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C H E M I S T R Y

Accelerating computational discovery of  
porous solids through improved navigation of  
energy-structure-function maps
Edward O. Pyzer-Knapp1*, Linjiang Chen2, Graeme M. Day3, Andrew I. Cooper2

While energy-structure-function (ESF) maps are a powerful new tool for in silico materials design, the cost of 
acquiring an ESF map for many properties is too high for routine integration into high-throughput virtual screen-
ing workflows. Here, we propose the next evolution of the ESF map. This uses parallel Bayesian optimization to 
selectively acquire energy and property data, generating the same levels of insight at a fraction of the computa-
tional cost. We use this approach to obtain a two orders of magnitude speedup on an ESF study that focused 
on the discovery of molecular crystals for methane capture, saving more than 500,000 central processing unit 
hours from the original protocol. By accelerating the acquisition of insight from ESF maps, we pave the way for the 
use of these maps in automated ultrahigh-throughput screening pipelines by greatly reducing the opportunity 
risk associated with the choice of system to calculate.

INTRODUCTION
In principle, the combination of machine learning and virtual com-
putational screening is a powerful method for the discovery of new 
functional organic materials (1, 2). Computational techniques show 
great promise for the calculation of both the thermodynamic stabil-
ity and the associated functional properties of candidate materials, 
but it is difficult in practice to exploit these methods across a broad 
range of problems. A central challenge is the prohibitive computa-
tional expense of accurately calculating energies and properties for 
every candidate material that is to be screened, and machine learn-
ing may provide notable benefit here.

One of the most challenging cases is the a priori design of functional 
molecular organic crystals with desirable materials properties. Unlike 
their framework-based counterparts, such as zeolites and Metal Organic 
Frameworks (MOFs) (3–5), molecular crystals rarely obey simple geo-
metric principles that can be exploited for rational design. Even very small 
changes to molecular structure can have marked effects on crystal packing 
and, hence, the resultant solid-state properties. Molecular crystal packing 
is often dictated by weak, competing intermolecular interactions: 
Hence, the a priori design of materials with predetermined, desirable 
properties requires a more subtle approach than for materials where 
structure (and hence function) can be “built-in” through the use of 
intuitive bonding rules, such as adherence to known framework 
topologies or other geometric bonding principles.

Energy-structure-function maps
Energy-structure-function (ESF) maps are a combination of crystal 
structure prediction (CSP) with per-structure property calculation, 
which has been shown to be a powerful tool for the virtual screening 
of candidate organic molecules for desirable properties such as 
natural gas storage capacity (6) and charge carrier mobility (7). In 
an ESF map, candidate crystal structures are generated using CSP 

methodologies, which are then screened virtually for a desired 
property. The resulting pairing of lattice energy and function is then 
used as an indicative tool for the propensity of the molecule to 
express the desired properties. This information can be used to 
guide an experimental campaign, which has been used to validate 
this ESF map approach (6, 8). However, while this strategy can be 
effective, generation of the ESF map can be computationally inten-
sive. For example, for methane storage predictions (6), it took 
around 800,000 central processing unit (CPU) hours to compute an 
ESF map for only one of the molecules in the study (T2E), and this 
computational cost was distributed roughly equally between the 
CSP and property calculations. The cost of computing ESF maps 
grows as the property of interest becomes more computationally 
expensive and also when the ESF maps contain larger numbers of 
candidate structures; this is particularly problematic for porous 
materials, where the energy range that includes all observable crystal 
structures is extended by solvent templating. Multiple components 
(e.g., cocrystals) and multiple stable molecular conformers also 
increase the dimensionality of the energy landscape markedly (8, 9).

Bayesian optimization
Bayesian optimization (10) is a technique for evaluating a so-called 
black box function; that is to say, a function for which there is not 
access to the analytical, closed form

	​​ min​ x∈Χ​​ f (x)​	

Bayesian optimization has become popular recently in the 
machine learning community for the efficient tuning of the hyper-
parameters of deep learning models (11), but given its strengths as 
a global optimizer and its powerful theoretical guarantees (12), it has 
also started to find applications in a more diverse set of domains (13–16). 
The core application area of Bayesian optimization is when each 
sample of the function, f, is expensive to acquire in financial cost, 
acquisition time, or both. This makes this approach highly attrac-
tive for our goal of more efficiently navigating large ESF maps.

Bayesian optimization has two fundamental principles. First, it 
promotes the use of a surrogate function, ​​   f ​​, to represent the true 

1IBM Research Europe, Hartree Centre, Sci-Tech Daresbury, Warrington, UK. 2Leverhulme 
Research Centre for Functional Materials Design, Department of Chemistry and 
Materials Innovation Factory, University of Liverpool, Liverpool, UK. 3School of 
Chemistry, University of Southampton, Southampton, UK.
*Corresponding author. Email: epyzerk3@uk.ibm.com

Copyright © 2021 
The Authors, some 
rights reserved; 
exclusive licensee 
American Association 
for the Advancement 
of Science. No claim to 
original U.S. Government 
Works. Distributed 
under a Creative 
Commons Attribution 
License 4.0 (CC BY).

mailto:epyzerk3@uk.ibm.com


Pyzer-Knapp et al., Sci. Adv. 2021; 7 : eabi4763     13 August 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

2 of 8

(unknown) function,  f, that is being optimized. Since each data 
point is likely to be expensive to acquire, it is important that this 
surrogate function has robust and well-defined uncertainties asso-
ciated with its evaluation. In this study, this model is a Gaussian 
process (17), although other models have been used (18, 19).

A Gaussian process is a nonparametric machine learning model, 
which can be described by a Normal distribution N with mean 
function, , and a kernel function, K(x, x′)

	​ p( f  ∣  X ) = N(, K(x, ​x ′ ​ ) )​	

where p( f∣X) is the probability of f given X, and f is the vector of 
function values [f(x1), f(x2)…f(xN)] evaluated at input points x1,, 
x2…xN. There are many potential choices for the kernel function 
K(x, x′) and, for this study, we used a Matérn kernel (20)

	​​​ C​ ​3 _ 2​​​ = ​ ​​ 2​​(​​1 + ​ ​√ 
_

 3 ​ ─ l  ​​)​​exp​(​​ − ​ ​√ 
_

 3 ​ ─ l  ​​)​​​​	

where the length scale l is determined on a per-feature basis 
using the automatic relevance determination (21) protocol and 2 is 
the signal SD. We also introduce a white noise kernel, whose scale is 
determined as a hyperparameter of the overall Gaussian process 
and tuned to maximize the log-likelihood of the model with respect 
to the data.

The second major principle of Bayesian optimization is to 
balance exploration (the acquisition of new knowledge) and ex-
ploitation (the reliance on existing knowledge) when deciding 
which data points to acquire (22). This takes advantage of the exis-
tence of the uncertainties associated with the evaluations of the sur-
rogate function, ​​   f ​​, and is controlled through a construct known as 
the acquisition function. There are a number of potential acquisi-
tion functions, with the most popular being expected improvement 
(EI) (23), which aims to maximize the EI to the optimization of col-
lecting a data point. While EI is seemingly a serial methodology, 
there have been strategies implemented recently that generalize to 
the parallel setting (18,  24–27). Typically, these do not scale well 
with the number of dimensions and those which do require sparsity 
and incoherence properties of the feature space that are not present 
in this problem (26). Thompson sampling (28) solves this problem 
by approximating the predictive distribution as follows

	​ p(​y​ j​​ ∣ ​ x​ j​​, ​D​ 𝔗​​ ) = ∫ p(​y​ j​​ ∣ ​x​ j​​,  ) p(, ​D​ 𝔗​​ ) d​	

where p() represents the prior distribution given a set of data 
​​D​ 𝔗​​​, thus approximating the posterior distribution using Monte 
Carlo, based on a single sample from ​p(, ​D​ 𝔗​​)​. This method thus 
scales significantly better with the scale and dimensionality of 
the problem.

The use of Thompson sampling for parallel Bayesian optimiza-
tion requires an adaptation of this methodology known as parallel 
and distributed Thompson sampling (PDTS) (18), which is de-
scribed visually in the inset of Fig. 1 and extensively in pseudo-code 
in the electrospray ionization. PDTS extends the Thompson sam-
pling framework to a parallel case, exploiting the fact that PDTS 
with batch size S is the same as running sequential Thompson sam-
pling S times without updating the current posterior. This allows 
the parallel and distributed calculation of the acquisition function, 
ensuring that this method is highly scalable with increasing batch 
size. This is particularly important in the case described here since 
it allows for evaluations to be distributed over a cluster computer 
system or even over a completely distributed system, such as IBM’s 
World Community Grid (29), which harnesses the power of volun-
teer compute by harvesting “idle” cycles from volunteer devices 
such as laptops, small computational systems, or even mobile 
devices.

In this study, we further extend the use of PDTS to the multi-
objective case (MO-PDTS) without harming the scalability and 
thus the parallel performance. To achieve this, we assign a separate 
PDTS sampler to each objective, the acquisition functions of which 
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Fig. 1. Graphical illustration of the Bayesian optimization framework used in 
this study. 
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Fig. 2. Flowchart representing the use of MO-PDTS for accelerating ESF map 
construction. Note that, in some cases, a sufficiently accurate value for lattice 
energy is calculated at the initial generation stage, and, in these cases, calculation 
of lattice energy is not necessary, but a second, optional calculation at a higher 
level may also be used.
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are then combined in a single step, determining the final acquisition 
function for the overall optimization process. Under a Gaussian 
process prior, this combination is equivalent to optimizing a single 
objective consisting of a weighted combination of objective values, 
with one significant advantage. Since the acquisition values are 
distinct from the models used to predict them in our MO-PDTS 
setting, each sampler can be built from a completely different set of 
descriptors. Under the reasonable assumption that a model built 
from specifically chosen descriptors is more likely to have strong 
predictive ability than one built from a general set of descriptors, 
the ability to separate the predictors affords the user a framework 
that is significantly more transferable across a range of property 
types. The ability to fully distribute this calculation is maintained 
because the domain over which this optimization is performed is a 
discrete set of structures.

RESULTS AND DISCUSSION
We investigated the extent of MO-PDTS acceleration on three ESF 
maps that were calculated to evaluate the potential of three molecu-
lar materials for methane storage and delivery. We demonstrate 
how this new navigation workflow (Fig. 2) would have reduced the 
necessary computation and resulting time to insight for three 
systems, i.e., T2, T2E, and P2 (Fig. 3), recently predicted to have 
stable crystal structures with desirable methane deliverable capaci-
ties. These molecules were originally chosen because they represent 
a set of awkwardly shaped molecules. Hence, they have the potential 
to form porous structures with high methane capacities, but intui-
tive packing arguments alone cannot provide sufficient insight to 
make a priori arguments about the relative potential of these three 
molecules to perform well in this application. Even if we could pre-
dict crystal packing intuitively, the methane deliverable capacity 
does not scale in a simple way with crystal density; hence, both 
lattice energy and function must be computed. ESF maps for this 
application are very expensive because of the large energy range of 
viable predicted crystal structures, taking into account the effects of 
solvent stabilization coupled with the high cost of the methane 
adsorption calculations. In the study of T2, P2, and T2E (Fig. 3), 
crystal structures in the range up to 100 kJ/mol above the global 
minimum were considered, as compared to a more usual energy 
range of 10 or 15 kJ/mol for crystal structure landscapes for non-
porous packings. Since the number of structures on the landscape 
increases rapidly as we move away from the global minimum, this 

7- to 10-fold increased energy range leads to a much larger concom-
itant increase in the number of crystal structures that must be 
considered.

The ESF maps for methane deliverable capacity for T2, P2, and 
T2E contained ~5400, ~9800, and ~ 30,000 structures, respectively. 
To ensure reproducibility and to display the robustness of our 
approach, we tested the intelligent navigation workflow for each 
system with 10 replicate experiments, each of which was seeded 
with different initial structures chosen from the landscape. Using 
these replicate experiments, we were able to use the bootstrap 
methodology to calculate confidence intervals for the convergence 
of each of the three systems with respect to ideal behavior. All of the 
samplers converged on an ideal solution before 100 samples, or 
10 epochs, have been completed. Since the executions are completed 
in parallel, when we calculate the first encounter time, we must only 
base this evaluation on the epoch in which the global minimum was 
found; that is, there is no advantage to being found halfway through 
a batch.

Table 1 shows the distribution of performance over the 10 re-
peats with the best performance being achieved by the T2 system, 
which shows a mean first encounter time of 14.3 samples, or within 
two completed epochs. Both P2 and T2E have a mean first encoun-
ter time of around four epochs. This can be rationalized by consid-
ering the full ESF maps for these systems: There are more that have 
both a high methane deliverable capacity and a low lattice energy 
for T2 than for other systems, facilitating the discovery of high 
performing systems. T2 also exhibits superior performance in the 
magnitude of our normalized objectives, with a score of circa 1.6, as 
compared to P2’s score of circa 1.5 indicating that there is a more 
favorable trade-off between low energy and high methane capacity 
structures.

Fig. 3. Chemical structures of the three molecules in this study. 

Table 1. Average performance achieved over 10 replicates for the 
three systems studied. Mean encounter time is the mean sample 
number at which the minimum is found, and mean epochs required is the 
sampling epoch in which this sample fell. 

Structure Mean encounter 
time

Mean epochs 
required

T2E 39.0 4

T2 14.3 2

P2 34.0 4
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Comparison to greedy sampling
An alternative approach to the reduction in computational cost for 
the exploration of large ESF maps, or other compound libraries, is 
to use a greedy sampling method. For this class of search algorithm, 
a model is built from existing data and used to predict values for 
data that have not yet been acquired. At each epoch of sampling, the 
candidate that has the largest predicted value is selected—or the 
smallest value, for minimization purposes—and added to the training 
set, from which the model is then refitted. Most traditional Qualitative 
Structure Property Relationship ( QSPR) methods use this methodology, 
either implicitly or explicitly, for accelerated materials discovery.

As shown in Fig. 4, the MO-PDTS sampler locates the ideal solu-
tion in all cases and outperforms the baseline random sampler 

significantly. For T2E and T2 systems, there is a clear advantage 
over the greedy sampler, indicating that these are systems where 
there are competing local maxima and demonstrating the advan-
tage of the more sophisticated MO-PDTS method. In the case of P2, 
the performances are similar, indicating that there is a single clear 
structure-property relationship, which can be exploited by the 
greedy sampler.

The dangers of a greedy sampler are illustrated in the case of 
T2E (Fig. 5). The greedy sampler identifies a reasonably well-
performing structure-property relationship and concentrates its 
sampling in this area. Unfortunately, this structure-property re-
lationship does not indicate the existence of a second “peak” of 
activity with a higher value. The balance of exploration and 

Fig. 4. Performance of the MO-PDTS sampler for the three systems studied. Confidence intervals are generated using the bootstrap methodology from 10 replicate 
experiments seeded with different candidate structures.

Table 2. Computational savings as a fraction of the potential ESF map for the systems T2, T2E, and P2.  

Structure Number of structures in 
ESF map % of ESF sampled CPU hours to generate full 

ESF map
Computational saving* 

(CPU hours)

T2E 29,848 0.14 392,213 391,427

T2 5403 0.32 74,469 73,945

P2 9817 0.39 96,369 95,583

*Computational saving is based on averaging the cost of each calculation over the entire set.
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exploitation in MO-PDTS avoids this situation and samples in a 
more intelligent and robust manner. The performance curves in 
Fig. 4 indicate that there is little “cost” to adopting this more so-
phisticated strategy over a more traditional, greedy approach when 
the structure-property landscape is simple but significant benefits 
when it is not.

Computational savings
We have seen that the proposed intelligent navigation approach to 
ESF maps yields considerable computational savings. The exact 
details are shown in Table 2. In all cases, we see greater than two 
orders of magnitude improvement in the “time to insight,” which 
results in hundreds of thousands of saved CPU hours.

In total, 544,955 hours were saved using this technique over the 
entire campaign; for context, this saving is similar in magnitude to 
a small grant on a supercomputer system. For many functional 
properties, this high level of computational acceleration could 
transform ESF maps from a proof-of-concept demonstration to 
an important, routine practical tool for in silico high-throughput 
screening, particularly for physical properties that are expensive to 
compute. We assessed these savings based solely on the savings in 
property evaluations, but where higher-level energies are required 
for lattice energy rankings, for example, by density functional theory 
(DFT), the savings would be even greater. Even when we only con-
sider the property calculation savings, these benchmark figures 
suggest that this technique could allow a user to screen orders of 
magnitude more candidates for the same computational expense. 
As with all accelerations of this kind, there is not the same com-
pleteness guarantee that is possible by calculating the entire ESF 
map. However, we believe that this is more than compensated by 
the huge increase in throughput and the ability to evaluate a much 
broader range of candidate molecular structures. In many cases, the 
use of this technique may be the difference between an ESF map for 
a particular property being calculated and being deemed too expen-
sive. This represents a significant practical advance in the ESF 
methodology, allowing us to tackle new functional properties that 
have hitherto been deemed impossible because of their high com-
putational cost.

Fig. 5. Comparison of the MO-PDTS and greedy sampling strategies. Candidate 
structures are colored by their combined energy-structure score, and no color indi-
cates that the structure was not sampled. It can be seen, for the T2E case, that the 
greedy sampler gets stuck in a local maxima but that PDTS is able to locate the 
global maximum (circled in black)

Fig. 6. Estimated density plot for the normalized lattice energy and the normalized methane deliverable capacity for the T2 system, with values normalized over 
the entire dataset between 0 and 1 for methane capacity (−1 and 0 for energy). Color hue is used to indicate contour planes of increasing density. The left plot focuses 
on crystal packings with high methane deliverable capacity; the right plot highlights systems with low lattice energies. Most of the low energy systems have poor methane 
deliverable capacity, and the largest high methane capacity systems are relatively high in lattice energy; that is, these two properties are, broadly speaking, orthogonal.
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In conclusion, we present an important evolution in the ESF 
mapping technique for the a priori prediction of materials properties: 
a smart navigator for ESF maps based on MO-PDTS. The scalability 
of this method adds negligible overhead to the computation of the 
ESF map; by selectively sampling the map and only requiring the 
use of expensive function calculations for a fraction of the struc-
tures, we are able to make significant computational savings. For 
the three structures here studied, we were able to save more than 
half a million CPU hours. This has two key advantages. First, we 
significantly reduce the opportunity risk for the selection of systems 
for ESF map calculation; that is, did I choose the right molecule to 
spend this resource on? Second, through the reduction of computa-
tional requirements, we extend the power of the ESF map approach 
both to researchers who are not able to access the necessary compu-
tational resources and also to expensive property calculations for 
large, complex ESF maps that are simply intractable today.

MATERIALS AND METHODS
MO-PDTS optimization details
We posed the problem as a multiobjective optimization over both 
energy and methane deliverable capacity, thus searching for the ESF 
maps for low-energy, highly porous, crystalline forms. For the pur-
poses of this study, we are testing the methodology as if we do not 
have the final energies that we require, mimicking the case where 
higher-level energy calculations are required than were used in the 
structure search itself. We use the calculated force field energies as a 
proxy for these higher-level energies. We did not consider the 
expense for these energy calculations when calculating savings, and 
so this study represents a lower bound on the potential for this method.

To demonstrate the modular nature of this approach, the two 
considered properties were modeled with different features—22 
geometrically defined features for porosity, and the National Insti-
tute of Standards and Technology JARVIS (30) descriptor set for 
the lattice energy.

Topological analysis of the pore space within a crystal structure 
was performed using the void analysis tool zeo++ (31). The outputs 
from this analysis included the pore dimensionality [zero dimen-
sion (0D), 1D, 2D, or 3D], pore diameters, surface areas, and pore 
volumes. A probe radius of 1.70 Å was used in all calculations. A 
total of 22 pore descriptors were calculated for each of the predicted 
crystal structures. These 22 descriptors are simple extensions to 
four basic pore descriptors: crystal density, largest pore diameter, 
total surface area, and total pore volume. First, the total surface area 
and the total pore volume were decomposed into accessible and 
nonaccessible contributions. Second, to capture the heterogeneity 
of the pore geometry within a structure, we derived several descrip-
tors based on the surface areas and pore volumes of individual 
channels and pockets. Last, the total surface area was also decom-
posed into elemental contributions. A description of each descrip-
tor is as follows:

1) Crystal density (in grams per cubic centimeter);
2 to 4) Pore diameters (in angstrom): the largest included sphere 

(Di), the largest free sphere (Df), and the largest included sphere 
along the free sphere path (Dif);

5 to 8) Accessible surface area (in square meters per gram), non-
accessible surface area (in square meters per gram), accessible 
volume (in cubic centimeters per gram), nonaccessible volume (in 
cubic centimeters per gram);

9 to 12) Absolute (in cubic centimeters per gram) and fraction (−) 
of probe-occupied accessible volume, absolute (in cubic centimeters 
per gram), and fraction (−) of probe-occupied nonaccessible volume;

13 to 16) Elemental surface areas (in square meters per gram), i.e., 
total (accessible + nonaccessible) surface area decomposed into indi-
vidual contributions from the H, C, N, and O atoms;

17 to 22) Variants based on the surface areas and pore volumes 
of individual channels [accessible (acc)] and pockets [nonaccessi-
ble (nacc)] to capture, to some extent, the heterogeneity of the pore 
space within a crystal structure:

Average of the accessible surface areas divided by the corre-
sponding accessible volumes for all individual channels

	​​ A​ acc​​  = ​  1 ─ n ​ ​ ∑ 
n=1

​ 
n
  ​​ ​ 

​S​ n,acc​​ ─ ​V​ n,acc​​
 ​​	

Median of the accessible surface areas divided by the corre-
sponding accessible volumes for all individual channels

	​​​ M​ acc​​  =  Median​(​​ ​ 
​S​ 1,acc​​ ─ ​V​ 1,acc​​

 ​, ​ 
​S​ 2,acc​​ ─ ​V​ 2,acc​​

 ​⋯​ 
​S​ n,acc​​ ─ ​V​ n,acc​​

 ​​)​​​​	

Variance of the accessible surface areas divided by the corre-
sponding accessible volumes for all individual channels

	​​​ ​​ 2​​ acc​​  = ​  1 ─ n ​ ​ ∑ 
n=1

​ 
n
  ​​ ​​(​​ ​ 

​S​ n,acc​​ ─ ​V​ n,acc​​
 ​ − ​A​ acc​​​)​​​​ 

2
​​	

Average of the nonaccessible surface areas divided by the corre-
sponding nonaccessible volumes for all individual pockets

	​​ A​ nacc​​  = ​  1 ─ n ​ ​ ∑ 
n=1

​ 
n
  ​​ ​ 

​S​ n,nacc​​ ─ ​V​ n,nacc​​
 ​​	

Median of the nonaccessible surface areas divided by the corre-
sponding nonaccessible volumes for all individual pockets

	​​​ M​ nacc​​  =  Median​(​​ ​ 
​S​ 1,nacc​​ ─ ​V​ 1,nacc​​

 ​, ​ 
​S​ 2,nacc​​ ─ ​V​ 2,nacc ​​ ​⋯ ​ 

​S​ n,nacc​​ ─ ​V​ n,nacc​​
 ​​)​​​​	

Variance of the nonaccessible surface areas divided by the corre-
sponding nonaccessible volumes for all individual pockets

	​​​ ​​ 2​​ nacc​​  = ​  1 ─ n ​ ​ ∑ 
n=1

​ 
n
  ​​ ​​(​​ ​ 

​S​ n,nacc​​ ─ ​V​ n,nacc​​
 ​ − ​A​ nacc​​​)​​​​ 

2
​​	

where n is the number of channels or pockets, Sn,acc and Vn,acc are 
the accessible surface area and accessible volume for the nth chan-
nel, respectively; and Sn,nacc and Vn,nacc are the nonaccessible surface 
area and nonaccessible volume for the nth pocket, respectively.

Since JARVIS is a very high-dimensional set of features with 
significant information redundancy, we use a principle component 
analysis to reduce the number of features while retaining 99% of the 

Table 3. Dimensionality of JARVIS descriptors, once reduced using 
principal components analysis to retain 99% of original variance.  

System Number of dimensions

T2 45

P2 59

T2E 28
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variance. This resulted in the feature dimensions for the systems 
shown in Table 3.

To quantify the acceleration achieved, we compare our results 
here to the calculation of full ESF maps, previously reported by 
some of the authors (6); that is, we accurately computed both lattice 
energies and methane deliverable capacities for all structures on the 
three associated ESF maps. Since ESF maps are used as indicators of 
the potential for a molecule to behave in a desirable way, we based 
our metric of success on the first encounter time for the global min-
imum on the ESF landscape; that is to say, the structure that has the 
best combination of low energy and high methane deliverable ca-
pacity. For this study, we weighted the contribution to this score 
from the energy term and the property term equally

	​ S  =  a ​E​ i​​ + b ​P​ i​​​	

Where a and b are weighting coefficients to energy and property, 
respectively, and, in this study, are equal and normalized to remove 
units and ensure that the scales of the two properties are compara-
ble. We note that, for a more conservative approach, it is possible to 
weight the energy term more highly, that is, to increase the likeli-
hood that the identified structure is thermodynamically accessible 
in the laboratory.

Figure 6 shows that, in general, structures with high deliverable 
methane capacity have a high lattice energy. Thus, we expect that 
the number of structures, which have both desirable methane deliv-
erable capacity and low lattice energy to be small, is further empha-
sizing the need for an efficient, accelerated approach and also the 
importance of the multiobjective nature of our search strategy.

The MO-PDTS was seeded with an initialization strategy based 
on k-means inspired by the generation of inducing points for sparse 
Gaussian processes. In this methodology, k-centroids were deter-
mined over input descriptor (feature) space using the k-means algo-
rithm. The structures that minimized the distance to these centroids 
were chosen to initialize the search; that is, we selected the nearest 
structure to each of the k-centroids. Under a uniform distribution, 
this is equivalent to a Latin hypercube due to the spherical repulsion 
of k-means. However, under a nonuniform distribution, we believe 
that this initialization captures the underlying data structure better, 
leading to increased model stability throughout the optimization 
process. MO-PDTS was then run for 10 epochs, at each of which 
10 structures were selected and properties were calculated. To 
account for the difference in magnitudes of the two objectives, the 
values for each were scaled for each objective based on the 20 selected 
structures from which the search was seeded.

Simulation details
For each ESF map, candidate crystal structures were generated 
using a quasi-random sampling procedure, as implemented in the 
Global Lattice Energy Explorer software (32). Molecules were first 
sketched in ChemDraw, followed by an initial molecular geometry 
optimization with the COMPASS force field (33), as implemented 
in the Materials Studio software package (34). Force field–optimized 
molecular geometries were further refined by reoptimization using 
DFT with the M06-2X exchange-correlation functional and 6-311G** 
basis set. Molecular DFT calculations were performed with the 
Gaussian09 software (35). These molecular geometries were held 
rigid throughout crystal structure generation and lattice energy 
minimization.

Lattice energy calculations were performed with an anisotropic 
atom-atom potential using DMACRYS (36). Electrostatic interac-
tions were modeled using an atomic multipole description of the 
molecular charge distribution (up to hexadecapole on all atoms) 
from the B3LYP/6-31G**-calculated charge density using a distrib-
uted multipole analysis (37). Atom-atom repulsion and dispersion 
interactions were modeled using a revised Williams intermolecular 
potential (38).

Methane adsorption was predicted for each structure at a tem-
perature of 298 K and pressures of 5.8 and 65 bar; methane deliver-
able capacity was calculated as the difference in methane uptake at 
65 and 5.8 bar (assuming gas storage at 65 bar and gas delivery at 5.8 
bar). All of the adsorption predictions were performed using grand 
canonical Monte Carlo simulations involving a 50,000-cycle equili-
bration period and a 50,000-cycle production run, using the RASPA 
code (39). The adsorbent-adsorbate and adsorbate-adsorbate inter-
molecular interactions were modeled using Lennard-Jones (LJ) 
potentials, with a cutoff radius of 12.0 Å (beyond which a simple 
truncation was applied). Methane (CH4) was described by the 
TraPPE united-atom force field (40), in which CH4 is considered a 
single entity, i.e., the carbon atom and its bonded hydrogen atoms 
are grouped together to form one interaction site. The LJ parame-
ters for the adsorbent structures were assigned on the basis of the 
DREIDING force field (41). The Lorentz-Berthelot combining rules 
were used to calculate the LJ cross-parameters.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/33/eabi4763/DC1
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