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Abstract There has been an exponential growth of artificial intelligence (AI) and machine learning (ML) publications aimed at
advancing our understanding of atrial fibrillation (AF), which has been mainly driven by the confluence of two fac-
tors: the advances in deep neural networks (DeepNNs) and the availability of large, open access databases. It is ob-
served that most of the attention has centred on applying ML for dvsetecting AF, particularly using electrocardio-
grams (ECGs) as the main data modality. Nearly a third of them used DeepNNs to minimize or eliminate the need
for transforming the ECGs to extract features prior to ML modelling; however, we did not observe a significant ad-
vantage in following this approach. We also found a fraction of studies using other data modalities, and others cen-
tred in aims, such as risk prediction, AF management, and others. From the clinical perspective, AI/ML can help ex-
pand the utility of AF detection and risk prediction, especially for patients with additional comorbidities. The use of
AI/ML for detection and risk prediction into applications and smart mobile health (mHealth) technology would en-
able ‘real time’ dynamic assessments. AI/ML could also adapt to treatment changes over time, as well as incident
risk factors. Incorporation of a dynamic AI/ML model into mHealth technology would facilitate ‘real time’ assess-
ment of stroke risk, facilitating mitigation of modifiable risk factors (e.g. blood pressure control). Overall, this would
lead to an improvement in clinical care for patients with AF.
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This article is part of the Spotlight Issue on Atrial Fibrillation.

1. Introduction

Atrial fibrillation (AF) is the commonest arrhythmia worldwide, increas-
ing the risk of stroke and heart failure.1 In the general population, diabe-
tes mellitus (DM), high blood pressure, and coronary artery disease are
regarded main risk factors. An increased risk of AF also occurs in patients
undergoing major operations2 and those suffering from acute severe ill-
ness (e.g. infection or other pyrexical illnesses), chronic chest disease,
and lifestyle factors, such as obesity.

Over the last decade, artificial intelligence (AI) has gained momentum
and is rapidly becoming a mature discipline.3,4 The term AI was coined in
the late 50 s by McCarthy, to denote the simulation of human intelligence
in machines.5 Therefore, AI is not necessarily a newcomer, although
most of its recent growth in popularity is due to machine learning (ML).
ML is a branch of AI that deals with the development of algorithms that
use data to make predictions and to improve their accuracy without be-
ing explicitly programmed to do so.6

Note that the process of learning the task of making predictions from
data follows inductive logic. This means that if an ML algorithm is supplied
with enough data, it should be able to provide us with an accurate response,
although not necessarily 100% accurate. Unlike mechanistic models, ML
models are not aimed at finding causal relations between inputs and outputs.
However, they both could synergically work to accelerate the understanding
of AF.7 In several domains, the use of the terms AI and ML are often mistak-
enly interchanged, sometimes accidentally, and also because of commercial
reasons: AI sounds old-fashioned within some sectors. In this review, we will
adhere to the definition of ML as a branch of AI.

ML has captured the interest of the medical and healthcare commu-
nity, and particularly in the last 2–3 years, we have seen an explosion of
publications using ML in medicine. This has also been the case in cardio-
vascular research, where we know ML and AI are having an impact in AF
research; however, it is less known what the magnitude of such impact is.
The main aim with this review is to produce a clear picture of how ML is
changing the research in AF, which, ultimately, could help in gaining a bet-
ter understanding of it.

Graphical Abstract
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..2. Data used in this study

To conduct this study, we retrieved 465 publications from the PubMed
online database that contained the terms ‘atrial fibrillation’ and either
‘machine learning’, ‘artificial intelligence’, ‘deep learning’, or combinations
of them. Manuscripts were restricted to English language. Many publica-
tions were excluded as they were not directly addressing the problem of
using machine learning for atrial fibrillation research. A final set of 147
publications were included in this review.

3. Number of publications using ML
for AF is exponentially growing

The use of ML in AF has attracted great attention in recent years, as evi-
dent by the ever-growing number of related scientific publications
(Figure 1). We have identified the following non-mutually exclusive cate-
gories: AF detection, risk prediction, portable and wearable devices,
management, and others. ML has been predominantly applied in AF de-
tection, but other aspects, such as the development of ML risk prediction
models and the use of wearable technology, have been of increasing in-
terest. It is also worth highlighting the seemingly fresh interest in applying
ML for AF management.

4. Machine learning for AF analysis

Several ML algorithms are used for the analysis of AF. As it is seen in
Figure 2A, artificial neural networks8 (ANN) have clearly become the
preferred ML choice for the AF research community, particularly in the
last 3 years. Within the ANN category, deep neural networks
(DeepNNs) significantly outnumbered shallow neural networks
(ShallowNNs), the more traditional ANNs, as can be seen in Figure 2B.
More specialized DeepNNs, such as convolutional neural networks8

(CNNs) and recurrent neural networks9 (RNNs), are particularly

popular choices. CNNs and RNNs have the key functionality of working
as automatic feature extractors (i.e. that they are not pre-designed by
humans), which allows them for a direct processing of data modalities
commonly used for AF analysis such as electrocardiograms (ECG), echo-
cardiograms, and cardiac magnetic resonance images (MRI).

In recent years, DeepNNs have proved to be successful in solving
medical tasks at similar or higher accuracy than expert humans.
However, DeepNNs have a few caveats: they typically require large
amount of data to guarantee the appropriate optimization of their model
parameters, and high-performance computer to reduce computing time.
Furthermore, DeepNNs tend to work as ‘black boxes’, which makes dif-
ficult to explain the rationale behind their model decision making. This
poses a major limitation if, instead of a predictive modelling, an explana-
tory analysis is required. It is worth mentioning that attempting to ‘open’
the box of DeepNN models is an active area of research.10,11

Other ML families use a different approach. For instance, the tree-
based methods and ensemble learning family uses the combination of
‘weak’ ML algorithms, typically decision trees, as their ‘processor
units’.12,13 Examples of them are random forest and gradient boosted
machines. They have consistently shown to be excellent choices as they
typically exhibit high model performance while being relatively simple to
train. Tree-based ensemble learning methods can also provide some
level of interpretation of the results, as opposed to ANNs. As opposite
to CNN and RNN algorithms, they can only process data in tabular
form. Therefore, their use for AF analysis via medical images and wave-
forms require the implementation of a processing stage to extract hand-
crafted features before the ML modelling.

There are also algorithms, such as discriminant analysis, logistic regres-
sion, and other linear models, that could also be considered ML algo-
rithms despite being traditionally used in statistics. In AF analysis, they
are commonly used for risk prediction modelling as they offer high level
of interpretability in the form of odds ratios or similar.

Attempting to delineate hard boundaries between ML families is not
entirely correct since it is frequent to find algorithms that overlap across
several families or share mathematical basis. There are several

Figure 1 Growth in the number of ML in AF publications overall and by categories since 2012.

1702 I. Olier et al.



..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.
comprehensive reviews on ML algorithms, but we consider Deo14 one
of the most complete as it contains most of the elements needed for an
overview of ML in medicine.

Figure 3 summarizes several ways ML is used for AF analysis. As it is
seen in the figure, the format of the data could be a single modality such
as electronic health records (EHRs), ECGs, or medical images (e.g. car-
diac MRI), or multi-modal, when using combinations of them. The data
format influences the selection of the ML algorithm as some of them,
such as CNN and RNN, can process multi-modal data by design, while
others require to perform some transformation to the data first. The
aim of the analysis could also influence the ML algorithm choice as
detecting AF is commonly defined as a prediction problem while risk
analysis may involve explanatory analysis too.

5. Publicly available databases for
AF research

In recent years, several databases that allow for research in AF have
been made publicly available (Figure 4). This is likely one of the key
aspects that has driven the recent interest for AF in the ML community.
The modelling of AF-related data is challenging since it typically involves
not only the handling of noisy multivariate time series and also the fusion
of different data formats and sources.

A large number of recent publications related to ML applications in AF
use at least one of these databases. They are hosted by PhysioNet15 (physio-
net.org), a large data repository for biomedical research. The MIT-BIH Atrial

Figure 2 Trends of the ML algorithm families used in AF research. (A) All ML algorithms, with shallow and deep NNs grouped together as Artificial Neural
Networks. (B) Separation of shallow and deep NNs.
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Fibrillation Database,16 which includes 25 long-term ECG recordings of hu-
man subjects with AF (mostly paroxysmal); the MIT-BIH Arrhythmia
Database,17 which contains 48 half-hour ambulatory ECG recordings,
obtained from 47 subjects; the MIT-BIH Noise Stress Test database,18 which
includes 12 half-hour ECG recordings and 3 half-hour recordings of noise
typical in ambulatory ECG recordings; and the PAF Prediction Challenge
Database,19 which was used for the Computing in Cardiology Challenge of

2001, an open competition with the goal of developing automated methods
for predicting paroxysmal AF.

Another large boost comes from the Computing in Cardiology
(CinC) Challenge 2017,20 also organized by PhysioNet. The challenge
was created to directly address the problem of identifying AF from short
single-lead ECG recordings. The task was to develop a classifier to dis-
criminate between AF, other arrhythmias, normal sinus, and noise.
PhysioNet released a database with a training set with 8528 single lead
ECG recordings lasting from 9 to just over 60 s and a test set with 3658
ECG recordings of similar lengths.

Other databases, such as MIMIC-III21,22 and UK BioBank,23 have also been
used for AF research, although their scope is wider. MIMIC-III stands for
Medical Information Mart for Intensive Care III and is a publicly available data-
base that comprises the clinical records of more than 50 000 ICU admissions
to the Beth Israel Deaconess Medical Center (MA, USA) between 2001 and
2012. In parallel, there is also available the MIMIC-III Waveform Database,
which contains more than 67 000 waveforms of�30 000 patients, most of
them also in the MIMIC-III. The UK BioBank is a very large, detailed, and pro-
spective database that contains genetic and detailed health data of more
than half a million UK participants.

These publicly available databases have played a pivotal role in key
areas of AF research, such as AF detection (Figure 4), where these data-
bases have been used in numerous studies not only on their own and
also to support the development of models that also use (or are vali-
dated on) other proprietary data. Figure 5A includes further details on
the number of times these databases were used, showing that the two
most popular databased have been the PhysioNet/CinC Challenge 2017
and the MIT-BIH Atrial Fibrillation databases.

Figure 5B shows further details on how these databases supported a
variety of studies for the detection of AF using different methodological
approaches, such as the use of methods that rely on transformations of
the ECG, the use of methods that require little or no transformation of
the ECG, methods for the detection of new-onset AF (NOAF), and
other approaches for AF detection using ML. The following section will
look at this in further detail.

Figure 3 Possible ML analysis for AF. The data, as input of the
analysis, could be in the form of a single or multiple modalities of
electronic health records (EHRs), electrocardiograms (ECGs), and/
or other waveforms, and medical images, such as cardiac MRI and
echocardiograms.

Figure 4 The role of publicly available databases for AF research compared to other (mainly proprietary) databases, in five AF research areas/topics:
detection, risk prediction, wearables, management, and other areas.

1704 I. Olier et al.
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6. ML for detecting AF

ML models have become very accurate in detecting AF, most of them exhib-
iting accuracies higher than 90%. Some models are designed to detect AF
only, but there are others that also identify other arrhythmias. Data typically
involve the use of ECGs, either a single or 12 leads, but there are also some
methods that use other modalities, such as ballistocardiogram (BCG),

photoplethysmogram (PPG), tabular data extracted from EHR, or combina-
tions of them. Another critical question is whether transforming the data is
necessary or useful before applying ML, or whether it is possible to use (al-
most) raw data as inputs. This decision could heavily contribute to the deci-
sion of what ML algorithm should be used. For instance, tree-based
methods can handle missing values by design, CNN algorithms can directly
learn from time series and/or images, etc.

Figure 5 Main publicly available databases used for AF research. (A) Uses of these databases by AF research areas/topics. (B) Use of these databases
for AF detection for studies that use: (i) methods that rely on transformations of the ECG, (ii) methods that require little or no transformation of the
ECG, (iii) methods for the detection of new onset AF, and (iv) other approaches for AF detection using ML.

Machine learning and atrial fibrillation 1705
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6.1 Methods using data transformation of
the ECG
Yang et al.24 were one of the first articles that used ANNs for the detec-
tion of AF in ECG signals back in 1994, specifically to separate sinus
rhythm with supraventricular extrasystoles and/or ventricular extrasys-
toles from AF. A further model combining ANNs and deterministic logic
was also implemented achieving AUC on the test sets above 0.9. Also in
1994, Cubanski et al.25 aimed at distinguishing AF from other supraven-
tricular arrhythmias in ambulatory (Holter) ECG. More recently in 2008,
Asl et al.26 proposed an algorithm based on the generalized discriminant
analysis to classify the ECG recordings into six distinct categories: normal
sinus rhythm, premature ventricular contraction, AF, sick sinus syn-
drome, ventricular fibrillation, and 2 degrees heart block. Fast forward a
few years, we have seen the upsurge of publications in this area, as dis-
cussed earlier (Figure 1).

Various authors have extracted non-linear high order spectrum fea-
tures, reporting model performances in the order of 97–98% accuracy,
which could give us an indication of the expected baseline performance
nowadays. More recent methodological approaches have seen the use
of incremental learning models based on transfer learning in ANNs,27 or
even the transformation of ECG waveforms into images, using only 5
beats to detect AF.28

Several transformations of the ECG have become widely used and es-
sential steps in the success of AF detection as well as other arrhythmias.
Table 1 summarizes many of them along with the ML algorithms that
take in the resulting features from such transformations, an extract of
the data used, and the best performance reported in the different stud-
ies. As it can be observed in the table, many of them are derived from
morphological characteristics of the ECG, such as RR interval—the time
between QRS complexes, heart rate variability (HRV)—the variation in
time between beats, and P-wave shape. They are also known as time-do-
main transformations. Another group of transformations work on the
frequency domain, which requires the use of the Fourier transform (FT).
They are useful to discriminate high vs. low frequency segments of the
ECG. Transformations based on the wavelet transform62 (WT) apply a
set of wavelets to decompose the ECG in time-frequency measure-
ments. Wavelets are sensitive to very localized time and frequency
bands. Other transformations may be used to extract statistical features
such as mean and standard deviation, whilst others could be based on in-
formation theory such as entropy and distortion.

A large proportion of studies used the PhysioNet/CinC 2017
Challenge34–36,42–46,48,49 and the MIT-BIH Atrial Fibrillation
Database,27,31–33,37–41,63 making them the two data sources most used
to detect AF. Waveforms from the MIMIC-III database were used by
Bashar et al.50 to train an ML model to detect AF, while using a wearable
armband ECG dataset and the PhysioNet MIT-BIH Atrial Fibrillation
Database for test. The UK Biobank dataset was used by Oster et al.,51

while Jalali et al.52 used the Keimyung University Dongsan Medical
Center dataset and the public datasets PAF Prediction Challenge
Database, MIT-BIH Atrial Fibrillation Database, and PhysioNet/CinC
Challenge 2017. These are a few examples where publicly available data-
sets have been used to support the development of models to detect AF
that have been later tested and/or validated on in-house datasets. Other
studies54–56 used less known, more specific and/or restricted access
databases.

There are several publications where new ML algorithms or variants
of existing ones were proposed. For instance, Abdul-Kadir et al.57 used a
second-order dynamic system to extract features form ECG recordings;

Ghosh et al.58 extracted features from single-lead ECG recordings using
a multi-rate cosine filter bank architecture for the evaluation of coeffi-
cients from the ECG signal at different sub-bands; a DeepNN algorithm
known as Hierarchical Extreme Learning Machine used the extracted
features to detect AF; and Kisohara et al.59 assessed the performance of
heartbeat interval Lorenz plot (LP) imaging for AF detection, using the
resulting images as inputs of the ML algorithms.

6.2 Methods requiring little or no
transformation of the ECG
Table 2 shows a summary of the studies that implemented ML models to
detect AF requiring little or no transformation of the ECG recordings.
As mentioned above, this kind of models works directly with the ECG as
input and use either CNN or RNN to automatically extract data features
as part of the pipeline of detecting AF.

The MIT-BIH Atrial Fibrillation Database was used by Faust et al.64

which implemented a two-stage DeepNN model, first, training to detect
RR intervals, and second, an LSTM model that used the ECG segments.
The PhysioNet/CinC Challenge database was used several studies.66–

71,74,75 Other databases were also used for AF detection with little or no
transformation of the ECG, e.g. Ribeiro et al.72,73 used a very large data-
base named Clinical Outcomes in Digital Electrocardiology. Tran et al.74

implemented a multiplicative fusion of two DeepNN models, one of the
single models using hand-crafted features while the other one, the raw
ECG recordings, with authors claiming that the fusion model outper-
formed the single models when analysed individually; and Plesinger et
al.75 which implemented two ML algorithms to be used in parallel, one of
them a CNN model that processed the raw ECG, the second one an en-
semble learning algorithm that received several hand-crafted features,
both algorithms attempted to predict the classes, and the final decision
was made based on prediction certainty.

Novel ML architectures have also been proposed. For instance, Fan et
al.83 proposed a multi-scaled fusion of CNNs that employs two streams
of CNNs to capture features of different scales, where the learned fea-
tures were visualized and compared against linear methods; Lee et al.77

implemented and evaluated up to 30 different CNN architectures;
Mousavi et al.78 implemented a two-channel CNN model: the first one
aimed to identify where to look for the detection of AF in the ECG,
while the second one to perform the actual AF detection; Mousavi et
al.80 developed an interpretable RNN for AF detection, and claimed that
the model was able to explain the reasons behind their decisions whilst
still retaining performance.

An interesting test was performed by Attlia et al.82 which consisted in
assessing the feasibility of accurately detecting AF using a single 10-s, 12-
lead ECG was acquired during normal sinus rhythm. AF signature was
found using a CNN model that exhibited performance levels that could
allow for its use in clinical settings. Their model achieved even higher
performance if repeated ECGs were used over a month time window.

6.3 NOAF detection
A smaller proportion of the studies concentrated on NOAF. Boon et
al.84 investigated the effect of 15- and 30-min segments of HRV prior to
NOAF, using for this extracted statistical features on an SVM model.
Chesnokov et al.85 attempted a more distant prediction by analysing
changes in the HRV dynamics and showed satisfactory result predicting
paroxysmal AF up to 60 min before the event. Their ANN and SVM
models were trained on extracted features using spectral and complex-
ity analysis. Tse et al.86 developed a decision tree model for NOAF in

1706 I. Olier et al.
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Table 1 Summary of publications that make use of transformations of the ECG to extract relevant features, which are
then used by ML algorithms to learn how to detect AF

Study Transformationa ML algorithmb Data Best performancec

Cubanski et al.25 Several morphological charac-

teristics of the non-QRS

portions of the waveforms.

ANN 47 744 ECG segments (includ-

ing 32 076 AF segments and

15 668 with other supra-

ventricular arrhythmia

segments).

Se: 82.40

Sp: 96.60

Asl et al.26 Generalized discriminant

analysis.

SVM 1367 ECG segments each with

32 RR intervals containing

six different arrhythmia

classes.

Se: 95.77

Sp: 99.40

Acc: 99.16

Mohebbi et al.28 Linear discriminant analysis on

ECG.

SVM Episodes: 1157 (835 normal

episodes, 322 AF episodes).

Train/test episodes for nor-

mal and AF classes were

555/280 and 214/108,

respectively.

Se: 99.07

Sp: 100

Prasad et al.29 High-order spectra and inde-

pendent component

analysis.

KNN, ANN, DeepNN 23 ECG records, 605 epi-

sodes. A total of 641 nor-

mal, 887 atrial fibrillation,

and 855 atrial flutter ECG

beats were used.

Se: 98.16

Sp: 98.75

Acc: 97.65

Xia et al.30 Short-term Fourier transform

and WT.

CNN 23 ECG records, 605 epi-

sodes. Only 1 ECG lead

used for AF detection.

Se: 98.79

Sp: 97.87

Acc: 98.63

Xu et al.31 Combined modified frequency

slice WT.

CNN 23 ECG records. 294 136 AF

images þ 294 136 normal

images randomly selected,

resulting in 588 272 images

for training.

Acc: 84.85

Se: 79.05

Sp: 89.99

AUC: 0.92

Kong et al.32 Statistical features from RR

intervals.

RBF, RVM 1960 patients, 10 s per lead,

from which 1056 are AF

patients and 904 healthy

subjects.

Acc: 98.16

Lai et al.33 RR interval and F-wave fre-

quency-domain features.

CNN 23 ECG records, segmented

into 83 461 10-s ECG seg-

ments, from which 49 952

were normal and the rest

were AF segments.

Se: 97.40

Sp: 97.20

Acc: 97.30

Gliner et al.34 Time-domain, frequency-do-

main, and statistical

features.

SVM, ANN 12 186 ECG records: 60.43%

normal, 0.54% noisy, 9.04%

AF, and 30% other rhythm

disturbances.

F1: 0.80

Sadr et al.35 Time-domain, frequency-do-

main, and statistical

features.

ANN 12 186 ECG records: 8528 for

training and 3658 for test.

F1: 0.78

Shi et al.27 The waveform and some sta-

tistics of the RR interval

(mean, standard deviation,

entropy).

ANN 48 ECG records (2 leads) with

30 min duration, and 25

long-term (c. 10 h) ECG

recordings from AF

patients, also 2 leads.

Acc: 97.53

Se: 100

Liu et al.36 P-wave absence detection, sta-

tistical, information theory,

and frequency domain

features.

SVM 12 186 ECG records: 8528 for

training and 3658 for test.

F1: 80

Continued

Machine learning and atrial fibrillation 1707
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Table 1 Continued

Study Transformationa ML algorithmb Data Best performancec

Andersen et al.37 Time-domain features. SVM, DeepNN 12 186 ECG records: 8528 for

training and 3658 for test.

Se: 96.81

Sp: 96.20

AUC: 0.99

Asgari et al.38 Stationary WT. SVM 12 186 ECG records: 8528 for

training and 3658 for test.

Se: 97

Sp: 97.1

Acc: 97.1

AUC: 99.95

Xin et al.39 Wavelet multi-scale entropy

features of HRV.

SVM 23 ECG records, 605

episodes.

Se: 94.88

Sp: 89.48

Acc: 92.18

He et al.40 ECG waveforms transformed

into images using WT

CNN 23 ECG records, 605

episodes.

Se: 99.41

Sp: 98.91

Acc: 99.23

Lown et al.41 De-correlated Lorenz plots of

60 consecutive RR intervals,

followed by WT to com-

press the resulting images.

SVM ECG records: 250 h from 25

subjects and 24 h of data

from 47 subjects. Validation

data: 415 subjects, 79 with

AF, and 336 without.

Se: 100

Sp: 97.6

Hernandez et al.42 WT, time-domain, and fre-

quency-domain features.

FCNN 12 186 ECG records: 8528 for

training and 3658 for test.

Se: 95.70

Sp: 72.39

F1: 64

Wu et al.43 WT-based features CNN For all the 17 850 ECG seg-

ments, 60% for training, rest

for test.

Acc: 97.56

Se: 97.56

Sp: 99.19

AUC: 99.83

Herraiz et al.44 Transformed ECGs into

scalograms

CNN Samples from available data

sources: 1000þ 500 ECG

records. From a proprietary

database: 1000 ECG

records.

Se: 94.42

Sp: 90.61

Acc: 92.51

Hong et al.45 Hand-crafted features based

on medical domain knowl-

edge, and CNN-based

features.

Gradient boosting decision trees 12 186 ECG records: 8528 for

training and 3658 for test.

F1: 82.5

Smisek et al.46 Time-domain features. SVM 12 186 ECG records: 8528 for

training and 3658 for test.

F1: 81

Sodmann et al.47 CNN-based features. GBM 12 186 ECG records: 8528 for

training and 3658 for test.

12 million characteristic

waveforms were used as in-

put volume. The assigned

annotation codes of each

segment’s midpoint peak

were used as output

volume.

F1: 82

Rubin et al.48 Noise reduction filter fol-

lowed by WT.

CNN 12 186 ECG records: 8528 for

training and 3658 for test.

Additional 30-s ECG seg-

ments (6312 records) with

AF were collected from

various sources to augment

the training and validation

sets.

F1: 82

Continued
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Table 1 Continued

Study Transformationa ML algorithmb Data Best performancec

Khamis et al.49 Artefact masking filters and

QRS detection algorithms

followed by RR intervals,

PQRST morphologic, and

artefact/noise ratio features.

FCNN, ensemble learning 12 186 ECG records: 8528 for

training and 3658 for test.

F1: 80

Bashar et al.50 HRV-derived density Poincaré

plots followed by image

processing.

KNN, SVM, and RF ECG recordings obtained

from 20 subjects, resulting

in a total of 500 AF and 340

PAC/PVC segments. Seven

additional subjects (2 with

persistent AF, 5 had PAC/

PVC rhythms).

Se: 98.99

Sp: 95.18

Acc: 97.45

Oster et al.51 HRV-derived density Poincaré

plots and morphologic

features.

SVM, DeepNN 450 subjects from the UK

BioBank dataset. Expert

annotations in this study

classified 52 subjects with

AF out of 450.

F1: 84.8

Se: 75

Jalali et al.52 2D-ECG spectrogram features

generated from short-term

Fourier transforms.

CNN ECG records from various

publicly available data sour-

ces: 25 AF and 25 normal

rhythms, each containing

one 30-min ECG segment;

23 annotated ECG records

from a Holter monitor of

AF patients; and 8528 short

ECG recordings.

Se: 99.9

Sp: 99.7

Acc: 99.8

Ebrahimzadeh et al.53 Time-domain, frequency-do-

main, and non-linear analy-

sis of HRV.

Mixture of experts 106 signals from 53 pairs of

30-min ECG recordings,

one ECG segment before

PAF onset and another one

at least 45 min distant from

the onset.

Se: 100

Sp: 95.55

Acc: 98.21

Marinucci et al.54 Several morphological, F-

waves, and HRV features.

FCNN 8028 ECG records (training:

4493; validation: 1125; test-

ing: 2410) classified into AF

and non-AF cases.

Se: 81.2

Sp: 81.2

AUC: 90.38

Boon et al.55 Time-domain, frequency-do-

main, and non-linear analy-

sis of HRV.

SVM 106 signals from 53 pairs of

30-min ECG recordings,

one ECG segment before

PAF onset and another one

at least 45 min distant from

the onset.

Se: 86.8

Sp: 88.7

Acc: 87.7

Baalman et al.56 Morphological features. DeepNN 1469 ECG records from par-

ticipants in the AF Ablation

and Autonomic Modulation

via Thoracoscopic Surgery

(AFACT) trial.

Acc: 96

AUC: 97

F1: 94

Abdul-Kadir et al.57 Second order dynamic sys-

tem-based features.

ANN, SVM 41 ECG records from two

publicly available data

sources.

Acc: 95.3

Ghosh et al.58 Multi-rate cosine filters. DeepNN c. 71 ECG records from vari-

ous publicly available data

sources. Different data

combinations trialled.

Acc: 94.40

Se: 98.77

Sp: 100

Continued
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mitral stenosis based on features extracted from the ECG, plus several
clinical and demographic factors (e.g. age and systolic blood pressure),
while Bashar et al.87 proposed an ML algorithm for NOAF detection dur-
ing sepsis using data extracted from the MIMIC-III database.

6.4 Other approaches for AF detection
using ML
There have been other approaches used for AF detection that are less
related to the previous categories mentioned. Zalabarria et al.88 pro-
posed an AF diagnosis algorithm based on ANNs that uses parameters
extracted from short-length heart period measures obtained by arterial
pulse wave foot point detection, while Yan et al.89 used video and a pre-
trained CNNs to analyse facial PPG signals in AF detection. Two other
studies90,91 used electronic health records (EHR): in the case of Karnik et
al.,90 the authors implemented several ML algorithms to predict AF and
atrial flutter but model performances were considerable low in compari-
son to ECG or other waveforms counterparts, as expected. However,
the authors argued that the study has its merits as it could identify AF
risk factors. In the case of Tiwari et al.,91 �200 common EHR features,
such as age, sex, past clinical history, and vitals, were used to predict AF
using an FCNN. The model was compared against a multiple logistic re-
gression model showing non-significant improvement in performance.

Other less common approaches also include the development of an
ML model to predict future AF among patients with no history of AF, by
Christopoulos et al.,92 with results independently corroborated using
Cox regression. Chua et al.93 used circulating blood-based biomarkers
along with clinical and demographic features to predict undetected AF.
Jo et al.94 proposed a DeepNN model based on variational autoen-
coders that predicts AF highly accurately and provides some model

interpretability. Da Poian et al.95 used compressive sensing approaches
to ECG, which is a signal processing technique that exploits signal spar-
sity to reconstruct it, and conclude that compressing the signals still pro-
duces comparable results to features extracted from QRS, but can make
the modelling process significantly faster.

7. Risk prediction modelling with
AI/ML methods

A variety of risk prediction models have been developed using AI/ML
methods. Some of them related to the risk of developing AF, as it is the
case of Censi et al.,96 which produced a model to quantify morphological
aspects of the P-wave to improve the identification of patients having dif-
ferent risks of developing AF. Another example is the study from Suzuki
et al.,97 where they developed a model that was able to identify non-val-
vular AF with high performance. Non-valvular AF is associated with an
increased risk of stroke; however, many patients are diagnosed after
onset.

Several studies concentrated on predicting the risk of AF recurrence.
In the study by Budzianowski et al.,98 the focus was on identifying the lab-
oratory and clinical parameters responsible for early recurrence of AF
following cryoballoon ablation. Bhalodia et al.99 also proposed a method
that deals with AF recurrence prediction, this time using statistical shape
modelling techniques on left atrium MRI scans.

Shade et al.100 developed a model to predict which patients are more
likely to experience AF recurrence after pulmonary vein isolation (PVI),
using pre-PVI late gadolinium-enhanced MRI scans, while Liu et al.101 pro-
posed a model using pre-ablation pulmonary vein computed tomogra-
phy to predict the trigger origins in patients with paroxysmal AF

..............................................................................................................................................................................................................................

Table 1 Continued

Study Transformationa ML algorithmb Data Best performancec

Kisohara et al.59 Heartbeat interval Lorentz

plots imaging of different

segment window lengths.

CNN LP images of non-overlapping

segments (10–500 beats

length) were created from

24-h ECG RR intervals in 52

patients with chronic AF

and 58 non-AF controls as

training data and in 53

patients with PAF and 52

non-AF controls as test

data.

Acc: 97.9

AUC: 98.7

Iqbal et al.60 Time-domain and frequency-

domain features

DeepNN More than 36 ECG records,

including 10 subjects of flat-

tened T waves, 20 of nor-

mal sinus rhythm, and 6 AF

subjects.

Acc: 99.99

Buscema et al.61 RR intervals and time window

composition-based features.

SCM 73 ECG records, 33 of them

with AF annotations, and

other 31 with a different

pathological annotation.

F1: 95.16

Se: 96.34

Sp: 92.80

Acc: 94.99

aTransformation: WT, wavelet transform.
bML algorithms: ANN, artificial neural networks; SVM, support vector machines; KNN, k-nearest neighbor; DT, decision trees; CNN, convolutional neural networks; RBF, radial ba-
sis functions; RVM, relevance vector machine; DeepNN, deep neural networks; FCNN, fully connected neural networks; GBM, gradient boosted machines; RF, random forest.
cPerformance metrics: Se, sensitivity; Sp, specificity; Acc, accuracy; F1, F1-score; AUC, area under the operator receiver curve (ROC).
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Table 2 Summary of publications that use ML algorithms to detect AF requiring little or no transformation of the ECG

Study ML algorithm Data Best performance

Faust et al.64 DeepNN, LSTM 23 ECG records from different sub-

jects, 10 h each, containing two

ECG signals with AF annotations.

Acc: 99.77

Se: 99.87

Sp: 99.61

AUC: 100

Erdenebayar et al.65 CNN 19 804 short-term ECG segments

were extracted from 139 subjects:

11 882 AF segments and 7922 nor-

mal segments.

Acc: 98.7

Se: 98.7

Sp: 98.6

AUC: 100

Kamaleswaran et al.66 CNN 12 186 ECG records: 8528 for training

and 3658 for test.

F1: 0.83

Hsieh et al.67 CNN 10 151 ECG samples: 903 AF, 5959

normal, 299 noisy, and 2990 other.

F1: 78.2

Acc: 80.8

Ping et al.68 CNN, LSTM 12 186 ECG records: 8528 for training

and 3658 for test

F1: 89.55

Se: 87.42

Sp: 91.37

Acc: 85.06

Warrick et al.69 CNN, LSTM 12 186 ECG records: 8528 for training

and 3658 for test

F1: 82

Xiong et al.70 CNN, RNN 12186 ECG records: 8528 for training

and 3658 for test

F1: 82

Parvaneh et al.71 CNN 12 186 ECG records: 8528 for training

and 3658 for test. An additional

6312 ECG segments with AF from

various sources were used when

training. A total of 18 498 records

were used collectively with 3658

used for validation.

F1: 82

Ribeiro et al.72 CNN 12 lead ECG records from 1 558 415

patients.

F1: 80

Sp: 99

Ribeiro et al.73 CNN 12 lead ECG records from 1 676 384

patients.

F1: 80

Sp: 99

Tran et al.74 DeepNN 12 186 ECG records: 8528 for training

and 3658 for test

F1: 80

AUC: 85

Plesinger et al.75 CNN, Ensemble learning 12 186 ECG records: 345 removed

due to disagreement with expert la-

belling, 8183 used for training and

3658 for test.

F1: 83

Cai et al.76 FCNN 16 557 samples of 12-lead ECG

recordings from 11 994 subjects:

3353 AF, 5650 normal, and 7554

other abnormalities.

Acc: 99.35

Se: 99.19

Sp: 99.44

Fan et at. 77 CNN 12 186 ECG records: 8528 for training

and 3658 for test

Acc: 98.13

Se: 93.77

Sp: 98.77

Lee et al.77 CNN 20 000 unique participants: 10 000

normal sinus rhythm and 10 000 AF.

Acc: 99.90

Mousavi et al.78 162 536 5-s segments were extracted

from 25 long-term ECG records:

61 924 AF segments, and 100 612

non-AF segments.

Se: 99.53

Sp: 99.26

Acc: 99.40

Lai et al.79 CNN Long-duration ECGs recorded from

patch-based leads. More than 510k

10-s ECG segments were extracted.

Acc: 93.1

Se: 93.1

Sp: 93.4

Continued
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..receiving catheter ablation, aiming at identifying patients with a high risk
of non-pulmonary vein trigger before ablation, to reduce the recurrence
of post-ablation AF.

Tse et al.102 aimed at improving the risk stratification for adverse out-
comes in heart failure, such as incident AF, transient ischaemic attack
(TIA)/stroke, and all-cause mortality, while Wu et al.103 focused on a
more specific risk stratification model of young patients with hyperten-
sion. Hospital readmissions data for AF patients undergoing catheter ab-
lation was investigated by Hung et al., to estimate the risk factors behind
90-104 and 30-day105 hospital readmissions.

The risk of mortality associated with the presence of AF was evalu-
ated in Ribeiro et al.,72 showing that AF was a strong predictor of cardio-
vascular mortality and mortality for all causes, with increased risk in
women. Additional cardiovascular outcomes were evaluated in Ambale-
Venkatesh et al.,106 including all-cause mortality, stroke, coronary heart
disease, and all atherosclerotic cardiovascular disease combined out-
comes, incident heart failure, and AF.

Several articles considered the way AF increases the risk of ischaemic
stroke and other thromboembolisms. Some examples are Han et al.107

studied how AF severity or burden can further risk stratify stroke
patients, particularly for near-term events, while Li et al.108 worked on
improving prediction models that would help identify risk factors for
thromboembolism. In a more recent study, Li et al.109 proposed a model
to be used especially when typical risk factors are unknown to improve
stroke screening efficiency, while Kamel et al.110 studied the associations
between cardioembolic stroke and AF. A study from Akça et al.111 aimed
at identifying sex-specific risk factors, investigating the risk factors of
post-coronary artery bypass grafting AF in patients without history of
AF, while Bundy et al.112 developed models with the aim of improving
the prediction of 5-year AF risk.

Goto et al.113 developed a model for predicting clinical outcomes,
such as major bleeding, stroke/systemic embolism, and death, in newly
diagnosed AF patients who were treated with vitamin K antagonists, us-
ing serial prothrombin time international normalized ratio values col-
lected within 1 month after starting treatment. In a different article,
Feeny et al.114 researched whether ML models could predict echocar-
diographic cardiac resynchronization therapy beyond current guidelines,
and found that it was possible, although there is still room for improve-
ment in this area.

Xiong et al.115 performed meta-analysis to investigate the association
between DM and NOAF, obtaining that patients with DM had 49%
greater risk of developing AF compared with individuals without DM.
After adjusting for three additional risk factors, i.e. hypertension, obesity,
and heart disease, the relative risk reported was 23%.

8. AI/ML in AF management

In some cases, AI/ML models have been used for predicting or under-
standing factors related to the management of AF patients, e.g. drug dos-
ing, success of certain procedure or treatment, etc. Some examples have
been chosen below, although many of the risk prediction studies men-
tioned above would also inform AF patients’ management.

The initiation of the antiarrhythmic medication dofetilide requires
3 days of telemetry monitoring due to heightened risk of toxicity within
this period, and there is a range of approaches to dosing the medication.
Levy et al.116 proposed the use of reinforcement learning for evaluating
dose adjustment decisions, attaining an accuracy of 96%, and found that
making dose adjustments, particularly at later time points, was associated
with less probability of successful initiation of the medication. The
authors argued that this finding could reduce healthcare costs, as it
would, for example, save time and money to stop the initiation process
early in a patient in whom the probability of successful initiation is
unlikely.

The study from Vinter et al.117 attempted to improve the understand-
ing of which patients would benefit from electrical cardioversion, which
is frequently performed to restore sinus rhythm in patients with persis-
tent AF. However, AF recurs in many patients and identifying those who
benefit from electrical cardioversion remains challenging in clinical prac-
tice. The study was conducted in women and men separately, using logis-
tic regression and random forest to develop sex-specific prediction
models for successful cardioversion. The results presented showed
modest predictive performance for successful electrical cardioversion,
with best reported results being 60% accuracy for women and 59% for
men.

Another study proposed by Alhusseini et al.118 focused on improving
the mapping of intracardiac activation in AF using CNN, with 95% accu-
racy on a separate test set. They also used explainability analyses

..............................................................................................................................................................................................................................

Table 2 Continued

Study ML algorithm Data Best performance

Mousavi et al.80 RNN 162 536 5-s segments extracted from

25 long-term ECG records. 12 186

additional ECGs were used from

publicly available datasets.

Se: 99.08

Sp: 98.54

Acc: 98.81

AUC: 99.86

Zhang et al.81 CNN 277 807 12-lead static ECG records

lasting 10–60 s.

Acc: 98.27

Se: 99.95

Attlia et al.82 CNN A single 10-s, 12-lead ECG was ac-

quired during normal sinus rhythm

from 180 922 patients.

AUC: 90

Se: 82.3

Sp: 83.4

Please refer to Table 1 for other acronyms.
LSTM, long short-term memory.
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(applying gradient-weighted class activation mapping) to show that
results agree with experts, which may provide immediate clinical utility
to guide ablation. The study from Ghrissi et al.119 resulted in a model to
automatically identify ablation sites based on their spatiotemporal dis-
persion, which is the delay of the cardiac activation observed in intracar-
diac electrograms across contiguous leads. The performance of the best
model exhibited a 90% accuracy, which was obtained when using a
CNN inspired architecture on augmented data. The aim was to use this
model to aid patient-tailored catheter ablation procedures for treating
persistent AF.

9. Portable and wearable devices

PPG monitoring has been implemented in many portable and wearable
devices. Its simplicity and cost-effectiveness have facilitated its daily use
for health and fitness tracking, enabling continuous monitoring of cardiac
rhythm.120 Numerous studies41,44,46,54,121–126 have successfully used
PPG for AF detection, several of them using DeepNN models.

Some artefacts in PPG signals can lead to missed episodes, which can
be a limitation in some scenarios such as the detection of paroxysmal
AF. Different studies44,120,125,127 have centred the efforts on dealing with
this issue, proposing approaches to assess the quality of the signals in the
presence of AF. For example, Torres-Soto et al.125 used an unsupervised
transfer learning CNN autoencoder to filter noise out from the PPG sig-
nals. Other studies evaluate the quality of the signals in wearable devices,
such as Sadrawi et al.,128 where quality is evaluated against the ANSI/
AAMI EC57:2012 standard.

Wasserlauf et al.129 showed that an AF-sensing watch was highly sensi-
tive for detection of AF and assessment of AF duration in an ambulatory
population, when compared with simultaneous recordings from an
insertable cardiac monitor. Also using a standard smartphone, this one
equipped with Google Android OS, Lahdenoja et al.130 intended to de-
tect AF via the use of the accelerometer and gyroscope.

Other studies131,132 have proposed the use of ML on BCG recording
during sleep, reporting accuracies above 90% and arguing that BCG
could be used to detect AF in home-monitoring applications. A contrast-
ing study by Kido et al.133 focused on making the use of capacitive ECG a
viable option for heart monitoring (measuring the cardiac electrical signal
via capacitive coupling between electrodes and skin). The results
obtained using CNNs were encouraging, although it was reported that
the instability in the quality of the signal hinders its further use.

Remote-monitoring data from patients with cardiac implantable elec-
tronic devices have also been used. Han et al.107 used it to predict risk of
stroke, while Lai et al.79 showed how a patch-based ECG lead, together
with DeepNN-based algorithms, could provide an accurate and inex-
pensive tool for AF mass screening. Publicly available databases of ambu-
latory ECG have also been widely used,33,41,54,60,128 playing a substantial
role in the methodological advances in this area.

10. Other perspectives

This section comprises a selection of other AF studies, not specifically re-
lated to AF detection, risk prediction models or AF management. They
would cover subjects such as localization of AF drivers, segmentation of
the left atrium, and impact of pollution on cardiovascular systems.

McGillivray et al.134 proposed a method to locate re-entrant drivers
using a collection of indirect electrogram measurements. The method

successfully located drivers in tissues containing a single driver of AF, as
well as in tissues containing two drivers, although in its current form, the
presented techniques are not refined enough to be used in clinical
settings.

A more recent study on AF drivers by Zolotarev et al.135 uses ML to
model electrogram frequency spectra, aiming to accurately automate
driver detection by multielectrode mapping and add some objectivity to
the interpretation of multielectrode-mapping findings, since AF driver
detection by clinical surface-only multielectrode mapping has relied on
subjective interpretation of activation maps. The developed model was
competitive, but further work will be needed to increase performance.

Zahid et al.136 produced a model that shows that AF in fibrotic sub-
strates is perpetuated by re-entrant drivers persisting in fibrosis bound-
ary zones characterized by specific regional fibrosis metrics. The results
reported provide new insights into the mechanisms that sustain persis-
tent AF and could pave the way for personalized management of the
condition.

Some studies have centred on the segmentation of the left atrium. For
example, in 2018 Jin et al.137 presented an approach for the segmentation
and quantitative assisted diagnosis of AF using 4D computed tomogra-
phy data. The experimental results showed that this approach could
construct the 3D left atrial appendage geometries. Later in the year, the
authors published another study138 using a more robust methodological
approach for this segmentation.

In 2019, Xiong et al.139 proposed a model to automatically segment
late 3D gadolinium-enhanced MRI of the left atrial epicardium and endo-
cardium on AF patients, indicating to have outperformed other state-of-
the-art methods, having tested against the largest known dataset for left
atrial segmentation. Later in 2020, Du et al.140 also proposed an ap-
proach for segmentation and visualization of the left atrium using the
same kind of images. The authors reported to have outperformed other
state-of-the-art methods and suggested this method could improve the
clinical diagnosis and treatment of AF.

Recently, two studies141,142 paid attention to the influence of air pollu-
tion on cardiovascular systems. Yang et al.141 examined the impact of
fine particulate matter pollution on the cardiovascular system and found
that ambient exposure to them was linked with increased risk of arrhyth-
mias in outpatients visiting Shanghai community hospitals, with an imme-
diate or lag effect. Kim et al.142 also found results suggesting such
associations and used them to predict incident AF.

11. Discussion

This review has highlighted the exponential growth of publications using
AI/ML in AF research in the recent years. They are advancing our under-
standing of atrial fibrillation, broadly in relation to the following catego-
ries: AF detection, risk prediction, portable and wearable devices,
management, and others.

Precise comparisons between reported results are not feasible as fac-
tors, such as data sources, task specificities, and error metrics, would
greatly affect the performance scores. However, we observed that most
of the studies modelling the task of detecting AF with ML-reported
model performance that suggests that ML could fail to detect AF in be-
tween 1 in 10 and 1 in 100 of the cases, particularly if ECGs are used as
data format. This could suggest that a natural ceiling might have been
reached already in what is possible to achieve with this specific task and
data format. However, by no means this is an indication that research in
AF detection with ML is finalized, but a suggestion that perhaps the

Machine learning and atrial fibrillation 1713
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.
attention should move to other related questions, such as the early AF
detection as investigated by Attlia et al.82 We also found that other data
modalities are significantly less used, which could be associated with clini-
cal needs and costs. However, we consider there is clinical value in com-
bining modalities in the analysis of AF which could be helpful to improve
the performance of the models, and/or to discover new features or
biomarkers.

From the clinical perspective, AI/ML can help expand the utility of AF
detection and risk prediction especially for patients with additional
comorbidities. What are the appropriate measures to operationalize
this? The use of AI/ML for detection (especially with the growth of porta-
ble and wearable devices) and risk prediction into Apps and smart
mHealth technology would enable ‘real time’ dynamic assessments, in-
corporated into patient management pathways. As an illustrative exam-
ple, the AF patient pathway could perhaps apply risk reassessment(s) at
intervals, when not on antithrombotic therapy (e.g. when newly diag-
nosed), and while on aspirin (e.g. with background vascular disease) and
post-anticoagulation (whether on warfarin or direct oral anticoagulants).
AI/ML could adapt to these treatment changes over time, as well as inci-
dent risk factors. The latter can then be proactively management.

Some of the potential opportunities here are illustrated by the
mHealth technology to improve optimization of integrated care in
patients with Atrial Fibrillation App programme (mAFA) which investi-
gated mHealth technology for improved screening and integrated care in
patients with AF, facilitating early diagnosis, dynamic (re)assessments of
risk profiles, and holistic AF management.143 In the prospective cluster
randomized clinical trial, this integrated care approach significantly re-
duced the composite outcome of ‘ischaemic stroke/systemic thrombo-
embolism, death, and rehospitalization’ compared with usual care,144

with long-term adherence of >70% and high (>90%) persistence of
use.145 Such use of mHealth opportunities to improve holistic care (de-
tection, ‘real time’; risk assessment, management optimization, and pa-
tient empowerment) has the potential to improve outcomes, especially
if patients have good adherence and persistence with the approach (as
shown in the mAFA trial long term extension).145 Ongoing studies are
likely to address these issues in UK and EU countries.

In conclusion, incorporation of a dynamic AI/ML model into mHealth
technology would facilitate ‘real time’ assessment of stroke risk, facilitat-
ing mitigation of modifiable risk factors (e.g. blood pressure control).
Overall, we feel that this would lead to an improvement in clinical care
for patients with AF.
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