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Abstract—By stacking a number of convolutional layers, convo-
lutional neural networks (CNNs) have made remarkable perfor-
mance boosts in many artificial intelligence applications. While
the convolution operation is well-understood, it is still a mystery
why repeated convolutions yield so good expressive power and
generalization performance. Noting that the linear convolution
operation can be represented as a matrix-vector product with
the matrix being of a Toeplitz structure, we propose to inspect
the individual convolutional layer through its asymptotic spectral
representation - the spectral density matrix - by leveraging
Toeplitz matrix theory. Thanks to such spectral representation,
we are able to develop a simple singular value approximation
method with improved accuracy, and spectral norm upper
bounds with reduced computational complexity, compared with
the state-of-the-art methods. Both the improved approximation
and upper bounds can be employed as regularization techniques
to further enhance the generalization performance of CNNs.
By extensive experiments on well-deployed CNN models (e.g.,
ResNets), we also demonstrate that the approximation approach
achieves higher accuracy and the upper bounds are effective
spectral regularizers for generalization.

Index Terms—Convolutional neural networks, spectral repre-
sentation, Toeplitz matrix, regularization

I. INTRODUCTION

The last decade has witnessed the success of deep learning
models, in particular the most popular convolutional neural
networks (CNNs), in various artificial intelligence applications,
such as computer vision and natural language processing
[1]–[3]. With a number of convolutional and fully-connected
layers, the state-of-the-art CNN models (e.g., ResNets [4])
are able to learn an over-parameterized model from training
data for representing any level of data abstraction, in such a
way that the learned models achieve remarkable prediction
performance on test data that are unseen during the training.
These advantages are attributed to the excellent expressive
power and generalization ability of CNN models.

Albeit promising from an empirical point of view, the
advances of CNN models are mostly focused on the new
network architecture design and parameter tuning. There is
still a lack of thorough theoretical understandings as to how
and why CNNs achieve so good performance [5]. As such, it
is crucial to advance the fundamental understanding of deep
learning for the reliable and secure deployment of CNN models
in the safety-critical applications, e.g., autonomous driving
and healthcare. Recent progress pushing forward this line of
research includes a variety of regularization techniques for
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generalization (e.g., [6]–[9]), and generalization error bounds
(e.g., [10]–[12]). It is suggested that a deeper understanding
of CNN models requires investigating the structural properties
of the individual convolutional layers.

In CNNs, each individual convolutional layer performs
a linear transformation from its input to output representa-
tions, through a multi-channel multi-dimensional convolution
operation. This convolution can be expressed as a matrix-
vector product, where the linear transformation matrix comes
from convolutional filters and the vector represents the layer’s
reshaped input. Motivated by spectral analysis of convolution
theorem in signal processing using Fourier transform, one
may wonder how spectral theory can be applied to linear
operators with respect to convolution operations. Spectral
analysis of linear operators consists in inspecting the set of
their singular/eigenvalues – the spectra of the operators – of
the associated matrices.

Spectral properties of weight matrices of fully-connected
layers have been analyzed to understand the generalization
performance of deep neural networks (DNNs) models, e.g.,
[13]–[17] for the entire singular value distribution, and e.g., [6],
[7], [11], [18]–[22] for the largest singular value (a.k.a. spectral
norm), to name just a few. In particular, it has been shown in
[15] that the analysis of singular value distribution of layer
weight matrices helps reveal the implicit self-regularization
of DNN models; and in [20] that generalization error is
upper bounded by spectral and Frobenius norms of the layer
weight matrices, suggesting that suppressing singular values
can therefore enhance the generalization performance.

Whilst such spectral analysis is applicable to CNNs, where
the layer weight matrices are more structured due to convo-
lution, recent advances in this thread lie in developing low-
complexity spectral regularization methods for generalization
by exploiting the structural properties of the linear transforma-
tion of convolution. For instance, spectral regularization has
been also applied to convolutional layers so as to guide the
training process by e.g., clipping singular values within an
interval to avoid explosion or vanishing of gradients [16], and
bounding spectral norms to enhance generalization performance
and robustness against adversarial examples [6], [7], [22].

However, as the size of such linear transformation matrices
grows with the input size of the layers, it is computationally
challenging to compute the spectra, even for the largest singular
values. The straightforward singular value decomposition
(SVD) incurs huge computational burden, which is even
worse when singular values are required to be computed
during the training process to guide spectral regularization and
normalization [6], [7]. Fortunately, the structures of the linear
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transformation matrices can be exploited to reduce the com-
putational complexity of SVDs. In [16], [17], [22], the linear
convolutional layer is treated as a circular one by a “wrapping
round” operation. In doing so, the linear transformation matrices
are endowed with a circulant structure, by which efficient
methods were proposed to compute a circular approximation of
the convolutional layers with substantially reduced complexity.
To further reduce computational complexity, upper bounds of
spectral norm of the circular convolutional layers were derived
in [22] at the expense of degraded accuracy.

As a matter of fact, such a “wrapping round” operation is
not always endowed in many convolutional layers, for which a
linear, rather than circular, convolutional operation is applied.
With such a linear convolution, the linear transformation matrix
has a Toeplitz structure, which includes the circulant one as
a special case. This has been pointed out by a number of
previous works, e.g., [23]–[25], that the two-dimensional single-
channel convolutional layer results in a doubly block Toeplitz
matrix. A question then arises as to how close is the circular
approximation to the exact linear Toeplitz case. While this gap
has been studied for large Hermitian matrices (e.g., symmetric
real matrices) [26], it is still unclear for the non-Hermitian
matrices, including the linear transformation matrices of linear
convolution, which are asymmetric real matrices. This motivates
the study of the current work.

In this paper, we consider the linear convolutional layers,
with main focus on the multi-channel two-dimensional linear
convolution with stride size of 1, so that the linear trans-
formation matrix is a block matrix with each block being a
doubly Toeplitz matrix. By rows and columns permutation,
we construct an alternative representation as a doubly block
Toeplitz matrix with each element being a matrix, for which the
singular values of both representations are identical. As such,
we propose a spectral representation of the linear transformation
matrix by a spectral density matrix, by which the spectral
analysis of the former can be alternatively done on the latter.
Specifically, the main contributions are three-fold:
• The singular value distribution of linear transformation

matrix of CNNs is cast to that of its spectral density matrix,
thanks to an extension of the celebrated Szegö Theorem
for Hermitian Toeplitz matrices to non-Hermitian block
doubly Toeplitz matrices. In doing so, the asymptotic
spectral analysis of the linear convolutional layers can be
alternatively done by inspecting the corresponding spectral
density matrix. The circular convolution by “wrapping
around” is a special case of such a spectral representation,
by which the singular values can also be produced by
uniformly sampling the spectral density matrix.

• By treating singular values of the spectral density matrix as
random variables, the individual singular value distribution
can be quantified by a quantile function. As such, we
propose a simple yet effective algorithm to compute
singular values of linear convolutional layers by subtly
adjusting the singular value distribution obtained from the
circular approximation.

• To upper-bound the spectral norm of the linear trans-
formation matrix, we instead upper-bound that of its
corresponding spectral density matrix. As a consequence,

we come up with three spectral norm bounds that can be
used for spectral regularization.

Experimental results demonstrate the superior accuracy of our
singular value approximation method and the effectiveness
of spectral norm bounds for regularization with respect to
generalization in practical CNN models, e.g., ResNets. As a
side remark, our proposed spectral representations is different
from that in [27], in which the image representations in the
pixel domain (i.e., the representations of data rather than the
convolutional layers) are transformed to the frequency domain
through the Discrete Fourier transforms (DFT). In addition,
such a spectral representation of the convolutional layers has
been found useful to tackle adversarial robustness for CNNs
using Lipschitz regularization [28].

II. NOTATIONS AND PRELIMINARIES

A. Notations and Definitions

For two integers m and n satisfying m < n, define [m] ,
{1, 2, . . . ,m}, n− [m] , {n− 1, n− 2, . . . , n−m}, and [m :
n] , {m,m+ 1, . . . , n}. Define {aj}j , {aj ,∀j}. x ∈ [a, b]
is such that a ≤ x ≤ b.  is the imaginary unit.

Denote by a, a, A scalars, vectors, and matrices/tensors,
respectively. AT and AH represent matrix transpose and
Hermitian transpose of A, respectively. A complex-valued
matrix A is Hermitian if A = AH. If A is real-valued, A
is Hermitian is equivalent to A is symmetric, i.e., A = AT.
We denote by blkdiag(A,B, . . . ) a block diagonal matrix
with diagonal blocks being A,B, . . . , and by circ(a, b, . . . ) a
circulant matrix with elements in the first row being a, b, . . . .
Likewise, circ(A,B, . . . ) is the block circulant matrix with
first row blocks being A,B, . . . . An n × n matrix Fn
is called Discrete Fourier Transform (DFT) matrix, where
[Fn]ik = 1√

n
e−2π(i−1)(k−1)/n for i, k ∈ [n]. In is the n× n

identity matrix. For a tensor A, vec(A) denotes the vectorized
version of A, and for a 4-order tensor A, Ai,j,k,l is used to
index its elements.

Denote by ⊗ the Kronecker product between two matrices.
For a scalar k, it holds A ⊗ (kB) = k(A ⊗ B) and A ⊗
(
∑
iBi) =

∑
iA⊗Bi. For two matrices A and B, A⊗B is

permutation equivalent to B ⊗A, i.e., there exist permutation
matrices Π1 and Π2 such that B ⊗A = Π1(A⊗B)Π2.

For a matrix A = (aij)
m,n
i,j=1 with rank(A) = r, we denote

by {σj(A)}j the collection of singular values of A arranged
in descending order, i.e., σ1(A) ≥ σ2(A) ≥ · · · ≥ σr(A).
The norm ‖A‖2 , σ1(A) is called spectral norm. The
Schatten p-norm is defined as ‖A‖p , (

∑r
j=1 σ

p
j (A))

1
p .

When p = 2, it coincides with Frobenius norm ‖A‖F ,√∑m
i=1

∑n
j=1|aij |2 =

√∑r
j=1 σ

2
j (A). The matrix `1 and

`∞ norms are defined as ‖A‖1 , maxj
∑m
i=1|aij | and

‖A‖∞ , maxi
∑n
j=1|aij |, respectively. |a| is the absolute

value or modulus of a scalar a.
A matrix-valued function F : [a, b]k → Cm×n is such

that F (x) ∈ Cm×n for x ∈ [a, b]k. F is Lebesgue mea-
surable (resp. bounded, continuous) in [a, b]k if each of its
element Fij is Lebesgue measurable (resp. bounded, contin-
uous) in [a, b]k. For F : [−π, π]2 → Cm×n, its Lp-norm is
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defined as ‖F‖Lp , ( 1
(2π)2

∫ π
−π
∫ π
−π‖F (ω1, ω2)‖pFdω1dω2)

1
p

for p ≥ 1. In particular, for ω = (ω1, ω2) ∈ [−π, π]2,
‖F‖L∞ = supω‖F (ω)‖F. When F ∈ L2([−π, π]2), it means
‖F‖2L2

< +∞. Define ‖F‖p , supω‖F (ω)‖p for all p > 0,
e.g., ‖F‖2 , supω‖F (ω)‖2.

B. Toeplitz and Circulant Matrices

A Toeplitz matrix T = [ti−j ]
n
i,j=1 is an n × n matrix

for which the entries come from a sequence {tk, k =
0,±1,±2, . . . ,±(n − 1)}. A circulant matrix is a special
Toeplitz matrix, where C = [t(i−j) mod n]ni,j=1. That is,
t−k = tn−k for k = 1, 2, . . . , n − 1. Denote the circulant
matrix by C = circ(t0, t−1, . . . , t−(n−1)) using its first row,
where the rest is cyclic shift of the first row with n times.

An m × m block Toeplitz matrix B = [Ai−j ]
m
i,j=1 ∈

Cmp×mq is a Toeplitz matrix with each element being a p× q
matrix. Similarly, the block circulant matrix C is such that
C = [A(i−j) mod m]mi,j=1 with 0 mod m = m mod m = 0.
That is, A−k = Am−k for k = 1, 2, . . . ,m − 1, such that
C = circ(A0,A−1, . . . ,A−(m−1)) and the rest row blocks
are block-wise cyclic shift of the first row block.

When {Ak, k = 0,±1, . . . ,±(m − 1)} are also n × n
Toeplitz/circulant matrices, B is a block Toeplitz/circulant
matrix with Toeplitz/circulant blocks, which is also known as
doubly Toeplitz/circulant matrix.

A banded (block) Toeplitz matrix is a special Toeplitz matrix
T [resp. B] such that tk = 0 [resp. Ak = 0] when k > r or
k < −s for some 1 < r, s < n [resp. 1 < r, s < m].

III. CONVOLUTIONAL NEURAL NETWORKS

A. Linear Convolutional Layer

We consider multiple-channel two-dimensional linear con-
volutional layers with arbitrary padding schemes in CNNs
before applying activation functions and pooling. For ease
of presentation, we first consider the stride size 1, and the
extension to larger stride size will be discussed in Section VI.

Let the input be X ∈ Rcin×n×n and the linear con-
volutional filter be K ∈ Rcout×cin×h×w with h,w ≤ n,
where n, h,w, cin, cout are input size, filter height, filter width,
the numbers of input and output channels, respectively. For
convenience, we let the output Y have the same size as the
input X by arbitrary padding strategies, and reuse X as the
input with padding. By applying linear convolution of the filter
K to the input X , the output Y ∈ Rcout×n×n is given by

Yc,r,s =

cin∑
d=1

n∑
p=1

n∑
q=1

Xd,r+p,s+qKc,d,p,q (1)

for r, s ∈ [n] and c ∈ [cout] where Kc,d,p,q = 0 if p, q exceed
the ranges of h,w. A compact form of the above input-output
relation can be rewritten as

vec(Y ) = Avec(X), (2)

where A ∈ Rcoutn2×cinn2

is the linear transformation matrix
of the convolutional layer. For the general case with multiple-

input and multiple-output channels, the linear transformation
can be represented as a cout × cin block matrix, i.e.,

A =


A1,1 A1,2 . . . A1,cin

A2,1 A2,2 . . . A2,cin
...

...
...

Acout,1 Acout,2 . . . Acout,cin

 , (3)

where each block Ac,d is a banded block Toeplitz matrix, i.e.,
[Ac,d]i1,j1 = Ac,d

i1−j1 for −h1 ≤ i1 − j1 ≤ h2. Specifically,

Ac,d =



Ac,d
0 · · · Ac,d

−h1
0 . . . 0

... Ac,d
0

. . . . . . . . .
...

Ac,d
h2

. . . . . . . . . . . . 0

0
. . . . . . . . . . . . Ac,d

−h1

...
. . . . . . . . . Ac,d

0

...
0 · · · 0 Ac,d

h2
· · · Ac,d

0


(4)

where h1, h2 depend on the size of padding in height subject
to h = h1 +h2 + 1. Each block Ac,d

k is still a banded Toeplitz
matrix, i.e., [Ac,d

k ]i2,j2 = ac,dk,i2−j2 for −w1 ≤ i2 − j2 ≤ w2.
Specifically,

Ac,d
k =



ac,dk,0 · · · ac,dk,−w1
0 · · · 0

... ac,dk,0
. . . . . . . . .

...

ac,dk,w2

. . . . . . . . . . . . 0

0
. . . . . . . . . . . . ac,dk,−w1

...
. . . . . . . . . ac,dk,0

...
0 · · · 0 ac,dk,w2

· · · ac,dk,0


(5)

where w1, w2 subject to w1 +w2 + 1 = w that are determined
by the size of padding in width. The elements in Ac,d

k are
weights in the filter [cf. (6)]. In matrix analysis, A is usually
referred to as multi-block multi-level (doubly) Toeplitz matrix.
For k ∈ [−h1 : h2] and l ∈ [−w1 : w2], we have

ac,dk,l = Kc,d,h1+k+1,w1+l+1, (6)

for all c ∈ [cout] and d ∈ [cin].

B. Alternative Representation
For ease of spectral analysis, we transform A into a multi-

level block Toeplitz matrix (whose entries of the last level are
matrices) via vec-permutation operation [29], for which the
matrix spectrum keeps unchanged.

Denote by T ∈ Rcoutn
2×cinn2

the alternative representation
as a block Toeplitz matrix with [T ]i1,j1 = Ti1−j1 for i1 ≤
h2 + 1 and j1 ≤ h1 + 1, that is,

T =



T0 · · · T−h1
0 . . . 0

... T0
. . . . . . . . .

...

Th2

. . . . . . . . . . . . 0

0
. . . . . . . . . . . . T−h1

...
. . . . . . . . . T0

...
0 · · · 0 Th2

· · · T0


(7)
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with each block Tk for all k ∈ [−h1 : h2] being still a block
Toeplitz matrix [Tk]i2,j2 = Tk,i2−j2 for i2 ≤ w2 + 1 and
j2 ≤ w1 + 1, that is,

Tk =



Tk,0 · · · Tk,−w1 0 . . . 0
... Tk,0

. . . . . . . . .
...

Tk,w2

. . . . . . . . . . . . 0

0
. . . . . . . . . . . . Tk,−w1

...
. . . . . . . . . Tk,0

...
0 · · · 0 Tk,w2

· · · Tk,0


(8)

where each block Tk,l ∈ Rcout×cin with l ∈ [−w1 : w2] is

Tk,l =


tk,l1,1 tk,l1,2 · · · tk,l1,cin

tk,l2,1 tk,l2,2 · · · tk,l2,cin
...

. . . . . .
...

tk,lcout,1 tk,lcout,2 · · · tk,lcout,cin

 . (9)

By such an alternative representation, we have

tk,lc,d = Kc,d,h1+k+1,w1+l+1 = ac,dk,l , (10)

for all c ∈ [cout] and d ∈ [cin].
In what follows, we show that the alternative representation

T of the linear convolutional layers has the identical spectrum
structure as the original form A.

Lemma 1. {σj(T ), ∀j} = {σj(A), ∀j}.

Proof. Let ei be i-th column of identity matrix and Ei,j =
eie

T
j be a cout × cin matrix with only the (i, j)-th element

being 1 and 0 elsewhere. Define Pk as an n× n matrix with
[Pk]i,j = 1 if i − j = k and 0 otherwise. Thus, the original
linear transformation matrix A can be represented as

A =

cout∑
c=1

cin∑
d=1

Ec,d ⊗Ac,d (11)

=

cout∑
c=1

cin∑
d=1

Ec,d ⊗ (

h2∑
k=−h1

Pk ⊗Ac,d
k ) (12)

=

cout∑
c=1

cin∑
d=1

Ec,d ⊗ (

h2∑
k=−h1

Pk ⊗ (

w2∑
l=−w1

Pl ⊗ ac,dk,l )) (13)

=

cout∑
c=1

cin∑
d=1

h2∑
k=−h1

w2∑
l=−w1

ac,dk,lEc,d ⊗ Pk ⊗ Pl (14)

where the last equality is because ac,dk,l is a scalar. The alternative
one T can be represented as

T =

h2∑
k=−h1

Pk ⊗ Tk (15)

=

h2∑
k=−h1

Pk ⊗ (

w2∑
l=−w1

Pl ⊗ Tk,l) (16)

=

h2∑
k=−h1

Pk ⊗ (

w2∑
l=−w1

Pl ⊗ (

cout∑
c=1

cin∑
d=1

tk,lc,dEc,d)) (17)

=

cout∑
c=1

cin∑
d=1

h2∑
k=−h1

w2∑
l=−w1

tk,lc,dPk ⊗ Pl ⊗Ec,d (18)

where the last equality is because tk,lc,d is a scalar.
According to [29], Pk⊗Pl⊗Ec,d is permutation equivalent

to Ec,d ⊗ Pk ⊗ Pl, for which there exist two permutation
matrices Π1 and Π2, such that Pk ⊗Pl ⊗Ec,d = Π1(Ec,d⊗
Pk ⊗ Pl)Π2. Given the fact that ac,dk,l = tk,lc,d, it follows that

T = Π1AΠ2. (19)

Because permutation matrices are also orthogonal matrices,
and thus unitary, T and A have an identical set of singular
values. This completes the proof.

Lemma 1 says the block matrix with doubly Toeplitz matrix
blocks (i.e., A) has the same set of singular values as the
block doubly Toeplitz matrix (i.e., T ). This holds for any
Toeplitz matrices which are not necessarily banded, and for
any multi-level case but not limited to doubly Toeplitz case.

C. Circular Approximation

The “wrapping around” operation makes linear transforma-
tion a circular convolution, which is deemed as a circular
approximation of linear convolution. As h,w ≤ n, we can
construct a circulant matrix by “wrapping around” to assist the
spectral analysis.

Given the doubly block Toeplitz matrix T = [Ti−j ]
n
i,j=1

with Tk = 0 if k > h2 or k < −h1 and Tk = [Tk,p−q]
n
p,q=1

with Tk,l = 0 if l > w2 or l < −w1, the doubly block circulant
matrix C = circ(C0,C1, . . . ,Cn−1) is as follows

Ck =

 T−k, k ∈ {0} ∪ [h1]
Tn−k, k ∈ n− [h2]
0, otherwise

(20)

where Ck = circ(Ck,0,Ck,1, . . . ,Ck,n−1) with

Ck,l =


T−k,−l, k ∈ {0} ∪ [h1], l ∈ {0} ∪ [w1]
T−k,n−l, k ∈ {0} ∪ [h1], l ∈ n− [w2]
Tn−k,−l, k ∈ n− [h2], l ∈ {0} ∪ [w1]
Tn−k,n−l, k ∈ n− [h2], l ∈ n− [w2]
0, otherwise

(21)

where Tk,l is defined in (9).
In a similar way, the original block doubly Toeplitz matrix

A can also have a corresponding block doubly circulant matrix
C(A) = [C(Ac,d)]

cout,cin
c,d=1 where

C(Ac,d) = circ(C(Ac,d
0 ),C(Ac,d

−1), . . . ,C(Ac,d
−h1

), 0,

. . . , 0,C(Ac,d
h2

), . . . ,C(Ac,d
1 )) (22)

with C(Ac,d) ∈ Rn
2×n2

where

C(Ac,d
k ) = circ(ac,dk,0, . . . , a

c,d
k,−w1

, 0, . . . , 0, ac,dk,w2
, . . . , ac,dk,1)

with C(Ac,d
k ) ∈ Rn×n. Similarly to Lemma 1, we have the

following lemma.

Lemma 2. {σj(C), ∀j} = {σj(C(A)), ∀j}.
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Proof. The proof is similar to that of Lemma 1 and thus omitted.
The only difference is that, for the representation of n × n
circulant matrices, we have [Pk]i,j = 1 if (i− j) mod n = k
and 0 otherwise.

It can be easily verified that C(A) is essentially the
linear transformation matrix of circular convolutional layers
considered in [16]. As a byproduct of Lemma 2, we present
an alternative calculation of the singular values for the circular
convolutional layers that were characterized in [16].

Lemma 3. The linear transformation matrix C(A) can be
block-diagonalized as

C = (Fn ⊗ Fn ⊗ Icout)blkdiag(B1,1,B1,2, . . . ,B1,n,

B2,1, . . . ,Bn,n)(Fn ⊗ Fn ⊗ Icin)H (23)

where both (Fn ⊗ Fn ⊗ Icout) and (Fn ⊗ Fn ⊗ Icin) are
unitary matrices. Thus, the singular values of C(A) are the
collection of singular values of {Bi,k}ni,k=1 where

Bi,k =

n−1∑
p=0

n−1∑
q=0

Cp,qe
−2π p(i−1)+q(k−1)

n (24)

with Cp,q defined in (21).

Proof. By extending Lemma 5.1 in [30] from block circulant
matrices to doubly block circulant matrices, we conclude that
C can be block-diagonalized as in (23). As such, the singular
values of C are the collection of singular values of n2 matrices
{Bi,k}ni,k=1. By Lemma 5.1 in [30], for each i, k ∈ [n], we
compute Bi,k ∈ Ccout×cin by (24). The singular values of Bi,k

can be therefore obtained by applying off-the-shelf singular-
value decomposition algorithms.

The computation of Bi,k can be seen as a two-dim DFT of
Cp,q . With hw non-zero submatrices {Cp,q}, the computational
complexity consists in hw FFTs and n2 SVDs, which is
identical to that in [16]. We also point out that this alternative
approach essentially has the same flavor as that in [17].

Given Lemmas 1-3, we hereafter take T as the linear
transformation matrix of the linear convolutional layer and C
as its circular approximation, for asymptotic spectral analysis.

IV. ASYMPTOTIC SPECTRAL REPRESENTATION

For a convolutional layer with input size n and s input
and r output channels, the corresponding linear transformation
matrix T ∈ Crn

2×sn2

is challenging to analyze due to the
high dimensionality as the input size n increases. For instance,
a typical convolutional layer with filter size 64× 3× 3× 3 and
input size 3×224×224 has T of size 3, 211, 264×150, 528, for
which matrix analysis is prohibitively intractable and expensive.

To make it more tractable, in what follows, we present an
asymptotic spectral representation of T , taking advantage of
its Toeplitz structure [31]–[39].

Theorem 1. Given the Toeplitz matrix T ∈ Crn
2×sn2

, let
a complex matrix-valued Lebesgue-measurable function F :
[−π, π]2 → Cr×s be the generating function such that

Tk,l =
1

(2π)2

∫ π

−π

∫ π

−π
F (ω1, ω2)e−(kω1+lω2)dω1dω2. (25)

(Equal Spectral Distribution) It follows that, for any
continuous function Φ with compact support in R, we have

lim
n→∞

1

n2

min{r,s}n2∑
j=1

Φ(σj(T ))

=
1

(2π)2

∫ π

−π

∫ π

−π

min{r,s}∑
j=1

Φ(σj(F (ω1, ω2)))dω1dω2,

(26)

where σj(T ) is the j-th singular value of T and σj(F (ω1, ω2))
is the j-th singular value function of F with respect to (ω1, ω2).
As such, T is said to be equally distributed as F (ω1, ω2) with
respect to singular values, i.e., T ∼σ F .

(Spectral Representation) For linear convolutional layers,
T has doubly banded structures, so that the generating function
can be explicitly written as

F (ω1, ω2) =

h2∑
k=−h1

w2∑
l=−w1

Tk,le
(kω1+lω2), (27)

which is also referred to as the spectral density matrix of T .

Proof. The proof is an extension of those in [34]–[37] that
consider block Toeplitz matrices or doubly Toeplitz matrices.
The main proof technique is to relate the non-Hermitian block
doubly Toeplitz matrix to a properly constructed circulant
counterpart. The construction of such non-Hermitian block
doubly circulant matrix is due to the circulant approximation
in Section III-C inspired by the circular convolution operation.
In particular, we follow the footsteps of [35], [36] to extend
the proofs to non-Hermitian block doubly Toeplitz matrices
T , by relating to the block doubly circulant matrices C. The
complete proof can be found in the arXiv version [40].

Remark 1. The equal spectral distribution in Theorem 1
describes the identical collective behavior of singular values
of T and F (ω1, ω2) when n tends to infinity. That is, all
min{r, s}n2 singular values of T converge to min{r, s}
singular value distributions {σj(F (ω1, ω2))} asymptotically.
It is a generalization of the celebrated Szegö Theorem [31],
which deals with real scalar-valued generating functions
F : [−π, π]→ R that correspond to Hermitian Toeplitz
matrices. It was extended to non-Hermitian matrices [32], [33],
block Toeplitz matrices [35], and multi-level Toeplitz matrices
[34], [37]. In CNNs, the matrix T is an asymmetric real
matrix and hence non-Hermitian, with doubly block Toeplitz
structure, which corresponds to a complex matrix-valued
generating function F : [−π, π]2 → Cr×s. In particular, when
s = r = 1, T reduces to a single-channel 2D convolutional
layer matrix, for which T ∼σ |F (ω1, ω2)|; When it comes to
a signal-channel 1D convolutional layer, Theorem 1 indicates
T ∼σ |F (ω)|, with similar spectral representations applicable.

Theorem 1 endows the linear convolutional layer with
an asymptotic spectral representation - the spectral density
matrix F (ω1, ω2) - by establishing the collective equivalence
of their asymptotic singular value distributions. In particular,
under the context of spectral analysis, the collection of
convolutional filters {Tk,l ∈ Cr×s} and the spectral density
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matrix F (ω1, ω2) ∈ Cr×s are a pair of Fourier transform in
the matrix form. That is, each element in F (ω1, ω2) is the
two-dimensional Fourier transform of the collection of the
corresponding element in Tk,l for all k, l. As such, the analysis
of singular values of T with size rn2×sn2 can be alternatively
done on its spectral representation F (ω1, ω2) with size r × s,
which significantly reduces the computational complexity. For
instance, the spectral analysis of the aforementioned T of size
3, 211, 264×150, 528 can be done on F (ω1, ω2) of size 64×3.

Further, as singular values of T converges to singular
value functions of F (ω1, ω2) when n tends to infinity, we
can interpret the former as the samples of the latter over
(ω1, ω2) ∈ [−π, π]2. The min{r, s}n2 singular values of T
can be clustered into min{r, s} non-overlapping subsets, each
of which contains roughly n2 ones. When n is sufficiently
large, the singular values in the j-th subset concentrate on
σj(F ), where σj(F ) is the j-th singular value function of
F (ω1, ω2). It suggests that, the singular value of the circulant
matrix C, a circular approximation of the Toeplitz matrix T ,
can be approximately obtained by sampling σj(F ), the j-th
singular value function of F (ω1, ω2), over a uniform gird in
[−π, π]2, for all j ∈ [min{r, s}]. This will be formally stated
in Theorem 2 as follows.

Theorem 2. Consider the Toeplitz matrix T and its circular
approximation C as in (20)-(21).

(Uniform Sampling) The singular values of C are the
collection of singular values of all spectral density matrices
F (ω1, ω2) sampled on a uniform grid

(ω1, ω2) = (−π +
2πj1
n

,− π +
2πj2
n

),

∀j1, j2 ∈ [n]− 1. (28)

(Bounded Average Difference) There exists a constant c1 >
0 such that

lim
n→∞

1

n

min{r,s}n2∑
j=1

|σj(T )− σj(C)| ≤ c1, (29)

which indicates that the average difference of overall singular
values of the circular approximation C from the exact ones of
T is bounded by O( 1

n ),1 and tends to zero as n increases.

Proof. See Appendix A.

Remark 2. The block diagonal matrices Bi,k of C in (23) is
essentially the matrix-valued function F (ω1, ω2) with uniform
sampling on grids as in (28), i.e.,

Bj1,j2 = F
(2π(j1 − 1)

n
,
2π(j2 − 1)

n

)
, ∀j1, j2 ∈ [n]. (30)

This also confirms that the circular approximation could come
from the uniform sampling on the spectral density matrix
F (ω1, ω2).

Remark 3. Theorem 2 shows that the singular values of
the circular approximation of the linear convolution can be

1The big O notation O(n) follows the standard Bachmann–Landau notation,
meaning that there exists a positive constant c > 0 such that the term is
upper-bounded by cn.

alternatively obtained by computing singular values on the
uniformly sampled spectral density matrix F (ω1, ω2) over
(ω1, ω2) ∈ [−π, π]2. To collect all singular values (resp.
spectral norm) of C, it requires to compute singular values
(resp. spectral norm) of n2 matrices with size r × s each,
with the computational complexity identical to those in [16],
[22]. Although there is a vanishing average difference of
all singular values between T and C, the accuracy of
circular approximation for each individual singular value is
not guaranteed, where the difference could scale as n.

As a side remark, the bounded difference of singular values
between a specific family of Toeplitz matrices and their
circular approximations has been observed in the literature,
whilst Theorem 2 generalizes it to a wider family of Toeplitz
matrices. In particular, as [26] dealt with eigenvalues of
Hermitian Toeplitz matrices that correspond to real scalar-
valued generating functions, the bounded difference results in
[26, Theorem 2] can not be taken as granted to justify that of
linear convolutional layers with non-Hermitian block doubly
Toeplitz matrices. For non-Hermitian matrices, Theorem 2
only guarantees the bounded average difference of all singular
values but not the difference of each individual singular value
between Toeplitz and circulant matrices.

V. APPLICATIONS OF SPECTRAL REPRESENTATION

To demonstrate the usefulness of the asymptotic spectral
representations in Theorem 1, in this section, we present
two applications to (1) approximate the singular values of
convolutional layers, and (2) to upper bound spectral norm of
convolutional layers for the use of spectral norm regulariza-
tion during training. The effectiveness will be verified with
experiments in Section VII.

A. Singular Value Approximation

As Theorem 2 implies that the simple circular approximation
of singular values with uniform sampling may not guarantee
bounded difference of individual singular values, one may think
of a non-uniform sampling of the spectral density matrix for a
better approximation.

Before proceeding further, let us first see what the equal
spectral distribution in Theorem 1 implies with respect to
sampling. Collecting all singular values {σj(F )}j according
to the uniform sampling grids as in (28), we sort them in
non-decreasing order as (κ1, κ2, . . . , κN ). Let ψ : [0, 1]→ R
be a piece-wise linear non-decreasing function that interpolates
the samples (κ1, κ2, . . . , κN ) over the nodes (0, 1

N ,
2
N , . . . , 1)

such that ψ( iN ) = κi for all i ∈ {0} ∪ [N ] and ψ(·) is linear
between any two consecutive nodes. Then we have

1

(2π)2

∫ π

−π

∫ π

−π

min{r,s}∑
j=1

Φ(σj(F (ω1, ω2)))dω1dω2

=

∫ 1

0

Φ(ψ(t))dt. (31)

It means the singular values of T can be approximately obtained
by sampling the function ψ(t) in [0, 1], which can be interpreted
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as the probability density function of singular values. This
motivates a new approximation method as follows.

From a probabilistic perspective, Theorem 1 implies that
the statistical average of the singular values of T converges
to that of the singular values of the corresponding spectral
density matrix F in distribution with any continuous functions
Φ [39]. A detailed justification can be found in Appendix B.
Inspired by this, we treat {σj(F )}j as independent continuous
random variables and propose a simple approach to approximate
{σj(T )}j through non-uniform sampling on the probability
distributions of {σj(F )}j . The main idea is that, the singular
values of both T and C can be regarded as samples of
the random variables {σj(F )}j , from which those of C are
uniformly sampled on the underlying probability distribution.
As such, we can produce an approximation of {σj(T )}j by (1)
estimating the quantile and cumulative distribution functions
(CDFs) of {σj(F )}j through their uniform samples {σj(C)}j
by circular approximation, and (2) non-uniformly sampling the
CDF by adjusting the quantiles, given the fact that quantile
functions are the inverse of CDFs.

Algorithm 1 presents a simple implementation to approxi-
mate {σj(T )}j through quantile estimation and interpolation
from the uniform samples (i.e., singular values of the circular
approximation C). Specifically, Algorithm 1 consists of two
parts. The first part (Lines 4-11) is to produce an initialization
of all singular values by e.g., circular approximation. Here
we use the uniform sampling method (Line 7) to generate
the block diagonal matrices of the circulant matrix C, and
then compute all singular values (Line 9) using singular value
decomposition (SVD) for each block diagonal matrix. The
second part (Lines 13-20) is to adjust the obtained singular
values according to their underlying distribution with quantile
interpolation. All singular values obtained in the first part are
clustered into min{cout, cin} groups (Line 14), each of which
contains n2 singular values being arranged in descending order
(Line 15). For each cluster, the underlying quantile function
Qφj (u) can be estimated (Line 16) by n2 singular values with
e.g., linear interpolation. Then, quantile interpolation using
e.g., kernel smoothing, can be applied to make the estimated
quantile function Q̂φj (u) more smooth (Line 17). Given the
interpolated smooth quantile function Q̂φj (u), we sample the
quantiles at points u = { j−γjn2 }n

2

j=1, where γj ∈ (0, 1) can
be randomly generated for simplicity (Line 18). Finally, we
compute the value on the interpolated quantile function estimate
at the sampling point u, and the resulting values {Q̂φj (u)}u
are taken as new singular value approximations (Line 19).

This approach can be proven to have bounded approximation
error for each individual singular value, as shown in Theorem
3. It has an improved accuracy and performance guarantee
compared to the circular approximation.

Theorem 3. Let φj : [−π, π]2 → R+ be a continuous random
variable corresponding to the j-th singular value function of
F (ω) with ω , (ω1, ω2) and σ(j)

k (T ) be k-th singular value
of j-th cluster when all singular values are evenly divided into
min{r, s} clusters. It follows that

sup
u∈( k−1

n2 , k
n2 ]

|σ(j)
k (T )−Qφj (u)| ≤ c2

n
,

Algorithm 1 Singular Values via Quantile Interpolation

1: Input: Convolutional filter K ∈ Rcout×cin×h×w
2: Initialize h1, h2, w1, w2

3: %Compute singular values with circular approximation.
4: Construct Tk,l from K according to (9)
5: for j1 = 1 to n do
6: for j2 = 1 to n do
7: Set (ω1, ω2) = (−π + 2πj1

n ,−π + 2πj1
n )

8: Compute F (ω1, ω2) by (27)
9: Compute SVD of F (ω1, ω2)

10: end for
11: end for
12: %Adjust singular value sampling via quantile.
13: for j = 1 to min{cout, cin} do
14: Collect singular values {σj(F (ω1, ω2))}ω1,ω2

15: Arrange {σj(F (ω1, ω2))}ω1,ω2 in descending order
16: Estimate quantile Q̂φj by {σj(F (ω1, ω2))}ω1,ω2

17: Interpolate quantile using e.g., kernel smoothing
18: Select proper u = { j−γjn2 }n

2

j=1 with γj ∈ (0, 1)

19: Compute {Q̂φj (u)}u as singular value estimates
20: end for
21: Output: Singular values {{Q̂φj (u)}u}j

∀1 ≤ k ≤ n2, 1 ≤ j ≤ min{r, s} (32)

where c2 > 0 is a constant that only depends on F (ω), and

Qφj (u) = inf{v ∈ R : u ≤ Gφj (v)} (33)

Gφj (v) =
1

(2π)2
µ{ω ∈ [−π, π]2 : φj(ω) ≤ v} (34)

are quantile and cumulative distribution functions for φj(ω),
respectively, and µ is Lebesgue measure.

Proof. See Appendix B.

Theorem 3 reveals that non-uniform sampling achieves
stronger results on the bounded difference of individual singular
values than uniform sampling, by leveraging the relation
between quantile and cumulative distribution functions for non-
uniform sampling. In particular, the singular values {σj(T )}j
can be approximated by sampling the quantile functions of
{φj(ω)}j within each interval (k−1

n2 ,
k
n2 ]. The approximation

error of each individual singular value is bounded with a finite
n and approaches zero as n tends to infinity. Specifically, if
the estimation of the quantile function is perfect, this approach
approximates each individual singular value with gap to the
exact one within O( 1

n ). This is in sharp contrast to the circular
approximation with the performance guarantee only for the
average difference of all singular values.

Remark 4. In practice, it is challenging to compute the
closed-form expression of the singular value function2 φj(ω)
from F (ω). As such, the estimation of quantile functions is
also a challenging task. A feasible and practical way is, as
Algorithm 1 shows, to estimate the quantile function Qφj (u)

2As F (ω1, ω2) is a Laurent polynomial matrix w.r.t. eω1 and eω2 , the
singular value functions {φj(ω)}j can be computed efficiently by, e.g., [41].
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from some easily attainable samples, e.g., {σj(C)}j , which
are the uniform sampling of σj(F ) on [−π, π]2, followed by
quantile interpolation/extrapolation with e.g., kernel smoothing
tricks. As such, the singular value approximation can be done
by properly sampling the interpolated quantile function. In
this way, the approximation accuracy of {σj(T )}j depends on
(1) the accuracy of quantile estimation from the samples, (2)
the smoothing factors of quantile interpolation, and (3) the
sampling grid in (k−1

n2 ,
k
n2 ].

In Algorithm 1, it is expected that the performance is
better than that of the circular approximation, because the
approximation is built upon the singular value distributions
obtained from the circular approximation with some adjusted
quantiles, as shown in the first part of Algorithm 1 (Lines 4-
11). As such, if the circular approximation is substantially
inaccurate, the improvement of Algorithm 1 will be also
restricted. To relieve such restriction, a possible way is to
apply the second part of Algorithm 1 multiple times to fine-
tune singular values, at the cost of increased computational
complexity. This is particularly useful for smaller n.

For quantile interpolation, a simple way is linear interpola-
tion, which uses linear polynomials to interpolate new values
between two consecutive data points. Kernel density estimation
can be used to smooth interpolation. Some other interpolation
methods, such as t-Digests [42], are also available in Python
and MATLAB from 2019b onward.

B. Spectral Norm Bounding

Although the spectral norm regularization has been success-
ful in enhancing generalization and adversarial robustness, the
cost of its exact computation is too expensive to be applied to
training because of the high-dimensionality of weight matrices
of fully-connected and/or convolutional layers. Instead of com-
puting the exact spectral norm of high-dimensional matrices,
existing methods (e.g., [6], [7], [22]) favor differentiable upper
bounds that are of lower computational complexity.

Thanks to the spectral representation, spectral norm bounding
on the high-dimensional matrix T ∈ Cn

2cout×n2cin can be
alternatively done on the much lower-dimensional spectral
density matrix F (ω) ∈ Ccout×cin with ω ∈ [−π, π]2.
Specifically, to upper-bound spectral norm of T , we can instead
upper-bound it on F due to the following lemma.

Lemma 4. ‖T ‖2 ≤ ‖F‖2 , supω‖F (ω)‖2.

Proof. See Appendix C.

As the computational complexity of spectral norm (using
e.g., power iteration method as in [6], [7], [22]) scales as the
size of the matrix, Lemma 4 allow us to compute spectral
norm of a low-dimensional matrix with substantially reduced
complexity, which is independent of the layer’s input size n.

Built upon Lemma 4, the spectral norm of T can be further
upper-bounded in different ways.

Theorem 4. The spectral norm ‖F‖2 can be bounded by

‖F‖2 ≤ min
{√

hw‖R‖2,
√
hw‖L‖2

}
, (35)

‖F‖2 ≤ max
ω

√
‖F (ω)‖1‖F (ω)‖∞, (36)

‖F‖2 ≤
h2∑

k=−h1

w2∑
l=−w1

‖Tk,l‖2, (37)

where R ∈ Rhcout×wcin and L ∈ Rwcout×hcin are cout × cin
block matrices with (c, d)-th block being Kc,d,:,: ∈ Rh×w, and
KT

c,d,:,: ∈ Rw×h, respectively.

Proof. See Appendix D.

Theorem 4 provides a principled way to upper-bound spectral
norm of convolutional layers, which substantially reduces the
computational complexity of spectral norm approximation. In
particular, the first upper bound (35) recovers that in [22],
however the derivation here is different as we directly work on
F , while the bounds in [22] is for the circulant approximation. It
is worth noting that, this bound is different from those used for
spectral norm regularizatoin in [6] and spectral normalization
in [7], where the 4D filter K is reshaped as a matrix in a
heuristic way and spectral norm is computed thereby for the
reshaped matrix.

With respect to computational complexity, the first bound
(35) requires to compute two spectral norms with sizes hcout×
wcin and wcout × hcin respectively. The complexity of the
second bound (36) depends on the sampling complexity of ω,
which usually takes as n2. As such, it requires to compute
n2 times of `1 and `∞ norms with size cout × cin. The third
bound (37) requires to compute hw spectral norms with size
cout × cin. As spectral norm is usually computed using power
method, whose complexity is O(mn) for an m×n matrix, the
computational complexity of all three bounds is O(hwcoutcin).

It is worth noting that the first and the last bounds are
irrelevant to ω and are differentiable with respect to weights,
so that they are good candidates for regularizers.

VI. EXTENSIONS AND DISCUSSIONS

To complement the above common settings, some more
general cases are discussed with respect to larger stride
size, higher dimensional linear convolution, and multiple
convolutional layers in linear networks without activation
functions and pooling layers.

A. Stride Larger Than 1
In previous sections, we focused on linear convolution with

stride size 1. When the stride size g is larger than 1, i.e., g > 1,
the linear transformation matrix T becomes a block g-Toeplitz
matrix, denoted by T g. For simplicity, we consider the same
stride side on both horizontal and vertical directions. Thus,
we have T g = [Tgk]n−1

k=0 where Tgk = [Tgk,gl]
n−1
l=0 with Tk,l

defined in (9).
According to [43], we have an analogous result to Theorem 1.

Let F : [−π, π]2 → Cr×s be a matrix-valued function, subject
to F ∈ L2([−π, π]2). The linear transformation matrix T g

with stride g converges to the generating function F , i.e.,
T g ∼σ F (ω,m), where

F (ω,m) =

√√√√ 1

g2

g−1∑
m1=0

g−1∑
m2=0

f2(ω,m) (38)
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if m = (m1,m2) ∈ [0, 1
g ]2 and 0 otherwise, with

f(ω,m) =
∑
k

∑
l

Tgk,gle
 1g (k(ω1+2πm1)+l(ω2+2πm2)).

By this, the singular value distribution of T g can be alterna-
tively studied on the generating function F (ω,m).

B. Higher Dimensional Convolution

According to [44], a block multi-level Toeplitz matrix T =
{Ti−j}ni,j=1 with i = (i1, . . . , id), j = (j1, . . . , jd), and n =
(n1, . . . , nd), it can be alternatively represented as

T =
∑
|k1|<n1

· · ·
∑
|kd|<nd

[J (k1)
n1
⊗ · · · ⊗ J (kd)

nd
]⊗ Tk (39)

where J
(kj)
nj is a nj × nj binary matrix with (p, q)-th entry

being 1 of p− q = kj and 0 elsewhere, and

Tk =
1

(2π)d

∫
Ω

F (ω)e−<k,ω>dω (40)

with Ω = [−π, π]d, k = (k1, . . . , kd), ω = (ω1, . . . , ωd) and
< k,ω >=

∑d
j=1 kjωj . Then it follows that Theorem 1 can

be generalized to d-dim linear convolutional layers

lim
n→∞

1

N

min{r,s}N∑
j=1

Φ(σj(T ))

=
1

(2π)d

∫
Ω

min{r,s}∑
j=1

Φ(σj(F (ω)))dω (41)

with N =
∏d
i=1 ni, for which the asymptotic singular value

distribution of higher dimensional linear convolutional layers
can be studied through F : [−π, π]d → Cr×s.

C. Multiple Linear Convolutional Layers

The collective effect of multiple linear convolutional layers
without activation function or pooling layers in CNNs can be
seen as the product of the linear transformation matrices of
multiple convolutional layers.

For convolutional layers, denote by T (Fi) the linear trans-
formation matrix generated from the spectral density matrix
Fi : [−π, π]2 → Cr×s, for i = 1, . . . ,M . It follows from [45,
Theorem 2.46] that

lim
n→∞

1

n2
‖
M∏
i=1

T (Fi)− T (

M∏
i=1

Fi)‖1 = 0 (42)

which means that the product of Toeplitz matrices is asymptot-
ically equal to the Toeplitz matrix generated by the product of
all generating functions associated to each linear convolutional
layer. By this, the spectral analysis of M linear convolutional
layers can be alternatively studied on the product of generating
functions

∏M
i=1 Fi.

VII. EXPERIMENTS

A. Singular Value Approximation

To verify the singular value approximation in Section IV, we
conduct experiments with respect to four different methods on
singular values calculation. The weights of filters are extracted
from either the pre-trained networks, e.g., GoogLeNet [46],
with ImageNet dataset or from the training process of ResNet-
20 [4] on CIFAR-10 dataset. More experimental results using
randomly generated weights and weights from pre-trained
networks can be found in the arXiv version [40].
• Exact Method: A block doubly Toeplitz matrix T is

generated from the convolutional filter K according to
(10). The exact singular values of linear convolutional
layers are computed by applying SVD to T directly.

• Circular Approximation: A block doubly circulant matrix
C is constructed according to (20)-(21). The singular
values are computed by applying SVD on C directly.

• Uniform Sampling: The block diagonal matrices Bj1,j2

is produced by uniformly sampling the spectral density
matrix F (ω1, ω2) with sampling grids (ω1, ω2) = (−π +
2πj1
n ,−π + 2πj1

n ) for all j1, j2 ∈ [n]. The singular
values are obtained by collecting all singular values
of {Bj1,j2}nj1,j2=1. This corresponds to Lines 4-11 in
Algorithm 1.

• Quantile Interpolation: The singular values obtained from
uniform sampling are arranged for each 1 ≤ j ≤
min{cin, cout} in descending order. By quantile estima-
tion using linear interpolation methods, the singular values
are recomputed by selecting properly shifted sampling
grids as outlined in Algorithm 1.

The experiments are conducted on MATLAB 2020a, which is
more friendly to matrix computation. For simplicity, we set
h1 = h2 and w1 = w2, and the input size per channel is set to
10× 10. Figure 1 presents the (i− 1)n+ 1-th largest singular
values (i ∈ [n]) of four methods with four different filter
sizes. The first two filters are from the pre-trained GoogLeNet,
and the last two are from the training process of ResNet-20.
It can be observed that (1) both circular approximation and
uniform sampling have identical singular values for different
filter sizes, (2) quantile interpolation improves accuracy of the
singular values over the circular approximation with negligible
extra running time (see Section [40, Section 9.1]), and (3)
during the training process the improvement of the largest
singular value approximation is dominant, while for the well-
trained networks, the improvement is mainly due to that on
smaller singular values. This might be attributed to implicit
regularization during training.

B. Spectral Norm Bounding

In what follows, we compare the different spectral norm
bounds with respect to the running time and the generalization
performance when applied as regularizers during training.
Compared with the heuristic approach in [6], [7], extensive
experimental results in [22] show that the first bound (35) is
more accurate and leads to better generalization performance
and adversarial robustness using spectral norm regularization.
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Fig. 1: Exact and approximated singular values of linear convolutional layers arranged in descending order. Input size per channel is set to
10× 10. For illustration, only 10 singular values are plotted. Four types of convolutional filters are considered from left to right with sizes
64× 3× 7× 7 (pre-trained GoogLeNet conv1), 32× 16× 5× 5 (pre-trained GoogLeNet inception), 16× 3× 3× 3 (ResNet-20 conv1 after
10 training epochs), and 16× 3× 3× 3 (ResNet-20 conv1 after 100 training epochs), respectively.

TABLE I: Comparison of spectral norm bounds (a/b: accuracy
ratio/running time).

FILTER SIZE (35) (36) (37)

64× 3× 7× 7 3.00/12.84 2.14/51.51 4.33/1.146
64× 64× 3× 3 1.63/77.68 3.21/54.27 2.20/5.427
128× 64× 3× 3 1.48/155.3 3.52/102.3 2.10/8.981
256× 256× 3× 3 1.27/1285 4.66/671.7 1.56/68.74
512× 256× 3× 3 1.10/2516 4.72/2010 1.27/124.6
512× 512× 3× 3 1.13/7232 4.51/3215 1.26/288.5

Therefore, we place our focus on the comparison between the
first bound (35) and the third bound (37).

1) Running Time: To verify the accuracy and running time
of different spectral norm bounds, we conduct experiments
on the pre-trained ResNet-18 model with ImageNet dataset
on MATLAB 2020a on HP EliteBook. For the accuracy, we
use the circular approximation as the reference and present
the ratios to it. Table I summarizes the results for different
filters, where the numbers “a/b” read as a times of the circular
approximation in accuracy and b milliseconds (ms) in running
time. We observe that (1) the first bound (35) usually has the
best accuracy except for the larger filter size, e.g., 7× 7, while
the second bound (36) works better for large filter size; (2) the
third bound (37) has comparable accuracy as the first one (35),
yet accounting for less than 10% running time of the latter.

2) Regularization: We use spectral norm bounds as regu-
larizers during the training of ResNet-20 model on CIFAR-10
dataset. The ResNet-20 model has 20 convolutional layers, most
of which have a 3× 3 filter. The CIFAR-10 dataset consists of
50,000 training and 10,000 testing images with size 32× 32
in 10 classes. The batch size is 128, and the learning rate is
initialized as 0.1 and changed to 0.01 after 100 training epochs.
The optimizer is SGD and the momentum is 0.9.

According to the accuracy and running time of different
spectral norm bounds in Table I, we place our focus on the
first (35) and the third (37) bounds for spectral regularization.
Given the training data samples {(xi, yi)}Ni=1 drown from an
unknown distribution of (x, y) for training an L-layer deep
neural network model y = fΘ(x) with parameters Θ, the
spectral regularization is to minimize the following objective
function with spectral norm bounds as a regularization term

min
Θ

E(x,y)`(fΘ(x), y) + β

L∑
j=1

Ruj (43)

where `(f) is the loss function of the model for training, Ruj
is a regularization term using the spectral norm upper bounds

of the j-th layer, e.g., (35)-(37), and β > 0 is a constant
to balance between the loss function and the spectral norm
regularizer.

In the experiments, the cross entropy function is chosen as the
loss function. For the j-th convolutional layer, the regularization
term Ruj is the spectral norm upper bounds chosen from (35)
with Ruj =

√
hwmin{‖R‖2, ‖L‖2}, and from (37) with Ruj =∑

k

∑
l‖Tk,l‖2, respectively. For the fully-connected layers,

Ruj is directly chosen as the exact spectral norm of the weight
matrices. As both the upper bounds in (35) and (37) are in
the form of spectral norm, we adopt power iteration method
to compute it in the forward propagation. As shown in the
proof of Theorem 4, R and L are reshaped matrices of the
convolutional filter K with sizes hcout×wcin and wcout×hcin,
respectively, in contrast to the set of hw matrices {Tk,l} with
size cout × cin each rearranged from K.

For a matrix A ∈ Rm×n, the computational complexity of
power iteration method is O(mn). While both bounds (35)
and (37) have the same level of computational complexity
O(hwcoutcin), it turns out computing (37) is much faster as
the matrices have smaller size. In the backward propagation,
the derivative of spectral norms of a matrix A can be computed
as ∇A‖A‖2 = u1v

T
1 where u1 and v1 are the left and right

singular vectors corresponding to the largest singular value,
respectively, which can be approximately obtained by the power
iteration method, as in [6], [7], [22]. Such a derivative is used
to update weights for SGD in the backward propagation.

To demonstrate how spectral norm affects generalization, we
consider both cases with or without weight decay.

a) Without weight decay: When the weight decay is
set to 0, we collect the final prediction accuracy after in
total 150 training epochs. For comparison, we use the case
with no regularization (β = 0), which has a test accuracy
89.67%, as the reference. Both spectral norm regularizers have
improvement, 1.1% with (35) as the regularizer and 0.8% with
(37) as the regularizer, over the the one with no regularizer,
which demonstrates the effective of spectral regularization in
enhancing generalization performance. The regularizer using
(35) has a higher accuracy (0.3%) than (37), due to the more
tighter upper bound. Although test accuracy does matter in
generalization, we argue that the regularizer (37) would be
more preferable as it substantially reduces the computational
complexity (with more than 30% running time saving) at the
expense of slight performance degradation.

b) With weight decay: when the weight decay is set to
1e-4, we collect the final prediction accuracy after in total
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TABLE II: Comparison of test accuracy with spectral norm regular-
ization and with weight decay.

β 0.001 0.0012 0.0014 0.0016 0.0018

(35) 91.72% 91.85% 91.67% 91.52% 92.23%

(37) 91.87% 92.02% 91.91% 91.67% 91.83%

200 training epochs, where the learning rate is further reduced
to 0.001 after 150 epochs. Table II collects the test accuracy
with regularization using both spectral norm bounds (35) and
(37) with different values of β. We observe that different
values of β make different trade-off between loss and spectral
regularization, and the choices of β = 0.0018 for (35), and
β = 0.0012 for (37) yield the best generalization performance,
respectively.

To conclude, the spectral norm bound (37) appears more
favorable because of its lower computational complexity at the
cost of negligible performance degradation.

VIII. CONCLUSION

In this paper, we proposed to use spectral density matrices
to represent the linear convolutional layers in CNNs, for which
the linear transformation matrices are block doubly Toeplitz
matrices constructed from the convolutional filters. By doing
so, spectral analysis of linear convolutional layers with high-
dimensionality can be alternatively done on the corresponding
spectral density matrices with much lower-dimensionality. Such
a spectral representation has been demonstrated to be useful
in singular value approximation and spectral norm bounding,
which can be used as regularizers to enhance generalization
performance with substantially reduced computational complex-
ity. This spectral representation is expected to offer a different
approach to understand linear convolutional layers and network
architectures, through analyzing the spectral density matrices
associated to linear transformation.

APPENDIX

A. Proof of Theorem 2

Given the generating function F (ω1, ω2) defined in (27), we
introduce an auxiliary matrix C(F ) generated by F in the
following form

C(F ) = (Fn × Fn × Ir)blkdiag
(
{F (ω1, ω2),

(ω1, ω2) ∈M}
)

(Fn × Fn × Is)
H (44)

where M is the uniform sampling over [−π, π]2 defined as

M ,
{

(ω1, ω2) =

(
−π +

2πj1
n

,−π +
2πj2
n

)
,

∀ j1, j2 ∈ [n]− 1
}
. (45)

It can be readily verified that C(F ) is also a block doubly
circulant matrix, similar to C.

First, we show C(F ) and C are identical, and thus
uniform sampling F yields singular values of C. Denote by
[C(F )]p,q ∈ Cr×s the (p, q)-th block of C(F ), where p and
q indicate the indices of the first and second levels of circulant

blocks, similar to the definition of Cp,q in (21). Therefore, we
have

[C(F )]p,q =
1

n2

n−1∑
j1=0

n−1∑
j2=0

F (
2πj1
n

,
2πj2
n

)e−2π
pj1+qj2

n (46)

=
1

n2

n−1∑
j1=0

n−1∑
j2=0

h2∑
k=−h1

w2∑
l=−w1

Tk,le
 2πn ((k−p)j1+(l−q)j2) (47)

=
1

n2

h2∑
k=−h1

w2∑
l=−w1

Tk,l

n−1∑
j1=0

e
2πj1
n (k−p)

n−1∑
j2=0

e
2πj2
n (l−q)

(48)

(a)
=

∞∑
m1=−∞

∞∑
m2=−∞

T−p+nm1,−q+nm2 (49)

(b)
=


T−p,−q, p ∈ {0} ∪ [h1], q ∈ {0} ∪ [w1]
T−p,n−q, p ∈ {0} ∪ [h1], q ∈ n− [w2]
Tn−p,−q, q ∈ n− [h2], q ∈ {0} ∪ [w1]
Tn−p,n−q, p ∈ n− [h2], q ∈ n− [w2]
0, otherwise

(50)

(c)
= Cp,q (51)

for p, q ∈ [n]− 1, where (a) is due to
n−1∑
j=0

e
2πj
n (k−p) =

{
n, (k − p) mod n = 0
0, otherwise , (52)

(b) is due to Tp,q = 0 if p /∈ [−h1 : h2] or q /∈ [−w1 : w2],
and (c) is from (21).

For each p, q ∈ [n] − 1, the (p, q)-th blocks of C(F ) and
C are identical. Thus, we have

C(F ) = C. (53)

Therefore, by Lemma 3, we conclude that the singular values
of C can be given by those of F (ω1, ω2) with uniform sampling
on [−π, π]2, i.e.,

{σj(F (ω1, ω2)) : (ω1, ω2) ∈M} , (54)

where M is the uniform sampling grids defined in (45).
Second, we show that the accumulated difference of the

singular values between C and T is upper-bounded.

Lemma 5. Given the banded block doubly Toeplitz and
circulant matrices T and C, it follows that

‖C − T ‖pp ≤ O(n). (55)

where ‖A‖p , (
∑n
i=1

∑n
j=1|Ai,j |p)

1
p for 1 ≤ p <∞. When

p = 2, ‖A‖p boils down to the Frobenius norm ‖A‖F.

Proof. Given T and C, we define the difference of the (k, l)-
th block ∆k,l ∈ Cr×s, where k ∈ [−n + 1 : n − 1] and
l ∈ [−n+ 1 : n− 1] are indices of two levels of Toeplitz and
circulant matrices but not the indices of rows and columns, in
the following way

∆k,l , [C − T ]k,l (56)

(a)
=

1∑
m1=−1

1∑
m2=−1

Tk+nm1,l+nm2
(1− δ(m1,m2)) (57)
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where δ(m1,m2) = 1 if and only if m1 = m2 = 0, and (a)
is due to the banded structure of circulant matrix as in (21).
It can be easily verified that C − T is still a block doubly
Toeplitz matrix with blocks {∆k,l}k,l. Thus, we have

‖C − T ‖pp
(a)
=
∑
k

∑
l

(n− |k|)(n− |l|)‖∆k.l‖pp

(b)

≤
∑
k

∑
l

∑
m1

∑
m2

(n− |k|)(n− |l|)(1− δ(m1,m2))

· ‖Tk+nm1,l+nm2
‖pp

(c)
=

∑
(k,l)∈B12

(n− |k|)(n− |l|)‖Tk,l+n‖pp

+
∑

(k,l)∈B13

(n− |k|)(n− |l|)‖Tk,l−n‖pp

+
∑

(k,l)∈B21

(n− |k|)(n− |l|)‖Tk+n,l‖pp

+
∑

(k,l)∈B22

(n− |k|)(n− |l|)‖Tk+n,l+n‖pp

+
∑

(k,l)∈B23

(n− |k|)(n− |l|)‖Tk+n,l−n‖pp

+
∑

(k,l)∈B31

(n− |k|)(n− |l|)‖Tk−n,l‖pp

+
∑

(k,l)∈B32

(n− |k|)(n− |l|)‖Tk−n,l+n‖pp

+
∑

(k,l)∈B33

(n− |k|)(n− |l|)‖Tk−n,l−n‖pp

(d)

≤ hw2
1Cpn+ hw2

2Cpn+ h2
1wCpn+ h2

1w
2
1Cp

+ h2
1w

2
2Cp + h2

2wCpn+ h2
2w

2
1Cp + h2

2w
2
2Cp

(e)
= an+ b

where k, l ∈ [−n+ 1 : n− 1] and m1,m2 ∈ {−1, 0, 1}, (a) is
due the definition of the element-wise p-norm, (b) is due to
the sub-additivity of matrix norms, in (c) we define

B11 = {(k, l) : k ∈ [−h1 : h2], l ∈ [−w1 : w2]}
B12 = {(k, l) : k ∈ [−h1 : h2], l ∈ [−(n− 1) : −(n− w1)]}
B13 = {(k, l) : k ∈ [−h1 : h2], l ∈ [(n− w2) : (n− 1)]}
B21 = {(k, l) : k ∈ [−(n− 1) : −(n− h1)], l ∈ [−w1 : w2]}
B22 = {(k, l) : k ∈ [−(n− 1) : −(n− h1)],

l ∈ [−(n− 1) : −(n− w1)]}
B23 = {(k, l) : k ∈ [−(n− 1) : −(n− h1)],

l ∈ [(n− w2) : (n− 1)]}
B31 = {(k, l) : k ∈ [(n− h2) : (n− 1)], l ∈ [−w1 : w2]}
B32 = {(k, l) : k ∈ [(n− h2) : (n− 1)],

l ∈ [−(n− 1) : −(n− w1)]}
B33 = {(k, l) : k ∈ [(n− h2) : (n− 1)],

l ∈ [(n− w2) : (n− 1)]}
for which Tk+nm1,l+nm2 6= 0 in B11 if and only if m1 =
m2 = 0 which invokes δ(m1,m2) = 1, (d) is due to ‖Tk,l‖pp is

upper-bounded by a constant, say Cp for all k, l, and in (e), a =
Cp(h(w2

1 +w2
2)+(h2

1 +h2
2)w) and b = Cp(h

2
1 +h2

2)(w2
1 +w2

2).
This completes the proof.

By inspecting T and C, we find from Lemma 5 that
∆k,l = 0 if and only if (k, l) ∈ B11. The number of rows
and columns with indices outside B11 scales as n. As such,
invoking Theorem 3.1 in [38], we conclude that

lim
n→∞

1

n

min{r,s}n2∑
j=1

|σj(T )− σj(C)| = O(1) (58)

This completes the proof.

B. Proof of Theorem 3

Without loss of generality, we let r ≤ s, i.e., r = min{r, s}.
We divide all {σj(T )}rn2

j=1 into r clusters {σ(j)
k (T ), k ∈

[n2]}rj=1 according to their localization, each of which is
arranged in ascending order, i.e.,

σ
(j)
1 (T ) ≤ σ(j)

2 (T ) ≤ · · · ≤ σ(j)
n2 (T ), ∀j ∈ [r]. (59)

From Theorem 1, we have

1

r

r∑
j=1

lim
n→∞

1

n2

n2∑
k=1

Φ(σ
(j)
k (T ))

=
1

r

r∑
j=1

1

(2π)2

∫ π

−π

∫ π

−π
Φ(σj(F (ω1, ω2)))dω1dω2.

(60)

Let φj : [−π, π]2 → R+ be the j-th singular value function
of F (ω), i.e., φj(ω) = σj(F (ω1, ω2)). When taking ω as
a multivariate random variable with uniform distribution on
[−π, π]2, we can treat φj(ω) as a continuous random variable,
such that the right-hand side of (60) can be interpreted as

1

r

r∑
j=1

Eω [Φ(φj(ω))]

Similarly, we can treat {σ(j)
k (T )}n2

k=1 as realizations of discrete
random variable X

(j)
n with equal probability Pr(X

(j)
n =

σ
(j)
k (T )) = 1

n2 , and interpret the left-hand side of (60) as

1

r

r∑
j=1

lim
n→∞

E
X

(j)
n

[Φ(X(j)
n )]

Thus, from a probabilistic perspective, Theorem 1 says, for
the sequence of random variables {X(j)

1 , X
(j)
2 , . . . , X

(j)
n , . . . },

E
X

(j)
n

[Φ(X
(j)
n )] converges to Eω [Φ(φj(ω))] in distribution for

any continuous function Φ.
For both random variables X(j)

n and φj(ω), let us define
the cumulative distribution and quantile functions as

G
X

(j)
n

(v) =
1

n2
max{k ∈ [n2] : σ

(j)
k (T ) ≤ v} (61)

Q
X

(j)
n

(u) = inf{v ∈ R : u ≤ G
X

(j)
n

(v)} (62)

Gφj (v) =
1

(2π)2
µ{ω ∈ [−π, π]2 : φj(ω) ≤ v} (63)

Qφj (u) = inf{v ∈ R : u ≤ Gφj (v)} (64)
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where µ is the Lebesgue measure of ω on [−π, π]2. As
{σ(j)

k (T )}n2

k=1 is ordered and G
X

(j)
n

(v) is right continuous
and non-decreasing over v, it follows from [39, Proposition
2.5] that

Q
X

(j)
n

(
k

n2
) = σ

(j)
k (T ). (65)

By Portmanteau Lemma [39, Lemma 3.1], the fact that
E
X

(j)
n

[Φ(X
(j)
n )] converges to Eω [Φ(φj(ω))] in distribution

for any continuous function Φ leads to (1) G
X

(j)
n

(v) converges
to Gφj (v) for every v ∈ R at which Gφj is continuous, and (2)
Q
X

(j)
n

(u) converges to Qφj (u) for every u ∈ (0, 1] at which
Qφj is continuous.

Inspired by [38, Theorem 3.2, Corollary 3.3], we can further
bound the gap between G

X
(j)
n

(v) and Gφj (v).

Lemma 6. There exists a constant c1 such that

max
j∈[r]

|G
X

(j)
n

(v)−Gφj (v)| ≤ c1
n

(66)

for every n > 1.

Proof. Due to Theorem 2, the singular values of C can be
given by those of F (ω) with uniform sampling on [−π, π]2,
i.e.,

{σ(j)
k (C)}n

2

k=1 = {σj(F (ω1, ω2)) : (ω1, ω2) ∈M} (67)

for j ∈ [r]. Following the same footsteps of [38, Theorem 2.2],
we have

|
n2∑
k=1

σ
(j)
k (C)− n2

(2π)2

∫ π

−π

∫ π

−π
σj(F )dω1dω2| ≤ c′0n (68)

where c′0 > 0 is a constant that does not depend on n. Due to
Theorem 2, there must exist a constant c0 > 0 such that

n2∑
k=1

|σ(j)
k (T )− σ(j)

k (C)| ≤ c0n. (69)

It follows that, there exists a constant c1 > 0 that does not
depend on n such that

|
n2∑
k=1

σ
(j)
k (T )− n2

(2π)2

∫ π

−π

∫ π

−π
σj(F )dω1dω2| ≤ c1n (70)

By [38, Corollary 3.3], for a real value v, we have

|G
X

(j)
n

(v)−Gφj (v)| ≤ c1
n

(71)

for all j, where φj(ω) takes values of σj(F (ω)) that are upper
bounded given the fact that F (ω) is a Laurent polynomial
matrix with respect to eω , each element of which is a Laurent
polynomial. This completes the proof.

Let ε = c1
n and k−1

n2 < u ≤ k
n2 . By [39, Proposition 2.2],

we have u ≤ Gφj (Qφj (u)). Together with Lemma 6, we have

u = u+ ε− ε ≤ Gφj (Qφj (u+ ε))− ε
≤ G

X
(j)
n

(Qφj (u+ ε)) (72)

Let δ = cε with c > 0 being a constant. Given the fact that
Qφj (u− ε) ≥ Qφj (u− ε)− δ, we have

u− ε ≥ Gφj (Qφj (u− ε)− δ)

≥ G
X

(j)
n

(Qφj (u− ε)− δ)− ε (73)

Thus, due to the fact that u ≤ G
X

(j)
n

(v) if and only if
Q
X

(j)
n

(u) ≤ v, we have

Q
X

(j)
n

(u) ≤ Qφj (u+ ε) (74)

Q
X

(j)
n

(u) ≥ Qφj (u− ε)− δ. (75)

Before proceeding further, we investigate the Lipschitz
continuity of φj .

Lemma 7. The singular value function φj(ω) = σj(F (ω)) is
Lipschitz continuous for every j.

Proof. According to the generalized Hoffman-Wielandt theo-
rem for singular values [47, Theorem 5] and [48, Theorem
5.1], we have√√√√ r∑

j=1

|σj(F (ω))− σj(F (ω′))|2 (76)

≤ ‖F (ω)− F (ω′)‖F (77)

= ‖
h2∑

k1=−h1

w2∑
k2=−w1

Tk1,k2(ek
Tω − ek

Tω′)‖F (78)

(a)

≤
h2∑

k1=−h1

w2∑
k2=−w1

‖Tk1,k2‖F|ek
Tω − ek

Tω′ | (79)

(b)

≤
h2∑

k1=−h1

w2∑
k2=−w1

‖Tk1,k2‖F|kT(ω − ω′)| (80)

(c)

≤
h2∑

k1=−h1

w2∑
k2=−w1

‖k‖‖Tk1,k2‖F‖ω − ω′‖ (81)

where (a) is due to the triangle inequality of matrix norm, (b)
is due to the non-negativity of matrix norms and the following
inequality

|ek
Tω − ek

Tω′ | = |
∫ ω

ω′
ek

TtkTdt| (82)

≤ |
∫ ω

ω′
|ek

Tt|kTdt| (83)

≤ |kT

∫ ω

ω′
dt| (84)

≤ |kT(ω − ω′)| (85)

and (c) is due to Cauchy-Schwarz inequality.
Let K =

∑h2

k1=−h1

∑w2

k2=−w1
‖k‖‖Tk1,k2‖F, which is a

positive constant that does not depend on ω. Thus, we have

|σj(F (ω))− σj(F (ω′))| ≤ K‖ω − ω′‖ (86)

for all j, which means that σj(F (ω)) is K-Lipschitz continu-
ous, so is φj(ω) by definition.

Provided Lemma 7, following the same footsteps in [39,
Proposition 2.7], we conclude that Qφj (u) is also Lipschitz
continuous, i.e.,

|Qφj (u1)−Qφj (u2)| ≤ L|u1 − u2| (87)

for all u1, u2 ∈ (0, 1].
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Now, equipped with the Lipschitz continuity, by (65) and
(74), we have

σ
(j)
k (T ) = Q

X
(j)
n

(u) ≤ Qφj (u+ ε) ≤ Qφj (u) + Lε (88)

σ
(j)
k (T ) = Q

X
(j)
n

(u) ≥ Qφj (u− ε)− δ ≥ Qφj (u)− Lε− δ
(89)

for u ∈ (k−1
n2 ,

k
n2 ]. This implies that

|σ(j)
k (T )−Qφj (u)| ≤ Lε+ δ ,

c2
n

(90)

for all k ∈ [n2] and j ∈ [r]. This completes the proof.

C. Proof of Lemma 4

Inspired by [35, Theorem 4.1], we extend the proof from
block Toeplitz to doubly block Toeplitz matrices.

Given a singular value of T ∈ Rrn
2×sn2

, say σ(T ), there
exist u ∈ Rrn

2

and v ∈ Rsn
2

subject to ‖u‖2 = ‖v‖2 = 1
such that σ(T ) = uTTv, where u = [uk,l]k,l and v = [vk,l]k,l,
with the (k, l)-th block vector uk,l ∈ Rr×s and vk,l ∈ Rr×s
corresponding to Tk,l. Thus, we have

σ(T ) =
1

(2π)2

∫ π

−π

∫ π

−π
u(ω1, ω2)TF (ω1, ω2)v(ω1, ω2)dω1dω2

(91)

where u(ω1, ω2) and v(ω1, ω2) are Fourier transforms of uk,l
and vk,l, respectively, i.e.,

u(ω1, ω2) =

n∑
k=1

n∑
l=1

uk,le
(kω1+lω2), (92)

v(ω1, ω2) =

n∑
k=1

n∑
l=1

vk,le
(kω1+lω2). (93)

Thus, we have

σ(T )
(a)

≤ 1

(2π)2

∫ π

−π

∫ π

−π
σmax(F )‖u(ω)‖2‖v(ω)‖2dω1dω2

(94)

(b)

≤ σmax(F )
1

(2π)2

√∫ π

−π

∫ π

−π
‖u(ω)‖22dω1dω2

·

√∫ π

−π

∫ π

−π
‖v(ω)‖22dω1dω2 (95)

(c)
= σmax(F )‖u‖2‖v‖2 (96)
= σmax(F ) (97)

where (a) is from the definition of the largest singular value, i.e.,
σmax(F ) = supω

uTFv
‖u‖2‖v‖2 , (b) is due to Cauchy inequality,

and (c) is resulted directly from the computation of integrals.
Thus, it follows immediately that ‖T ‖2 ≤ ‖F‖2.

D. Proof of Theorem 4

Let z1 = eω1 and z2 = eω2 . The (c, d)-th element of the
spectral density matrix F (ω1, ω2) can be rewritten as

Fc,d(z1, z2) =

h2∑
k=−h1

w2∑
l=−w1

tk,lc,dz
k
1z
l
2. (98)

which is a polynomial with respect to z1 and z2.
Let Rc,d = [tk,lc,d]k,l ∈ Rh×w, z1 = [z−h2

1 , . . . , zh1
1 ] and

z2 = [z−w2
2 , . . . , zw1

2 ]. Thus, we can represent Fc,d in the
following two ways.

Fc,d = z1Rc,dz
T

2 = z2R
T

c,dz
T

1. (99)

Hence, the spectral density matrix F can be represented as

F = (Ir ⊗ z1)R(Is ⊗ zT

2) (100)
= (Ir ⊗ z2)L(Is ⊗ zT

1) (101)

where

R =


R1,1 R1,2 · · · R1,s

R2,1 · · · · · · R2,s

...
...

...
...

Rr,1 · · · · · · Rr,s

 , (102)

L =


RT

1,1 RT
1,2 · · · RT

1,s

RT
2,1 · · · · · · RT

2,s
...

...
...

...
RT
r,1 · · · · · · RT

r,s

 , (103)

with R ∈ Rrh×sw and L ∈ Rrw×sh. Note that

(Ir ⊗ z1)(Ir ⊗ z1)H = hIr (104)
(Is ⊗ z2)(Is ⊗ z2)H = wIs (105)

where the columns are orthogonal. So, we have

‖F‖2 ≤
√
hw‖R‖2, ‖F‖2 ≤

√
hw‖L‖2. (106)

This gives us the first bound.
For the second bound, given any ω ∈ [−π, π]2, we have

‖F (ω)‖22 ≤ ‖F (ω)‖1‖F (ω)‖∞. (107)

As ‖F‖2 = supω‖F (ω)‖2, we have the second spectral norm
bound.

For the third bound, we have

‖F (ω1, ω2)‖2 = ‖
∑
k

∑
l

Tk,le
(kω1+lω2)‖2 (108)

≤
∑
k

∑
l

‖Tk,l‖2|e(kω1+lω2)| (109)

=
∑
k

∑
l

‖Tk,l‖2, (110)

where the inequality is due to Cauchy–Schwarz inequality.
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