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Renal ischemia is the most common cause of acute kidney injury (AKI) that might be
exacerbate lupus activity through neutrophil extracellular traps (NETs) and apoptosis.
Here, the renal ischemia reperfusion injury (I/R) was performed in Fc gamma receptor 2b
deficient (Fcgr2b-/-) lupus mice and the in vitro experiments. At 24 h post-renal I/R injury,
NETs in peripheral blood neutrophils and in kidneys were detected using myeloperoxidase
(MPO), neutrophil elastase (NE) and citrullinated histone H3 (CitH3), as well as kidney
apoptosis (activating caspase-3), which were prominent in Fcgr2b-/- mice more
compared to wild-type (WT). After 120 h renal-I/R injury, renal NETs (using MPO and
NE) were non-detectable, whereas glomerular immunoglobulin (Ig) deposition and serum
anti-dsDNA were increased in Fcgr2b-/- mice. These results imply that renal NETs at 24 h
post-renal I/R exacerbated the lupus nephritis at 120 h post-renal I/R injury in Fcgr2b-/-
lupus mice. Furthermore, a Syk inhibitor attenuated NETs, that activated by phorbol
myristate acetate (PMA; a NETs activator) or lipopolysaccharide (LPS; a potent
inflammatory stimulator), more prominently in Fcgr2b-/- neutrophils than the WT cells
as determined by dsDNA, PAD4 and MPO. In addition, the inhibitors against Syk and
PAD4 attenuated lupus characteristics (serum creatinine, proteinuria, and anti-dsDNA) in
Fcgr2b-/- mice at 120 h post-renal I/R injury. In conclusion, renal I/R in Fcgr2b-/- mice
induced lupus exacerbation at 120 h post-I/R injury partly because Syk-enhanced renal
NETs led to apoptosis-induced anti-dsDNA, which was attenuated by a Syk inhibitor.

Keywords: Fcgr2b deficient mice, systemic lupus erythematosus, neutrophil extracellular traps, renal ischemia
reperfusion injury, acute kidney injury
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INTRODUCTION

Prevalence of the dysfunction polymorphism in Fc gamma
receptor 2b (Fcgr2b), which is the only one inhibitory receptor
in Fc gamma receptor (FcgR) family (1–3), is usually found in
Asian population. Fcgr2b is associated with systemic lupus
erythematosus (SLE), a common autoimmune disease mostly
associated with anti-dsDNA (4). Deficiency of the inhibitory
Fcgr2b signaling causes SLE through the increased antibody
production by hyper-reactive B cells (5), whereas Fcgr2b
deficiency enhances the protection against malarial infection.
Indeed, Fcgr2b is detectable in several immune cells (except for
T cells and NK cells) (6) and the loss of Fcgr2b could induce
macrophage hyper-responsiveness as demonstrated in Fcgr2b
knockout (Fcgr2b-/-) macrophages (7). Additionally, Fcgr2b-/-
mice develop age-dependent lupus characteristics, including
asymptomatic lupus prone (less than 16 weeks old),
asymptomatic lupus with anti-dsDNA (16-24 weeks old)
and full-blown lupus (40 weeks old), which have been used as
a representative model of lupus (8). Although the hyper-
responsiveness of Fcgr2b-/- mice against several pathogen
molecules, including pneumococcal antigens and lipopoly-
saccharide (LPS), has been demonstrated (2, 7, 8), studies on
Fcgr2b-/- neutrophils are still very limited. However, lupus
exacerbation is well-known for neutrophil apoptosis and
neutrophil extracellular traps (NETs)-induced cell death
(NETosis) (9, 10).

As such, apoptosis (cellular shrinkage, membrane blebbing
and chromatin condensation) is triggered by intrinsic pathway
containing the caspase 3 activation through cell damage and
reactive oxygen species (ROS), and extrinsic pathway through
several external death factors (11). The profound apoptosis (with
an insufficient clearance) causes secondary necrosis that
enhances the exposure to nuclear autoantigens (12) and
accelerates anti-dsDNA production in lupus (13). Likewise,
NETosis is a release of extracellular DNA networks by
neutrophils in either infectious or non-infectious condition
(14) through peptidylarginine deiminase 4 (PAD4)-induced
citrullinated histone H3 (CitH3) (15). Extracellular DNA
networks from NETosis, both of NADPH oxidase 2 (NOX2)-
dependent and NOX2-independent pathways, enhance exposure
of nuclear contents (16), including dsDNA that is normally
contained in nuclei (17), and increased anti-dsDNA which is a
specific auto-antibody in lupus (18, 19). With profound cell
death, the free dsDNA is recognized as a damage associated
molecular patterns (DAMPs) by innate immune cells (17) and
processed by adaptive immune cells supporting the lupus
exacerbation from inflammatory responses (20, 21). Not only
cell death of the immune cells, but also the dying process of other
cell types, exacerbate lupus as the avoidance of ultraviolet light,
that induces keratinocyte cell death (22–24), is a current
mandatory recommendation for lupus (17). Due to the
abundance of neutrophils, cell death of neutrophils in the host
with lupus-prone condition (loss of tolerance) (25), but not the
normal host, might profoundly enhance the exposure of dsDNA
that increases anti-dsDNA production. Besides, the susceptibility
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to program cell death of Fcgr2b-/- neutrophils might be higher
than WT cells that have been triggered the lupus activity.

In parallel, acute kidney injury (AKI) is the common health
care problem worldwide, which is mainly caused by ischemia
(26) that was often represented by renal ischemia reperfusion
injury (I/R) animal model (27, 28). As such, renal ischemia
induces accumulation of immune cells, including neutrophils, as
a response to the injury (29–31) and the injury also causes
apoptosis (and necrosis) in renal parenchymal cells and
neutrophils (32, 33). Consequently, the ischemic injury directly
induces program cell deaths of neutrophils, including NETosis,
in several organs after renal injury (34). After the renal ischemia,
cell apoptosis and NETosis might be exacerbated the lupus
disease activity due to the lupus exacerbation from the
program cell deaths (35). Because of the prominent responses
against several stimulators of the Fcgr2b-/- mice (2, 7, 8),
apoptosis and NETosis derived from renal I/R might be more
profound than the responses in the normal mice. TLR-4 is the
significant pathway that induces both apoptosis and NETosis
(36), while spleen tyrosine kinase (Syk) is the shared downstream
signaling pathway of TLR-4 and FcgR (20, 21, 37, 38). Therefore,
the Syk inhibitor may be an interesting drug to manipulate cell
death in renal-I/R mediated cell death in lupus (39). Indeed, the
Syk inhibitor (fostamatinib, previously known as R788) is a US
FDA (the United States Food and Drug Administration)
approved drug for autoimmune diseases (40–43). Here, we
reported the in vitro and in vivo experiments to determine the
effect of renal-I/R on lupus and evaluated the Syk inhibitor on
Fcgr2b-/- lupus mice.
MATERIALS AND METHODS

Animals
The animal study protocol was approved from the Institutional
Animal Care and Use Committee of the Faculty of Medicine,
Chulalongkorn University, Bangkok, Thailand, under approval
number 009/2564, following the animal care and use protocol of
the National Institutes of Health (NIH), USA. Fcgr2b-/- mice on
a C57BL/6 background were provided by Dr. Silvia Bolland
(NIAID, NIH, Maryland, USA). The wild-type (WT) mice
were purchased from the Nomura Siam International
(Pathumwan, Bangkok, Thailand). Due to the age-dependent
lupus characteristic (44, 45), 8-week-old Fcgr2b-/- female mice
represented asymptomatic lupus prone mouse model and age-
matched female WT mice were used in all experiments.

Renal Ischemia Reperfusion Injury Model
and NETs Inhibitors
Renal I/R was performed following a previous publication (27).
In brief, bilateral renal arteries were clamped for 35 min through
the abdominal incision under ketamine anesthesia on a 37°C
heated operation table. In sham surgery, renal arteries were only
identified before closing the abdominal wall. Tramadol, 20 mg/kg
diluted in 0.5 mL normal saline (NSS) was administered
subcutaneously after surgery and at 24 h post-I/R. Mice were
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sacrificed in several time-points after I/R under isoflurane
anesthesia for sample collection. Serum was kept at −80°C
until analysis and organs were processed in 10% formalin or
Tissue-Tek O.C.T Compound (Sakura Finetek, CA, USA) for
histological analysis or snap frozen and stored separately at -80°C.
The Syk inhibitor was used for testing the anti-inflammatory
effect (42) and a possible association between activating-FcgRs
and Syk signaling (46). As such, a Syk inhibitor (R788 disodium,
Selleckchem, Houston, USA) in 0.1 M citrate buffer (pH 6.8) at 25
mg/kg/dose was orally administered daily for 2 days, at 6 h prior
to surgery, and at 6 h after renal-I/R. In parallel, a Cl-amidine
(PAD4 inhibitor; Sigma-Aldrich, St. Louis, MO, USA) was
dissolved in dimethyl sulfoxide (DMSO; Sigma-Aldrich). The
stock solution was dissolved in normal saline at 10 mg/kg/dose
and injected intraperitoneal 3 h prior to renal-I/R at once daily
after following a previous publication (47) to test the influence of
NETs in lupus model with renal-I/R. Mice were sacrificed with
sample collection under isoflurane anesthesia.

Blood and Urine Analysis
Parameters of lupus characteristics, serum cytokines, liver injury,
and NETosis were evaluated from blood samples. Lupus
characteristics including serum creatinine (QuantiChrom
Creatinine-Assay, DICT-500, BioAssay, Hayward, CA, USA),
serum anti-dsDNA, and proteinuria were determined.
Symptomatic lupus was defined as increased serum anti-dsDNA,
high serum creatinine, and increased proteinuria when compared
with the WT mice. The anti-dsDNA was evaluated using a
protocol with coated-calf thymus DNA (Invitrogen, Carlsbad, CA,
USA) with a minor modification (48). Briefly, each analyzed plate
was coated with calf thymus DNA (for dsDNA) and ssDNA that
was prepared using the thermal denaturation of calf thymus DNA
(49). Briefly, the plates were incubated overnight at 4°C, filled with
blocking solution at room temperature, and washed with 1X TBS
0.05% Tween 20, respectively. Subsequently, mouse serum samples
were added into the plates and incubated overnight at 4°C. Then,
HRP-conjugated goat anti-mouse antibodies and TMB peroxidase
substrate (TMB Substrate Set; BioLegend, San Diego, CA, USA)
were added to analyze the plates, and 2 N H2SO4 was added to stop
the reaction. The measurement at a wavelength of 450 nm was
determined using a Varioskan Flash spectrophotometer (Thermo
Scientific, Waltham, MA, USA). The reported anti-dsDNA was
represented from the values of calf-DNA coated plates subtracted
by ssDNA-coated plates.

Proteinuria was calculated using spot urine protein creatinine
index (UPCI) with the equation; UPCI = urine protein (mg)/urine
creatinine (mg/dL). Urine protein and creatinine were measured
by Bradford Bio-Rad Protein Assay (Bio-Rad, Hercules, CA, USA)
and QuantiChrom Creatinine-Assay (DICT-500) (BioAssay),
respectively. Serum pro-inflammatory cytokines (TNF-a and IL-
6) and IL-1b, a NETs associated cytokine (50), were measured using
enzyme-linked immunosorbent assay (ELISA) (Invitrogen). Liver
injury was determined by alanine transaminase (ALT) using
EnzyChrom ALT assay (EALT-100, BioAssay). For the evaluation
of NETs in peripheral blood neutrophils, neutrophils were isolated
using Polymorphprep (Alere Technologies AS, Norway) according
Frontiers in Immunology | www.frontiersin.org 3
to the manufacturer’s instructions (51, 52), and hypotonic lysis
buffer was used for red blood cell de-contamination. Blood
neutrophils were resuspended in RPMI (Roswell Park Memorial
Institute media)-1640 media and the purity was assessed by
Wright’s stains. The samples with >95% neutrophils were further
used to determine the NETs formation as mentioned in the section
of in vitro experiments. Additionally, NETs formation in serum was
also determined using Quant-iT™ PicoGreen dsDNA Assay Kit
(Thermo Scientific), and serum MPO was measured by ELISA
(Sigma Aldrich, St. Louis, MO, USA).

Polymerase Chain Reaction
Several molecules associated with inflammation (cytokines),
neutrophil extracellular traps (NETs), and the possible
downstream signals from mouse organs and the cell culture were
evaluated by real time polymerase chain reaction (RT-PCR). Gene
expression of several molecules, including inflammatory cytokines;
TNF-a, IL-6, and IL-10, genes of NETs formation; peptidyl arginine
deiminase 4 (PAD4) and IL-1b, genes of the downstream signals;
spleen tyrosine kinase (Syk) and nuclear factor kappa B (NFkB),
were evaluated. Total RNA was prepared from the samples with an
RNA-easy mini kit (Qiagen, Hilden, Germany) and was quantified
by Nanodrop 100 Spectrophotometer (Thermo Scientific) before
the determination of gene expression. Total RNA reverse
transcription was processed with a High-Capacity cDNA Reverse
Transcription (Thermo Scientific). Samples were performed using
SYBR Green PCR Master Mix for quantitative RT-PCR with
QuantStudio6 Flex Real-time PCR System (Thermo Scientific),
respectively. The results were demonstrated in terms of relative
quantitation of the comparative threshold (delta-delta Ct) method
(2-DDCt) as normalized by b-actin (an endogenous housekeeping
gene). The list of primers is shown in Supplementary Table 1.

Histological Analysis and
Immunofluorescent Imaging
The semi-quantitative evaluation of renal and lung histology on
paraffin-embedded slides was performed after 10% neutral buffered
formalin fixation, followed by Hematoxylin and Eosin (H&E)
staining at 200× magnification in 10 randomly selected fields for
each animal (53–55). Renal injury was defined as tubular epithelial
swelling, loss of brush border, vacuolar degeneration, necrotic
tubules, cast formation, and desquamation using the scoring
method as follows: 0, area of damage <5%; 1, area of damage
5%–10%; 2, area of damage 10%–25%; 3, area of damage 25%–50%;
and 4, area of damage >50%. Lung injury was determined by
alveolar hemorrhage, alveolar congestion, neutrophil infiltration,
and alveolar wall thickness with the following score: 0, no injury in
the observed field;1, injury up to 25%; 2, injury up to 50%; 3, injury
up to 75%; and 4, injury in the entire field.

In parallel, immunofluorescent histological analysis was
performed following previous publications (8, 13, 56). In brief, the
internal organs were prepared in Tissue-Tek O.C.T Compound
(Sakura Finetek, CA, USA) and three sections of each organ were
stained as follows; i) NETs were detected with antibody against
neutrophil elastase (NE; ab68672), myeloperoxidase (MPO;
ab25989), and citrullinated histone H3 (citrulline R2 + R8 + R17;
June 2021 | Volume 12 | Article 669162
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ab5103) (Abcam, Cambridge, MA, USA) with DAPI (4′,6-
diamidino-2-phenylindole), a blue-fluorescent DNA stain (Sigma
Aldrich), ii) cell apoptosis was visualized by anti-Cleaved Caspase 3
(Asp175, 9661S) (Cell Signaling Technology, Boston, MA, USA)
with the secondary antibodies; goat anti-rabbit IgG (ab150077)
(green color), goat anti-mouse IgG (ab150115), and donkey anti-
rabbit IgG (ab150075) (red color) and iii) immunoglobulin
deposition was performed using goat anti-mouse IgG (green
color) (ab150113; Abcam, Cambridge, MA, USA). The images
were analyzed with ZEISS LSM 800 (Carl Zeiss, Germany).

Flow Cytometry Analysis of Spleen
Spleen lymphocytes were explored to compared between Fcgr2b-/-
and WT mice after 120 h post renal-I/R (or sham), were following
a previous published protocol (41). In short, spleens were
dispersed through a cell strainer to generate a single-cell
suspension in supplemented RPMI-1640 prior to centrifuged at
300 × g for 5 min at 4°C. Red blood cells were eliminated using
an osmotic agent (ACK buffer; NH4Cl, KHCO3, and EDTA).
Then, the cells were resuspended in staining buffer (0.5% bovine
serum albumin and 10% fetal bovine serum in PBS), and were
stained with fluorochrome-conjugated antibodies against different
mouse immune cells, including anti-B220 (leukocyte common
antigen) together with anti-CD138 (plasma cells), anti-major
histocompatibility complex (MHC) class II (active immune cells),
CXCR5 (follicular B cells), and anti-CD19 along with anti-GL-7
(germinal center B cells) (BioLegend, San Diego, CA, USA). All
stained cells were examined by flow cytometry using BD LSR-II (BD
Biosciences) and the data were analyzed by FlowJo software (Tree
Star Inc., Ashland, OR, USA).

The In Vitro Experiments on Neutrophils
The apoptosis and NETosis susceptibility between Fcgr2b-/- and
WT neutrophils, and the attenuation by inhibitors were tested
using the in vitro experiment. Accordingly, neutrophils were
derived from peritoneum using a published protocol (57).
Briefly, 1 mL of 3% thioglycolate was intraperitoneal
administered in 8-week-old mice. At 3 h after administration,
mice were sacrificed and peritoneal cavity was thoroughly
collected and washed with ice-cold phosphate buffer solution
(PBS) before centrifugation at 1,800 × g, 4°C for 5 min to
separate the cells and evaluated by Wright’s-stains (55). Only
the preparation with more than 90% neutrophils was further
used for the experiments. Then, neutrophils at 2 × 105 cells/
well in 24-well-plates containing RPMI media were incubated
with phorbol myristate acetate (PMA), a NETs stimulator,
(Sigma-Aldrich) at a final concentration of 25 ng/mL or
lipopolysaccharide (LPS) (Escherichia coli 026: B6; Sigma-
Aldrich) at 100 ng/mL under 5% CO2 at 37°C for 4 h.
Supernatants were used for cytokine measurement by ELISA
(Invitrogen) and were quantified for dsDNA using PicoGreen
assay kit (Invitrogen, Canada) following the manufacturer’s
protocol. Nuclei morphology has been identified with DAPI
nuclear staining (58), which was presented by the percentage
of cells with NETs formation, and PAD4 expression was
determined using RT-PCR as the previously mentioned.
Additionally, neutrophils were suspended in PBS at a
Frontiers in Immunology | www.frontiersin.org 4
concentration of 5 × 105 cells/mL, stained for apoptosis/
necrosis by annexin V-FITC and propidium iodide (PI) (5 µL/
well) (BD Biosciences), respectively. Then, the samples were
washed with FACS flow buffer, PBS supplemented with 1% (v/v)
FBS, and 0.05% NaN3 and processed by the BD LSR II Flow
Cytometry (BD Biosciences) using the FlowJo software (Tree
Star Inc.). Reactive oxygen species (ROS) was determined by
DHE (Dihydroethidium) assay (ab236206; Abcam, Cambridge,
MA, USA), according to the manufacturer’s instructions. In
addition, the active metabolites Syk inhibitor (R406;
Selleckchem) at a final concentration of 5 µg/mL or nuclear
factor kappa B (NFkB) inhibitor (BAY11-7082; Sigma–Aldrich)
at a final concentration of 2 µg/mL were used in the experiments.
RPMI 1640 supplemented with 10% FBS was used as the control.

Western Blot Analysis
Western blot analysis was performed as previously described
(59) to determine the abundance of Syk and NFkB in activated
neutrophils. In brief, cell lysate (in 1X SDS lysis buffer) was
supplemented with the inhibitors against protease and
phosphatase enzymes (Thermo-Scientific) and incubated on ice
for 30 min before centrifugation at 10,000 rpm at 4°C. Protein
quantification was performed by BCA assay (Pierce BCA Protein
Assay) before administration in the 10% SDS-PAGE (Sodium
Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis) and
transferred onto a nitrocellulose membrane, respectively. Then,
the membranes were blocked with Intercept blocking buffer
(Lincoln, NE, USA) and incubated with primary antibodies
against Syk (D3Z1E), phospho-Zap-70 (Tyr319)/Syk (Tyr352)
(65E4) (Cell Signaling Technology, Boston, MA, USA), NFkB
p65 (NFkB; D14E12) and phospho-NFkB p-65 (p-NFkB
(Ser536) (93H1); Cell Signaling Technology), and Beta-actin
(b-actin, a house-keeping protein) (D6A8; Cell Signaling
Technology). Subsequently, the secondary antibody is anti-
rabbit IgG (DyLight 680 conjugate) was used and visualized by
Odyssey CLx imaging system (Lincoln, NE, USA). The target
bands were determined using Image Studio Lite version 5.2.

Statistical Analysis
Statistical differences among groups were examined using the
unpaired Student’s t-test or one-way analysis of variance
(ANOVA) with Tukey’s comparison test for the analysis of
experiments with two groups or more than two groups,
respectively, all of which are presented as the mean ± standard
error (SE). Statistical comparisons of data were conducted by
paired Student’s t-test in the experiment condition of before and
after treatment. SPSS 11.5 software (SPSS, Chicago, IL, USA) was
used for all statistical analysis.
RESULTS

Although the renal I/R induced the renal excretory dysfunction
(serum creatinine) at 24 h post-renal I/R of Fcgr2b-/- mice was
similar to those of wild type (WT) mice, there was higher NETs
and apoptosis in glomeruli which led to lupus nephritis possibly
through Syk signaling after 120 h post-I/R.
June 2021 | Volume 12 | Article 669162
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Similar Organ Injury but More Prominent
Neutrophil Extracellular Traps (NETs) and
Glomerular Apoptosis at 24 h Post-Renal
I/R in Fcgr2b-/- Lupus Mice Compared
With WT
Fcgr2b-/- mice spontaneously developed full-blown lupus
nephritis (impaired renal function, proteinuria, and increased
anti-dsDNA) at 40 weeks old (Supplementary Figures 1A–C)
without polyarthritis and serositis (data not shown). The renal
I/R was performed in 8-week-old Fcgr2b-/- mice, asymptomatic
lupus prone condition, and age-matched WTmice demonstrated
that there was a similar kidney injury between Fcgr2b-/- and WT
mice at 24 h post-renal I/R. Consequently, blood urea nitrogen
(BUN), serum creatinine (Scr), proteinuria (UPCI), renal
histology (Figures 1A–E), and gene expression of cytokines
(TNF-a, IL-6 and IL-10) in renal tissue (Supplementary
Figures 1D–F) have no the difference between Fcgr2b-/- and
WTmice. Notably, the highest renal injury occurred at 24 h post-
renal I/R of both mouse strains supporting a previous
publication (28). The remote organ injury at 24 h post-renal
I/R has the similarity between both mouse strains, including liver
enzyme (serum alanine transaminase), lung injury score, and
serum cytokines (Figures 1F–J), except for gene expression of
cytokines in liver, heart, and lung (Supplementary Figures 1G–O).
However, prominent NETosis in Fcgr2b-/- mice was demonstrated
as follows, i) peripheral blood neutrophils were detected using
nuclear morphology (DAPI), which were co-stained with MPO
and NE, as well as CitH3 staining, and gene expression of PAD4
and IL-1b (Figures 2A–H), ii) serum (serum IL-1b and serum
dsDNA) (Figures 2I, J), iii) glomeruli were visualized using co-staining
of MPO and NE with PAD4 and IL-1b expression (Figures 3A–D),
CitH3 staining and IL-1b in renal tissue (Figures 4A–C), iv) lungs
were performed using co-staining of MPO and NE, PAD4 and
IL-1b expression (Supplementary Figures 2A–D), except liver
and heart (Supplementary Figures 2E–J).

The negative results of NETosis in liver and heart at 24 h post-
renal I/R (Supplementary Figures 1G–L) suggested that the NETs
inflammatory pathways in the remote organ injury post-renal I/R
have not occurred. In parallel, apoptosis in glomeruli and lungs,
excluding the immunoglobulin (Ig) deposition, was more
prominent in Fcgr2b-/- mice compared with WT at 24 h post-
renal I/R (Figures 5A–C and Supplementary Figures 3A–C).
These data imply a prominent cell injury (apoptosis and NETosis)
in Fcgr2b-/- mice than WT at 24 h post-renal I/R, whereas the
functional renal damage was not different.

Recovery of Neutrophil Extracellular Traps
(NETs) and Apoptosis at 120 h Post-Renal
I/R With Enhanced Anti-dsDNA and
Immunoglobulin Deposition in Fcgr2b-/-
Lupus Mice
At 120 h post-renal I/R, renal function (BUN and Scr), non-renal
organ damage, and serum cytokines, excepting proteinuria
(UPCI), were returned to the baseline level in WT mice
(Figures 1A–I). Notably, the sustained proteinuria that has a
normal renal excretory function (BUN and Scr) supports the
Frontiers in Immunology | www.frontiersin.org 5
renal ischemia-induced podocyte injury (60, 61). In contrast, all
the organ injury and serum cytokines in Fcgr2b-/- mice highly
increased at 120 h post I/R (Figures 1A–I and Supplementary
Figures 1D–P) with elevated anti-dsDNA (Figure 1J),
suggesting an exacerbation of lupus disease activity. The rapid
elevation of anti-dsDNA in 8-week-old Fcgr2b-/- lupus prone
mice after 120 h post-I/R suggesting the non-specific activation
of autoreactive B cells in Fcgr2b-/- mice post-renal I/R that was
similar to a previous publication (62). Indeed, plasma cells
(CD138 and B220 positive cells) and activated B cells (MHC
class II and B220 positive cells), except germinal center B cells
(CD19 and GL7 positive cells) and follicular B cells (CXCR5 and
B220 positive cells), in Fcgr2b-/- mice spleen increased rapidly
when compared with WT at 120 h post-renal I/R injury
(Supplementary Figures 4A–E) that might be responsible for
the rapid elevation of anti-dsDNA at 5 days post-renal I/R.
Notably, the plasma cells and activated B cells in spleen of
Fcgr2b-/- mice and WT were not different from sham control
groups (Supplementary Figures 4A, B), implied that B cell
activation in Fcgr2b-/- mice more rapid than WT, despite a
similar B cells baseline state. In addition, NETs of both mouse
strains were undetectable at 120 h post-renal I/R (Figures 2A–J,
3A–D, 4A–C and Supplementary Figures 2A–J) with
glomerular apoptosis in Fcgr2b-/- mice, in contrast to WT
(Figures 5A–C). Meanwhile, glomerular IgG deposition was
detectable in both mouse strains with more prominent in
Fcgr2b-/- mice at 120 h post-renal I/R (Figures 5B, C). The
IgG deposition at 120 h post I/R, which was a part of the wound
healing process (63), was more profound in Fcgr2b-/- mice than
WT, partly indicated an increased antibody production from
ischemia induced inflammation (64) in lupus mice. These data
suggested that prominent NETs and apoptosis (16) at 24 h post-
renal I/R enhanced lupus disease exacerbation (12), and
increased the auto-antibody production at 120 h post-renal I/R.

Prominent Apoptosis and Neutrophil
Extracellular Traps (NETs) in Fcgr2b-/-
Neutrophils, Compared With WT Cells,
at 2 h and 4 h of the Stimulation,
Respectively, and an Impact of Spleen
Tyrosine Kinase (Syk) Signaling
Because i) both apoptosis and NETosis exacerbate lupus disease
activity (35), ii) both PMA and LPS could activate apoptosis and
NETs (65–67), and iii) Fcgr2b-/- neutrophils might be more
susceptible to apoptosis and NETosis than WT cells (the loss of
inhibitory signaling) (20, 21), PMA and LPS are used as the
representative stimulators. After the 2 h stimulation by PMA or
LPS, Fcgr2b-/- neutrophils demonstrated more prominent
apoptosis (and necrosis) than WT cells (Figures 6A, B),
accompanying with the increased production of ROS
(Dihydroethidium; DHE) (Figure 6C). Furthermore, LPS
induced more severe necrosis with lower ROS in Fcgr2b-/-
neutrophils when compared with PMA (Figures 6B, C). At
4 h of the stimulation, NETosis occurred in neutrophils from
both mouse strains as indicated using dsDNA, PAD4 expression,
DAPI nucleus morphology, and co-staining of MPO and NE
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(Figures 6D–H). However, PMA similarly induced NETs in
neutrophils of both mouse strains at 4 h post-stimulation, while
LPS inducing higher NETs (Figures 6G, H, 7) with the
prominent pro-inflammatory cytokine production (TNF-a and
IL-6) (Figures 8A–C) in Fcgr2b-/- thanWT cells. Because spleen
tyrosine kinase (Syk) and nuclear factor kappa B (NFkB), a
downstream signaling of Syk (68), are the possible shared
Frontiers in Immunology | www.frontiersin.org 6
downstream signaling of PMA and LPS (20, 21, 69, 70), these
molecules are explored. At 4 h post-stimulation, PMA
upregulated Syk only in Fcgr2b-/- neutrophils, while LPS
upregulated Syk in neutrophils of both mouse strains
(Figures 8D, E). In parallel, both PMA and LPS similarly
upregulated NFkB in neutrophils of both mouse strains
(Figures 8D, E). Meanwhile, both stimulators (PMA and LPS)
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FIGURE 1 | Renal ischemia reperfusion injury (I/R) at 24 h induced lupus disease exacerbation at 120 h. The time-point characteristics of Fcgr2b-/- or wild-type
(Fcgr2b+/+) mice after I/R as determined by i) renal injury; blood urea nitrogen (BUN), serum creatinine, and proteinuria (protein creatinine index; UPCI) along with the
histological score of the representative images in Hematoxylin and Eosin (H&E) staining (original magnification 200x) (A–E), ii) liver injury (serum alanine transaminase)
(F), iii) lung injury score (G), and iv) the parameters in serum; serum pro-inflammatory cytokines (TNF-a and IL-6) (H, I) and serum anti-dsDNA, a major auto-antibody
in lupus (J) are demonstrated (n = 6–7/time-point). Notably, the renal histological pictures at 24 h post sham of Fcgr2b+/+ mice and at 120 h post sham (both
mouse strains) are not demonstrated due to the similarity to Fcgr2b-/- mice at 24 h post sham (normal histology).
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induced the higher abundance of phosphorylated-Syk and
phosphorylated-NFkB in Fcgr2b-/- neutrophils when
compared with WT cells (Figures 8F, G). As such, detection
of NETs (Figures 6D–H, 7) along with Syk and NFkB
Frontiers in Immunology | www.frontiersin.org 7
(gene expression and protein abundance) (Figures 8A–G)
at 4 h post-stimulation by PMA and LPS implied the
association between NETosis and Syk or NFkB, especially in
Fcgr2b-/- neutrophils.
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FIGURE 2 | Renal ischemia reperfusion injury (I/R) at 24 h induced more prominent neutrophil extracellular traps (NETs) in blood of lupus prone mice. Characteristics
of NETs in peripheral blood neutrophils from Fcgr2b-/- or wild-type (Fcgr2b+/+) mice after renal ischemia reperfusion injury (I/R) as determined by the nuclear
morphology by 4’,6-diamidino-2-phenylindole (DAPI) staining (blue color) (A), co-staining of myeloperoxidases (MPO) and neutrophil elastase (NE) (B), citrullinated
histone H3 (CitH3) staining (C) with the representative pictures from peripheral blood neutrophils at 24 h post-I/R (or sham) from both mouse strains with DAPI
staining (original magnification 200x) (D), and immunofluorescence of MPO/NE and CitH3 (original magnification 630x) (E, F) are demonstrated. Additionally, the gene
expression of PAD4 and IL-1b (G, H) together with serum IL-1b (I) and serum ds-DNA (J) are also demonstrated (n = 6–7/time-point).
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Inhibition of Neutrophil Extracellular Traps
(NETs) by Inhibitors Attenuated Renal I/R-
Induced Lupus Exacerbation
Due to the possible Syk and NFkB mediated NETs after PMA and
LPS stimulation, inhibitors against Syk and NFkB were tested using
the in vitro experiments. As such, both inhibitors attenuated i)
NETosis by PMA or LPS, which was evaluated by dsDNA, PAD4
Frontiers in Immunology | www.frontiersin.org 8
expression and co-detection ofMPOwithNE (Figures 9A–H) and ii)
cytokine production (TNF-a, IL-6 and IL-10) (Supplementary
Figures 5A–F) in neutrophils of both mouse strains (more
prominent response to Fcgr2b-/- neutrophils than WT). Because of
the NETosis attenuation of Syk inhibitor (39, 71) and the clinically
availability of this drug (42) different from other NETs inhibitors, Syk
inhibitor was further tested in mice. As such, Syk inhibitor attenuated
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FIGURE 3 | Renal ischemia reperfusion injury (I/R) at 24 h induced more prominent neutrophil extracellular traps (NETs) in renal glomeruli of lupus prone mice.
Characteristics of NETs in kidneys from Fcgr2b-/- or wild-type (Fcgr2b+/+) mice after renal ischemia reperfusion injury (I/R) as determined using co-detection of
myeloperoxidases (MPO) and neutrophil elastase (NE) at 24 h post-I/R (A) (n = 5–8/group) and gene expression in the time-point of IL-1b and PAD4 (B, C) (n = 6–7/
time-point) with the representative immunofluorescent pictures of NE (green), MPO (red) and 4’,6-diamidino-2-phenylindole (DAPI, blue nuclear staining) at 24 h post-
I/R (or sham) (original magnification 630x) (D) are demonstrated.
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FIGURE 4 | Renal ischemia reperfusion injury (I/R) at 24 h induced more prominent neutrophil extracellular traps (NETs) in renal glomeruli of lupus prone mice.
Characteristics of NETs in kidneys from Fcgr2b-/- mice or wild-type (Fcgr2b+/+) mice after renal ischemia reperfusion injury (I/R) as determined by immunofluorescent
staining of citrullinated histone H3 (CitH3) at 24 h post-I/R (A) (n = 5–6/group) and IL-1b from renal tissue (B) (n = 5–6/time-point) with the representative
immunofluorescent pictures of CitH3 (red) and 4’,6-diamidino-2-phenylindole (DAPI, blue nuclear staining) at 24 h post-I/R (or sham) (original magnification 630x)
(C) are demonstrated.
Frontiers in Immunology | www.frontiersin.org June 2021 | Volume 12 | Article 6691629

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Saisorn et al. NETs in FcgRIIb Deficient Mice With AKI
A B

C

FIGURE 5 | Renal ischemia reperfusion injury (I/R) induced more prominent apoptosis at 24 h post-I/R and immunoglobulin G (IgG) deposition at120 h post-I/R
in renal glomeruli of lupus prone mice. Characteristics of renal injury from Fcgr2b-/- or wild-type (Fcgr2b+/+) mice after renal ischemia reperfusion injury (I/R) as
evaluated by glomerular apoptosis (activated caspase 3) (A), glomerular IgG deposition (B) (n = 6–7/time-point) with the representative immunofluorescent glomerular
pictures (activated caspase 3 and IgG deposition) from mice at 0, 24, and 120 h post-I/R (original magnification 630x) (C) are demonstrated.
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NETosis (serum dsDNA, MPO, and glomerular NETs) and
glomerular apoptosis (Figures 10A–E) in Fcgr2b-/- mice at 24 h
post renal-I/R affected to decreased glomerular Ig deposition and
attenuated lupus activity (anti-dsDNA, proteinuria and Scr) after
120 h post renal-I/R (Figures 10F–I). These data indicated that the
attenuation of program cell death (apoptosis and NETosis) in renal
injury by the Syk inhibitor could prevent lupus disease exacerbation.
Frontiers in Immunology | www.frontiersin.org 11
Although the reducedNETs along with the decreased anti-dsDNA by
Syk inhibitor implied an association between NETs and auto-
antibody production of post-renal I/R, Syk inhibitor might directly
block the antibody production through FcgR signaling (20, 21),
except for NETs attenuation. To further support the association
between NETs formation and auto-antibody production, a PAD4
inhibitor, a direct NETs inhibitor, was administered in Fcgr2b-/- mice
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FIGURE 6 | Prominent apoptosis (with oxidative stress) and neutrophil extracellular traps (NETs) at 2 h and 4 h of the stimulation in neutrophils of lupus prone
mice. Responses of Fcgr2b-/- and wild-type (Fcgr2b+/+) neutrophils after 2 h activation by phorbol myristate acetate (PMA), which is a NETs activator, or
lipopolysaccharide (LPS), which is a TLR-4 stimulator, as evaluated using i) cell apoptosis, positive (+ve) Annexin V with negative (-ve) Propidium iodide (PI) or
necrosis, -ve Annexin V negative with +ve PI, with the representative flow cytometry patterns (A, B) and ii) reactive oxygen species (ROS) using dihydroethidium
(DHE) with the representative flow cytometry patterns (C) are demonstrated. Additionally, NETs were determined in time-points by supernatant dsDNA (D), PAD4
expression (E), nuclear morphology by 4’,6-diamidino-2-phenylindole (DAPI), a blue nuclear staining (F) and the co-staining of myeloperoxidases (MPO), and
neutrophil elastase (NE) (G) or citrullinated histone H3 (CitH3) (H) at the 4 h of stimulation using immunofluorescence are demonstrated (independent triplicated
experiments were performed).
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with renal I/R. Indeed, PAD4 inhibitor decreased NETs (serum
dsDNA, serum MPO, and glomerular NETs) at 24 h post-renal I/R
and attenuated lupus characteristics (anti-dsDNA, proteinuria and
Scr) at 120 h post-renal I/R (Figures 11A–G) supporting an impact of
NETs formation on anti-dsDNA production and lupus exacerbation.
Frontiers in Immunology | www.frontiersin.org 12
DISCUSSION

Renal injury at 24 h post renal-I/R prominently induced
neutrophil extracellular traps (NETs) and apoptosis in kidneys
of Fcgr2b-/- lupus mice that exacerbated the lupus activity at
FIGURE 7 | Prominent neutrophil extracellular traps (NETs) at 4 h of the stimulation in neutrophils of lupus prone mice. The representative immunofluorescent
pictures of NETs formation in Fcgr2b-/- and wild-type (Fcgr2b+/+) neutrophils after 4 h activation by phorbol myristate acetate (PMA), a NETs activator, or
lipopolysaccharide (LPS), a TLR-4 stimulator, as evaluated by the co-staining of myeloperoxidases (MPO) and neutrophil elastase (NE) (upper part) or citrullinated
histone H3 (CitH3) (lower part) are demonstrated.
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120 h post renal-I/R. However, the inhibitors against Syk and
PAD4 attenuated the NETs at 24 h post-renal I/R and prevented
lupus exacerbation at 120 h post-renal I/R.

Program Cell Death Exacerbates Lupus
Disease Activity
To avoid an influence of lupus-induced renal impairment on the
renal-I/R model, 8-week-old Fcgr2b-/- mice (asymptomatic lupus
prone mice) were used in all experiments and lupus disease
activity parameters (anti-dsDNA, proteinuria and Scr) were
observed (72). They are well-known for apoptosis (with
secondary necrosis), NETosis, and apoNETosis, the pathways of
program cell death that cause exposure of auto-antigens from
nuclei, which could exacerbate lupus activity (35). Indeed, both of
NOX2-dependent NETosis and caspase 3-associated apoptosis
after renal-I/R (34, 73) as well as apoNETosis (NOX2-
independent NETosis together with caspase 3 activation in the
same neutrophils) were activated by high intensity of ultra-violet
light (16) might enhance lupus disease activity. Although a
simultaneous detection of apoptosis and NETosis at 24 h post
renal-I/R was demonstrated, these characteristics was not the
apoNETosis (apoptosis and NETosis in the same neutrophils).
Perhaps, glomerular apoptosis at 24 h post renal-I/R might be
Frontiers in Immunology | www.frontiersin.org 13
consisted of apoptosis in both renal parenchymal cells and
neutrophils. The exploration in this topic is outside the scope of
this study. Nevertheless, the enhanced exposure of self-antigens
through any cell death pathways possibly exacerbates lupus
disease activity (35).

Prominent NETs and Apoptosis
in Fcgr2b-/- Lupus Mice at 24 h
Post-Renal I/R
Both NETosis and apoptosis in several cells after renal I/R have
been previously mentioned (34, 73, 74), which might be associated
with lupus disease exacerbation. Here, there was a similar kidney
damage at 24 h post-renal I/R between Fcgr2b-/- and WT mice,
but NETs formation (in peripheral blood neutrophils and the
internal organs) and apoptosis (in kidneys and lungs) were more
prominent in Fcgr2b-/- mice. These data supported the more
susceptibility to NETs and apoptosis of Fcgr2b-/- mice than the
WT. For the renal I/R-induced NETs, NETs in neutrophils locally
accumulated in the injured kidneys and remotely deposited in the
lungs through the induction of damage, which was associated with
the Damage Associated Molecular Patterns (DAMPs) from renal
tubular necrosis as previously published (75). However, the effect
of renal I/R on Fcgr2b-/- mice was more prominent thanWTmice
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FIGURE 8 | Prominent cytokine production at 4 h through Spleen tyrosine kinase (Syk) and nuclear factor kappa B (NFkB) in neutrophils of lupus prone mice.
Responses of Fcgr2b-/- and wild-type (Fcgr2b+/+) neutrophils after activation by phorbol myristate acetate (PMA), a NETs activator, or lipopolysaccharide (LPS), a
TLR-4 stimulator, as evaluated in time-points by supernatant cytokines (TNF-a, IL-6 and IL-10) (A–C) and the downstream signals (at 4 h of the stimulation) in gene
expression (Syk and NFkB) (D, E) and protein abundances (Syk/phosphorylated-Syk and NFkB/phosphorylated NFkB) with the representative pictures of Western
blot analysis (F, G) are demonstrated (independent triplicated experiments were performed).
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FIGURE 9 | The inhibitors against Spleen tyrosine kinase (Syk) or Nuclear factor kappa B (NFkB) attenuated neutrophil extracellular traps (NETs). NETs formation in
Fcgr2b-/- and wild-type (Fcgr2b+/+) neutrophils after 4 h activation by phorbol myristate acetate (PMA), a NETs activator, with or without inhibitors against Syk (Syk
inhibitor) or NFkB (NFkB inhibitor) as determined by supernatant dsDNA (A), PAD4 expression (B) and co-staining of myeloperoxidase (MPO) and neutrophil elastase
(NE) with the representative immunofluorescent pictures (C, D) are demonstrated. In parallel, NETs formation after activation by lipopolysaccharide (LPS), a TLR-4
stimulator, with or without the inhibitors as determined by the same parameters (E–H) are also demonstrated (independent triplicated experiments were performed).
RPMI, Roswell Park Memorial Institute media (for neutrophils); Control group using only RPMI without the stimulation.
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perhaps through the hyper-responsiveness from inhibitory Fc
gamma receptor (FcgR) deficiency (76). The upregulation of
activating-FcgRs without Fcgr2b inhibitory signaling partly
generated the increased responses of Fcgr2b-/- macrophages (8,
77). Because i) NETosis from activation on TLR-4, one of the
receptors for DAMPs (78, 79), is well-known (80), ii) the crosstalk
between TLR-4 and activating-FcgRs (20, 21, 59), which is the
profound reaction against DAMPs of Fcgr2b-/- mice, is possible,
Frontiers in Immunology | www.frontiersin.org 15
and iii) both TLR-4 and FcgRs are presented on neutrophils (78,
81). Therefore, the more severe NETosis at 24 h post-renal I/R in
Fcgr2b-/- mice is probably resulted from the TLR-4/activating-
FcgRs cross-talk on neutrophils, which is similar to the Fcgr2b-/-
macrophages (20, 21). However, renal ischemia induced liver and
cardiac injury (27, 28) was not associated with NETs that would be
consistent with the non-detectable NETs in these organs. Notably,
the upregulated PAD4 and IL-1b without the positive detection of
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FIGURE 10 | Spleen tyrosine kinase (Syk) inhibitor decreased neutrophil extracellular traps (NETs) at 24 h after renal ischemia reperfusion injury (I/R) and attenuated
lupus characteristics (anti-dsDNA, glomerular immunoglobulin deposition and lupus nephritis) at 120 h post-I/R in lupus prone mice. Characteristics of Fcgr2b-/-
mice after renal I/R with Syk inhibitor or phosphate buffer solution (PBS) as determined by i) indicators of NETs in serum; serum dsDNA and serum myeloperoxidase
(MPO) (A, B), ii) NETs in kidneys; expression of PAD4 and IL-1b (C) and co-staining of MPO and neutrophil elastase (NE) with the representative pictures (D), iii)
glomerular apoptosis (active caspase 3 staining) and immunoglobulin deposition with the representative pictures (E, F), and iv) lupus nephritis characteristics; serum
dsDNA, proteinuria (urine protein creatinine index; UPCI), and serum creatinine (G–I) are demonstrated (n = 5–7/group).
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MPO and NE in livers and hearts supported pro-inflammatory
activation (27, 28) in these organs without NETosis.

On the other hand, the renal I/R induces apoptosis of the
renal parenchymal cells and the accumulated immune cells (32,
33), especially neutrophils (29–31). At 24 h post-renal I/R,
apoptosis in kidneys and lungs of Fcgr2b-/- mice was more
prominent than WT mice, possibly due to the hyper-
inflammation induced apoptosis. Accordingly, DAMPs-
activated TLR-4 induces massive apoptosis in parenchymal
cells (kidneys and lungs) and immune cells (macrophages and
neutrophils) after renal-I/R is well-known (82–85). Furthermore,
the enhanced TLR-4 activation in Fcgr2b-/- mice through TLR-
4/activating-FcgRs cross-talk (20, 21), might also be responsible
to immune hyper-responsiveness and profound apoptosis.
Nevertheless, both NETs and apoptosis were more prominent
in Fcgr2b-/- mice than WT at 24 h post-I/R, which possibly
enhanced self-antigens presentation and increased auto-
antibody production (12, 16).
Frontiers in Immunology | www.frontiersin.org 16
Prominent Anti-dsDNA and Immune
Complex Deposition, but Not NETs, in
Fcgr2b-/- Lupus Mice at 120 h Post-Renal
I/R Exacerbates the Lupus Activity
The association between the program cell death pathways and the
lupus exacerbation through the enhanced auto-antibody production
is well-established (35). Here, the program cell deaths (NETosis and
apoptosis) at 24 h post-renal I/R enhanced the production of anti-
dsDNA in Fcgr2b-/- mice at 120 h post-renal I/R were
demonstrated. The prominent anti-dsDNA, which is a major
lupus auto-antibody, in Fcgr2b-/- mice at 120 h post-renal I/R
suggests an impact of the loss of immune tolerance in these lupus
mice (25). Interestingly, anti-dsDNA is inducible very shortly after
I/R (5 days) in 8-week-old Fcgr2b-/- mice (asymptomatic lupus
prone mice), despite the low-level of anti-dsDNA at baseline which
is similar to the level in WT mice, indicating the existence of auto-
reactive B cells in Fcgr2b-/- mice. Indeed, the clonal expansion of
self-reactive B cells in germinal center is one of the main
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FIGURE 11 | Peptidylarginine deiminase 4 (PAD4) inhibitor decreased neutrophil extracellular traps (NETs) at 24 h after renal ischemia reperfusion injury (I/R) and
attenuated lupus characteristics (anti-dsDNA, glomerular immunoglobulin deposition and lupus nephritis) at 120 h post-I/R in lupus prone mice. Characteristics of
Fcgr2b-/- mice after renal I/R with PAD4 inhibitor or phosphate buffer solution (PBS) as determined by indicators of NETs in serum; serum dsDNA and serum
myeloperoxidase (MPO) (A, B), NETs in kidneys; co-staining of MPO and neutrophil elastase (NE) with the representative pictures (C, D) and characteristics of lupus
nephritis; serum dsDNA, proteinuria (urine protein creatinine index; UPCI), and serum creatinine (E–G) are demonstrated (n = 4–5/group).
June 2021 | Volume 12 | Article 669162

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Saisorn et al. NETs in FcgRIIb Deficient Mice With AKI
pathogenesis of autoimmune diseases (86). In this study, plasma
cells and activated B cells in spleen of Fcgr2b-/- mice were higher
than WT at 120 h post-renal I/R, supporting that a prominent
activity of these immune cells in lupus that might be responsible for
the rapid induction of anti-dsDNA. Therefore, the loss of inhibitory
FcgRs in autoreactive B cells of Fcgr2b-/- mice might be more
susceptible to the non-specific inflammatory activation from renal-
I/R, which led to a rapid clonal expansion and an acceleration of the
auto-antibody production (62).

Additionally, the prominent immune complex (IC) deposition at
120 h post-renal I/R in Fcgr2b-/- mice possibly resulted in
mononuclear cell infiltrations and inflammatory responses in
several organs. In contrast, the only abnormality in WT mice at
120 h post-renal I/R was proteinuria (with normal Scr) due to the
incomplete recovery of proximal renal tubules (87). At 120 h post-
renal I/R, Fcgr2b-/- mice demonstrated the lupus characteristics as
indicated by Scr, anti dsDNA, proteinuria, and glomerular IC
deposition. Due to the non-detectable renal MPO and NE in
lupus mice at 120 h post-I/R, renal injury was not directly caused
by NETs but perhaps the enhanced glomerular IC deposition.
Hence, profound NETs and apoptosis at 24 h post renal-I/R in
Fcgr2b-/- mice further caused the lupus exacerbation at 120 h post-
I/R which might be due to i) accelerated auto-antibody production
from the enhanced self-antigen presentation by NETosis and
Frontiers in Immunology | www.frontiersin.org 17
apoptosis (88–90) and ii) IC deposition induced inflammation
(91). These results indicated that acute kidney injury in lupus
acted as an exacerbating factor through the program cell
death pathways.

The Increased Susceptibility to Apoptosis
and NETosis of Fcgr2b-/- Neutrophils
and the Syk Inhibition: A Potential
Clinical Translation
Although the activation of inhibitory-Fcgr2b in T cells could induce
the T cell apoptosis (92), the hyper-inflammatory responses of
Fcgr2b-/- macrophages (due to the inhibitory loss) cause the
profound LPS-induced apoptosis (13). Because the inhibitory
Fcgr2b presents in all myeloid cells (93) (not only macrophages
but also neutrophils), Fcgr2b-/- neutrophils might be more
susceptible to the cell death pathways. Although, PMA (94) and
LPS (95) are a well-known NETs stimulator and a potent apoptosis
inducer, respectively, both agents could induce both apoptosis and
NETosis (65–67, 96, 97). Indeed, PMA and LPS induced the more
prominent apoptosis and NETosis through Syk and NFkB in
Fcgr2b-/- neutrophils compared with WT at 2 h and 4 h,
respectively, supported the previous publications (69, 98). Because
the data of NETosis were less compared to apoptosis in Fcgr2b-/-
immune cells, NETosis was further explored. As such, both gene
FIGURE 12 | The working hypothesis. Spleen tyrosine kinase (Syk) is a possible shared-downstream signaling of i) reactive oxygen species (ROS) derived from
NADPH oxidase 2 (NOX2)-dependent PMA stimulation (100), ii) direct TLR-4 activation through DAMPs (damage associated molecular patterns) from renal ischemia
(in mice) or lipopolysaccharide (LPS) (in vitro), iii) indirect TLR-4 activation from DNA histone released from PMA-induced NETosis (99) and iv) Fc gamma receptors
(FcgRs) (98). Indeed, Syk, activated through immunoreceptor tyrosine-based activation motif (ITAM) and non-ITAM dependent signals from FcgRs and TLR-4,
respectively (37), could enhance both apoptosis (2 h post-stimulation) and NETosis (4 h post-stimulation) (100, 101). Hence, prominent Syk activation in Fcgr2b-/-
neutrophils compared with wild-type (WT) might be due to the crosslink between TLR-4 and activating-FcgRs (20, 21, 58) without the inhibitory receptor (blue cross
line). After that, the profound free nuclear antigens, including dsDNA, from apoptosis and NETosis exacerbates lupus activity from the prominent anti-dsDNA
production in Fcgr2b-/- mice but not in WT (+ve, positive signal; -ve, negative signal).
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expression and protein quantification of Syk and NFkB in Fcgr2b-/-
neutrophils were higher than WT cells and the inhibition of both
Syk and NFkB attenuated the NETosis, indicating a possible
association between Syk and Fc gamma receptors (46, 99). In
addition, the association between NETs and lupus exacerbation
was demonstrated in renal I/R Fcgr2b-/- mice along with the
inhibitors against NETs (Syk and PAD4 inhibitors). Both
inhibitors effectively attenuated NETs at 24 h post-renal I/R and
decreased anti-dsDNA at 120 h of the model, supporting that NETs
blockade could prevent the renal I/R-induced lupus exacerbation.

The working hypothesis of the in vivo and in vitro experiments is
presented in Figure 12. Accordingly, TLR-4 is an important
pathway for apoptosis and NETosis (36), which could be induced
by LPS, DAMPs (from renal-I/R), and DNA histones (from
NETosis of PMA and renal-I/R) (100) possibly through the
NADPH oxidase 2 (NOX2) dependent pathway (66, 102, 103).
Likewise, Fc gamma receptors are the initiation of NETosis through
Syk activation (37). Because i) Syk is a downstream of Fc gamma
receptors and TLR-4 through immunoreceptor tyrosine-based
activation motif (ITAM) and non-ITAM dependent pathways,
respectively (37), ii) Syk is a possible shared downstream signaling
from TLR-4, Fc gamma receptors and PMA (Figure 10), which
activated the Syk through ROS from NOX2-dependent PMA
stimulation (102), and iii) Syk also enhances ROS production
(104, 105) that could accelerate both apoptosis and NETosis
(102), and this inhibitor is an interesting drug for use in lupus.
Thus, a possible mechanism that is responsible for prominent
apoptosis and NETosis in Fcgr2b-/- neutrophils over WT might
be an enhanced TLR-4 activity due to the crosstalk between TLR-4
and activating Fc gamma receptors (106) through Syk (and NFkB)
without the inhibitory Fcgr2b (Figure 12). Despite an incomplete
data on the association between Syk and Fc gamma receptors, the
attenuation of NETosis and apoptosis with the prevention on lupus
exacerbation by Syk inhibitor in Fcgr2b-/- mice with renal-I/R is
interesting. Since Syk inhibitors are clinically available (107–110) for
either lupus (42) or non-lupus conditions (20, 21, 101, 111), Syk
inhibitor might be useful for the prevention of renal injury-induced
lupus exacerbation. Future studies are of interest.

In conclusion, the prominent NETs and the Syk activation were
observed in Fcgr2b-/- mice after renal I/R injury that induced lupus
exacerbation. The attenuation of NETs using Syk inhibitor, possibly
through reduction of the downstream signaling of TLR-4 and Fc
gamma receptors, was proposed as an interesting strategy for the
treatment in lupus. Further studies are warranted.
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Supplementary Figure 1 | The age-dependent lupus characteristics of Fcgr2b-/-
mice and the injury from renal ischemia reperfusion injury (I/R). Age-dependent
lupus nephritis of Fcgr2b-/- mice compared with wild-type (Fcgr2b+/+) mice; serum
creatinine, urine protein creatinine index (UPCI) and serum anti-dsDNA, (A–C) and
the characteristics in time-point of Fcgr2b-/- or Fcgr2b+/+ mice after renal ischemia
reperfusion injury (I/R) as determined by gene expression of cytokines (TNF-a, IL-6
and IL-10) in kidneys (D–F), liver (G–I), heart (J–L), lung (M–O) and the
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representative Hematoxylin and Eosin (H&E) staining (original magnification 200x) of
liver and lung at 120 h post renal I/R (P) are demonstrated (n = 6–7/time-point).
Notably, the renal histological pictures at other time-points of both mouse strains
are not demonstrated due to the similarity to Fcgr2b-/- mice at 120 h post I/R
(normal histology).

Supplementary Figure 2 | Renal ischemia reperfusion injury (I/R) induced more
prominent neutrophil extracellular traps (NETs) in lungs of lupus prone mice.
Characteristics of NETs in lungs from Fcgr2b-/- or wild-type (Fcgr2b+/+) mice
after renal ischemia reperfusion injury (I/R) as determined by co-staining of
myeloperoxidases (MPO) and neutrophil elastase (NE) at 24 h post-I/R (A) (n = 5–8/
group) and gene expression in the time-point of IL-1b and PAD4 (B, C) (n = 6–7/
time-point) with the representative immunofluorescent pictures of NE (green), MPO
(red) and 4’,6-diamidino-2-phenylindole (DAPI, blue nuclear staining) at 24 h post-I/
R (or sham) (original magnification 630x) (D) are demonstrated. Additionally, the
score of MPO and NE co-staining at 24 h post-I/R (E) with IL-1b and PAD4 in liver
(F, G) and in hearts (H–J) (n = 6–7/group or time-point) are also demonstrated.

Supplementary Figure 3 | Renal ischemia reperfusion injury (I/R) induced more
prominent apoptosis and immunoglobulin G (IgG) deposition in lungs of lupus prone
mice. Characteristics of lung injury from Fcgr2b-/- or wild-type (Fcgr2b+/+) mice after
renal ischemia reperfusion injury (I/R) as evaluated by apoptosis (activated caspase 3) (A),
Frontiers in Immunology | www.frontiersin.org 19
IgG deposition (B) (n = 6–7/time-point for A–D) with the representative
immunofluorescent pictures (activated caspase 3 and IgG deposition) frommice at 0, 24
and 120 h post-I/R (original magnification 630x) (E) are demonstrated.

Supplementary Figure 4 | Prominent activation of plasma cells and activated B
cells in spleen of lupus mice at 120 h post-renal I/R. Characteristics of immune cells
in spleen at 120 h after sham or renal ischemia reperfusion injury (I/R) from Fcgr2b-/-
and wild-type (Fcgr2b+/+) mice as indicated by the abundance in spleen of plasma
cell (CD138 and B220 positive cells) (A), activated B cells (MHC II and B220 positive
cells) (B), germinal center B cells (CD19 and GL7 positive cells) (C), follicular B cells
(CXCR5 and B220 positive cells) (D) and the representative flow cytometry analysis
of plasma cells and activated B cells (E) are demonstrated (n = 4-5/group).

Supplementary Figure 5 | Inhibitors against Spleen tyrosine kinase (Syk) or
Nuclear factor kappa B (NFkB) attenuated neutrophil cytokine production.
Supernatant cytokines (TNF-a, IL-6 and IL-10) in Fcgr2b-/- and wild-type
(Fcgr2b+/+) neutrophils after 4 h activation by phorbol myristate acetate (PMA),
a NETs activator, with or without inhibitors against Syk (Syk inh) or NFkB (NFkB inh)
(A–C) or activation by lipopolysaccharide (LPS), a TLR-4 stimulator, (D–F) are
demonstrated (independent triplicated experiments were performed). RPMI,
Roswell Park Memorial Institute media (for neutrophils); Control group using only
RPMI without the stimulation.
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