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Shock-wave/boundary-layer interaction on wings can result first in self-sustained flow un-
steadiness called shockbuffet and eventually in a structural response called buffeting. While it is
an important aspect of wing design and aircraft certification, particularly formodern transonic
air transport, not all of the underlying multidisciplinary physics are thoroughly understood.
Herein we focus the discussion on three main points. First, a practical implementation of an
iterative resolvent method heavily relying on the efficient solution of large sparse linear systems
of equations is introduced. Second, its application as a predictive tool to explore large scale
flow unsteadiness on an aircraft wing early, following the work in Timme [1], is demonstrated.
And third, we continue the exploration of the impact of the elastic wing structure in such flow
conditions, following the work in Houtman and Timme [2]. An industrial computational fluid
dynamics solver has previously beenmodified to solve the global stability problem that accounts
for the aeroelastic coupling. Those ideas for linearised aerodynamics tools are expanded herein
by a novel algorithm to address the now-ubiquitous resolvent problem aiming to compute op-
timal forcing and response when stability analysis alone is non-informative. The chosen test
case is the NASA Common Research Model for which already both fluid modes on the rigid
(yet statically deformed) wing and fluid-structure coupled modes on the corresponding elastic
configuration are available as reference, helping guide the process. The results suggest that the
resolvent approach is capable of predicting strong modal behaviour, such as linked to shock
buffet, well before the notional onset of large scale unsteadiness when a global stability tool can
first identify dominant coherent physics through weakly damped eigenmodes. On the question
of including structural degrees-of-freedom in shock-buffet investigations, or not, it can be said
that, while the coupled formulation can give a more complete picture of the physics overall
(and is hence important to consider), in subcritical conditions the structual dynamics play a
secondary role when optimally forcing the coupled system.

I. Introduction
Aeroelasticity is the field of engineering which aims to describe the deformation and motion of and fluid flow around

objects, subject to aerodynamic, elastic and inertial forces, and has been studied for over a century [3–5]. Questions
on fluid stability, in the absence of structural dynamics, have similarly been studied for decades [6]. By helping us
elucidate phenomena that would otherwise remain a mystery, many objects that we use every day can be designed to
be safer, faster and more efficient. Taking aeroplanes as a good example, many static and dynamic design challenges,
such as torsional divergence, flutter, limit-cycle oscillation, shock buffet and structural buffeting, can have detrimental
effects and lead to passenger discomfort, lowered system efficiency, structural fatigue and, in the worst case, complete
destruction. Accurate (yet fast) methods to predict when these phenomena could happen, and how to prevent them,
are therefore highly desirable in the industrial design iterations. Numerical analysis has proven a powerful tool in this
regard, and invaluable insights have been gathered over the years.

One of those aforementioned phenomena, shock buffet, exhibits strong self-excited flow oscillations caused by
the interaction of shock waves and the boundary layers forming over the aircraft wings in high-speed flight. Despite
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being first identified in the 1960s, a complete explanation incorporating the diverse inherent multidisciplinary aspects
is still elusive, even though the body of experimental research continues to grow [7–9]. An acoustic feedback loop
sustaining the shock oscillations was one of the first explanations given in [10], which has been corroborated by multiple
experimental studies [8, 11]. On the other hand, numerous experimental and numerical studies have found spanwise
outboard propagation of buffet cells, a distinct feature of shock buffet on finite wings. A major advancement came in the
discovery of a global instability as a driver of aerofoil shock-buffet unsteadiness in [12], which led the way for similar
findings on infinite-wing geometries, for which the impact of key geometric wing sizing parameters (such as aspect
ratio and sweep angle) has been further explored [13–15]. Recently, practical finite-wing aircraft have been the subject
of global stability studies [1, 16], with shock buffet being linked to a globally unstable mode, with successive studies
aiming to understand the role of fluid-structure interaction on the same geometry [2, 17]. Independently, it has been
shown for a pitch-plunge (and variants thereof) typical section aerofoil, that the introduction of an elastic structure
has the ability to destabilise an otherwise stable flow in transonic conditions [18]. Global stability analysis involving
fluid-structure interaction is indeed an active research area. Novel methods and physics, with unstable eigenmodes
originating both in the fluid and the structural degrees-of-freedom, have been explored for various configurations, such
as a cylinder with splitter plate, a spring-mounted plate and aerofoils [19–23]. Another important earlier study to be
pointed out is that in [24] where the linearised physics were modelled in a similar approach to ours and applied to
finite-wing flutter in inviscid flow.

Similarly, resolvent analysis has been used to further the understanding of flow physics. This method relies on the
characteristics of the resolvent operator, instead of the direct linear Jacobian operator, which acts to transform an input
(forcing) mode to an output (response) mode. The spectral properties of the resolvent operator can give insight to
pseudo-resonance, as well as transient growth phenomena, due to the non-normality of the linear operator. Early work
on this topic considered Poiseuille flow close to the laminar equilibrium, revealing that a laminar-turbulent transition
was possible at subcritical flow conditions and that forcing even at frequencies away from the spectrum can give rise to
large resonances [25, 26]. A similar analysis was later shown to apply to turbulent shear flows. In the turbulent case
however, the forcing is endogenous to the flow, as the turbulent fluctuations drive themselves through the turbulent
resolvent operator by nonlinear feedback [27]. In the turbulent analysis, the state is not assumed to be close to laminar
equilibrium and the fluctuations are not required to be small. The resolvent (forcing and response) modes are calculated
via the singular value decomposition of the resolvent of the Navier–Stokes operator formed about the turbulent mean.
Such a study was also conducted for two-dimensional aerofoil shock buffet in [28], where resolvent analysis uncovered
a secondary (pseudo-) resonance, separate from shock buffet found with a global stability analysis, and linked to a
Kelvin–Helmholtz-type instability in the shear layer. Extending the idea to three-dimensional infinite wings, resolvent
analysis proved to be an excellent tool to predict instabilities early on where global stability analysis is unsuccessful [29].
Herein, we formally introduce the therein employed iterative resolvent method, which is itself a modification of the
method discussed in [30, 31]. In addition, we extend our resolvent tool to include fluid-structure interaction, similar
to our previous global stability work [2], and use a sort of deflation approach to compute subsequent optimal modes
corresponding to lower energy gains. An alternative route, in a fluid flow context, to enable resolvent analysis for
more complex test cases was presented in [32]. The addition of a flexible structure in resolvent analysis has also been
investigated for a two-dimensional boundary layer flow over a wall [33].

This work builds upon our previous efforts [2], where the aerodynamic shock-buffet instability on a large aircraft
wing has been studied subject to aeroelastic coupling (following the work on the fluid-only system in [1, 29]). It was
found that the coupling of fluid and structure destabilised modes that were otherwise stable in the fluid-only configuration
and that the system could potentially be destabilised at lower angles of attack than what would be predicted without this
coupling. Herein, the analysis is extended to investigate the resolvent operator when an elastic structure is included.
This method requires modifications to the DLR–TAU solver that were first implemented for the eigenvalue problem
encountered in global stability analysis, most importantly the application of the coupled preconditioner matrix in parallel,
in order to use the resolvent method for large aircraft cases, relevant to industry. The energy gain, as well as the optimal
forcing and response modes, are investigated to augment the previous eigenvalue studies to further elucidate the role of
fluid-structure coupling on the otherwise purely aerodynamic shock-buffet phenomenon.

This document continues with a brief description of the physical models and implementation details in Section II.
Here the focus is on the coupled Jacobian operator and the adaptation of the iterative resolvent method using a sparse
iterative linear solver, implemented within the industrial DLR–TAU solver. The iterative resolvent method, which makes
it possible to investigate practical aircraft test cases of arbitrary size, is explained for the first time. Finally, results for
the NASA Common Research Model can be found in Section III, including a discussion on the steady base state, a
reminder of our previous stability results [2], and the new resolvent results.
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II. Theory and Methodology

A. Governing Equations of Fluid and Structure
The starting point of all our linearised analyses is the set of semi-discrete governing equations

dw
dC

= X(w) (1)

The latter equation is used to describe both the aerodynamics and the multidisciplinary aeroelastic problem in a two-field
formulation. For the aeroelastic analysis, the state vector w is split into two parts, w = [w 5 , wB]) , representing the fluid
and structural degrees-of-freedom, respectively, and vector X contains the corresponding non-linear residual functions.
The aerodynamic analysis discards the structural degrees-of-freedom. Clearly, eq. (1) depends on many independent
parameters which are not explicitly stated herein for ease of notation.

The aerodynamics are assumed to be governed by the compressible Reynolds-averaged Navier–Stokes equations in
three-dimensional space, coupled with a suitable model for turbulence closure, solving for the conservative variables of
density d, three momentum components du (with u containing the Cartesian velocity field), total energy d� and the
working variable dã of the chosen turbulence model, specifically the negative Spalart–Allmaras model. The spatially
discretised terms of the fluid model (with details to be provided in Section II.C) are contained in the residual vector X 5 ,
with its dimension given by the number of mesh points times conservative variables. The residual also contains the
explicit dependence on the discrete cell volumes (resulting from a finite-volume formulation) and terms relating to
deforming meshes in an arbitrary Lagrangian-Eulerian formulation, with details to be found e.g. in [34]. For the test
cases of interest in our line of work, the structure is commonly described by a detailed finite-element model, which
effectively discretises the second-order ordinary differential equation of a (damped) mass-spring system. A free vibration
analysis gives a modal description of the aircraft structure (specifically normal mode shapes and structural frequencies).
Using these spatial modes of vibration, the governing equations for the structural degrees-of-freedom are projected into
the modal space, with its dimension according to the number of retained dominant modes (which is significantly lower
than the number of both the fluid unknowns and the original structural degrees-of-freedom) and the modal structural
degrees-of-freedom become the time-dependent modal amplitudes. In essence, the aircraft structure is described by a
linear reduced-order model. Coupling between fluid and structure happens through (generalised) aerodynamic loads
and structural deformations that deform the fluid mesh.

A more detailed description of the physics models used in this work has been presented previously and the interested
reader is referred to that work [2].

B. Resolvent Method
With the governing equations of the fluid and structural systems defined, focus now shifts to the resolvent formulation

where the paper’s novel contribution lies (specifically the iterative solution approach to the resolvent problem). The
unknowns of fluid and structure are decomposed into a turbulent time-average flow and static deformed state, respectively,
and fluctuation vectors via w(x, C) = w̄(x) + w̃(x, C) which results in the linearised algebraic equations

dw̃
dC

= �w̃ + f̃ (2)

where � = mX/mw is a large sparse matrix either representing the fluid Jacobian matrix � = � 5 5 or the coupled Jacobian
matrix consisting of four blocks � = [� 5 5 , � 5 B; �B5 , �BB]. The vector f̃ = f̃ (x, C) is introduced as a time-dependent
forcing, which can originate from external forcing and/or describe non-linear terms. The focus herein is on subcritical
conditions which means in the framework of unsteady Reynolds-averaged Navier–Stokes modelling that the steady-state
base flow is equal to the time-averaged mean flow and even in mildly supercritical flow this statement is still approximately
true. There is also, of course, a debate on the meaning of turbulence modelling in linearised analyses in broader terms,
and the mean flow calculation continues to rely on the assumption of a separation of scales [12, 35] between the large
scale coherent structures, that can be integrated in time even with the chosen flow model, and the small spatial and
temporal scales of turbulence accounted for by turbulence modelling and resulting eddy viscosity [36, 37].

Using orthogonality, eq. (2) is written at each separate angular frequency l with w̃(x, C) = ŵ(x)48lC (and similarly
for the forcing vector), such that,

8lŵ = �ŵ + f̂ (3)
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where ŵ and f̂ are the components of the response and forcing vector, respectively, at frequency l. Rearranging leads
to an input-output relation formulated by the resolvent operator ' as

ŵ = −' f̂ (4)

where ' is explicitly given by (� − 8l�)−1. The resolvent operator can be thought of as transforming an (input) forcing
vector f̂ into the (output) response state vector ŵ and is the focus of resolvent analysis. When the forcing is absent,
eq. (3) becomes an eigenvalue problem for the linear operator �, discussed previously in [1, 2]. Resolvent analysis is
concerned with investigating both the optimal forcing (and response) at a given frequency and also for which forcing
frequency the largest responses are produced overall, thereby identifying strong modal behaviour.

For a given frequency l, the maximum possible energy gain of the system, � (l) = f2
1 , is expressed as

� (l) = max
f̂

〈ŵ, ŵ〉
〈 f̂ , f̂ 〉

= max
f̂

〈'†' f̂ , f̂ 〉
〈 f̂ , f̂ 〉

(5)

where 〈a, b〉 = a�&b defines the weighted inner product of two arbitrary vectors a and b, with the matrix & describing
a suitable positive definite matrix, containing the discrete cell volumes on its diagonal in our case. Other inner products
to define the energy gain have been discussed in the literature and can be explored in the future [38, 39]. The adjoint of
the resolvent operator is '†, such that 〈a, 'b〉 = 〈'†a, b〉 or, more explicitly, '† = &−1'�& = (&−1��& + 8l�)−1

(where �� = �) and �† = &−1��&). The optimal gain and its corresponding forcing and response modes are obtained
by computing the singular value decomposition (SVD) of ', such that ' = *Σ+� , where Σ is a diagonal matrix
containing the singular values f8 (with 8 = 1 . . . = and = as the number of modes of interest) and* and + are unitary
matrices, unitary with respect to & (so that, for instance, *†&* = �). In the case of resolvent analysis, the columns
*8 and +8 can be interpreted as the response and forcing modes with corresponding singular values f8 indicating the
energy gain. Here, we are interested in the dominant modes of the SVD, having the largest singular values and therefore
showing the largest amplification. Equivalently, eq. (5) can be treated as an eigenvalue problem for ''† and '†', which
will give the forcing and response modes as their eigenvectors and the squared singular values as the eigenvalues. If the
frequency shift 8l is equal to an eigenvalue of �, the resolvent operator becomes singular and the energy gain tends to
infinity. In that case, the forcing and response mode become equal to the eigenvectors of �† and �, respectively.

C. Numerical Approach

Aerostructural Analysis
The Reynolds-averaged Navier–Stokes equations (plus turbulence model) are solved using the industrial DLR–TAU

code which uses a second-order, finite-volume, vertex-centred discretisation [40]. The inviscid fluxes are computed
using a central scheme with matrix artificial dissipation. The Green–Gauss theorem is used to compute the gradients of
flow variables for viscous fluxes and source terms. The far-field boundary is realised by the method of characteristics
while the no-slip condition on viscous walls is enforced strongly. Additionally, when a symmetry plane boundary
condition is required, this is imposed by removing components of the momentum equations normal to the plane. The
turbulence closure is provided by the negative Spalart–Allmaras model using the Boussinesq eddy-viscosity assumption.
A steady-state flow solution is calculated via the backward Euler method with lower-upper symmetric Gauss–Seidel
iterations and local time-stepping. A geometric multi-grid method is also used to improve convergence rates.

The coupled aeroelastic problem requires solving the mass-spring-damper modal structural equations (with the
modes shapes mapped one-to-one to the surface mesh for the fluid equations) with applied (generalised) aerodynamic
forces iteratively in a staggered fashion updating the structural and fluid degrees-of-freedom in turn. While the
Newmark-beta scheme can be used to integrate the structural equations in time, for the static coupling where the
aerodynamic loads are balanced by the wing stiffness the structural degrees-of-freedom are updated iteratively based
on the latest loads estimate. The coupling between aerodynamics and structure for these non-linear iterations (either
for computing a base state or for unsteady time-stepping) is done using the tools provided through the FlowSimulator
framework [41]. The fluid-structure coupling for linearised analyses in identifying and dealing with dominant modal
behaviour (either global stability or resolvent) has been integrated entirely in the TAU flow solver [2].

First Discretise, Then Linearise Framework
The Jacobian matrix blocks of the linearisation are calculated on the statically deformed geometry for subsequent

linearised aerodynamics analyses, specifically herein resolvent analysis. Matrices � 5 5 and �B5 are computed from a
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Algorithm 1 Iterative resolvent method for = dominant modes

Require: Resolvent operator ' = (� − 8l�)−1, convergence criterion 2, number of modes =.
1: for 8 = 1, ..., = do
2: Set a random initial forcing with 〈 f̂ 8 , f̂ 8〉 = 1
3: do
4: f̂ 8 = f̂ 8 −

∑8−1
9=1〈 f̂ 8 , f̂ 9〉 f̂ 9

5: f̂ old = f̂ 8
6: Solve (� − 8l�)û8 = f̂ 8 iteratively
7: f2

8
= 〈û8 , û8〉 and û8 = û8/f8

8: Solve (�† + 8l�) v̂8 = û8 iteratively
9: f2

8
= 〈v̂8 , v̂8〉 and f̂ 8 = v̂8/f8

10: while ‖ f̂ 8 − f̂ old‖ > 2
11: end for

hand-derived, analytical formulation, while � 5 B is computed using a finite-difference method. Forming �BB is trivial due
to the modal nature of the structural system. Details on the meaning and simplifications can be found in [42].

Iterative Resolvent Method
Instead of directly computing the SVD of the resolvent operator ' or the eigenvalue problems for ''† and '†', an

iterative method is used. Conventional matrix-forming and/or direct methods are unsuitable due to the size of the linear
operators that are required for the test cases of interest. Fortunately, we are interested in computing only a few of the
leading modes with the largest energy gains. Therefore, we opt for an iterative method to compute the singular values
(and corresponding vectors) of the resolvent operator. The iterative scheme is summarised in alg. 1. It is adapted from a
similar time-stepping algorithm introduced in [30] and refined in [31]. The distinguishing feature is that we solve for
the periodic state at the specified frequency directly, instead of time-stepping through multiple cycles until a periodic
state is converged. By repeatedly applying the resolvent operator and its adjoint (cf. lines 6 and 8) and normalising the
resulting vectors (cf. lines 7 and 9), the dominant response and forcing modes can be found iteratively with the energy
gain given by their appropriate vector norm. Another feature is that deflation of converged optimal forcing modes
(cf. line 4) allows the extraction of subsequent optimal modes with lower gains.

The iterative resolvent method involves applying the inverse of a linear operator to a vector, which in practice means
the solution of a large sparse linear system of equations using an iterative solver due to the size of the operator. For
solving either '−1û = (� − 8l�)û = f̂ or '−† v̂ = (�† + 8l�) v̂ = û, we use a Krylov subspace method, in particular
the generalised conjugate residual solver with inner orthogonalisation and deflated restarting (GCRO-DR) [43–45]
with suitable preconditioning. The GCRO-DR solver aims to improve on the standard restarted generalized minimal
residual method (GMRES) by recycling a suitable Krylov subspace between restarts (and in principle can also be
used to recycle when solving for a sequence of linear system such as those arising from a changing right-hand side).
This helps preventing the algorithm from stalling in particularly stiff cases and normally speeds up convergence. For
preconditioning, we use a block-Jacobi preconditioner with block-local incomplete lower-upper (ILU) factorisation of the
shifted fluid Jacobian matrix (� 5 5 − 8l�) for fluid-only cases and the so-called arrowhead preconditioner (making use
of the aforementioned ILU factorisation for the fluid degrees-of-freedom) for the aeroelastic cases. This preconditioner,
based on the inversion of block-arrowhead matrices shown in [46], allows the preconditioner matrix, which is an
approximation of (� − 8l�)−1, to be applied in parallel for the coupled Jacobian matrix. Specifically, it includes the
coupling matrices between fluid and structural degrees-of-freedom, resulting in a better approximation than would be
obtained by, for instance, a block-Jacobi preconditioner which discards off-diagonal blocks. This idea was introduced
in [2], where further details on the method can be found. Compared to a block-Jacobi preconditioner, significant
speed-ups including the prevention of convergence stall were observed for the most challenging scenarios.

A representative convergence behaviour of the iterative method, using the full-span test case discussed in Section III,
is shown in fig. 1. Before providing further explanations, it is stated that the lowest achievable level of convergence for
the (outer) resolvent iteration depends on the chosen convergence tolerance of the (inner) iterative linear system solution.
Herein, we initially adjusted the linear solver convergence tolerance based on the current level of outer convergence,
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Fig. 1 Representative numerical behaviour of iterative resolvent method for full-span fluid-only calculations
at angle of attack " = 3.5◦ and angular frequencies8 = 0.5 and 5.0 showing the convergence of (left) the forcing
vector through the Euclidean norm ‖ f − fold‖ and (right) two leading singular values 21,2.

with a minimum capped at 10−7. This can explain the floor of the trends shown in the figure. The figure demonstrates
that well separated modes, such as the second optimal mode at l = 5.0 once the first optimal mode is deflated, converge
rapidly. Hence, when strong modal behaviour is present in the system dynamics, the iterative resolvent method is
very efficient. For modes that are harder to distinguish in their dominance, such as at l = 0.5, convergence can take
significantly longer, while the singular values (shown in the right plot) are already sufficiently converged after a few
iterations. For such scenarios, where for instance no clear winning mode is present or where pairs of modes can be
found (such as a pair representing port/starboard wings), an Arnoldi method could be explored in future to enhance
convergence rates [47]. Overall, the results agree nicely with the behaviour outlined in [31].

III. Results and Discussion

NASA Common Research Model Test Case
The NASA Common Research Model (CRM) resembles a modern passenger aeroplane and exists as both a physical

model (for wind tunnel testing) and a computational model. It was designed as a universal test case for researchers to
compare new ideas and results [48]. The wing has a nominal lift coefficient of 0.5, an aspect ratio of 9, a taper ratio of
0.275 and a 35° quarter-chord sweep angle. Herein, the scaled-down wind tunnel wing/body/horizontal-tail version is
discussed featuring a mean aerodynamic chord of 0.189 m with a full span of 1.586 m and reference area of 0.280 m2.
The pylons and nacelles were discarded and the tail-setting angle was 0◦. The computational mesh was generated for the
half-span configuration with approximately 6.2 × 106 points including approximately 170 000 points on solid walls. A
viscous wall normal spacing of H+ < 1 is ensured. The hemispherical far-field boundary is located at a distance of
100 semi-span lengths. Mirroring with respect to the centre plan gives the full-span case. Modal shapes and structural
frequencies were calculated from the finite-element model representing the wind-tunnel geometry∗. The first 30 normal
modes with lowest frequency are kept covering the shock-buffet frequency range previously identified. Further details,
including a visualisation of representative mode shapes, can be found in [1, 2].

Herein, the Reynolds number (based on mean aerodynamic chord) is '4 = 5.0 × 106 and the free-stream Mach
number is " = 0.85, chosen according to the test entry in the European Transonic Windtunnel [49]. The focus is on
angles of attack giving subcritical flow conditions. Results are stated in their non-dimensional form throughout, based
on the mean aerodynamic chord and reference free-stream values, unless explicitly specified otherwise. Full-span
simulations with approximately 12.3 × 106 mesh points and nearly 74 × 106 complex-valued degrees-of-freedom are
done on four compute nodes, each having twin Skylake 6138 processors, 40 hardware cores and 384 GB of memory.

∗found at https://commonresearchmodel.larc.nasa.gov/
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Fig. 2 Eigenvalues of fluid-only and coupled systems for angles of attack " = 3.0◦, 3.5◦ and 3.7◦ showing (left)
an overall view and (right) a zoomed-in region along the imaginary axis. The red box in the left plot indicates
the region shown in the right plot.

Static Aeroelastic Base State
In preparation for using the resolvent method for the NASA CRM, the static aeroelastic deformation of the aircraft

due to the aerodynamic loads is required. As described earlier, the structural and aerodynamic degrees-of-freedom
are updated in turn. Altogether we specified 50 outer iterations of the fluid-structure coupled analysis, each with 100
iterations of the flow solver followed by loads transfer to the modal structural degrees-of-freedom, structural solution
update and finally fluid mesh deformation. The coupled solutions used as base states for the subsequent linearised
analyses, foremost for the calculation of the linear operator, converged at least by ten orders of magnitude. The resulting
deformation of the geometry and surface pressure distribution for a representative angle of attack was shown previously
in [2, 17] and agree well with equivalent measurements found experimentally in the European Transonic Windtunnel
campaign [49]. Most importantly, an asymmetry between the port and starboard wing was highlighted, which is
in contrast to the exact symmetry with respect to the fuselage centre plane discussed in [1] and is due to various
cut-outs in the physical wind tunnel model needed for housing the instrumentation. Such detail was also included in the
finite-element model and eventually propagates to the normal mode shapes and frequencies.

Stability Results
It is instructional when discussing pseudo-resonances in the resolvent results to be aware of weakly damped

eigenmodes in the system dynamics as those can give rise to resonances. These were previously presented in [2] and
are summarised for convenience in fig. 2. The figure shows global stability results, as growth rate Re(_) over angular
frequency Im(_) with _ as the eigenvalue, at several angles of attack computed using both our implementation of the
coupled eigenmode solver, presented in [2], and a conventional flutter analysis using unsteady aerodynamics based
on computational fluid dynamics through the Schur complement method (?:-type flutter prediction), first presented
in [50, 51]. The results are shown for the target conditions matching those in the wind tunnel. Focusing on angles
of attack U = 3.5◦ and 3.7◦ several observations can be made. First, and obviously, results of the two available
eigenmode solvers agree with the caveat that the conventional flutter method cannot pick up modes originating in the
fluid degrees-of-freedom (hereafter called fluid modes). Hence, weakly damped fluid modes, eventually leading to large
scale flow unsteadiness, require the coupled eigenmode solver. Also note, in [2] it was shown that the ?:-type flutter
tool can fail tracing eigenmodes originating in the structural degrees-of-freedom (hereafter called structural modes) in
close proximity to fluid modes. Second, in the right plot, relatively little migration in the structural eigenvalues can be
found going from angle of attack U = 3.0◦ to 3.5◦ throughout the frequency range and going from U = 3.5◦ to 3.7◦
for frequencies below those typically reported as characteristic frequency range for the shock-buffet on finite wings.
Indeed, when fluid modes suggest globally unstable flow at U = 3.7◦, structural modes show strong migration and
several unstable modes are identified. Third, and most important for our discussion on using the resolvent method as a
predictive tool to identify shock buffet early through pseudo-resonances, there are no weakly damped fluid modes in the
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Fig. 3 Leading singular values 21(8) showing (left) angles of attack " = 3.0◦, 3.25◦ and 3.5◦ for half-span
fluid-only case and " = 3.7◦ for fluid-structure coupled system and (right) focus angle of attack " = 3.5◦ with
second largest singular value 22 included for full-span fluid-only case. The inset shows the region highlighted
by the red box.

global stability results for angles of attack below U = 3.5◦, that can be distinguished from those spurious fluid modes
associated with the numerical scheme rather than with dominant modal behaviour.

Resolvent Results
The iterative resolvent method was run for the fluid-only case at angles of attack U = 3.0◦, 3.25◦ (for the half-span

configuration) and 3.5◦ (for both half- and full-span configuration) as well as for the fluid-structure coupled system
at angles U = 3.5◦ and 3.7◦. In addition, for the full-span fluid-only configuration, the two leading (optimal) modes
were computed. All those thereby obtained singular values can be found in fig. 3. Several interesting observations
can be made. First, in the left plot showing the angle-of-attack influence, while there is no strong peak to be found
in the singular values at angles well below the critical value, the development of pronounced amplification due to
optimal forcing tells the potential of the resolvent method as a predictive tool. Recall for instance, that for angles of
attack U < 3.5◦, no weakly damped fluid modes can be found with the stability tool. Developing peaks in the energy
gain can hence be explained by an increasing degree of non-normality in the system indicating pseudo-resonance. An
increased angle of attack just above buffet onset in the fluid-structure coupled system at U = 3.7◦ results in a significant
increase in energy gain, which has also been found in the two-dimensional aerofoil study in [28]. At this slightly
supercritical angle of attack, the peak position in the gain has shifted from approximately l = 5.0 to a lower value of
2.5, which corresponds to the frequency of the leading fluid mode, seen in fig. 2. The almost two orders of magnitude
higher singular value is now also a result of proper resonance in the proximity of the fluid mode. This statement can
be explored more using the method outlined in [52]. Interpreting the optimal forcing of a globally unstable system
should be done carefully; the use of the (statistically stationary) turbulent mean in the construction of � means that any
exponential growth and saturation of disturbances associated with unstable eigenmodes has already taken place to form
the assumed turbulent mean. As such, the response modes present in the flow are associated with purely oscillatory
forcing. This means, unlike a classical linear modal stability analysis, it is the eigenvalues of � ‘closest’ to the imaginary
axis that are shaping the flow structures, rather than the ones with the largest real part (see McKeon and Sharma [27]
Appendix A). Second, the fluid-structure coupled system at angle of attack U = 3.5◦ in the right plot of fig. 3, with
structural eigenmodes near the imaginary axis, shows a very similar amplification compared with the fluid-only case,
suggesting, on the one hand, that the structural modes are not the cause of the peak and, on the other hand, that the effect
of fluid-structure coupling on the dominant modal behaviour is not significant. Indeed, smaller secondary peaks in the
frequency range l = 1.5 to 3.0, where we have chosen to refine the angular frequency spacing greatly, can be seen. The
location of these peaks correspond to the frequencies of the structural eigenvalues found in fig. 2. Similar behaviour can
also be seen in the verification of the iterative resolvent method in the appendix. However, these secondary peaks do not
have a significantly higher gain than those in close vicinity, indicating that the effect of (pseudo-) resonance within
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Fig. 4 Real part of perturbation in surface pressure coefficient of the response mode (top) and forcing mode
(bottom) at angular frequencies8 = 0.25 (left), 0.5 (middle), 5.0 (right) at angle of attack" = 3.5◦. The spanwise
positions for the slices in fig. 5, specifically at non-dimensional span ( = 0.497 and 0.66 for forcing and response
modes, respectively, are shown as black lines.

the structural system is low compared to the non-normality of the fluid system. It will be instructive to explore this
statement for instance at angle of attack U = 3.0◦ in the absence of a strong amplification arising from the fluid flow.
Third, a smaller, yet noticeable peak can be found at very low frequencies at U = 3.5◦. This frequency range corresponds
roughly to (quasi-) two-dimensional aerofoil modes found in previous studies [28, 29]. While we state this observation
here to be comprehensive, additional simulations and scrutiny are required to reinforce the potential insight gained when
also invoking the visualisations in figs. 4 and 5 which show response modes of very long wavelength in the order of a
wing span and distinct features in the forcing modes. For instance, it will be valuable to compute the distance between
the leading singular values in the figure and the next optimal modes; singular values identifying strong modal behaviour
can be expected to be well separated (and hence relatively easy to converge) from lower ranked singular values. Lastly,
the right plot shows the singular value of the second dominant modes for the full-span fluid-only case at angle of attack
U = 3.50◦. While the theoretical and numerical properties of the iterative resolvent method dictate that the f2 values
have to be lower than those of f1, they still show the characteristic broad peak. This is analogous to the behaviour of the
eigenmodes when comparing the half- and full-span configurations in [2]. Specifically, due to the slight asymmetries in
the finite-element structural model, there are pairs of weakly damped eigenmodes each emphasising the dynamics of one
of the wings. Similarly, the forcing and response mode shapes, to be discussed next, show that these two leading optimal
modes dominate one wing each (i.e. starboard and port wing for the first and second optimal modes, respectively).

Figures 4 and 5 offer a glimpse into the spatial characteristics of the first optimal forcing and response modes of
the fluid-structure coupled system at angle of attack U = 3.5◦ and a few selected frequencies corresponding to distinct
features discussed above. Note that, similar to the conclusion on the leading singular values in fig. 3, the fluid part
of the forcing and response modes for the full-span fluid-only configuration is very similar and does thus not require
special mentioning. In fig. 4, the forcing and response modes can be seen for the three angular frequencies l = 0.25,
0.5 and 5.0 showing the real part of the perturbation in the surface pressure coefficient. Starting with the highest
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Fig. 5 Real part of x-momentum component 1̂u for forcing modes at non-dimensional span ( = 0.497 (left
column) and response modes at non-dimensional span ( = 0.66 (right column) for non-dimensional frequencies
8 = 0.5 (top), 2.75 (middle) and 5.0 (bottom) and angle of attack " = 3.5◦. The sonic line is also shown.

frequency l = 5.0, which corresponds to the peak in the energy gain at this angle of attack, the response mode reveals
a strong resemblance to the finite-wing shock-buffet modes with so-called buffet cells visible aft of the shock front
on the starboard wing [1, 2]. Observe that the second optimal mode gives similar spatial structures on the port wing
instead. Equally, the forcing mode shape comes with features resembling the adjoint shock-buffet mode visualised
in [53]. Hence, the major peak discussed in the narrative relating to fig. 3 can indeed be regarded as an early indicator (at
lower angles of attack) of imminent global aerodynamic instability, even though no weakly damped and distinguishable
eigenmodes can be found. Furthermore, analysing the phase, specifically ∠�̂% = arctan(Im(�̂%)/Re(�̂%)), this mode is
shown to be outboard running, again similar to the global unstable shock-buffet mode. Note that similar statements can
be made for the modes at the other frequencies constituting the peak and these are not explicitly shown herein. For
instance, at angular frequency l = 2.75, which is close to the frequency of the leading eigenmode at the instability
onset angle of attack, similar but coarser-grained features (effectively correlated with the forcing frequency) can be
identified, as indicated in fig. 5 (middle row) through the real part of the streamwise momentum component.

The discussion now turns to the far more subtle peak in fig. 3 at lower frequency. Inspecting the response mode
visualisation in fig. 4, it becomes clear immediately that, in contrast to the higher frequency l = 5.0, the lower
frequencies show perturbation amplitudes on both wings, which could indicate that this dominant mode is different in
nature. It is similarly interesting to observe that the forcing on the wing surface is rather localised compared with the
significant span extent of the response mode in the order of a wing (semi-) span. In this context it is also important
to mention the long wavelength modes discussed in [54] (using modal decomposition of scale-resolved numerical
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simulation data) and [55] (using modal decomposition of experimental dynamic pressure sensitive paint data). In those
papers there is discussion on the direction of the spanwise modes, either inboard or outboard, and we find an outboard
propagation direction which agrees with the 80%-scaled CRMwing study in [54], albeit that study being in an established
shock-buffet condition. Returning to the forcing mode and inspecting a slice shown in fig. 5, a striking resemblance
with the adjoint eigenmode near the shock-buffet onset angle of attack on both a two-dimensional aerofoil [28] and a
three-dimensional infinite wing [29] can be noted. Of course, herein we are dealing with a three-dimensional finite wing
and hence variation in the span direction must be taken into account. A prominent feature is the oblique line impacting in
the region where the boundary layer separates. It was demonstrated that this oblique part of the forcing mode coincides
with a right characteristic line, emphasising the importance to the whole dynamics of the shock-wave/boundary layer
interaction. The reader is referred to [28] for more discussion on this point. As stated earlier, more scrutiny concerning
these findings is required going forward, as is a more thorough discussion on the structural degrees-of-freedom in the
fluid-structure coupled results. We conclude by pointing out, and explaining the reasoning behind, the different angular
frequencies presented in figs. 4 and 5. Essentially, the spatial structures as presented in the plots will change gradually
as the frequency is varied, and the results we selected provide an excellent picture of the forcing and response modes.

IV. Conclusion
Continuing from previous global stability studies, resolvent analysis is discussed to further elucidate the modal

nature of the shock-buffet phenomenon on finite wings. The size and complexity of the target application, specifically
large aircraft wings, and resulting big fluid meshes rule out the use of direct matrix-forming solution methods.
Instead, by approximating the underlying singular value decomposition of the resolvent operator, a measure can be
given to the optimal energy increase at a given frequency. This approximation is accomplished through an iterative
method, presented here for the first time, implemented in the industrial DLR–TAU solver, and expanded to include
structural degrees-of-freedom for aeroelastic analysis. The iterative method relies on the robust solution of large sparse
linear systems of equations achieved through using an advanced preconditioned Krylov subspace iterative solver. By
harmonically forcing an otherwise globally stable (or marginally unstable) system herein, the optimal energy gain can
be computed, alongside the respective forcing and response modes. Deflation of converged optimal forcing modes,
gives access to additional optimal modes which is useful when multiple dominant modes are present.

The NASA Common Research Model served as the test case, considering both a rigid (yet statically deformed) and
an elastic configuration, at a free-stream Mach number of 0.85 and a chord Reynolds number of 5 × 106 according
to an experimental test entry. The rigid case describes a fluid-only aerodynamic problem, that is discussed at three
angles of attack below the onset of large scale unsteadiness. The resolvent approach is shown to be capable of
predicting strong modal behaviour, such as linked to shock buffet on a finite wing, well before the notional onset of large
scale unsteadiness when a global stability tool can first identify dominant coherent physics through weakly damped
eigenmodes. Approximately half a degree below the critical angle of attack, a broadband pseudo-resonance peak is
picked up through optimally forcing the system. The spatial structures of the corresponding forcing and response modes
show clear similarities with those of the adjoint and direct eigenmodes, respectively, found through global stability
analysis at angles of attack closer to critical conditions. On the question of including structural degrees-of-freedom in
shock-buffet investigations, or not, it can be said that, while the coupled formulation can give a more complete picture of
the physics overall (and is hence important to consider as we have previously argued in [2]), in subcritical conditions
the structural dynamics play a secondary role when optimally forcing the coupled aeroelastic system. Finally, while it
requires more simulations and scrutiny, the current results also indicate a weaker modal behaviour at frequencies which
are typically described to be linked to an aerofoil-type mode, i.e. with a very long wavelength of the order of a wing
span. Such modal nature was not previously identified through global stability analysis on the finite swept wing.

Appendix
Different test cases have been considered while implementing and verifying the methods discussed in this paper.

In the following, we provide some detail of the flow over the widely used circular cylinder at a subcritical Reynolds
number (for the fluid-only resolvent formulation) and the aeroelastic Goland wing (for the fluid-structure formulation).

A. Circular Cylinder
The laminar cylinder flow is discussed at a Reynolds number of '4 = 40 (and low Mach number of " = 0.2). For

demonstration purposes, a rather coarse mesh with just under 10 000 points is used with the domain extending to a
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Fig. 6 Circular cylinder test case showing (top row) base-flow streamwise and cross-streamvelocity components,
(middle row) real part of cross-stream velocity component of the leading direct eigenmode (left column) and
optimal response mode (right column), and (bottom row) real part of cross-stream velocity component of the
leading adjoint eigenmode (left column) and optimal forcing mode (right column).

farfield boundary of 100 cylinder diameters. The convergence tolerance is set to 10−12 throughout both for non-linear
iterations of the state-steady computation and the linear systems arising from the linearised aerodynamics methods. The
base flow as steady solution of the Navier–Stokes equations is given in the top row of fig. 6 showing streamwise and
cross-stream velocity components. Stability analysis (both the direct/right and adjoint/left calculation) predicts the
leading mode (least damped) with an eigenvalue of _ = −0.0275 + 80.7145, which eventually develops into the vortex
shedding instability at the critical Reynolds number of approximately '4 = 47 − 48. The corresponding eigenfunctions
of the cross-stream velocity component are shown in the left column in the figure, specifically the direct mode in the
middle row (denoted dF) and the adjoint mode in the bottom row (denoted dF†). The eigenvectors are scaled to unit
length. Results are consistent with published results in the literature [56, 57]. The resolvent analysis is done for a
frequency l = 0.7 and the first three optimal modes are computed. The three largest singular values of those modes
are f1 = 2158.98, f2 = 162.66 and f3 = 153.75. For debugging purposes these calculations were also done using
Matlab functions to compute the largest eigenvalues of ''† as well as the iterative method, described in alg. 1. The
TAU implementation gives identical results while also testing parallel processing on different numbers of cores. The
first optimal forcing and response modes are shown in the right column of the figure. The resemblance but not perfect
agreement with the eigenmodes is expected [52]. Note that no effort was made to scale the different modes.

B. Goland Wing
The Goland wing is introduced for debugging purposes of the fluid-structure coupled implementation. This wing is

cantilevered with a 4% thick parabolic arc aerofoil and a (semi-) span of 20 ft and chord length of 6 ft. The structure is
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Fig. 7 Details of Golandwing test case showing (left) structural vibrationmode shapes (in blue) and frequencies
and (right) first singular value 2 over forcing frequency 8. Dashed and solid vertical lines in the right plot
correspond to the wind-off (as given in the left plot) and wind-on structural frequencies, respectively.

modelled by a finite-element method with details to be found in [58]. While we show results for a rather coarse fluid
mesh with 17 268 points herein, a significantly finer mesh has been discussed previously as well [2]. A symmetry
boundary condition is imposed at the wing-root plane. Inviscid flow at a reference free-stream Mach number of
" = 0.845 and zero degree angle of attack is assumed. The target altitude (to establish air density and velocity
according to the standard atmosphere) for the aeroelastic analysis is 30 000 ft. Figure 7 shows both the wing surface
deformations according to the first four dominant structural modes of vibration and corresponding frequencies and the
resolvent results. The first singular value was initially computed for eleven frequencies ranging from l = 0.0 to 0.5 in
steps of Δl = 0.05 using the iterative method implemented in both the TAU code and Matlab (based on the matrices
exported from the flow solver enhanced with aeroelastic functionality). The results as presented in the right plot are
identical further supporting the notion of a correct TAU implementation. Following this reassurance, a good number of
additional frequencies were considered to identify the peaks corresponding to the aeroelastic modes identifiable from a
flutter analysis, as demonstrated in [2], clearly. Specifically, the eigenvalue around l = 0.08 lies closest to the forcing
frequency, which corresponds to the largest singular value. In this simple high-subsonic inviscid test case without
shock waves or shock-wave/boundary-layer interaction, strong amplification gains due to non-normality in the governing
equations, specifically the Euler equations, are not expected.
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