g and then loaded to a step sucrose gradient (10% 20% 30% 343 

35% 50% 60%) and ultra-centrifuged at 105,000 g for 35 min. The milky layer of enriched 344 

carboxysome was harvested at 35%- 50% sucrose layers. Sucrose was removed by an additional round 345 

of ultracentrifuge after diluting with TEMB. The pure carboxysome pellet was resuspended in a small 346 

volume of TEMB. Unless indicated otherwise, all procedures were performed at 4°C. The 347 

carboxysome purification from E. coli was performed as described previously (Bonacci et al., 2012; So 348 

et al., 2004) with minor modifications. The step gradient of sucrose was kept the same as the one for 349 

native carboxysome isolation. Additionally, IGEPAL CA-630 detergent was used at 0.5% (v/v) after 350 

cell break to reduce membrane contaminants in final enrichments. 351 

 352 

SDS-PAGE analysis 353 

SDS-PAGE were performed following standard procedures. 10 μg purified carboxysomal proteins or 354 

100 μg whole cell fractions were loaded per-well on 15% polyacrylamide gels and stained with 355 

Coomassie Brilliant Blue G-250 (ThermoFisher Scientific, UK). 356 

 357 

Design, cell-free expression and purification of QconCAT standard 358 

Absolute quantification for the carboxysomal proteins was designed by concatenated signature 359 

QconCAT peptides (Pratt et al., 2006) in a similar way to that described previously (Yang et al., 2020). 360 

In brief, up to three qualified peptide candidates, when available according to design principles (Pratt et 361 

al., 2006) were nominated to quantify each protein (Table S1). Candidate peptides were BLAST 362 
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searched against protein database for both H. neap and E. coli to ensure their uniqueness. Due to the 363 

high level of sequence similarity of CsoS1A/B/C, CsoS2A/B and CsoS4A/B, peptides represent shared 364 

sequences as well as unique sequences were included (Figure S2). The DNA fragment encoding the 365 

above peptides, together with GluFib and cMyc (these peptides are used to quantify the standard) and 366 

6x His-tag on N-terminal and C-terminal respectively were generated following ALACAT/Qbrick 367 

assembly strategy as reported previously (Johnson et al., 2021). The final DNA sequence (Table S2) 368 

was assembled into a pEU-E01 vector for cell-free expression using wheat germ lysate (CellFree 369 

Sciences Co., Ltd, Japan). Synthesis was completed with [13C6, 15N4] arginine and [13C6, 15N2] lysine 370 

(CK Isotopes Ltd, UK) using WEPR8240H full Expression kit following default protocols 371 

(2BScientific Ltd, UK). The QconCAT peptides were purified with Ni Sepharose suspension (GE 372 

Healthcare Ltd, UK) in centrifuge filters (Corning Costar Spin-X 0.45 um pore size cellulose acetate 373 

membrane, Merck, UK) following standard methods. The QconCAT was precipitated and resuspended 374 

in 30 μL 25 mM ammonium bicarbonate, with 0.1% (w/v) RapiGestTM SF surfactant (Waters, UK) 375 

and protease inhibitors (Roche cOmpleteTM, Mini, EDTA-free Protease Inhibitor Cocktail, Merck, 376 

UK).  377 

 378 

Proteomic analysis 379 

The protein concentration of each sample was determined using a NanoDrop Spectrophotometer 380 

(ThermoFisher Scientific, UK). Protein (0.5 μg) was digested with 0.01 μg Trypsin Gold, Mass 381 

Spectrometry Grade (Promega, US) at 37°C overnight after pretreatment with 0.05% (w/v) 382 

RapiGestTM SF surfactant at 80°C for 10 mins, 4 mM dithiothreitol (Melford Laboratories Ltd., UK) 383 

at 60°C for 10 mins and 14 mM iodoacetamide at room temperature for 30 mins. Digestions were 384 

acidified with trifluoroacetic acid (Greyhound Chromatography and Allied Chemicals, UK) and then 385 

centrifuged at 13,000 g to remove insoluble, non-peptidic material. Four biological replicates for both 386 

native and recombinant carboxysomes were analyzed using an UltiMateTM 3000 RSLCnano system 387 

coupled to a Q Exactive™ HF Hybrid Quadrupole-Orbitrap™ Mass Spectrometer (ThermoFisher 388 

Scientific, UK) in data-dependent acquisition mode according to the protocol published (Johnson et al., 389 

2021). The LC was operated under the control of Dionex Chromatography MS Link 2.14. The raw MS 390 

data files were loaded into Thermo Proteome Discoverer v.1.4 (ThermoFisher Scientific, UK) and 391 

searched against carboxysome QconCAT database using Mascot v.2.7 (Matrix Science London, UK) 392 

with trypsin as the specified enzyme. Each precursor ion was cleanly isolated using the high-resolution 393 

and high-scanning speed of the MS1 approach. A precursor mass tolerance of 10 ppm and a fragment 394 

ion mass tolerance of 0.01 Da were applied. Additionally, preparations of the four native and synthetic 395 
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carboxysomes were analyzed by label-free quantification. Data analysis, including run alignment and 396 

peak picking, was carried out in Progenesis QI for Proteomics v4. The quantification data were also 397 

visualized and analyzed using Simplifi (simplify.protifi.com), which are available through permanent 398 

hyperlinks included in the text. 399 

 400 

For single carboxysome quantitative normalization, relative quantifications from QconCAT were 401 

normalized both 12 pentamer coverage, and a single layer shell protein coverage of hexameric and 402 

pentameric proteins (Table S4). 12-pentamer normalization is done via assuming 60 copies of 403 

monomeric CsoS4A and CsoS4B in sum per carboxysome. For shell coverage normalization, the shell 404 

surface area is first calculated using TEM measured diameter with the following formula: 405 

!! = 5√3&"; '# =
$%&'(√*

+ & 406 

whereas !!  is total surface area, & is edge length, and '#  is the circumcized radius (refer to as the 407 

diameter). The hexameric counts were then calculated using the total surface area and diameters of 408 

CsoS1A hexamers in a layer as reported previously (Tsai et al., 2007). 409 

 410 

Electron Microscopy and data analysis 411 

Electron microscopy was carried out as described previously (Faulkner et al., 2017). The purified 412 

carboxysomes (~ 4 mg mL-1) were stained with 3% uranyl acetate on carbon grids and then inspected 413 

with FEI 120 kV Tecnai G2 Spirit BioTWIN TEM equipped with a Gatan Rio 16 camera. The 414 

diameters of carboxysomes were measured with ImageJ as described previously (Faulkner et al., 2017) 415 

and were statistically analyzed using Origin (OriginLab, Massachusetts, USA).  416 

 417 

Rubisco activity assays 418 

Carbon fixation assay was carried out to determine carbon fixation capacities of purified native and 419 

recombinant carboxysomes as described previously using a 3-phosphoglycerate–dependent NADH 420 

oxidation coupled enzyme system (Bonacci et al., 2012). For both native and synthetic samples, four 421 

biological replicates that were isolated from different culture batches were assayed at 30°C, initiated 422 

with final concentrations of 0.0625 mM, 0.125 mM, 0.25 mM, 0.5 mM, 1 mM, and 2 mM of RuBP. 423 

The concentration of HCO3- was set to 24 mM for all assays in this work. 424 

  425 
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 643 

Figure 1. Schematic overview of QconCAT strategy. (A) QconCAT DNA fragment was designed 644 

from selected gene sequences from the H. neapolitanus operon that expresses α-carboxysome proteins. 645 

The stable isotopes ([13C6,15N4] arginine and [13C6, 15N2] lysine) labelled QconCAT peptide fusion was 646 

expressed via a cell-free system, purified and quantified and added to four replicates samples of 647 

isolated native/recombinant α-carboxysomes from H. neapolitanus and E. coli. The absolute quantity 648 

and stoichiometry of unlabelled signature peptides for carboxysomal proteins were calculated by LC-649 

MS analysis. One signature peptide for CbbQ, LLVKAGK was shown here as an example. (B) SDS-650 

PAGE of isolated native/recombinant α-carboxysomes showing the majority bands of α-carboxysome 651 

proteins. (C) EM images of isolated native/recombinant α-carboxysomes. 652 
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 654 

Figure 2. Stoichiometry comparison of native and recombinant carboxysomes. ns, as no statistical 655 

significance; *, p < 0.05; **, p < 0.01; ***, p < 0.001 using two sample t-test, equal variance not 656 

assumed (welch correction). Data are shown as mean ± SD from four biological replicates. 657 
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 659 

Figure 3. Structural models of H. neapolitanus α-carboxysomes. (A) Schematic of the pathways of 660 

carbon fixation in the α-carboxysome, including Rubisco activases CbbQO as the structural 661 

components; (B) The stoichiometry of each structural component within native and recombinant α-662 

carboxysome (see Table 1 and 2). (C) Schematic of native and recombinant α-carboxysome structures 663 

and shell organizations. The numbers of proteins do not represent actual abundance and is only for 664 

illustration purposes.  665 
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Table 1. QconCAT quantification of protein components in native α-carboxysomes from H. neapolitanus.  667 

Category Protein Structure of functional unit MW (kDa) 
% Total protein 

by weight 

Unit of monomeric 

protein per 

carboxysome 

Functional unit of 

multimer per 

carboxysome 

Structural 

Proteins 

CsoS1AC Hexamer (Tsai et al., 2007; Tsai et al., 2009) 10.0 14.88 ± 1.09 5175.1 ± 378.1 862.5 ± 63 

CsoS1B Hexamer* 11.3 2.20 ± 0.48 673.3 ± 148.3 112.2 ± 24.7 

CsoS1D Pseudo-hexamer (Klein et al., 2009) 23.5 0.12 ± 0.01 17.4 ± 1.0 2.9 ± 0.2 

CsoS4A Pentamer (Tanaka et al., 2008) 8.9 0.11 ± 0.00 43.9 ± 1.6 8.8 ± 0.3 

CsoS4B Pentamer (Zhao et al., 2019) 8.8 0.03 ± 0.00 10.8 ± 1.6 2.2 ± 0.3 

CsoS2A Monomer (Cai et al., 2015; Oltrogge et al., 2020) 92.4 6.61 ± 1.26 247.7 ± 47.3 247.7 ± 47.3 

CsoS2B Monomer (Cai et al., 2015; Oltrogge et al., 2020) 124.2 6.87 ± 0.54 191.5 ± 15.0 191.5 ± 15.0 

Catalytic 

proteins 

CbbL L8S8 Hexadecamer (Oltrogge et al., 2020) 52.6 54.36 ± 2.30 3575.7 ± 151.3 447.0 ± 18.9 

CbbS L8S8 Hexadecamer (Oltrogge et al., 2020) 12.9 11.74 ± 0.56 3161.2 ± 150.7 395.1 ± 18.8 

CsoSCA Dimer (Sawaya et al., 2006) 57.3 1.93 ± 0.12 116.6 ± 7.1 58.3 ± 3.6 

CbbQ Hexamer (Sutter et al., 2015) 30.1 0.76 ± 0.05 87.8 ± 5.3 14.6 ± 0.9 

CbbO Monomer (Sutter et al., 2015; Tsai et al., 2020) 88.6 0.39 ± 0.03 15.4 ± 1.3 15.4 ± 1.3 

Intact native α-carboxysome 346.3    

*Based on the structural similarity with CsoS1A/C. 668 
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Table 2. QconCAT quantification of protein components in recombinant H. neapolitanus α-669 

carboxysomes. 670 

Category Protein 
MW 

(kDa) 

% Total protein 

by weight 

Unit of monomeric 

protein per 

carboxysome 

Functional Unit 

of multimer per 

carboxysome 

Structural 

Proteins 

CsoS1AC 10.0 17.80 ± 0.80 6002.9 ± 268.1 1000.5 ± 44.7 

CsoS1B 11.3 1.59 ± 0.19 473.1 ± 56.6 78.8 ± 9.4 

CsoS1D 23.5 0.03 ± 0.00 5.0 ± 0.3 0.8 ± 0.1 

CsoS4A 8.9 0.08 ± 0.01 31.7 ± 3.5 6.3 ± 0.7 

CsoS4B 8.8 0.01 ± 0.01 3.9 ± 2.7 0.8 ± 0.5 

CsoS2A 92.4 8.39 ± 0.26 305.0 ± 9.3 305.0 ± 9.3 

CsoS2B 124.2 9.21 ± 0.47 249.0 ± 12.6 249.0 ± 12.6 

Catalytic 

proteins 

CbbL 52.6 53.42 ± 3.96 3408.1 ± 252.4 426.0 ± 31.5 

CbbS 12.9 9.38 ± 0.37 2449.4 ± 96.2 306.2 ± 12 

CsoSCA 57.3 0.07 ± 0.02 4.0 ± 1.1 2.0 ± 0.5 

Intact recombinant α-carboxysome 335.8    

671 
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Table 3. Stoichiometric ratios of protein components in α-carboxysomes. Interior proteins: CbbL, 672 

CbbS, CsoS2; Shell proteins: CsoS1, CsoS4. 673 

Ratio of carboxysome proteins native recombinant 

CbbL:CbbS 8:7.3 8:5.7 

CbbL:CsoS2 8:1 8:1.3 

CbbL:CsoSCA 30.7:1 846:1 

CsoS2A:CsoS2B 1.3:1 1.2:1 

CsoS1 hexamer:CsoS2B 5.1:1 4.3:1 

CsoS1AC:CsoS1B 7.7:1 12.7:1 

CsoS4A:CsoS4B 4.1:1 8.1:1 

CbbQ:CbbO 5.7: 1 n/a 

shell proteins:internal enzymes 1:1.25 1:1 

hexamer:trimmer 336.4:1 1403.5:1 

hexamer:pentamer 89.1:1 133.9:1 

pentamers per unit of carboxysome 11 7.1 

 674 
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Supplemental Information 1 

 2 
Figure S1. Purification and characterization of native and recombinant α-carboxysomes from H. 3 
neapolitanus and E. coli. (A) Sucrose gradient for carboxysome fractions. The milky band between 4 
35%-50% sucrose fraction interface consists of enriched carboxysomes; (B) SDS-PAGE of purified 5 
carboxysomes isolated from four replicate batches of culture showing the majority bands of α-6 
carboxysome proteins; (C) Carbon-fixation kinetics as a function of the RuBP concentrations revealed 7 
that native and recombinant carboxysomes possess Vmax at 2.96 ± 0.09 and 2.07 ± 0.12 μmol.mg-8 
1.min-1 and Km(RuBP) at 0.20 ± 0.02 and 0.08 ± 0.02 mM, respectively. Data is shown as mean ± SD from 9 
four independent biological replicates; (D) TEM image of purified native and recombinant 10 
carboxysomes; (E) Boxplot distribution for diameters of purified native and recombinant carboxysomes, 11 
at 124.6 ± 9.6 nm (n = 272) and 131.8 ± 18.0 nm (n = 152), respectively. Significant difference of 12 
average diameter was confirmed with student t-test (p < 0.05); (F) Analysis on the shell thickness of 13 
native and recombinant α-carboxysomes. The shell thickness of native and recombinant α-14 
carboxysomes is 5.3 ± 0.6 nm and 5.5 ± 0.8 nm, respectively (n = 100), implicating the single-layer 15 
shell architecture. The profile region for measurements were marked by red lines (Scale bar = 50 nm); 16 
(G) Recombinant α-carboxysome expression cassette containing cso operon and cbbL/S, plus BMC-T 17 
protein encoded gene csoS1D in the pBAD33 vector.  18 
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 19 

Figure S2. Structure and expression of the H. neapolitanus carboxysome QconCAT. (A) 20 

Schematic representation of the quantification concatamer, for quantification of proteins of interest. 35 21 

peptides in QconCAT are represented by blue boxes. Values for the [M+2H2+] m/z peptide ions for the 22 

unlabeled QconCAT are aligned above each peptide (green text). The non-target quantification 23 

peptides (GluFib and cMyc) and the hexa-histidine tag for QconCAT purification are shaded in red and 24 

orange, respectively. (B) SDS-PAGE analysis of QconCAT expression and purification. The coding 25 

sequence of QconCAT peptide was sub-cloned into the cell-free expression vector pEU-E01-MCS 26 

(left). QconCAT was prepared by wheat germ cell-free synthesis in the presence of [13C6,15N4] arginine 27 

and [13C6,15N2] lysine and purified by virtue of the hexa-histidine tag (right). The QconCAT is denoted 28 

by the arrow.   29 
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 30 
Figure S3. SDS-PAGE of purified carboxysomes from H. neapolitanus and E. coli with four 31 

biological replicates prepared for quantification by QconCAT mass spectrometry. 10 μg proteins 32 

are loaded per well.   33 
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 34 
Figure S4. Evaluation of QconCAT and label-free quantification. (A) Protein index of all 35 
recognized proteins in label-free quantification. In native carboxysome samples, McdAB-like proteins 36 
are both detected. The full protein list provided in Supplemental File; (B) Comparison of QconCAT and 37 
label-free quantification. Quantification was normalized to equal total protein quantity. Proteins with the 38 
abundance difference greater than 30% from average are labelled in red; (C) Quantification of all 39 
QconCAT candidate peptides for H. neapolitanus carboxysomes. Overall good agreements are found 40 
within candidate peptides for same protein with the exception of peptide 3 of CsoSCA (34 ± 4 % lower 41 
than the other two) and CbbO (21 ± 3 %) in native carboxysome samples.   42 
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Table S1. Peptides derived from tryptic proteolysis of the QconCAT for carboxysome protein 43 

quantification. The flanking sequences that recapitulate the true native primary sequence context, 44 

together with additional sequences that are derived from the loop assembly synthesis of the QconCAT 45 

are written in gray. 46 

Peptide M [M+H]+ [M+2H]++ Sequence Annotation 
1 433 434 218 MAGR N-term 
2 1570 1571 786 EGVNDNEEGFFSAR GluFib 
3 356 357 179 LPK  
4 403 404 203 EQK  
5 1088 1089 545 LISEEDLGGR cMyc 
6 1164 1165 583 GSQESSAEDVR 
7 836 837 419 FPLAYVK CbbL_1 
8 718 719 360 TCGILR  
9 1477 1478 739 LSGGDHLHTGTVVGK CbbL_2 
10 658 659 330 LEGANR  
11 1117 1118 559 VALEACVEAR CbbL_3 
12 686 687 344 NQGQIK  
13 1883 1884 942 YAIAQGWSPGIEHVEVK CbbS_1 
14 737 738 370 NSMACR  
15 1030 1031 516 SAYPTHQVK CbbS_2 
16 746 747 374 LVAMWK  
17 2320 2321 1161 LPFFGEQNVDNVLAEIEACR CbbS_3 
18 2398 2399 1200 SAYSAAAAEMADVTGIALGMIETR  
19 599 600 301 GLVVGR  
20 1371 1372 686 SFVGGGYVTVMVR CsoS1B_1 
21 645 646 324 GETIAR  
22 1264 1265 633 VHSEVENILPK CsoS1AC_1 
23 682 683 342 APQLVR  
24 1044 1045 523 GETGAVNAAVR CsoS1ABC_1 
25 662 663 332 AGACER  
26 1291 1292 646 VGDGLVAAHIIAR CsoS1ABC_2 
27 655 656 329 VHSGTR  
28 1375 1376 688 AVPPKPQSQGGPGR CsoS2AB_1 
29 722 723 362 NGYTLR  
30 1424 1425 713 GTSVSGQQLDHAPK CsoS2AB_2 
31 636 637 319 MSGTNK  
32 1145 1146 573 GQSVTGNLVDR CsoS2AB_3 
33 1338 1339 670 SELSAAYAEQNR 
34 1100 1101 551 ITGNDIAPSGR CsoS2B_1 
35 630 631 316 ITGNAR  
36 1093 1094 547 VVETSAFANR CsoS2B_2 
37 658 659 330 NVPDSK  
38 865 866 434 GFLNPYR CsoSCA_1 
39 750 751 376 YVDNLK  
40 926 927 464 GIFGYATAK CsoSCA_2 
41 431 432 217 ALTK  
42 303 304 153 ER  
43 1596 1597 799 FSSLDEQNLLQFR CsoSCA_3 
44 631 632 317 LSVGTR  
45 1213 1214 607 WQDGPLTVAAR CbbQ_1 
46 661 662 332 IGADMR  
47 859 860 431 DALDTVVK CbbQ_2 
48 757 758 380 TFFSTR  
49 762 763 382 LLVYAGK CbbQ_3 
50 1229 1230 615 LIASAAQAEVEK 
51 789 790 396 TLVSTNR CsoS4A_1 
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52 688 689 345 IADTNR  
53 2213 2214 1108 IADMGHKPLLVVWEKPGAPR CsoS4A_2 
54 640 641 321 QVAAPR  
55 2500 2501 1251 QVAVDAIGCIPGDWVLCVGSSAAR CsoS4A_3 
56 631 632 317 EAADAR  
57 1390 1391 696 TGENPTLGALFDR CbbO_1 
58 686 687 344 IALQSR  
59 1035 1036 518 TDIPSSPYR CbbO_2 
60 720 721 361 DDNMAR  
61 943 944 472 ELGIALAEK CbbO_3 
62 1190 1191 596 IQQSAASAETGK 
63 2634 2635 1318 VSVACDPIGVPEGCWVFTISGSAAR 
64 703 704 353 FGVPER  
65 1075 1076 538 AIQLFDGPSK CbbM_1 
66 669 670 336 DISHAK  
67 1189 1190 595 IHDIYFPER CbbM_2 
68 644 645 323 AIQSAR  
69 808 809 405 YADLSLK CbbM_3 
70 930 931 466 EEDLIAGGK  
71 751 752 377 HILDVR  
72 767 768 385 AFGNFGR CsoS1D_1 
73 732 733 367 LTMNVR  
74 928 930 465 LGEQVVER CsoS1D_2 
75 621 622 312 AFGAEK  
76 1094 1095 548 AAHVTLIDVR CsoS1D_3 
77 980 981 491 AFGSAAGGSTR 
78 1510 1511 756 DQLALEHHHHHH* HisTag 

  47 
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Table S2. DNA and protein sequences of the recombinant carboxysome QconCAT peptide 48 

DNA sequences (2151 bp) 

ATGGCAGGTCGTGAAGGTGTTAATGATAATGAAGAAGGCTTTTTTAGCGCACGTCTGCCGAAAGAACAGAAACTGATTAGCGAA

GAAGATTTAGGCGGTCGCGGGTCTCAGGAGTCGAGTGCGGAGGATGTTCGTTTTCCGCTGGCATATGTTAAAACCTGTGGTATT

CTGCGTCTTAGTGGTGGTGATCATCTGCATACCGGTACCGTTGTTGGTAAACTGGAAGGTGCCAACCGTGTGGCACTGGAAGC

ATGTGTTGAAGCACGTAATCAGGGTCAGATTAAATATGCGATCGCACAAGGCTGGAGCCCGGGTATTGAACATGTTGAAGTTAA

AAATAGCATGGCATGTCGCAGTGCCTATCCGACCCATCAGGTTAAACTGGTTGCAATGTGGAAACTGCCGTTTTTCGGTGAACA

GAATGTTGATAATGTTCTGGCAGAAATTGAAGCATGTCGTTCAGCCTATTCCGCTGCAGCAGCGGAGATGGCAGATGTTACCGG

TATTGCACTGGGCATGATTGAAACCCGTGGTCTGGTTGTGGGTCGTAGCTTTGTTGGTGGTGGTTATGTTACCGTTATGGTTCG

TGGTGAAACCATTGCCCGTGTGCATAGCGAAGTTGAAAATATTCTGCCGAAAGCACCGCAGTTAGTTCGCGGCGAGACAGGTG

CAGTTAATGCAGCAGTTCGTGCAGGTGCATGTGAACGTGTTGGCGACGGCTTGGTTGCAGCACATATTATTGCACGCGTTCATT

CAGGTACCCGTGCAGTTCCGCCAAAACCACAGAGCCAGGGTGGTCCGGGTCGTAATGGTTATACCCTGCGTGGTACCTCAGTT

TCAGGTCAGCAGCTGGATCATGCACCGAAAATGAGCGGTACCAACAAGGGCCAAAGCGTTACCGGTAATCTGGTTGATCGTAG

CGAACTGTCCGCTGCATACGCGGAGCAGAATCGTATTACCGGCAATGATATTGCACCGAGCGGTCGTATCACAGGTAATGCCA

GAGTTGTTGAAACCAGCGCATTTGCAAATCGTAATGTTCCGGACAGCAAAGGCTTCCTGAATCCGTATCGTTATGTTGATAATCT

GAAAGGTATTTTTGGCTATGCAACCGCAAAAGCACTGACCAAAGAACGTTTTAGCAGCCTGGATGAACAGAACCTTTTACAGTTT

AGACTGAGCGTTGGTACCCGTTGGCAGGATGGTCCGCTGACAGTGGCCGCACGTATTGGTGCAGATATGCGTGATGCACTGGA

TACCGTTGTTAAAACTTTCTTCAGCACACGTTTACTGGTTTATGCAGGTAAACTGATTGCATCCGCTGCACAGGCGGAGGTTGAG

AAAACCCTGGTTAGCACAAATCGTATTGCCGATACCAATCGCATTGCAGATATGGGTCATAAACCGCTGCTGGTTGTTTGGGAA

AAACCGGGTGCACCGCGTCAGGTTGCCGCCCCTCGCCAGGTGGCAGTTGATGCAATTGGTTGTATTCCGGGTGATTGGGTTCT

GTGCGTTGGTAGCAGCGCAGCACGTGAAGCAGCAGATGCACGTACCGGTGAAAATCCGACCCTGGGTGCCCTGTTTGATCGTA

TTGCACTGCAGAGCCGTACAGATATTCCTAGTAGTCCTTATCGTGATGATAATATGGCACGTGAACTGGGTATTGCCCTTGCAGA

GAAAATTCAGCAGTCCGCTGCATCGGCGGAGACAGGTAAAGTTAGCGTTGCATGTGATCCGATTGGCGTTCCTGAAGGTTGCT

GGGTGTTCACCATTAGCGGTAGCGCAGCACGTTTTGGTGTTCCGGAACGTGCCATCCAGTTGTTCGATGGTCCGAGCAAAGAT

ATTAGCCATGCAAAAATTCATGATATTTATTTCCCTGAGCGTGCAATTCAGAGCGCCCGTTATGCAGATCTGAGTCTGAAAGAGG

AAGATCTGATTGCAGGTGGTAAACATATTCTGGATGTTAGAGCATTTGGTAACTTTGGTCGCCTGACCATGAATGTTCGTCTGGG

TGAACAGGTTGTTGAACGTGCATTTGGTGCAGAAAAAGCAGCACATGTTACCCTGATTGATGTTCGCGCCTTTGGTTCCGCTGC

AGGTGGATCTACTAGAGACCAGCTGGCACTGGAACATCATCATCACCATCACTAA 

Protein sequence (716 AA) 

MAGREGVNDNEEGFFSARLPKEQKLISEEDLGGRGSQESSAEDVRFPLAYVKTCGILRLSGGDHLHTGTVVGKLEGANRVALEACVE

ARNQGQIKYAIAQGWSPGIEHVEVKNSMACRSAYPTHQVKLVAMWKLPFFGEQNVDNVLAEIEACRSAYSAAAAEMADVTGIALGMI

ETRGLVVGRSFVGGGYVTVMVRGETIARVHSEVENILPKAPQLVRGETGAVNAAVRAGACERVGDGLVAAHIIARVHSGTRAVPPKP

QSQGGPGRNGYTLRGTSVSGQQLDHAPKMSGTNKGQSVTGNLVDRSELSAAYAEQNRITGNDIAPSGRITGNARVVETSAFANRNV

PDSKGFLNPYRYVDNLKGIFGYATAKALTKERFSSLDEQNLLQFRLSVGTRWQDGPLTVAARIGADMRDALDTVVKTFFSTRLLVYAG

KLIASAAQAEVEKTLVSTNRIADTNRIADMGHKPLLVVWEKPGAPRQVAAPRQVAVDAIGCIPGDWVLCVGSSAAREAADARTGENPT

LGALFDRIALQSRTDIPSSPYRDDNMARELGIALAEKIQQSAASAETGKVSVACDPIGVPEGCWVFTISGSAARFGVPERAIQLFDGPS

KDISHAKIHDIYFPERAIQSARYADLSLKEEDLIAGGKHILDVRAFGNFGRLTMNVRLGEQVVERAFGAEKAAHVTLIDVRAFGSAAGGS

TRDQLALEHHHHHH 

  49 
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Table S3. Calculation of carboxysome surface area, shell hexamer content, and carboxysome 50 

diameter.  51 

 
native α-carboxysome  

(n = 272) 

recombinant α-carboxysome 

(n = 152) 

EM-measured diameter (nm) 124.6 ± 9.6 131.8 ± 18.0  

Radius of circumscribed sphere (nm) 62.3 ± 4.8 65.9 ± 9.0 

Facet side length (nm) 65.5 ± 5.0 69.3 ± 9.4 

Carboxysome surface area (nm2) 37407.3 ± 5864.6  42354.8 ± 11745.1  

CsoS1 hexamer width (nm)* 6.64 6.64 

CsoS1 hexamer area (nm2)* 38.9 38.9 

CsoS4 pentamer area (nm2)* 30.3 30.3 

All facet hexamer counts 977.6 ± 150.9 1080.2 ± 302.1 

Estimated Rubisco counts per carboxysome& 410.7 ± 101.8 491.4 ± 216.1 

*CsoS1 and CsoS4 width/area obtained from previous publications (Tanaka et al., 2008; Tsai et al., 52 

2007); 53 
&Assumed packing densities of 74% (Kepler packing) (Whitehead et al., 2014) in the proposed 54 

carboxysome model based on the measured carboxysome diameters.  55 
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Table S4. Absolute protein abundance per native and recombinant carboxysome based on 12-56 

pentamer occupation and surface area coverage. 57 

Protein 
native α-carboxysome recombinant α-carboxysome 

12 pentamers CsoS1 coverage* 12 pentamers CsoS1 coverage* 

CbbL 490.2 ± 20.7 447.0 ± 18.9 717.0 ± 53.1 426.0 ± 31.5 
CbbS 433.4 ± 20.7 395.1 ± 18.8 515.3 ± 20.2 306.2 ± 12 

CsoS1AC 945.9 ± 69.1 862.5 ± 63 1683.9 ± 75.2 1000.5 ± 44.7 
CsoS1B 123.1 ± 27.1 112.2 ± 24.7 132.7 ± 15.9 78.8 ± 9.4 
CsoS2A 271.7 ± 51.8 247.7 ± 47.3 513.3 ± 15.7 305 ± 9.3 
CsoS2B 210 ± 16.4 191.5 ± 15 419.1 ± 21.3 249 ± 12.6 
CsoSCA 63.9 ± 3.9 58.3 ± 3.6 3.4 ± 0.9 2.0 ± 0.5 
CsoS4A 9.6 ± 0.4 8.8 ± 0.3 10.7 ± 1.2 6.3 ± 0.7 
CsoS4B 2.4 ± 0.4 2.2 ± 0.3 1.3 ± 0.9 0.8 ± 0.5 
CsoS1D 3.2 ± 0.2 2.9 ± 0.2 1.4 ± 0.1 0.8 ± 0.1 
CbbQ 16 ± 1 14.6 ± 0.9 N/A N/A 

CbbO 16.9 ± 1.4 15.4 ± 1.3 N/A N/A 

*Based on surface area of ideal icosahedral with diameters measured from EM, 124.6 ± 9.6 nm (n = 58 

272) and 131.8 ± 18.0 nm (n = 152) for native and recombinant carboxysomes, respectively. Value 59 

used for standardization was displayed in bold. Calculation was described in Methods.  60 
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Table S5. Primer sets used for pBAD33-CBS1D construction 61 

Primer name Sequence (5’-3’) 

S1D-R 
GCTACGCCTGAATAAGTGCTGCAGGCGGCCCTGTTCGACTTAAGCATTATGGC

GGCCGCTTAGAACCCTTCAGCGCGACGCG 

S1D-F GTTTAACTTTAAGAAGGAGATATACAATGGCAGTTAAAAAGTATAGTGCTGGTG 

pBAD33-R TGTATATCTCCTTCTTAAAGTTAAACAAAATTATTTCTAGAGG 

pBAD33-F GCACTTATTCAGGCGTAGCAAC 

 62 

 63 

 64 

 65 

 66 

 67 

 68 

 69 

 70 

 71 

 72 

 73 

 74 

 75 

 76 
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