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ABSTRACT

This online appendix contains all the proofs of the theoretical results stated in the main paper titled

as “Testing for Asymmetric Comovements” [Appendix A]. It also provides the asymptotic properties of

estimators for p+(c) and p−(c) and the details of how to test p+(c) = p−(c) vs. p+(c) 6= p−(c) using these

estimators [Appendix B]. It reports the tables of the empirical results analyzed and discussed in Sections

2 and 6 of the main paper [Appendix C]. It also includes empirical results for the analysis of asymmetric

comomvents among 5 major financial market indices. Finally, additional simulation results, regarding the

different block length choice with L = 2 and 4, different degrees of dependence in the data generating process

with the autoregressive parameter ρ = 0 (i.e., the i.i.d. case), 0.8 and 0.9 in the AR(1) process, and the test

results of two popular parametric tests for asymmetric comovements (i.e., the Cρ and Jρ tests), are reported

[Appendix D].
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A Appendix: Proofs of main results

This appendix provides all the proofs of the main theoretical results developed in Sections 3 and 4 of the

main paper.

Proof of Lemma 1: Under the null hypothesis H0, in order to prove that the
√
T -scaled infeasible process

√
T S̃T (x, y) converges weakly to the zero mean Gaussian process S∞ (x, y) with the long-run covariance

kernel given by K(·, ·), we first note that under H0,

√
T S̃T (x, y) =

1√
T

T∑
t=1

[
1 (c < Xt ≤ x) 1 (c < Yt ≤ y) p− − 1 (c < −Xt ≤ x) 1 (c < −Yt ≤ y) p+

]
=p−

1√
T

T∑
t=1

{1 (c < Xt ≤ x) 1 (c < Yt ≤ y)− E [1 (c < X1 ≤ x) 1 (c < Y1 ≤ y)]}

− p+ 1√
T

T∑
t=1

{1 (c < −Xt ≤ x) 1 (c < −Yt ≤ y)− E [1 (c < −X1 ≤ x) 1 (c < −Y1 ≤ y)]}

≡p−αT (x, y)− p+βT (x, y), (1)

where αT (x, y) and βT (x, y) are two empirical processes indexed by (x, y) ∈ R2.

It suffices to show that αT (·, ·)⇒ α∞(·, ·), where α∞(·, ·) is a zero mean Gaussian process with long-run

covariance kernel

E [η1 (x, y) η1 (x1, y1)] +

∞∑
i=1

{E [η1 (x, y) η1+i (x1, y1)] + E [η1+i (x, y) η1 (x1, y1)]},

where ηt(x, y) ≡ 1 (c < Xt ≤ x) 1 (c < Yt ≤ y)−E [1 (c < Xt ≤ x) 1 (c < Yt ≤ y)]. To prove the weak conver-

gence of αT (·, ·), define the pseudometric ρd on R2:

ρd ((x, y), (x1, y1)) ≡
{
E |ηt(x, y)− ηt(x1, y1)|2

}1/2
.

By Theorem 10.2 of Pollard (1990), this follows if we can prove (i) the total boundedness of a pseudometric

space
(
R2, ρd

)
; (ii) the stochastic equicontinuity of {αT (·, ·) : T ≥ 1}; and (iii) the finite dimensional (fidi)

convergence.

We first establish conditions (i) and (ii). First of all, noting that

ηt(x, y)− ηt(x1, y1) = [1 (c < Xt ≤ x) 1 (c < Yt ≤ y)− 1 (c < Xt ≤ x1) 1 (c < Yt ≤ y1)]

− p+
[
F+(x, y)− F+(x1, y1)

]
≡ηt1(x, y, x1, y1)− p+

[
F+(x, y)− F+(x1, y1)

]
.

For the part ηt1(x, y, x1, y1), it is easy to note that the class of functions

{
1 (c < Xt ≤ x) 1 (c < Yt ≤ y) : (x, y) ∈ R2

}
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is a type IV class with index 2 [see Andrews (1994, p. 2278)] that satisfies the L2-continuity condition. To

see this, letting ζ < 1 and noting that ∀(x, y) ∈ R2 and for every ζ1 > 0 and ζ > 0 such that
√
ζ2

1 + ζ2
2 ≤ ζ,

we have

E

{
sup

(x1,y1)∈R2:|x1−x|<ζ1,|y1−y|<ζ2
|ηt1(x, y, x1, y1)|2

}

=E

{
sup

(x1,y1)∈R2:|x1−x|<ζ1,|y1−y|<ζ2
|1 (Xt ≤ x) 1 (Yt ≤ y)− 1 (Xt ≤ x1) 1 (Yt ≤ y1)|2

}

≤2E

{
sup

x1∈R:|x1−x|<ζ1
|1 (Xt ≤ x)− 1 (Xt ≤ x1)|2

}
+ 2E

{
sup

y1∈R:|y1−y|<ζ2
|1 (Yt ≤ y)− 1 (Yt ≤ y1)|2

}

=2E

{
sup

x1∈R:|x1−x|<ζ1
|1 (Xt ≤ x)− 1 (Xt ≤ x1)|

}
+ 2E

{
sup

y1∈R:|y1−y|<ζ2
|1 (Yt ≤ y)− 1 (Yt ≤ y1)|

}
=2E [1 (x− ζ1 ≤ Xt ≤ x+ ζ1)] + 2E [(y − ζ2 ≤ Yt ≤ y + ζ2)]

=2 Pr (x− ζ1 ≤ Xt ≤ x+ ζ1) + 2 Pr (y − ζ2 ≤ Yt ≤ y + ζ2)

≤C(ζ1 + ζ2)

≤Cζ

for each ζ > 0, where the first step follows immediately by noting that if Xt ≤ c or Yt ≤ c, the expec-

tation is zero, the second step follows from 1 (Xt ≤ x) 1 (Yt ≤ y) − 1 (Xt ≤ x1) 1 (Yt ≤ y1) = [1 (Xt ≤ x) −

1 (Xt ≤ x1)]1 (Yt ≤ y)+[1 (Yt ≤ y)−1 (Yt ≤ y1)]1 (Xt ≤ x1) and |a+b|2 ≤ 2|a|2 +2|b|2, the third step follows

from the fact that 1 (Xt ≤ x)− 1 (Xt ≤ x1) as well as 1 (Yt ≤ y)− 1 (Yt ≤ y1) can only take values −1, 0, 1,

the fourth step follows because of supx1∈R:|x1−x|<ζ1 |1 (Xt ≤ x)− 1 (Xt ≤ x1)| = 1(x− ζ1 ≤ Xt ≤ x+ ζ1) and

supy1∈R:|y1−y|<ζ2 |1 (Yt ≤ y)− 1 (Yt ≤ y1)| = 1(y − ζ2 ≤ Yt ≤ y + ζ2), the second to last step follows from

Assumption A.1 (ii). Consequently,

E

{
sup

(x1,y1)∈R2:|x1−x|<ζ1,|y1−y|<ζ2
|ηt(x, y)− ηt(x1, y1)|2

}

≤2E

{
sup

(x1,y1)∈R2:|x1−x|<ζ1,|y1−y|<ζ2
|ηt1(x, y, x1, y1)|2

}
+ 2(p+)2 sup

(x1,y1)∈R2:|x1−x|<ζ1,|y1−y|<ζ2

∣∣F+(x, y)− F+(x1, y1)
∣∣2

≤Cζ + C
(
ζ2

1 + ζ2
2

)
≤ Cζ.

Therefore, the class of functions

M =
{

1 (c < Xt ≤ x) 1 (c < Yt ≤ y)− E [1 (c < Xt ≤ x) 1 (c < Yt ≤ y)] : (x, y) ∈ R2
}

is a class of uniformly bounded functions satisfying the L2-continuity. Note that L2-continuity implies that

the bracketing number satisfies

N
(
ε,M, ‖·‖L2(P)

)
≤ C

(
1

ε

)2

,
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which in conjunction with Assumption A.1 (i) implies that∫ 1

0
ε
− γ

2+γN
(
ε,M, ‖·‖L2(P)

) 1
4
dε ≤ C

∫ 1

0
ε
− γ

2+γ
− 1

2 dε <∞,

for 0 < γ < 2. It follows that conditions (i)-(ii) are satisfied by Theorem 2.2 of Andrews and Pollard (1994).

The fidi convergence required in condition (iii) holds by the Cramér-Wold device and a central limit

theorem for bounded random variables under strong mixing conditions. See Corollary 5.1 in Hall and Heyde

(1980, p. 132).

We are left to demonstrate that the sample covariance kernel converges to that of the limiting Gaussian

process α∞(·, ·). By the Davydov inequality [see e.g., Bosq (1998)],

|E [αT (x, y)αT (x1, y1)]| =

∣∣∣∣∣ 1

T

T∑
t=1

T∑
s=1

E [ηt(x, y)ηs(x1, y1)]

∣∣∣∣∣
≤16

T

T∑
t=1

T∑
s=1

α (|t− s|)

≤16
∞∑
j=0

α(j) <∞,

where the last step is implied by the strong mixing condition in Assumption A.1 (i). It follows that

E [αT (x, y)αT (x1, y1)] is absolutely convergent, and

E [αT (x, y)αT (x1, y1)]→ E [η1 (x, y) η1 (x1, y1)] +
∞∑
i=1

{E [η1 (x, y) η1+i (x1, y1)] + E [η1+i (x, y) η1 (x1, y1)]}.

This completes the proof of αT (·, ·) ⇒ α∞(·, ·). In the same manner, we can prove βT (·, ·) ⇒ β∞(·, ·).

Combining the results of αT (·, ·) and βT (·, ·), by Pollard (1990, Section 10), we have

ΛT (·, ·) ≡ (αT (·, ·), βT (·, ·))′ ⇒ Λ∞(·, ·), (2)

where Λ∞(·, ·) is a mean zero Gaussian process with certain covariance kernel KΛ. Finally, the results (1)

and (2) together complete the proof of Lemma 1.

Proof of Theorem 1: First of all, observe that the following straightforward decomposition holds:

√
TST (x, y) =p̂+p̂−

1√
T

T∑
t=1

[
1(c < Xt ≤ x)1(c < Yt ≤ y)

p̂+
− 1(c < −Xt ≤ x)1(c < −Yt ≤ y)

p̂−

]

=p̂+p̂−
1√
T

T∑
t=1

[
1(c < Xt ≤ x)1(c < Yt ≤ y)

p+
− 1(c < −Xt ≤ x)1(c < −Yt ≤ y)

p−

]

− p̂+p̂−
1√
T

T∑
t=1

[
1(c < Xt ≤ x)1(c < Yt ≤ y)

p̂+

p̂+ − p+

p+

]

+ p̂+p̂−
1√
T

T∑
t=1

[
1(c < −Xt ≤ x)1(c < −Yt ≤ y)

p̂−
p̂− − p−

p−

]
:=AT −BT + CT . (3)
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We only have to deal with terms AT , BT and CT separately.

We write

MT (x, y) =
1

T

T∑
t=1

[
1(c < Xt ≤ x)1(c < Yt ≤ y)

p+
− 1(c < −Xt ≤ x)1(c < −Yt ≤ y)

p−

]
.

Note that MT (x, y) = 1
p+
√
T
αT (x, y)− 1

p−
√
T
βT (x, y) under the null hypothesis. Therefore, the weak conver-

gence results αT (·, ·) ⇒ α∞(·, ·) and βT (·, ·) ⇒ β∞(·, ·) established in the proof of Lemma 1 immediately

imply that

sup
(x,y)

∣∣∣∣∣ 1

T

T∑
t=1

1 (c < Xt ≤ x) 1 (c < Yt ≤ y)− E [1 (c < X1 ≤ x) 1 (c < Y1 ≤ y)]

∣∣∣∣∣ p−→ 0, (4)

sup
(x,y)

∣∣∣∣∣ 1

T

T∑
t=1

1 (c < −Xt ≤ x) 1 (c < −Yt ≤ y)− E [1 (c < −X1 ≤ x) 1 (c < −Y1 ≤ y)]

∣∣∣∣∣ p−→ 0. (5)

As a result, we have

sup
(x,y)
|MT (x, y)| ≤ 1

p+
sup
(x,y)

∣∣∣∣∣ 1

T

T∑
t=1

1 (c < Xt ≤ x) 1 (c < Yt ≤ y)− E [1 (c < X1 ≤ x) 1 (c < Y1 ≤ y)]

∣∣∣∣∣
+

1

p−
sup
(x,y)

∣∣∣∣∣ 1

T

T∑
t=1

1 (c < −Xt ≤ x) 1 (c < −Yt ≤ y)− E [1 (c < −X1 ≤ x) 1 (c < −Y1 ≤ y)]

∣∣∣∣∣
p−→0.

That is, MT (x, y) = op(1) uniformly in (x, y) under the null.

For the first term AT , we have

AT =p̂+p̂−
√
TMT (x, y)

=p+p−
√
TMT (x, y) +

√
T (p̂+ − p+)p−MT (x, y) +

√
T (p̂− − p−)p+MT (x, y)

+
1√
T

√
T (p̂+ − p+)

√
T (p̂− − p−)MT (x, y)

=
√
T S̃T (x, y) + op(1),

where we have used the following results: MT (x, y) = op(1) uniformly in (x, y), and
√
T (p̂+ − p+) = Op(1)

and
√
T (p̂− − p−) = Op(1) which are established in the online Appendix B.
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For the second term BT , we have

BT =
p̂−

p+

(
p̂+ − p+

) 1√
T

T∑
t=1

1(c < Xt ≤ x)1(c < Yt ≤ y)

=
p−

p+

√
T
(
p̂+ − p+

) 1

T

T∑
t=1

1(c < Xt ≤ x)1(c < Yt ≤ y)

+
1√
Tp+

√
T
(
p̂+ − p+

)√
T
(
p̂− − p−

) 1

T

T∑
t=1

1(c < Xt ≤ x)1(c < Yt ≤ y)

=
p−

p+

√
T
(
p̂+ − p+

)
E [1(c < Xt ≤ x)1(c < Yt ≤ y)] + op(1) +Op

(
1√
T

)
=
√
T
(
p̂+ − p+

)
F+(x, y)p− + op(1),

with the second to last equality follows from (4), and the facts that
√
T (p̂+−p+) = Op(1) and

√
T (p̂−−p−) =

Op(1), which are established in the online Appendix B. Thereafter, by noting that

√
T
(
p̂+ − p+

)
=

1√
T

T∑
t=1

(
1(Xt > c)1(Yt > c)− p+

)
,

we have

BT = F+(x, y)p−
1√
T

T∑
t=1

(
1(Xt > c)1(Yt > c)− p+

)
+ op(1)

uniformly in (x, y).

Similarly, for the last term CT in (3), we can show that

CT = F−(x, y)p+ 1√
T

T∑
t=1

(
1(Xt < −c)1(Yt < −c)− p−

)
+ op(1),

uniformly in (x, y).

Finally, under the null hypothesis H0 : F+(x, y) = F−(x, y), combing the above results for AT , BT and

CT , we obtain

√
TST (x, y) =

√
T S̃T (x, y)− F+(x, y)

1√
T

T∑
t=1

[
1(Xt > c)1(Yt > c)p− − 1(Xt < −c)1(Yt < −c)p+

]
+ op(1)

≡
√
T S̃T (x, y)− F+(x, y)

√
TR̃T + op(1),

uniformly in (x, y), which concludes the proof of Theorem 1.

Proof of Theorem 2: Using the results in (4) and (5), under the alternative hypothesis H1 in Equation

(2) of the main paper, for a set with positive Lebesgue measure of (x, y), we can immediately obtain

ST (x, y) =p̂−
1

T

T∑
t=1

1(c < Xt ≤ x)1(c < Yt ≤ y)− p̂+ 1

T

T∑
t=1

1(c < −Xt ≤ x)1(c < −Yt ≤ y)

=p−E [1(c < Xt ≤ x)1(c < Yt ≤ y)]− p+E [1(c < −Xt ≤ x)1(c < −Yt ≤ y)] + op(1)

=
(
F+(x, y)− F−(x, y)

)
p+p− + op(1)

p−→
(
F+(x, y)− F−(x, y)

)
p+p− 6= 0, (6)
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where the second step follows easily because p̂+ = p+ + op(1) and p̂− = p− + op(1). In addition, it is

immediate to see that

sup
(x,y)
|ST (x, y)| ≤ p̂− + p̂+ ≤ 1, (7)

due to the facts that 0 ≤ p̂− ≤ 1 and 0 ≤ p̂+ ≤ 1.

Thus, we have

CvMT

T
=

∫
R2

(ST (x, y) 1(x > c)1(y > c))2 dF̂ (x, y)

=

∫
R2

(ST (x, y) 1(x > c)1(y > c))2 dF (x, y)

+

∫
R2

(ST (x, y) 1(x > c)1(y > c))2 d
(
F̂ (x, y)− F (x, y)

)
p−→
∫
R2

((
F+(x, y)− F−(x, y)

)
p+p−1(x > c)1(y > c)

)2
dF (x, y) > 0,

where we have used (6) and (7) as well as the fact that sup(x,y) |F̂ (x, y)− F (x, y)| = op(1).

Similarly, we can show that

KST√
T

= sup
(x,y)∈R2

|ST (x, y)1(x > c)1(y > c)|

p−→ sup
(x,y)∈R2

∣∣(F+(x, y)− F−(x, y)
)
p+p−1(x > c)1(y > c)

∣∣ ,
which concludes the proof of Theorem 2.

Proof of Theorem 3: First of all, under the local alternative hypothesis H1T specified in Equation (11)

of the main paper, let us denote an auxiliary process:

S̃1
T (x, y) = p+p−

1

T

T∑
t=1

[
1(c < Xt ≤ x)1(c < Yt ≤ y)

p+
− 1(c < −Xt ≤ x)1(c < −Yt ≤ y)

p−
− ∆(x, y)√

T

]
, (8)

where the summand is a sequence with mean zero under the local alternatives H1T , i.e., S̃1
T (x, y)

p−→

p+p−
(
F+
T (x, y)− F−T (x, y)−∆(x, y)/

√
T
)

= 0 under H1T . Furthermore, since as required ∆(∞,∞) = 0

to make Equation (11) a valid sequence of local alternatives, we also have

S̃1
T (∞,∞) = p+p−

1

T

T∑
t=1

[
1(Xt > c)1(Yt > c)

p+
− 1(Xt < −c)1(Yt < −c)

p−
− ∆(∞,∞)√

T

]

= p+p−
1

T

T∑
t=1

[
1(Xt > c)1(Yt > c)

p+
− 1(Xt < −c)1(Yt < −c)

p−

]
≡ R̃T .
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Note that under H1T ,

√
TST (x, y) =p̂+p̂−

1√
T

T∑
t=1

[
1(c < Xt ≤ x)1(c < Yt ≤ y)

p̂+
− 1(c < −Xt ≤ x)1(c < −Yt ≤ y)

p̂−

]

=p̂+p̂−
1√
T

T∑
t=1

[
1(c < Xt ≤ x)1(c < Yt ≤ y)

p+
− 1(c < −Xt ≤ x)1(c < −Yt ≤ y)

p−
− ∆(x, y)√

T

]

− p̂+p̂−
1√
T

T∑
t=1

[
1(c < Xt ≤ x)1(c < Yt ≤ y)

p̂+

p̂+ − p+

p+

]

+ p̂+p̂−
1√
T

T∑
t=1

[
1(c < −Xt ≤ x)1(c < −Yt ≤ y)

p̂−
p̂− − p−

p−

]
+ p̂+p̂−∆(x, y)

:=A′T −BT + CT + p̂+p̂−∆(x, y).

Similar to the analysis of term AT in the proof of Theorem 1, we can readily show that

A′T =

(
p̂+ − p+

p+
+ 1

)(
p̂− − p−

p−
+ 1

)√
T S̃1

T (x, y)

=
√
T S̃1

T (x, y) + op(1).

Collecting the above result for A′T as well as those results for BT and CT (but with F+
T (x, y) and F−T (x, y)

replacing F+(x, y) and F−(x, y) in the local alternatives) in the proof of Theorem 1, and using the fact that

p̂+p̂−∆(x, y) = p+p−∆(x, y) + op(1), we have

√
TST (x, y) =

√
T S̃1

T (x, y)− F+
T (x, y)p−

1√
T

T∑
t=1

(
1(Xt > c)1(Yt > c)− p+

)
+F−T (x, y)p+ 1√

T

T∑
t=1

(
1(Xt < −c)1(Yt < −c)− p−

)
+p+p−∆(x, y) + op(1)

=
√
T S̃1

T (x, y)− F+
T (x, y)

√
TR̃T

−∆(x, y)p+ 1

T

T∑
t=1

(
1(Xt < −c)1(Yt < −c)− p−

)
+ p+p−∆(x, y) + op(1)

=
√
T S̃1

T (x, y)− F+
T (x, y)

√
TR̃T + p+p−∆(x, y) + op(1), (9)

where the second step follows due to F+
T (x, y) = F−T (x, y)+∆(x, y)/

√
T under H1T , and the last step follows

from the fact that,

1

T

T∑
t=1

(
1(Xt < −c)1(Yt < −c)− p−

) p−→ E [1(X1 < −c)1(Y1 < −c)]− p− ≡ 0. (10)

The above follows by the weak law of large numbers for mixingale random variables [see e.g., McLeish (1975)

and Andrews (1988)] and the fact that the function of the mixing process is still mixing.
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It remains to prove the weak convergence result
√
T S̃1

T (·, ·)⇒ S∞(·, ·). Similar to the proof of Lemma

1, to prove that under the local alternatives H1T in (11), the process
√
T S̃1

T (·, ·) in (8) converges weakly to

the zero mean Gaussian process S∞(·, ·) stated in Corollary 1, we only have to note that
√
T S̃1

T (x, y) can be

rewritten as

√
T S̃1

T (x, y) =
1√
T

T∑
t=1

[
1 (c < Xt ≤ x) 1 (c < Yt ≤ y) p− − 1 (c < −Xt ≤ x) 1 (c < −Yt ≤ y) p+

]
− p+p−∆(x, y)

=p−
1√
T

T∑
t=1

{1 (c < Xt ≤ x) 1 (c < Yt ≤ y)− E [1 (c < Xt ≤ x) 1 (c < Yt ≤ y)]}

− p+ 1√
T

T∑
t=1

{1 (c < −Xt ≤ x) 1 (c < −Yt ≤ y)− E [1 (c < −Xt ≤ x) 1 (c < −Yt ≤ y)]}

+
√
Tp+p−

(
F+
T (x, y)− F−T (x, y)− ∆(x, y)√

T

)
≡p−αT (x, y)− p+βT (x, y),

where in the last step we have used F+
T (x, y) = F−T (x, y) + ∆(x, y)/

√
T under H1T . Here, αT (x, y) and

βT (x, y) are the empirical processes already defined in the proof of Lemma 1. As a result, by the proof of

Lemma 1, we have
√
T S̃1

T (·, ·)⇒ S∞(·, ·).

Recall that
√
TR̃T converges to a zero mean normal random variable defined in Corollary 1. Therefore,

as T →∞, we have

√
T S̃1

T (x, y)− F+
T (x, y)

√
TR̃T ⇒ S∞(x, y)− F+(x, y)V ≡ Ŝ∞(x, y).

As a result, by noting the decomposition in (9), we can readily conclude that

√
TST (x, y)⇒ Ŝ∞(x, y) + p+p−∆(x, y) ≡ Ŝ1

∞(x, y).

This ends the proof of Theorem 3.

Recall the following notations:

ε̂s (x, y) = 1 (c < Xs ≤ x) 1 (c < Ys ≤ y) p̂− − 1 (c < −Xs ≤ x) 1 (c < −Ys ≤ y) p̂+,

ε̂s (∞,∞) = 1 (Xs > c) 1 (Ys > c) p̂− − 1 (Xs < −c) 1 (Ys < −c) p̂+,

εs (x, y) = 1 (c < Xs ≤ x) 1 (c < Ys ≤ y) p− − 1 (c < −Xs ≤ x) 1 (c < −Ys ≤ y) p+,

εs (∞,∞) = 1 (Xs > c) 1 (Ys > c) p− − 1 (Xs < −c) 1 (Ys < −c) p+,

S∗T (x, y) =
1

T

T−L+1∑
t=1

ξt

t+L−1∑
s=t

[
ε̂s (x, y)− F̂+(x, y)ε̂s (∞,∞)

]
. (11)

9



In addition, define

S̃∗T (x, y) =
1

T

T−L+1∑
t=1

ξt

t+L−1∑
s=t

[
εs (x, y)− F+(x, y)εs (∞,∞)

]
. (12)

To theoretically justify the validity of the proposed dependent multiplier bootstrap procedure as stated in

Theorem 4, in the following we shall introduce and prove two auxiliary lemmas Lemma A1 and Lemma

A2. In light of these two lemmas, the proof of Theorem 4 is immediate.

Lemma A1 establishes that the infeasible empirical process
√
T S̃∗T (x, y) defined in (12) converges weakly

to Ŝ∞ (x, y), with Ŝ∞ (x, y) the same Gaussian process as defined in Corollary 1, conditional on the original

sample {(Xt, Yt)
′}Tt=1.

Lemma A1: Suppose Assumptions A.1-A.2 are satisfied. Then, conditional on the original sample{
(Xt, Yt)

′}T
t=1

,
√
T S̃∗T (·, ·)⇒ Ŝ∞ (·, ·) , (13)

where Ŝ∞ (x, y) is the same Gaussian process as defined in Corollary 1 in the main text.

Proof of Lemma A1: In order to establish the weak convergence of
√
T S̃∗T (x, y) to Ŝ∞ (x, y) under the

bootstrap law (i.e., conditional on the original sample {(Xt, Yt)
′}Tt=1), we first rewrite

√
T S̃∗T (x, y) as

√
T S̃∗T (x, y) =

T−L+1∑
t=1

φTt(ξt;x, y),

where

φTt(ξt;x, y) =
1√
T
ξt

t+L−1∑
s=t

[
εs (x, y)− F+(x, y)εs (∞,∞)

]
.

Note that φTt(ξt;x, y) has an envelope function given by

φ̄Tt(ξt) =
1√
T
|ξt| sup

(x,y)

∣∣∣∣∣
t+L−1∑
s=t

[
εs (x, y)− F+(x, y)εs (∞,∞)

]∣∣∣∣∣ .
Note also that conditional on the original sample {(Xt, Yt)

′}Tt=1, the triangular array {φTt(ξt;x, y)} is

independent within rows. Thus, we can apply Theorem 10.6 of Pollard (1990) to show the weak convergence

of
√
T S̃∗T (x, y) to Ŝ∞ (x, y). Recall that Pollard (1990)’s theorem allows the function φTt(ξt;x, y) to depend

on both T and t. The following proof is largely adapted from Inoue (2001)’s proof of Theorem 2.3 as well

as Su and White (2012)’s proof of Theorem 5.

To start, we define the following pseudo-metric:

ρT ((x, y), (x′, y′)) =

{
T∑
t=1

E
[∣∣φTt(ξt;x, y)− φTt(ξt;x′, y′)

∣∣2∣∣∣ {(Xt, Yt)
′}T
t=1

]}1/2

.

Then, to show the weak convergence of
√
T S̃∗T (x, y) conditional on the original sample, according to Theorem

10.6 of Pollard (1990), it suffices for us to verify the following five conditions:
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(i) {φTt(ξt;x, y)} is manageable1 in the sense of Definition 7.9 of Pollard (1990, p. 38);

(ii) E
[
T S̃∗T (x, y)S̃∗T (x′, y′)

∣∣∣ {(Xt, Yt)
′}Tt=1

]
p−→ K̂((x, y), (x′, y′)) for every (x, y), (x′, y′);

(iii) limT→∞
∑T

t=1 E
[
φ̄2
Tt(ξt)

∣∣ {(Xt, Yt)
′}Tt=1

]
is stochastically bounded;

(iv)
∑T

t=1 E
[
φ̄2
Tt(ξt)1

(
φ̄Tt(ξt) > ε

)∣∣ {(Xt, Yt)
′}Tt=1

]
p−→ 0 for each ε > 0;

(v) the pseudo-metric ρ((x, y), (x′, y′)) = limT→∞ ρT ((x, y), (x′, y′)) is well defined and, for all deterministic

sequences (xT , yT ) and (x′T , y
′
T ), if ρ((xT , yT ), (x′T , y

′
T ))→ 0, then ρT ((xT , yT ), (x′T , y

′
T ))

p−→ 0.

Proof of part (i): In order for the triangular array of process {φTt(ξt;x, y)} to be manageable with

respect to the envelope φ̄Tt(ξt), we need to find a deterministic function λ(ε0) that bounds the covering

number of α
⊙

ΦT = {αtφTt(ξt;x, y) : (x, y) ∈ R2
,where αt are nonnegative finite constants for all t =

1, . . . , T} with
√

log λ(ε0) integrable. Here, the covering number refers to the smallest number of closed

balls with radius (ε0/2)
√∑T

t=1 α
2
t φ̄

2
Tt(ξt) whose unions cover α

⊙
ΦT (see Pollard, 1990, inequality (10.7),

p. 54). It follows that within each closed ball,

T∑
t=1

α2
tE
[∣∣φTt(ξt;x, y)− φTt(ξt;x′, y′)

∣∣2∣∣∣ {(Xt, Yt)
′}T
t=1

]
≤ ε20

4

T∑
t=1

α2
tE
[
φ̄2
Tt(ξt)

∣∣ {(Xt, Yt)
′}T
t=1

]
, ∀ε0 ∈ (0, 1]. (14)

For the left-hand side of (14), it follows that

T∑
t=1

α2
tE
[∣∣φTt(ξt;x, y)− φTt(ξt;x′, y′)

∣∣2∣∣∣ {(Xt, Yt)
′}T
t=1

]

=
1

T

T−L+1∑
t=1

α2
t

1

L

∣∣∣∣∣
t+L−1∑
s=t

[εs (x, y)− F+(x, y)εs (∞,∞)]−
t+L−1∑
s=t

[εs
(
x′, y′

)
− F+(x′, y′)εs (∞,∞)]

∣∣∣∣∣
2

p−→
∞∑
t=1

α2
t

[
K̂((x, y), (x, y))− 2K̂((x, y), (x′, y′)) + K̂((x′, y′′, y′))

]
≡
∞∑
t=1

α2
t ρ

2((x, y), (x′, y′)), say.

Next, for the right-hand side of (14), we have

T∑
t=1

α2
tE
[
φ̄2
Tt(ξt)

∣∣ {(Xt, Yt)
′}T
t=1

]

=
1

T

T∑
t=1

α2
t sup

(x,y)

∣∣∣∣∣ 1√
L

t+L−1∑
s=t

[εs (x, y)− F+(x, y)εs (∞,∞)]

∣∣∣∣∣
2

=Op(1), (15)

1See also Pollard (1989, p. 348) for the definition of manageable class of functions. Pollard (1989, pp. 350–352) provides

several examples for manageable classes as well.
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where the last equality follows because L−1/2
∑t+L−1

s=t [εs (x, y)− F+(x, y)εs (∞,∞)] is an empirical process

indexed by (x, y) and weakly converges to a zero mean Gaussian process with a certain (although compli-

cated) long-run covariance kernel. To prove this, using the same arguments as in the proof of Lemma 1,

we can see that under either the null H0 or the sequence of local alternatives H1T , we have

1√
L

t+L−1∑
s=t

[εs (x, y)− F+(x, y)εs (∞,∞)]

=p−
1√
L

t+L−1∑
s=t

{1 (c < Xs ≤ x) 1 (c < Ys ≤ y)− E [1 (c < X1 ≤ x) 1 (c < Y1 ≤ y)]}

− p+ 1√
L

t+L−1∑
s=t

{1 (c < −Xs ≤ x) 1 (c < −Ys ≤ y)− E [1 (c < −X1 ≤ x) 1 (c < −Y1 ≤ y)]}

− p−F+(x, y)
1√
L

t+L−1∑
s=t

{
1 (Xs > c) 1 (Ys > c)− p+

}
+ p+F+(x, y)

1√
L

t+L−1∑
s=t

{
1 (Xs < −c) 1 (Ys < −c)− p−

}
+ p+p−

√
L
(
F+(x, y)− F−(x, y)

)
:=p−αL(x, y)− p+βL(x, y)− p−F+(x, y)AL1 + p+F+(x, y)AL2 + p+p−∆(x, y)

√
L

T
, (16)

where ∆(x, y) ≡ 0 under H0, while ∆(x, y) is uniformly bounded under H1T .

Clearly, in (16), whether it is under H0 or under H1T , the remainder term p+p−∆(x, y)
√
L/T is op(1)

uniformly in (x, y) due to L/T → 0. Following the same arguments as in the proof of Lemma 1, we can

show that αL(·, ·)⇒ α∞(·, ·) and βL(·, ·)⇒ β∞(·, ·).

Furthermore, note that both AL1 and AL2 are summations of indicator functions of strong mixing random

variables. Then, according to a central limit theorem for bounded random variables under strong mixing

conditions [see e.g., Corollary 5.1 in Hall and Heyde (1980, p. 132) and de Jong (1997)] and the fact that

the indicator function of the mixing process is still mixing, we can prove the asymptotic normality of AL1

and AL2 with mean zero and long-run variances given respectively by (26) and (27) as L → ∞. The proof

of absolute convergence of both long-run variances can be found in the online Appendix B.

Thus, we have AL1 = Op(1) and AL2 = Op(1). Consequently, these results together imply that

sup
(x,y)

∣∣∣∣∣ 1√
L

t+L−1∑
s=t

[εs (x, y)− F+(x, y)εs (∞,∞)]

∣∣∣∣∣
2

= Op(1),

which leads to (15).

Therefore, the above results imply that for any small ε1 > 0, there exists a large constant M1 ≡M1(ε1) >

0 such that the following inequality holds:

∞∑
t=1

α2
t ρ

2((x, y), (x′, y′)) ≤ ε20
4
M1, (17)
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for sufficiently large T on a set with probability 1− ε1.

Selecting grid points {x : −∞ = x0 < x1 < · · · < xT1−1 < xT1 = ∞ such that |xj − xj−1| < δ1} and

{y : −∞ = y0 < y1 < · · · < yT2−1 < yT2 =∞ such that |yk − yk−1| < δ2}. For (x, y) ∈ [xj−1, xj ]× [yj−1, yj ],

it is easy to note that

E [εt (x, y)− εt (xj , yk)]
2 ≤ C(δ1 + δ2),

and

(F+(x, y)− F+(xj , yk))
2 ≤ C(δ1 + δ2)

as well as

0 < lim
T→∞

T−1E

[
T∑
t=1

εt (∞,∞)

]2

:= σ2 <∞.

Let δ =
√
δ2

1 + δ2
2 < 1. By the Cauchy-Schwartz and Davydov inequalities, it can be seen that

ρ2((x, y), (xj , yk))

= lim
T→∞

1

T
E

[
T∑
t=1

[εt (x, y)− F+(x, y)εt (∞,∞)]−
T∑
t=1

[εt (xj , yk)− F+(xj , yk)εt (∞,∞)]

]2

≤2 lim
T→∞

1

T
E

[
T∑
t=1

[εt (x, y)− εt (xj , yk)]

]2

+ 2(F+(x, y)− F+(xj , yk))
2 lim
T→∞

1

T
E

[
T∑
t=1

εt (∞,∞)

]2

≤C lim
T→∞

1

T
E

[
T∑
t=1

[1 (c < ±Xt ≤ x)− 1 (c < ±Xt ≤ xj)]

]2

+ C lim
T→∞

1

T
E

[
T∑
t=1

[1 (c < ±Yt ≤ y)− 1 (c < ±Yt ≤ yk)]

]2

+ 2(F+(x, y)− F+(xj , yk))
2 lim
T→∞

1

T
E

[
T∑
t=1

εt (∞,∞)

]2

≤C

[
(δ1 + δ2) + δ1

∞∑
s=1

α(s)1/2 + δ2

∞∑
s=1

α(s)1/2

]

≤Cδ

by Assumption A.1, where the exact values of C may vary across lines. If we choose δ = ε20, then

∞∑
t=1

α2
t ρ

2((x, y), (xj , yk)) ≤ C1ε
2
0

∞∑
t=1

α2
t ,

so that (17) can be satisfied for all sufficiently large T and M1 within each closed ball. Because the capacity

bound is O(δ−2) = O(ε−4
0 ), the integrability condition is also satisfied.
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Proof of part (ii): Note that

E
[
T S̃∗T (x, y)S̃∗T (x′, y′)

∣∣∣ {(Xt, Yt)
′}T
t=1

]
=

1

T

T−L+1∑
t=1

1

L

t+L−1∑
s=t

t+L−1∑
s′=t

[
εs (x, y)− F+(x, y)εs (∞,∞)

] [
εs′
(
x′, y′

)
− F+(x′, y′)εs′ (∞,∞)

]
≡S̄∗T ,

where, for purpose of simplicity, we have suppressed the dependence of the quantity S̄∗T ≡ S̄∗T ((x, y), (x′, y′))

on (x, y, x′, y′).

First,

E[S̄∗T ] =
1

T

T−L+1∑
t=1

1

L

t+L−1∑
s=t

t+L−1∑
s′=t

E
{[
εs (x, y)− F+(x, y)εs (∞,∞)

] [
εs′
(
x′, y′

)
− F+(x′, y′)εs′ (∞,∞)

]}
→K̂((x, y), (x′, y′)).

We next prove that Var(S̄∗T ) = o(1). Let

ϑ∗Tt ≡ ϑ∗Tt((x, y), (x′, y′)) =
1

L2

t+L−1∑
s=t

t+L−1∑
s′=t

[
εs (x, y)− F+(x, y)εs (∞,∞)

] [
εs′
(
x′, y′

)
− F+(x′, y′)εs′ (∞,∞)

]
,

and let

ϑTt(x, y) ≡ 1

L

t+L−1∑
s=t

[
εs (x, y)− F+(x, y)εs (∞,∞)

]
.

Let || · ||p = (E|X|p)1/p. By the Cauchy inequality,

||ϑ∗Tt||8 = ||ϑTt(x, y)ϑTt(x
′, y′)||8 ≤ ||ϑTt(x, y)||16||ϑTt(x′, y′)||16.

By Lemma 3.1 of Andrews and Pollard (1994) with Q = 16,

||ϑTt(x, y)||16
16 = E

∣∣∣∣∣ 1L
t+L−1∑
s=t

[
εs (x, y)− F+(x, y)εs (∞,∞)

]∣∣∣∣∣
16

= O(L−8).

Consequently, E|ϑ∗Tt|8 = O(L−8). Let

κ4T = sup
t≤T

sup
(x,y),(x′,y′)

E|ϑ∗Tt|8 = O(L−8),

and

κ2T = sup
t≤T

sup
(x,y),(x′,y′)

E|ϑ∗Tt|4 = O(L−4).

By Lemma A.1(b) of Inoue (2001) with δ = 2, see also Lemma 9 of Bühlmann (1994),

E

∣∣∣∣∣LT
T−L+1∑
t=1

ϑ∗Tt

∣∣∣∣∣
4

= O(L4T−4L2(T 2κ
1/2
4T + Tκ2T )) = O(T−2L2) = o(1).
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Hence, S̄∗T = K̂((x, y), (x′, y′)) + op(1) by the Chebyshev inequality.

Proof of part (iii): This follows immediately from the proof of part (i) by simply taking αt = 1, ∀t.

Proof of part (iv): By the conditional Chebyshev inequality, we have

P
(
φ̄Tt(ξt) > ε|

{
(Xt, Yt)

′}T
t=1

)
≤ L

Tε2

{
sup
(x,y)

∣∣∣∣∣ 1√
L

t+L−1∑
s=t

[
εs (x, y)− F+(x, y)εs (∞,∞)

]∣∣∣∣∣
}2

=Op

(
L

T

)
.

Then, by the Cauchy-Schwartz inequality,

T∑
t=1

E
[
φ̄2
Tt(ξt)1

(
φ̄Tt(ξt) > ε

)∣∣ {(Xt, Yt)
′}T
t=1

]

=
1

T

T∑
t=1

E

ξ2
t sup

(x,y)

∣∣∣∣∣ 1√
L

t+L−1∑
s=t

[
εs (x, y)− F+(x, y)εs (∞,∞)

]∣∣∣∣∣
2

1
(
φ̄Tt(ξt) > ε

)
|
{

(Xt, Yt)
′}T
t=1


≤ 1

T

T∑
t=1

 1

L2
sup
(x,y)

∣∣∣∣∣
t+L−1∑
s=t

[
εs (x, y)− F+(x, y)εs (∞,∞)

]∣∣∣∣∣
4

P
(
φ̄Tt(ξt) > ε|

{
(Xt, Yt)

′}T
t=1

)1/2

=Op

(√
L/T

)
=op(1).

Proof of part (v): From part (i), we know that ρ2((x, y), (x′, y′)) = plimn→∞ρ
2
T ((x, y), (x′, y′)) is well

defined. If ρ((xT , yT ), (x′T , y
′
T ))→ 0, then

ρT ((xT , yT ), (x′T , y
′
T )) ≤ |ρT ((xT , yT ), (x′T , y

′
T ))− ρ((xT , yT ), (x′T , y

′
T ))|+ ρ((xT , yT ), (x′T , y

′
T ))

p−→ 0.

The proof of Lemma A1 is therefore complete.

On the other hand, Lemma A2 establishes the asymptotic uniform equivalence between the feasible

empirical process S∗T (x, y) defined in (11) and the infeasible empirical process S̃∗T (x, y) defined in (12),

conditional on the original sample {(Xt, Yt)
′}Tt=1.

Lemma A2: Suppose Assumptions A.1-A.2 are satisfied. Then, conditional on the original sample{
(Xt, Yt)

′}T
t=1

, uniformly in (x, y),

√
TS∗T (x, y) =

√
T S̃∗T (x, y) + op(1).

15



Proof of Lemma A2: First of all, observe that

ε̂s (x, y)− F̂+(x, y)ε̂s (∞,∞)

=
[
εs (x, y)− F+(x, y)εs (∞,∞)

]
+ [ε̂s (x, y)− εs (x, y)]

− F+(x, y) [ε̂s (∞,∞)− εs (∞,∞)]

−
[
F̂+(x, y)− F+(x, y)

]
εs (∞,∞)

−
[
F̂+(x, y)− F+(x, y)

]
[ε̂s (∞,∞)− εs (∞,∞)] .

As a consequence, S∗T (x, y) in (11) can be decomposed as follows:

√
TS∗T (x, y)

=
1√
T

T−L+1∑
t=1

ξt

t+L−1∑
s=t

[
ε̂s (x, y)− F̂+(x, y)ε̂s (∞,∞)

]
=

1√
T

T−L+1∑
t=1

ξt

t+L−1∑
s=t

[
εs (x, y)− F+(x, y)εs (∞,∞)

]
+

1√
T

T−L+1∑
t=1

ξt

t+L−1∑
s=t

[ε̂s (x, y)− εs (x, y)]

− F+(x, y)
1√
T

T−L+1∑
t=1

ξt

t+L−1∑
s=t

[ε̂s (∞,∞)− εs (∞,∞)]

−
[
F̂+(x, y)− F+(x, y)

] 1√
T

T−L+1∑
t=1

ξt

t+L−1∑
s=t

εs (∞,∞)

−
[
F̂+(x, y)− F+(x, y)

] 1√
T

T−L+1∑
t=1

ξt

t+L−1∑
s=t

[ε̂s (∞,∞)− εs (∞,∞)]

:=
√
T S̃∗T (x, y) +D∗T1 (x, y)−D∗T2 (x, y)−D∗T3 (x, y)−D∗T4 (x, y) . (18)

In the following, we shall show that, conditional on the original sample
{

(Xt, Yt)
′}T
t=1

, the four terms

D∗T1 (x, y), D∗T2 (x, y), D∗T3 (x, y), and D∗T4 (x, y) are all asymptotically negligible uniformly in (x, y), when

L→∞ at a suitable rate as T →∞ as stated in Assumption A.2 (iii).

For the first term D∗T1 (x, y) in (18), recalling the definitions of ε̂s (x, y) and εs (x, y) mentioned above

Lemma A.1, we observe that

D∗T1 (x, y) =
1√
T

T−L+1∑
t=1

ξt

t+L−1∑
s=t

[ε̂s (x, y)− εs (x, y)]

=
(
p̂− − p−

) 1√
T

T−L+1∑
t=1

ξt

t+L−1∑
s=t

1 (c < Xs ≤ x) 1 (c < Ys ≤ y)

−
(
p̂+ − p+

) 1√
T

T−L+1∑
t=1

ξt

t+L−1∑
s=t

1 (c < −Xs ≤ x) 1 (c < −Ys ≤ y) .

16



Then, D∗T1 (x, y) can be further decomposed as

D∗T1 (x, y)

=E [1 (c < X1 ≤ x) 1 (c < Y1 ≤ y)]
(
p̂− − p−

) L√
T

T−L+1∑
t=1

ξt

− E [1 (c < −X1 ≤ x) 1 (c < −Y1 ≤ y)]
(
p̂+ − p+

) L√
T

T−L+1∑
t=1

ξt

+
(
p̂− − p−

) 1√
T

T−L+1∑
t=1

ξt

t+L−1∑
s=t

{1 (c < Xs ≤ x) 1 (c < Ys ≤ y)− E [1 (c < X1 ≤ x) 1 (c < Y1 ≤ y)]}

−
(
p̂+ − p+

) 1√
T

T−L+1∑
t=1

ξt

t+L−1∑
s=t

{1 (c < −Xs ≤ x) 1 (c < −Ys ≤ y)− E [1 (c < −X1 ≤ x) 1 (c < −Y1 ≤ y)]}

:=D∗T11 (x, y)−D∗T12 (x, y) +D∗T13 (x, y)−D∗T14 (x, y) .

Now note that E [1 (c < X1 ≤ x) 1 (c < Y1 ≤ y)] and E [1 (c < −X1 ≤ x) 1 (c < −Y1 ≤ y)] are simply two

uniformly bounded nonnegative constants (in fact, they are uniformly bounded between zero and one). We

also note the facts that E
(
T−1/2

∑T−L+1
t=1 ξt

)
= 0 and E

(
T−1/2

∑T−L+1
t=1 ξt

)2
→ L−1 by the properties of

{ξt}Tt=1, which implies

1√
T

T−L+1∑
t=1

ξt = Op

(
L−1/2

)
,

as well as p̂+ − p+ = Op
(
T−1/2

)
and p̂− − p− = Op

(
T−1/2

)
, which are established in the online Ap-

pendix B. Then we immediately have D∗T11 (x, y) = Op
(
T−1/2

)
Op
(
L1/2

)
= Op

(
(L/T )1/2

)
= op(1) and

D∗T12 (x, y) = Op
(
T−1/2

)
Op
(
L1/2

)
= Op

(
(L/T )1/2

)
= op(1) uniformly in (x, y) conditional on the original

sample
{

(Xt, Yt)
′}T
t=1

, because of the condition L/T → 0, which is implied by L/
√
T → 0 as L → ∞ and

T →∞ in Assumption A.2 (iii).

On the other hand, it is easy to see that the double summations in D∗T13 (x, y) and D∗T14 (x, y) have a

similar structure as
√
T S̃∗T (x, y) in (12). Then, following identical arguments as proving the weak convergence

in (13) conditional on the original sample
{

(Xt, Yt)
′}T
t=1

, we can readily establish the following two weak

convergence results conditional on the original sample
{

(Xt, Yt)
′}T
t=1

:

γT (·, ·) :=
1√
T

T−L+1∑
t=1

ξt

t+L−1∑
s=t

{1 (c < Xs ≤ ·) 1 (c < Ys ≤ ·)− E [1 (c < X1 ≤ ·) 1 (c < Y1 ≤ ·)]}

⇒ γ∞(·, ·), (19)

and

υT (·, ·) :=
1√
T

T−L+1∑
t=1

ξt

t+L−1∑
s=t

{1 (c < −Xs ≤ ·) 1 (c < −Ys ≤ ·)− E [1 (c < −X1 ≤ ·) 1 (c < −Y1 ≤ ·)]}

⇒ υ∞(·, ·), (20)
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where γ∞(·, ·) and υ∞(·, ·) are two zero mean Gaussian processes with the respective long-run covariance

kernel given by that of α∞(·, ·) and β∞(·, ·), two zero mean Gaussian processes as defined in Lemma 1. As

a direct consequence of the weak convergence results in (19) and (20), we conclude that γT (x, y) = Op(1)

and υT (x, y) = Op(1) uniformly in (x, y) conditional on the original sample
{

(Xt, Yt)
′}T
t=1

. Then,

D∗T13 (x, y) :=
(
p̂− − p−

)
γT (x, y) = Op

(
T−1/2

)
Op(1) = op(1),

and

D∗T14 (x, y) :=
(
p̂+ − p+

)
υT (x, y) = Op

(
T−1/2

)
Op(1) = op(1),

uniformly in (x, y) conditional on the original sample
{

(Xt, Yt)
′}T
t=1

.

Therefore, summarizing the previous results, we have shown that D∗T1 (x, y) = op(1) uniformly in (x, y)

conditional on the original sample
{

(Xt, Yt)
′}T
t=1

.

For the second term D∗T2 (x, y) in (18), recalling the definitions of ε̂s (∞,∞) and εs (∞,∞) mentioned

above Lemma A.1, we can rewrite D∗T2 (x, y) as

D∗T2 (x, y)

=F+(x, y)
√
T
(
p̂− − p−

) 1

T

T−L+1∑
t=1

ξt

t+L−1∑
s=t

1 (Xs > c) 1 (Ys > c)

− F+(x, y)
√
T
(
p̂+ − p+

) 1

T

T−L+1∑
t=1

ξt

t+L−1∑
s=t

1 (Xs < −c) 1 (Ys < −c)

:=D∗T21 (x, y)−D∗T22 (x, y) .

Note that conditional on the original sample
{

(Xt, Yt)
′}T
t=1

, applying the properties of {ξt}Tt=1, we find

E

(
1

T

T−L+1∑
t=1

ξt

t+L−1∑
s=t

1 (Xs > c) 1 (Ys > c)

)
= 0, (21)

and

E

(
1

T

T−L+1∑
t=1

ξt

t+L−1∑
s=t

1 (Xs > c) 1 (Ys > c)

)2

=
1

T 2

T−L+1∑
t=1

T−L+1∑
t′=1

E (ξtξt′)

t+L−1∑
s=t

t′+L−1∑
s′=t′

1 (Xs > c) 1 (Ys > c) 1 (Xs′ > c) 1 (Ys′ > c)

=
1

T 2

T−L+1∑
t=1

E
(
ξ2
t

) t+L−1∑
s=t

t+L−1∑
s′=t

1 (Xs > c) 1 (Ys > c) 1 (Xs′ > c) 1 (Ys′ > c)

=
1

T 2L

T−L+1∑
t=1

t+L−1∑
s=t

t+L−1∑
s′=t

1 (Xs > c) 1 (Ys > c) 1 (Xs′ > c) 1 (Ys′ > c)

≤(T − L+ 1)L2

T 2L
=

(T − L+ 1)L

T 2
≤ L

T
. (22)
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As a result, under the condition of L/T → 0 as L→∞ and T →∞, conditional on the original sample{
(Xt, Yt)

′}T
t=1

,

1

T

T−L+1∑
t=1

ξt

t+L−1∑
s=t

1 (Xs > c) 1 (Ys > c) = Op

(√
L

T

)
= op(1), (23)

Therefore, together with
√
T (p̂− − p−) = Op(1) and the uniform boundedness of F+(x, y), conditional on

the original sample
{

(Xt, Yt)
′}T
t=1

, uniformly in (x, y),

D∗T21 (x, y) = Op(1)op(1) = op(1).

Similar arguments as proving (21) and (22) yield immediately that, conditional on the original sample{
(Xt, Yt)

′}T
t=1

,

1

T

T−L+1∑
t=1

ξt

t+L−1∑
s=t

1 (Xs < −c) 1 (Ys < −c) = Op

(√
L

T

)
= op(1). (24)

Then by
√
T (p̂+ − p+) = Op(1) and the uniform boundedness of F+(x, y), conditional on the original sample{

(Xt, Yt)
′}T
t=1

, uniformly in (x, y),

D∗T22 (x, y) = Op(1)op(1) = op(1).

Combing the results of D∗T21 (x, y) = op(1) and D∗T22 (x, y) = op(1), we have D∗T2 (x, y) = op(1) uniformly

in (x, y), conditional on the original sample
{

(Xt, Yt)
′}T
t=1

.

For the third term D∗T3 (x, y) in (18), note that it can be rewritten as

D∗T3 (x, y)

=p−
√
T
[
F̂+(x, y)− F+(x, y)

] 1

T

T−L+1∑
t=1

ξt

t+L−1∑
s=t

1 (Xs > c) 1 (Ys > c)

− p+
√
T
[
F̂+(x, y)− F+(x, y)

] 1

T

T−L+1∑
t=1

ξt

t+L−1∑
s=t

1 (Xs < −c) 1 (Ys < −c)

:=D∗T31 (x, y)−D∗T32 (x, y) .

Then in light of (23) and (24), in order to prove the asymptotically uniform negligibility of D∗T31 (x, y) and

D∗T32 (x, y) conditional on the original sample
{

(Xt, Yt)
′}T
t=1

, it suffices to prove that

√
T
[
F̂+(x, y)− F+(x, y)

]
= Op(1) (25)

uniformly in (x, y).
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Towards this end, we first recall that F+(x, y) = E [1 (c < X1 ≤ x) 1 (c < Y1 ≤ y)] /p+ and note that

√
T
[
F̂+(x, y)− F+(x, y)

]
=
√
T

[
1

T

T∑
t=1

1 (c < Xt ≤ x) 1 (c < Yt ≤ y)

p̂+
− F+(x, y)

]

=
1

p̂+

1√
T

T∑
t=1

{1 (c < Xt ≤ x) 1 (c < Yt ≤ y)− E [1 (c < X1 ≤ x) 1 (c < Y1 ≤ y)]}

− E [1 (c < X1 ≤ x) 1 (c < Y1 ≤ y)]
1

p+p̂+

√
T
(
p̂+ − p+

)
=

(
1

p+
+ op(1)

)
αT (x, y)−

(
1

p+2
+ op(1)

)
E [1 (c < X1 ≤ x) 1 (c < Y1 ≤ y)]

√
T
(
p̂+ − p+

)
,

where the last equality holds due to the fact that p̂+ = p+ + op(1) and the Slutsky’s theorem, and the

empirical process αT (x, y) is defined in (1) in the proof of Lemma 1. Recalling the weak convergence

result αT (·, ·) ⇒ α∞(·, ·) established in the proof of Lemma 1. This result immediately implies that

αT (x, y) = Op(1) uniformly in (x, y). On the other hand,
√
T (p̂+ − p+) = Op(1). As a result, (25) holds

uniformly in (x, y). Thus, (25) together with (23) and (24) imply

D∗T31 (x, y) = Op(1)op(1) = op(1),

and

D∗T32 (x, y) = Op(1)op(1) = op(1),

respectively.

As a consequence, D∗T3 (x, y) = D∗T31 (x, y) −D∗T32 (x, y) = op(1) uniformly in (x, y), conditional on the

original sample
{

(Xt, Yt)
′}T
t=1

.

For the last term D∗T4 (x, y) in (18), observe it can be decomposed as

D∗T4 (x, y)

=
(
p̂− − p−

)√
T
[
F̂+(x, y)− F+(x, y)

] 1

T

T−L+1∑
t=1

ξt

t+L−1∑
s=t

1 (Xs > c) 1 (Ys > c)

−
(
p̂+ − p+

)√
T
[
F̂+(x, y)− F+(x, y)

] 1

T

T−L+1∑
t=1

ξt

t+L−1∑
s=t

1 (Xs < −c) 1 (Ys < −c)

:=D∗T41 (x, y)−D∗T42 (x, y) .

Then in light of the results (25), (23) and (24) as well as the facts of p̂+−p+ = op(1) and p̂−−p− = op(1), it is

immediate that D∗T41 (x, y) = op(1)Op(1)op(1) = op(1) and D∗T42 (x, y) = op(1)Op(1)op(1) = op(1) uniformly

in (x, y), conditional on the original sample
{

(Xt, Yt)
′}T
t=1

. Therefore, D∗T4 (x, y) = op(1) uniformly in (x, y),

conditional on the original sample
{

(Xt, Yt)
′}T
t=1

.
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Finally, based on the decomposition in (18) and combining the previous results concerning D∗Tj (x, y) =

op(1) uniformly in (x, y) for j = 1, 2, 3, 4, conditional on the original sample
{

(Xt, Yt)
′}T
t=1

, we have completed

the proof of Lemma A2.

Proof of Theorem 4: First note that Lemma A2 indicates that, conditional on the sample {(Xt, Yt)
′}Tt=1,

it suffices to study the weak convergence of
√
T S̃∗T (x, y), as the asymptotic behavior of

√
TS∗T (x, y) would

be the same as that of
√
T S̃∗T (x, y).

On the other hand, Lemma A1 indicates that, conditional on the sample {(Xt, Yt)
′}Tt=1,

√
T S̃∗T (x, y)

weakly converges to the same zero mean Gaussian process Ŝ∞ (x, y) as defined in Corollary 1 in the main

text.

Therefore, the combination of Lemma A1 and Lemma A2 completes the proof of Theorem 4.
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B Appendix: Testing p+(c) = p−(c) vs. p+(c) 6= p−(c)

In this appendix we provide the asymptotic properties of estimators of p+(c) and p−(c) and the details of

how to test p+(c) = p−(c) vs. p+(c) 6= p−(c) using these estimators.

For some fixed non-negative exceedance level c, recall that p+(c) := E[1(Xt > c)1(Yt > c)] and p−(c) :=

E[1(Xt < −c)1(Yt < −c)]. To proceed, recall that

p̂+(c) =
1

T

T∑
t=1

p+
t (c),

p̂−(c) =
1

T

T∑
t=1

p−t (c),

and let

I(c) =
1

T

T∑
t=1

It(c) ≡ p̂+(c)− p̂−(c),

where p+
t (c) = 1(Xt > c)1(Yt > c), p−t (c) = 1(Xt < −c)1(Yt < −c), and It(c) = p+

t (c)− p−t (c).

Note that both p̂+(c) and p̂−(c) are summations of indicator functions of strong mixing random variables.

Then, according to a central limit theorem for bounded random variables under strong mixing conditions

[see e.g., Corollary 5.1 in Hall and Heyde (1980, p. 132) and de Jong (1997)] and the fact that the indicator

function of the mixing process is still mixing, we can prove the asymptotic normality of
√
T (p̂+(c)− p+(c))

and
√
T (p̂−(c)− p−(c)). In particular, we have that

√
T
(
p̂+(c)− p+(c)

) d−→ N
(
0, σ2

+(c)
)
,

where the long-run variance

σ2
+(c) = p+(c)

(
1− p+(c)

)
+ 2

∞∑
i=1

E
[(
p+

1 (c)− p+(c)
) (
p+

1+i(c)− p
+(c)

)]
, (26)

and
√
T
(
p̂−(c)− p−(c)

) d−→ N
(
0, σ2
−(c)

)
,

where the long-run variance

σ2
−(c) = p−(c)

(
1− p−(c)

)
+ 2

∞∑
i=1

E
[(
p−1 (c)− p−(c)

) (
p−1+i(c)− p

−(c)
)]
. (27)

Here, the long-run variances σ2
+(c) and σ2

−(c) are absolutely convergent, which follows from the Davydov
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inequality [see e.g., Bosq (1998)] and the strong mixing condition in Assumption A.1 (i):

E
[√

T
(
p̂+(c)− p+(c)

)]2
=

1

T

T∑
t=1

T∑
s=1

E
[(
p+
t (c)− p+(c)

) (
p+
s (c)− p+(c)

)]
=

∣∣∣∣∣ 1

T

T∑
t=1

T∑
s=1

E
[(
p+
t (c)− p+(c)

) (
p+
s (c)− p+(c)

)]∣∣∣∣∣
≤16

T

T∑
t=1

T∑
s=1

α (|t− s|)

≤16
∞∑
j=0

α(j) <∞,

and

E
[√

T
(
p̂−(c)− p−(c)

)]2
=

1

T

T∑
t=1

T∑
s=1

E
[(
p−t (c)− p−(c)

) (
p−s (c)− p−(c)

)]
=

∣∣∣∣∣ 1

T

T∑
t=1

T∑
s=1

E
[(
p−t (c)− p−(c)

) (
p−s (c)− p−(c)

)]∣∣∣∣∣
≤16

T

T∑
t=1

T∑
s=1

α (|t− s|)

≤16
∞∑
j=0

α(j) <∞.

Clearly, when {(Xt, Yt)}Tt=1 is a martingale difference sequence (MDS), the long-run variances simply reduce

to σ2
+(c) = p+(c) (1− p+(c)) and σ2

−(c) = p−(c) (1− p−(c)), respectively, and are of course absolutely

convergent.

As a direct result of the above asymptotic normality results, we thus obtain that

√
T
(
p̂+(c)− p+(c)

)
= Op(1),

and
√
T
(
p̂−(c)− p−(c)

)
= Op(1).

In the following, we outline the testing procedure employed to calculate the asymptotic p-values reported

in Table 1 of the online Appendix C for testing the null hypothesis Hp
0 : p+(c) = p−(c) against the

alternative hypothesis Hp
1 : p+(c) 6= p−(c). Clearly, testing Hp

0 : p+(c) = p−(c) is equivalent to testing

Hp
0 : E[It(c)] = 0.

Motivated by the above observation, a straightforward t-type test statistic can be constructed by

t̂T (c) =

√
T I(c)√
Ω̂T (c)

,
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where Ω̂T (c) is a consistent estimator for the long-run variance Ω(c) = limT→∞Var(
√
TI(c)) = Var(It(c)) +

2
∑∞

j=1 Cov (I1(c), I1+j(c)) := Γ(0) + 2
∑∞

j=1 Γ(j). Under the null hypothesis Hp
0 , the test statistic t̂T (c) is

asymptotically distributed as a standard normal random variable.

Note that Γ(0) = Var
(
p+
t (c)− p−t (c)

)
= p+(c) (1− p+(c)) + p−(c) (1− p−(c)) + 2p+(c)p−(c) = p+(c) +

p−(c)−(p+(c)− p−(c))
2
, where the second equality follows from the facts that p+

t (c) and p−t (c) are Bernoulli

random variables with parameters p+(c) and p−(c), respectively, and p+
t (c)p−t (c) = 0 almost surely because

of the binary properties of p+
t (c) and p−t (c). Also note that Γ(0) = p+(c) + p−(c) = 2p+(c) = 2p−(c) under

the null hypothesis Hp
0 .

The estimation of long-run variance has an extensive literature, see e.g., Newey and West (1987) and

Andrews (1991) for the two seminal works. In this paper, following the suggestion in Hong et al. (2007, p.

1553), the long-run variance Ω(c) is estimated by

Ω̂T (c) = k(0)Γ̂T (0) + 2

T−1∑
j=1

k

(
j

mT

)
Γ̂T (j),

where

Γ̂T (0) = p̂+(c) + p̂−(c)−
(
p̂+(c)− p̂−(c)

)2
,

Γ̂T (j) =
1

T

T−j∑
t=1

(
Zt(c)−

(
p̂+(c)− p̂−(c)

)) (
Zt+j(c)−

(
p̂+(c)− p̂−(c)

))
, for j = 1, 2, . . . , T − 1.

Here, the function k(·) is taken to be the Bartlett kernel and the bandwidth sequence mT = m(T ) satisfies

mT →∞ and mT /T → 0 as T →∞.

Note that the last term (p̂+(c)− p̂−(c))
2

in the expression of Γ̂T (0) can be omitted under the null

hypothesis Hp
0 . But we keep it in the calculation of the test statistic t̂T (c) as it is nonzero under the

alternative hypothesis Hp
1 and thus may enhance t̂T (c)’s testing power.
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C Appendix: Empirical results

In this appendix we provide the empirical results discussed in the main paper, which include the estimation

and testing for the equality of joint probabilities p+(c) and p−(c) for different exceedance levels c, the

summary statistics of daily S&P 500 index and 29 daily individual stocks, results of testing symmetric

comovements for different exceedance levels c. Detailed discussions for Tables 1–7 can be found in the main

paper.

To further illustrate the usefulness of the propose tests, we report the results of testing symmetric

comovements using 5 major market indices for different exceedance levels c in Tables 8–12. Specifically,

the following market indices are considered: S&P 500, FTSE 100, DAX 30, NIKKEI 225, and HS 300. We

remark that Deng (2016) has also considered S&P 500, FTSE 100, DAX 30, and NIKKEI 225 but with a

shorter time period. We further include HS 300 to make the second empirical study more systematic and

offer a more complete picture. Our daily data are collected from January 2007 to December 2016, with a

total number of observations 2180 after deleting all missing values.

As shown in Table 1, test results in Table 8 indicate that the assumption of p+(c) = p−(c) does not

hold for the market returns for all four exceedance levels c considered, which justify again the importance

of adjusting for marginal probabilities p+(c) and p−(c) in the testing procedure. In addition, Tables 9–12

show that the Jρ test fails to reject the null hypothesis of symmetric comovements for all pairwise market

comparisons. The Cρ test only rejects the null for FTSE 100 vs DAX 30, FTSE 100 vs NIKKEI 225 and

DAX 30 vs NIKKEI 225 when c = 0, while it only reject the null for FTSE 100 vs NIKKEI 225 when c = 0.5.

On the contrary, our tests CvMT and KST are able to reject the null for most of the pairwise market

comparisons when c is relatively small, indicating that asymmetric comovements among international stock

markets may be a common phenomenon. Lastly, the tests C̃vMT and K̃ST that ignore completely the

inequality of p+(c) and p−(c) demonstrate less reliable testing results; that is, they reject too much when

c = 0, while they do not reject at all when c = 1. This behavior is also confirmed in Tables 2–7 and suggests

we should always use CvMT and KST .
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Table 1: Estimation and testing for the equality of joint probabilities p+(c) and p−(c) for c ∈ {0, 0.5, 1, 1.5}

c = 0 c = 0.5 c = 1 c = 1.5

Stocks p̂+(c) p̂−(c) p -value p̂+(c) p̂−(c) p -value p̂+(c) p̂−(c) p -value p̂+(c) p̂−(c) p -value

AXP 0.402 0.364 0.000*** 0.131 0.135 0.341 0.049 0.062 0.000*** 0.024 0.032 0.000***

BA 0.385 0.349 0.000*** 0.138 0.148 0.054* 0.052 0.061 0.009*** 0.021 0.033 0.000***

BAC 0.399 0.362 0.000*** 0.110 0.125 0.001*** 0.040 0.046 0.023** 0.018 0.022 0.019**

CAT 0.395 0.365 0.001*** 0.147 0.146 0.881 0.058 0.068 0.005*** 0.024 0.034 0.000***

CSCO 0.389 0.360 0.000*** 0.149 0.145 0.361 0.051 0.062 0.001*** 0.024 0.026 0.272

CVX 0.400 0.360 0.000*** 0.140 0.144 0.431 0.053 0.068 0.000*** 0.021 0.033 0.000***

DD 0.406 0.365 0.000*** 0.147 0.159 0.029** 0.057 0.065 0.017** 0.023 0.035 0.000***

DIS 0.402 0.366 0.000*** 0.145 0.151 0.324 0.055 0.066 0.001*** 0.026 0.035 0.000***

GE 0.407 0.374 0.000*** 0.137 0.141 0.533 0.056 0.062 0.034** 0.024 0.032 0.000***

HD 0.377 0.356 0.014** 0.131 0.138 0.152 0.050 0.063 0.000*** 0.025 0.030 0.005***

HPQ 0.387 0.337 0.000*** 0.133 0.127 0.198 0.045 0.055 0.003*** 0.014 0.024 0.000***

IBM 0.387 0.358 0.000*** 0.146 0.147 0.875 0.056 0.062 0.073* 0.022 0.029 0.001***

INTC 0.387 0.346 0.000*** 0.139 0.146 0.161 0.053 0.066 0.000*** 0.023 0.031 0.000***

JNJ 0.374 0.355 0.018** 0.131 0.132 0.807 0.045 0.059 0.000*** 0.019 0.025 0.000***

JPM 0.402 0.376 0.001*** 0.130 0.141 0.018** 0.049 0.056 0.012** 0.022 0.031 0.000***

KO 0.371 0.333 0.000*** 0.123 0.123 1.000 0.047 0.052 0.071* 0.019 0.023 0.021**

MCD 0.364 0.322 0.000*** 0.127 0.129 0.737 0.045 0.058 0.000*** 0.020 0.026 0.001***

MMM 0.416 0.374 0.000*** 0.155 0.155 0.940 0.061 0.071 0.004*** 0.028 0.035 0.001***

MRK 0.366 0.344 0.006*** 0.130 0.124 0.222 0.041 0.048 0.025** 0.016 0.022 0.000***

MSFT 0.373 0.357 0.055* 0.138 0.138 1.000 0.052 0.064 0.004*** 0.021 0.028 0.000***

PFE 0.373 0.358 0.050* 0.132 0.131 0.934 0.052 0.061 0.007*** 0.023 0.026 0.123

PG 0.366 0.340 0.001*** 0.124 0.119 0.271 0.046 0.050 0.137 0.019 0.023 0.017**

T 0.375 0.333 0.000*** 0.127 0.128 0.935 0.046 0.058 0.000*** 0.021 0.028 0.000***

TRV 0.390 0.354 0.000*** 0.120 0.130 0.025** 0.043 0.051 0.002*** 0.019 0.024 0.002***

UNH 0.366 0.341 0.002*** 0.106 0.110 0.280 0.034 0.045 0.000*** 0.014 0.018 0.004***

UTX 0.403 0.377 0.002*** 0.151 0.155 0.449 0.060 0.074 0.000*** 0.029 0.035 0.009***

VZ 0.362 0.325 0.000*** 0.124 0.133 0.044** 0.050 0.055 0.063* 0.021 0.025 0.040**

WMT 0.352 0.318 0.000*** 0.115 0.117 0.727 0.043 0.049 0.051* 0.019 0.020 0.331

XOM 0.389 0.365 0.004*** 0.140 0.143 0.580 0.054 0.062 0.018** 0.021 0.029 0.000***

Note: This table reports results of estimation and testing of joint probabilities p+(c) =Pr(Xt> c, Yt> c) and

p−(c) =Pr(Xt< −c, Yt< −c) for different c’s, with Xt the S&P 500 daily return and Yt the daily return on each

of the following 29 stocks: AXP, BA, BAC, CAT, CSCO, CVX, DD, DIS, GE, HD, HPQ, IBM, INTC, JNJ, JPM,

KO, MCD, MMM, MRK, MSFT, PFE, PG, T, TRV, UNH, UTX, VZ, WMT, and XOM. The p-values correspond

to t-test of Hp
0 : p+(c) = p

−
(c) versus Hp

1 : p+(c) 6= p
−

(c); see the description of the testing procedure in the online

Appendix B. 26



Table 2: Summary statistics of daily S&P 500 index and 29 daily individual stocks

Stocks Mean S.D. Skewness Kurtosis

GSPC 0.018 1.320 -0.327 12.939

AXP 0.015 2.508 0.023 13.825

BA 0.032 1.821 -0.006 7.936

BAC -0.028 3.702 -0.287 21.957

CAT 0.028 2.091 0.016 7.753

CSCO 0.010 1.909 -0.449 14.569

CVX 0.034 1.750 0.125 16.197

DD 0.032 1.836 -0.280 9.174

DIS 0.051 1.746 0.141 11.295

GE 0.007 1.984 0.043 13.863

HD 0.058 1.728 0.389 8.245

HPQ -0.002 2.157 -0.571 14.178

IBM 0.030 1.418 -0.187 8.339

INTC 0.035 1.859 -0.144 8.049

JNJ 0.034 1.032 0.467 15.237

JPM 0.033 2.766 0.313 16.942

KO 0.033 1.184 0.420 15.167

MCD 0.053 1.197 0.085 8.948

MMM 0.043 1.410 -0.221 8.816

MRK 0.027 1.663 -0.328 14.150

MSFT 0.039 1.779 0.185 12.384

PFE 0.025 1.436 -0.009 8.980

PG 0.022 1.122 -0.217 10.553

T 0.029 1.389 0.527 15.042

TRV 0.043 1.869 0.294 26.994

UNH 0.049 2.158 0.462 28.632

UTX 0.031 1.535 0.194 10.103

VZ 0.036 1.372 0.279 11.613

WMT 0.024 1.240 -0.035 12.668

XOM 0.018 1.589 0.083 17.618

Note: This table provides the descriptive statistics of stock returns that we consider in our empirical application.

These stocks are daily S&P 500 index and 29 daily individual stocks: AXP, BA, BAC, CAT, CSCO, CVX, DD, DIS,

GE, HD, HPQ, IBM, INTC, JNJ, JPM, KO, MCD, MMM, MRK, MSFT, PFE, PG, T, TRV, UNH, UTX, VZ, WMT,

and XOM. A detailed description of these stocks is provided in Section 6.
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Table 3: Testing symmetric comovements in financial markets for c = 0

Stocks Jρ Cρ C̃vMT K̃ST CvMT KST

AXP 0.529 0.042** 0.003*** 0.002*** 0.027** 0.055*

BA 0.624 0.237 0.006*** 0.003*** 0.106 0.067*

BAC 0.422 0.033** 0.001*** 0.003*** 0.016** 0.014**

CAT 0.561 0.098* 0.025** 0.021** 0.070* 0.229

CSCO 0.764 0.563 0.015** 0.005*** 0.040** 0.020**

CVX 0.867 0.575 0.002*** 0.001*** 0.035** 0.021**

DD 0.863 0.522 0.001*** 0.001*** 0.038** 0.030**

DIS 0.831 0.452 0.001*** 0.000*** 0.046** 0.055*

GE 0.416 0.035** 0.007*** 0.003*** 0.102 0.135

HD 0.907 0.722 0.087* 0.057* 0.176 0.218

HPQ 0.761 0.664 0.000*** 0.000*** 0.010*** 0.020**

IBM 0.956 0.893 0.030** 0.010*** 0.139 0.066*

INTC 0.852 0.685 0.000*** 0.001*** 0.053* 0.051*

JNJ 0.951 0.852 0.107 0.027** 0.144 0.116

JPM 0.524 0.112 0.016** 0.023** 0.038** 0.045**

KO 0.828 0.665 0.002*** 0.001*** 0.074* 0.087*

MCD 0.710 0.423 0.000*** 0.000*** 0.015** 0.013**

MMM 0.892 0.641 0.003*** 0.000*** 0.096* 0.062*

MRK 0.701 0.464 0.131 0.051* 0.163 0.135

MSFT 0.679 0.350 0.266 0.095* 0.070* 0.004***

PFE 0.681 0.228 0.128 0.105 0.160 0.235

PG 0.794 0.547 0.032** 0.009*** 0.093* 0.055*

T 0.947 0.842 0.000*** 0.000*** 0.011** 0.029**

TRV 0.638 0.215 0.005*** 0.003*** 0.021** 0.018**

UNH 0.983 0.955 0.041** 0.017** 0.097* 0.095*

UTX 0.905 0.644 0.055* 0.033** 0.092* 0.070*

VZ 0.733 0.353 0.000*** 0.001*** 0.007*** 0.009***

WMT 0.732 0.532 0.002*** 0.003*** 0.015** 0.033**

XOM 0.861 0.594 0.084* 0.030** 0.132 0.062*

Note: This table provides p-values of testing the symmetric comovements between the S&P 500 daily return and the

daily return on each of the following 29 stocks: AXP, BA, BAC, CAT, CSCO, CVX, DD, DIS, GE, HD, HPQ, IBM,

INTC, JNJ, JPM, KO, MCD, MMM, MRK, MSFT, PFE, PG, T, TRV, UNH, UTX, VZ, WMT, and XOM. Several

tests are compared: Jρ test of Hong, Tu, and Zhou (2007), Cρ test of Chen (2016), and the C̃vMT , K̃ST , CvMT and

KST tests. Here the exceedance level c = 0 and the block length L = [T 1/4]. The number of bootstrap resamples is

B = 1000.
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Table 4: Testing symmetric comovements in financial markets for c = 0.5

Stocks Jρ Cρ C̃vMT K̃ST CvMT KST

AXP 0.679 0.285 0.144 0.182 0.000*** 0.001***

BA 0.922 0.817 0.856 0.698 0.118 0.116

BAC 0.526 0.184 0.350 0.227 0.263 0.328

CAT 0.705 0.344 0.184 0.204 0.019** 0.018**

CSCO 0.996 0.989 0.008*** 0.010*** 0.000*** 0.000***

CVX 0.964 0.874 0.217 0.218 0.005*** 0.004***

DD 0.983 0.936 0.756 0.711 0.170 0.123

DIS 0.974 0.920 0.312 0.565 0.011** 0.063*

GE 0.900 0.694 0.219 0.295 0.008*** 0.023**

HD 0.898 0.690 0.640 0.613 0.083* 0.067*

HPQ 0.636 0.571 0.013** 0.035** 0.003*** 0.003***

IBM 0.949 0.878 0.517 0.558 0.167 0.184

INTC 0.665 0.263 0.554 0.677 0.046** 0.078*

JNJ 0.893 0.681 0.139 0.133 0.009*** 0.002***

JPM 0.865 0.637 0.580 0.345 0.118 0.304

KO 0.781 0.464 0.203 0.184 0.020** 0.010***

MCD 0.989 0.977 0.105 0.208 0.003*** 0.019**

MMM 0.880 0.636 0.382 0.317 0.093* 0.055*

MRK 0.743 0.547 0.060* 0.040** 0.016** 0.005***

MSFT 0.951 0.891 0.365 0.245 0.085* 0.021**

PFE 0.603 0.162 0.533 0.489 0.251 0.186

PG 0.738 0.385 0.034** 0.075* 0.001*** 0.001***

T 0.854 0.477 0.111 0.177 0.003*** 0.011**

TRV 0.577 0.203 0.787 0.553 0.218 0.289

UNH 0.617 0.173 0.158 0.254 0.003*** 0.007***

UTX 0.990 0.960 0.722 0.613 0.146 0.107

VZ 0.862 0.517 0.714 0.692 0.146 0.100*

WMT 0.930 0.847 0.809 0.715 0.386 0.275

XOM 0.927 0.787 0.270 0.396 0.009*** 0.030**

Note: This table provides p-values of testing the symmetric comovements between the S&P 500 daily return and the

daily return on each of the following 29 stocks: AXP, BA, BAC, CAT, CSCO, CVX, DD, DIS, GE, HD, HPQ, IBM,

INTC, JNJ, JPM, KO, MCD, MMM, MRK, MSFT, PFE, PG, T, TRV, UNH, UTX, VZ, WMT, and XOM. Several

tests are compared: Jρ test of Hong, Tu, and Zhou (2007), Cρ test of Chen (2016), and the C̃vMT , K̃ST , CvMT and

KST tests. Here the exceedance level c = 0.5 and the block length L = [T 1/4]. The number of bootstrap resamples is

B = 1000.
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Table 5: Testing symmetric comovements in financial markets for c = 1

Stocks Jρ Cρ C̃vMT K̃ST CvMT KST

AXP 0.580 0.254 0.117 0.073* 0.431 0.698

BA 0.865 0.588 0.372 0.344 0.017** 0.104

BAC 0.497 0.326 0.381 0.391 0.087* 0.092*

CAT 0.973 0.939 0.410 0.356 0.015** 0.025**

CSCO 0.931 0.805 0.142 0.113 0.827 0.185

CVX 0.968 0.814 0.077* 0.046** 0.225 0.200

DD 0.891 0.681 0.711 0.621 0.163 0.274

DIS 0.820 0.496 0.179 0.140 0.534 0.225

GE 0.860 0.645 0.662 0.738 0.050** 0.210

HD 0.962 0.879 0.106 0.047** 0.824 0.806

HPQ 0.208 0.126 0.653 0.229 0.226 0.280

IBM 0.968 0.930 0.760 0.634 0.180 0.220

INTC 0.537 0.172 0.165 0.093* 0.201 0.295

JNJ 0.887 0.656 0.110 0.041** 0.163 0.373

JPM 0.712 0.439 0.223 0.181 0.236 0.410

KO 0.787 0.451 0.807 0.534 0.736 0.538

MCD 0.857 0.742 0.169 0.067* 0.787 0.928

MMM 0.627 0.227 0.445 0.247 0.020** 0.034**

MRK 0.807 0.547 0.641 0.453 0.280 0.323

MSFT 0.739 0.534 0.234 0.119 0.941 0.960

PFE 0.695 0.259 0.288 0.257 0.880 0.929

PG 0.673 0.238 0.720 0.827 0.068* 0.118

T 0.809 0.268 0.126 0.080* 0.650 0.701

TRV 0.550 0.232 0.417 0.201 0.577 0.616

UNH 0.711 0.372 0.097* 0.092* 0.700 0.643

UTX 0.797 0.304 0.171 0.106 0.386 0.542

VZ 0.886 0.565 0.558 0.696 0.156 0.467

WMT 0.981 0.956 0.654 0.658 0.667 0.405

XOM 0.937 0.758 0.393 0.470 0.042** 0.077*

Note: This table provides p-values of testing the symmetric comovements between the S&P 500 daily return and the

daily return on each of the following 29 stocks: AXP, BA, BAC, CAT, CSCO, CVX, DD, DIS, GE, HD, HPQ, IBM,

INTC, JNJ, JPM, KO, MCD, MMM, MRK, MSFT, PFE, PG, T, TRV, UNH, UTX, VZ, WMT, and XOM. Several

tests are compared: Jρ test of Hong, Tu, and Zhou (2007), Cρ test of Chen (2016), and the C̃vMT , K̃ST , CvMT and

KST tests. Here the exceedance level c = 1 and the block length L = [T 1/4]. The number of bootstrap resamples is

B = 1000.
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Table 6: Testing symmetric comovements in financial markets for c = 1.5

Stocks Jρ Cρ C̃vMT K̃ST CvMT KST

AXP 0.572 0.169 0.105 0.179 0.616 0.836

BA 0.624 0.208 0.044** 0.015** 0.207 0.382

BAC 0.286 0.289 0.613 0.442 0.493 0.257

CAT 0.662 0.421 0.068* 0.062* 0.950 0.915

CSCO 0.830 0.582 0.648 0.763 0.171 0.387

CVX 0.989 0.931 0.023** 0.022** 0.482 0.537

DD 0.934 0.811 0.043** 0.052* 0.696 0.698

DIS 0.975 0.917 0.091* 0.074* 0.950 0.891

GE 0.915 0.848 0.289 0.190 0.018** 0.084*

HD 0.987 0.966 0.191 0.203 0.299 0.179

HPQ 0.241 0.035** 0.033** 0.008** 0.618 0.646

IBM 0.797 0.630 0.311 0.132 0.691 0.578

INTC 0.532 0.250 0.166 0.141 0.898 0.947

JNJ 0.909 0.682 0.160 0.104 0.950 0.974

JPM 0.607 0.426 0.015** 0.029** 0.036** 0.026**

KO 0.531 0.072* 0.316 0.442 0.022** 0.096*

MCD 0.904 0.757 0.346 0.248 0.977 0.936

MMM 0.572 0.252 0.488 0.191 0.275 0.236

MRK 0.800 0.565 0.159 0.102 0.631 0.390

MSFT 0.807 0.422 0.291 0.136 0.723 0.720

PFE 0.751 0.427 0.955 0.825 0.919 0.919

PG 0.636 0.239 0.542 0.436 0.121 0.019**

T 0.770 0.167 0.172 0.111 0.979 0.870

TRV 0.518 0.285 0.383 0.328 0.302 0.475

UNH 0.534 0.216 0.646 0.402 0.361 0.560

UTX 0.708 0.236 0.620 0.410 0.431 0.376

VZ 0.981 0.902 0.518 0.610 0.803 0.737

WMT 0.810 0.557 0.661 0.938 0.152 0.538

XOM 0.985 0.936 0.111 0.069* 0.551 0.539

Note: This table provides p-values of testing the symmetric comovements between the S&P 500 daily return and the

daily return on each of the following 29 stocks: AXP, BA, BAC, CAT, CSCO, CVX, DD, DIS, GE, HD, HPQ, IBM,

INTC, JNJ, JPM, KO, MCD, MMM, MRK, MSFT, PFE, PG, T, TRV, UNH, UTX, VZ, WMT, and XOM. Several

tests are compared: Jρ test of Hong, Tu, and Zhou (2007), Cρ test of Chen (2016), and the C̃vMT , K̃ST , CvMT and

KST tests. Here the exceedance level c = 1.5 and the block length L = [T 1/4]. The number of bootstrap resamples is

B = 1000.
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Table 7: Testing symmetric comovements in financial markets for c = {0, 0.5, 1, 1.5}

Stocks Jρ Cρ C̃vMT K̃ST CvMT KST

AXP 0.798 0.021** 0.025** 0.049** 0.028** 0.067*

BA 0.358 0.013** 0.106 0.071* 0.113 0.071*

BAC 0.739 0.235 0.014** 0.018** 0.024** 0.028**

CAT 0.405 0.065* 0.056* 0.193 0.053* 0.135

CSCO 0.902 0.898 0.059* 0.025** 0.064* 0.026**

CVX 0.992 0.901 0.023** 0.013** 0.030** 0.018**

DD 0.977 0.685 0.034** 0.024** 0.047** 0.036**

DIS 0.588 0.216 0.045** 0.051* 0.048** 0.057*

GE 0.204 0.061* 0.106 0.153 0.114 0.168

HD 0.926 0.731 0.170 0.210 0.184 0.241

HPQ 0.282 0.135 0.013** 0.025** 0.018** 0.034**

IBM 0.984 0.972 0.173 0.096* 0.168 0.107

INTC 0.943 0.675 0.054* 0.062* 0.067* 0.072*

JNJ 0.960 0.731 0.149 0.123 0.139 0.129

JPM 0.386 0.392 0.046** 0.062* 0.047** 0.061*

KO 0.745 0.258 0.076* 0.088* 0.079* 0.107

MCD 0.854 0.514 0.018** 0.011** 0.021** 0.010***

MMM 0.835 0.489 0.105 0.072* 0.119 0.080*

MRK 0.680 0.647 0.154 0.126 0.154 0.121

MSFT 0.590 0.107 0.071* 0.006*** 0.058* 0.005***

PFE 0.968 0.727 0.148 0.212 0.156 0.259

PG 0.993 0.813 0.116 0.068* 0.129 0.070*

T 0.993 0.584 0.010*** 0.016** 0.009*** 0.022**

TRV 0.980 0.800 0.017** 0.016** 0.022** 0.022**

UNH 0.136 0.015** 0.119 0.095* 0.105 0.097*

UTX 0.912 0.173 0.101 0.091* 0.099* 0.065*

VZ 0.957 0.829 0.017** 0.018** 0.016** 0.020**

WMT 0.933 0.781 0.021** 0.052* 0.027** 0.060*

XOM 0.874 0.302 0.137 0.059* 0.131 0.050*

Note: This table provides p-values of testing the symmetric comovements between the S&P 500 daily return and the

daily return on each of the following 29 stocks: AXP, BA, BAC, CAT, CSCO, CVX, DD, DIS, GE, HD, HPQ, IBM,

INTC, JNJ, JPM, KO, MCD, MMM, MRK, MSFT, PFE, PG, T, TRV, UNH, UTX, VZ, WMT, and XOM. Several

tests are compared: Jρ test of Hong, Tu, and Zhou (2007), Cρ test of Chen (2016), and the C̃vMT , K̃ST , CvMT , and

KST tests. Here the exceedance levels c = {0, 0.5, 1, 1.5} and the block length L = [T 1/4]. The number of bootstrap

resamples is B = 1000.
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Table 8: Test results (p-values) of pairwise market index, where the null hypothesis is p+(c) = p−(c) for

c ∈ {0, 0.5, 1, 1.5}

Market index i Market index j p+(c) = p−(c)

c = 0 c = 0.5 c = 1 c = 1.5

S&P 500 FTSE 100 0.000*** 0.018** 0.006*** 0.000***

DAX 30 0.000*** 0.246 0.014** 0.023**

NIKKEI 225 0.000*** 0.285 0.004*** 0.056*

HS 300 0.000*** 0.033** 0.007*** 0.000***

FTSE 100 DAX 30 0.000*** 0.012** 0.023** 0.000***

NIKKEI 225 0.000*** 0.266 0.000*** 0.000***

HS 300 0.000*** 0.653 0.087* 0.000***

DAX 30 NIKKEI 225 0.000*** 0.051* 0.000*** 0.000***

HS 300 0.000*** 0.015** 0.040** 0.000***

NIKKEI 225 HS 300 0.000*** 0.262 0.000*** 0.000***

Note: This table reports results of testing of joint probabilities p+(c) =Pr(Xt> c, Yt> c) and

p−(c) =Pr(Xt< −c, Yt< −c) for different c’s, with Xt the daily return on one market and Yt the daily return

on other market. Five market indices are considered: S&P 500, FTSE 100, DAX 30, NIKKEI 225, and HS 300.

p-values correspond to t-test of Hp
0 : p+(c) = p

−
(c) versus Hp

1 : p+(c) 6= p
−

(c); see the description of the testing

procedure in the online Appendix B.
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Table 9: Test results (p-values) of pairwise market index, c = 0

Market index i Market index j Tests

Jρ Cρ C̃vMT K̃ST CvMT KST

S&P 500 FTSE 100 0.582 0.301 0.000*** 0.000*** 0.018** 0.000***

DAX 30 0.958 0.904 0.000*** 0.000*** 0.000*** 0.000***

NIKKEI 225 0.938 0.915 0.000*** 0.000*** 0.111 0.010***

HS 300 0.466 0.424 0.000*** 0.000*** 0.344 0.065*

FTSE 100 DAX 30 0.522 0.045** 0.000*** 0.001*** 0.028** 0.058*

NIKKEI 225 0.236 0.057* 0.000*** 0.002*** 0.049** 0.017**

HS300 0.848 0.804 0.003*** 0.001*** 0.128 0.062*

DAX 30 NIKKEI 225 0.160 0.039** 0.000*** 0.000*** 0.039** 0.039**

HS 300 0.388 0.310 0.006*** 0.000*** 0.473 0.337

NIKKEI 225 HS 300 0.117 0.059* 0.004*** 0.001*** 0.086* 0.018**

Note: This table provides p-values of testing the symmetric comovements between the daily return on one market

and the daily return on other market. Five market indices are considered: S&P 500, FTSE 100, DAX 30, NIKKEI

225, and HS 300. Several tests are compared: Jρ test of Hong, Tu, and Zhou (2007), Cρ test of Chen (2016), and the

C̃vMT , K̃ST , CvMT and KST tests. Here the exceedance level c = 0 and the block length L = [T 1/4]. The number

of bootstrap resamples is B = 1000.
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Table 10: Test results (p-values) of pairwise market index, c = 0.5

Market index i Market index j Tests

Jρ Cρ C̃vMT K̃ST CvMT KST

S&P 500 FTSE 100 0.833 0.766 0.000*** 0.001*** 0.000*** 0.000***

DAX 30 0.736 0.504 0.003*** 0.006*** 0.000*** 0.000***

NIKKEI 225 0.481 0.351 0.679 0.398 0.108 0.040**

HS 300 0.261 0.248 0.007*** 0.026** 0.003*** 0.001***

FTSE 100 DAX 30 0.487 0.103 0.007*** 0.027** 0.001*** 0.008***

NIKKEI 225 0.242 0.090* 0.508 0.327 0.071* 0.027**

HS 300 0.824 0.785 0.196 0.261 0.077* 0.058*

DAX 30 NIKKEI 225 0.306 0.169 0.620 0.558 0.031** 0.017**

HS 300 0.694 0.649 0.061* 0.046** 0.153 0.126

NIKKEI 225 HS 300 0.501 0.467 0.137 0.237 0.002*** 0.005***

Note: This table provides p-values of testing the symmetric comovements between the daily return on one market

and the daily return on other market. Five market indices are considered: S&P 500, FTSE 100, DAX 30, NIKKEI

225, and HS 300. Several tests are compared: Jρ test of Hong, Tu, and Zhou (2007), Cρ test of Chen (2016), and the

C̃vMT , K̃ST , CvMT and KST tests. Here the exceedance level c = 0.5 and the block length L = [T 1/4]. The number

of bootstrap resamples is B = 1000.
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Table 11: Test results (p-values) of pairwise market index, c = 1

Market index i Market index j Tests

Jρ Cρ C̃vMT K̃ST CvMT KST

S&P 500 FTSE 100 0.395 0.225 0.262 0.361 0.000*** 0.003***

DAX 30 0.697 0.373 0.243 0.322 0.003*** 0.001***

NIKKEI 225 0.915 0.881 0.663 0.566 0.189 0.280

HS 300 0.450 0.457 0.572 0.623 0.082* 0.170

FTSE 100 DAX 30 0.407 0.132 0.657 0.697 0.046** 0.200

NIKKEI 225 0.272 0.216 0.131 0.105 0.889 0.826

HS 300 0.355 0.209 0.150 0.304 0.000*** 0.003***

DAX 30 NIKKEI 225 0.348 0.311 0.133 0.106 0.310 0.293

HS 300 0.692 0.661 0.322 0.498 0.005*** 0.033**

NIKKEI 225 HS 300 0.887 0.889 0.610 0.387 0.033** 0.008***

Note: This table provides p-values of testing the symmetric comovements between the daily return on one market

and the daily return on other market. Five market indices are considered: S&P 500, FTSE 100, DAX 30, NIKKEI

225, and HS 300. Several tests are compared: Jρ test of Hong, Tu, and Zhou (2007), Cρ test of Chen (2016), and the

C̃vMT , K̃ST , CvMT and KST tests. Here the exceedance level c = 1 and the block length L = [T 1/4]. The number

of bootstrap resamples is B = 1000.

36



Table 12: Test results (p-values) of pairwise market index, c = 1.5

Market index i Market index j Tests

Jρ Cρ C̃vMT K̃ST CvMT KST

S&P 500 FTSE 100 0.099* 0.107 0.130 0.088* 0.705 0.763

DAX 30 0.686 0.418 0.539 0.166 0.037** 0.056*

NIKKEI 225 0.194 0.179 0.480 0.557 0.711 0.547

HS 300 0.387 0.367 0.788 0.869 0.999 0.994

FTSE 100 DAX 30 0.310 0.182 0.432 0.233 0.080 * 0.197

NIKKEI 225 0.158 0.186 0.226 0.301 0.513 0.210

HS 300 0.219 0.113 0.006*** 0.000*** 0.604 0.791

DAX 30 NIKKEI 225 0.270 0.355 0.488 0.667 0.008*** 0.075*

HS 300 0.858 0.855 0.351 0.283 0.450 0.522

NIKKEI 225 HS 300 0.655 0.654 0.756 0.758 0.069* 0.244

Note: This table provides p-values of testing the symmetric comovements between the daily return on one market

and the daily return on other market. Five market indices are considered: S&P 500, FTSE 100, DAX 30, NIKKEI

225, and HS 300. Several tests are compared: Jρ test of Hong, Tu, and Zhou (2007), Cρ test of Chen (2016), and the

C̃vMT , K̃ST , CvMT and KST tests. Here the exceedance level c = 1.5 and the block length L = [T 1/4]. The number

of bootstrap resamples is B = 1000.
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D Appendix: Additional Simulation Results

In this appendix we provide additional simulation results, which illustrate the effects of different block length

choice L under the GARCH(1,1) process as well as different degrees of dependence displayed in the data

(characterized by the autoregressive parameter in the AR(1) process in the main paper) on the finite sample

properties of the proposed test statistics CvMT and KST . Specifically, we report results when L = 2× [T 1/4]

and L = 4 × [T 1/4], and ρ = 0 (the i.i.d. case), ρ = 0.5, ρ = 0.8, and ρ = 0.9 with ρ the autoregressive

parameter in the AR(1) process. But we remark that larger ρ (thus stronger dependence in the data)

deteriorates the testing performance very seriously and the associated results are not informative.

In addition, it is reasonable to conjecture that there is a kind of tradeoff between the degree of dependence

and choice of block length L, the detailed investigation of which is left for future study. To summarize,

dependence hurts the size performance via size distortion (for our simulations, undersize). Less dependence

improves the test performance. For example, in the extreme when ρ = 0 (no dependence case), size distortion

disappears completely; see Tables 17 and 18.

Other observations as discussed in the main paper are similar; for example, KST is slightly more powerful

than CvMT for both GARCH(1,1) and AR(1) processes across different L’s and different ρ’s.

Finally, for the purpose of comparison, the test results of two popular parametric tests for asymmetric

comovements (i.e., the Jρ and Cρ tests) are also reported in Tables 25 and 26, respectively. From Table 25 it

is clear that Jρ test has serious size distortion (extremely undersized) for all three nominal levels, while from

Table 26 we see that Cρ test preserves the sizes very well. In addition, the two parametric tests are much

more powerful (especially for the current type of dependence structures considered) than the two proposed

nonparametric tests. Nevertheless, it is worthwhile to emphasize that this is not completely unexpected,

given the fully model-free nature of our CvMT and KST tests. To improve the test performance, developing

an alternative bootstrap procedure may deserve further attention.
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Table 13: Empirical rejection rates of the block multiplier bootstrap-based Cramér-von Mises test statistic

[CvMT ] for c = 0 under the GARCH(1,1) process when L = 2× [T 1/4]

Nominal Sizes DGPs

DGP S1 DGP P1 DGP P2 DGP P3 DGP P4 DGP P5

T = 240

α = 1% 0.003 0.006 0.008 0.009 0.017 0.026

α = 5% 0.031 0.045 0.041 0.056 0.069 0.102

α = 10% 0.062 0.078 0.094 0.100 0.146 0.164

T = 600

α = 1% 0.004 0.006 0.012 0.021 0.035 0.077

α = 5% 0.033 0.051 0.076 0.111 0.156 0.247

α = 10% 0.064 0.103 0.146 0.223 0.265 0.397

T = 1600

α = 1% 0.002 0.010 0.061 0.121 0.186 0.357

α = 5% 0.022 0.060 0.199 0.337 0.475 0.728

α = 10% 0.058 0.139 0.319 0.483 0.620 0.876

T = 3200

α = 1% 0.003 0.041 0.179 0.348 0.522 0.858

α = 5% 0.024 0.126 0.441 0.677 0.850 0.987

α = 10% 0.058 0.212 0.620 0.834 0.950 0.999

T = 4800

α = 1% 0.005 0.050 0.354 0.624 0.817 0.983

α = 5% 0.029 0.177 0.676 0.900 0.980 1.000

α = 10% 0.066 0.302 0.825 0.966 0.998 1.000

Note: This table reports the empirical size and power of block multiplier bootstrap-based test statistic CvMT for

testing the null of symmetric comovements in (1) against the alternative in (2) under the DGPs in Table 1 of the main

paper and for α = 1%, 5%, and 10% significance levels. The number of simulations is 1000, the number of bootstrap

resamples is B = 200, and the block length is L = 2× [T 1/4]. Here we set the exceedance level to be c = 0.
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Table 14: Empirical rejection rates of the block multiplier bootstrap-based Kolmogorov-Smirnov test statistic

[KST ] for c = 0 under the GARCH(1,1) process when L = 2× [T 1/4]

Nominal Sizes DGPs

DGP S1 DGP P1 DGP P2 DGP P3 DGP P4 DGP P5

T = 240

α = 1% 0.004 0.005 0.009 0.017 0.020 0.037

α = 5% 0.021 0.035 0.045 0.068 0.084 0.140

α = 10% 0.061 0.065 0.093 0.123 0.164 0.235

T = 600

α = 1% 0.003 0.007 0.017 0.032 0.057 0.168

α = 5% 0.028 0.055 0.091 0.166 0.210 0.392

α = 10% 0.073 0.106 0.175 0.289 0.340 0.529

T = 1600

α = 1% 0.005 0.014 0.089 0.204 0.344 0.678

α = 5% 0.027 0.069 0.267 0.444 0.626 0.900

α = 10% 0.048 0.140 0.387 0.621 0.769 0.957

T = 3200

α = 1% 0.001 0.041 0.293 0.547 0.795 0.984

α = 5% 0.025 0.147 0.584 0.831 0.959 0.999

α = 10% 0.061 0.245 0.734 0.923 0.980 1.000

T = 4800

α = 1% 0.008 0.067 0.555 0.832 0.957 1.000

α = 5% 0.032 0.221 0.824 0.972 0.996 1.000

α = 10% 0.058 0.357 0.908 0.994 1.000 1.000

Note: This table reports the empirical size and power of block multiplier bootstrap-based test statistic KST for

testing the null of symmetric comovements in (1) against the alternative in (2) under the DGPs in Table 1 of the main

paper and for α = 1%, 5%, and 10% significance levels. The number of simulations is 1000, the number of bootstrap

resamples is B = 200, and the block length is L = 2× [T 1/4]. Here we set the exceedance level to be c = 0.

40



Table 15: Empirical rejection rates of the block multiplier bootstrap-based Cramér-von Mises test statistic

[CvMT ] for c = 0 under the GARCH(1,1) process when L = 4× [T 1/4]

Nominal Sizes DGPs

DGP S1 DGP P1 DGP P2 DGP P3 DGP P4 DGP P5

T = 240

α = 1% 0.008 0.005 0.017 0.014 0.018 0.029

α = 5% 0.043 0.040 0.072 0.071 0.086 0.132

α = 10% 0.090 0.090 0.126 0.139 0.150 0.235

T = 600

α = 1% 0.006 0.006 0.026 0.035 0.055 0.086

α = 5% 0.028 0.044 0.093 0.126 0.194 0.251

α = 10% 0.077 0.108 0.164 0.236 0.306 0.405

T = 1600

α = 1% 0.003 0.019 0.073 0.136 0.209 0.403

α = 5% 0.030 0.060 0.235 0.362 0.498 0.749

α = 10% 0.072 0.128 0.366 0.519 0.675 0.883

T = 3200

α = 1% 0.002 0.031 0.212 0.375 0.547 0.855

α = 5% 0.021 0.124 0.477 0.700 0.846 0.988

α = 10% 0.058 0.211 0.630 0.836 0.949 0.999

T = 4800

α = 1% 0.001 0.060 0.340 0.597 0.821 0.990

α = 5% 0.022 0.188 0.685 0.891 0.976 1.000

α = 10% 0.056 0.311 0.839 0.963 0.997 1.000

Note: This table reports the empirical size and power of block multiplier bootstrap-based test statistic CvMT for

testing the null of symmetric comovements in (1) against the alternative in (2) under the DGPs in Table 1 of the main

paper and for α = 1%, 5%, and 10% significance levels. The number of simulations is 1000, the number of bootstrap

resamples is B = 200, and the block length is L = 4× [T 1/4]. Here we set the exceedance level to be c = 0.
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Table 16: Empirical rejection rates of the block multiplier bootstrap-based Kolmogorov-Smirnov test statistic

[KST ] for c = 0 under the GARCH(1,1) process when L = 4× [T 1/4]

Nominal Sizes DGPs

DGP S1 DGP P1 DGP P2 DGP P3 DGP P4 DGP P5

T = 240

α = 1% 0.007 0.006 0.019 0.009 0.019 0.055

α = 5% 0.041 0.042 0.067 0.082 0.087 0.168

α = 10% 0.087 0.082 0.132 0.155 0.177 0.287

T = 600

α = 1% 0.005 0.006 0.030 0.046 0.087 0.160

α = 5% 0.033 0.049 0.108 0.163 0.262 0.389

α = 10% 0.072 0.095 0.183 0.284 0.385 0.562

T = 1600

α = 1% 0.004 0.027 0.115 0.216 0.365 0.679

α = 5% 0.028 0.076 0.301 0.486 0.676 0.914

α = 10% 0.063 0.149 0.437 0.642 0.807 0.966

T = 3200

α = 1% 0.002 0.036 0.323 0.568 0.788 0.978

α = 5% 0.024 0.153 0.592 0.832 0.953 1.000

α = 10% 0.057 0.250 0.737 0.927 0.980 1.000

T = 4800

α = 1% 0.008 0.081 0.515 0.811 0.955 1.000

α = 5% 0.017 0.226 0.820 0.963 0.997 1.000

α = 10% 0.051 0.375 0.922 0.988 1.000 1.000

Note: This table reports the empirical size and power of block multiplier bootstrap-based test statistic KST for

testing the null of symmetric comovements in (1) against the alternative in (2) under the DGPs in Table 1 of the main

paper and for α = 1%, 5%, and 10% significance levels. The number of simulations is 1000, the number of bootstrap

resamples is B = 200, and the block length is L = 4× [T 1/4]. Here we set the exceedance level to be c = 0.
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Table 17: Empirical rejection rates of the multiplier bootstrap-based Cramér-von Mises test statistic [CvMT ]

for c = 0 under the i.i.d. process (i.e., the autoregressive parameter in AR(1) process is set to zero) when

L = 1

Nominal Sizes DGPs

DGP S1 DGP P1 DGP P2 DGP P3 DGP P4 DGP P5

T = 240

α = 1% 0.007 0.006 0.020 0.023 0.020 0.043

α = 5% 0.036 0.036 0.091 0.099 0.107 0.146

α = 10% 0.082 0.081 0.156 0.177 0.201 0.248

T = 600

α = 1% 0.010 0.005 0.047 0.061 0.086 0.138

α = 5% 0.046 0.043 0.146 0.190 0.249 0.348

α = 10% 0.103 0.087 0.239 0.296 0.376 0.502

T = 1600

α = 1% 0.009 0.011 0.134 0.218 0.311 0.531

α = 5% 0.048 0.090 0.321 0.449 0.601 0.834

α = 10% 0.097 0.148 0.457 0.592 0.736 0.951

T = 3200

α = 1% 0.010 0.050 0.327 0.518 0.724 0.946

α = 5% 0.045 0.179 0.599 0.786 0.933 0.998

α = 10% 0.097 0.293 0.744 0.904 0.983 1.000

T = 4800

α = 1% 0.013 0.071 0.527 0.785 0.926 0.999

α = 5% 0.054 0.241 0.787 0.951 0.994 1.000

α = 10% 0.102 0.395 0.894 0.985 1.000 1.000

Note: This table reports the empirical size and power of multiplier bootstrap-based test statistic CvMT for testing the

null of symmetric comovements in (1) against the alternative in (2) under the DGPs in Table 1 of the main paper and

for α = 1%, 5%, and 10% significance levels. The number of simulations is 1000, the number of bootstrap resamples

is B = 200, and the block length is L = 1 (for i.i.d. data). Here we set the exceedance level to be c = 0.

43



Table 18: Empirical rejection rates of the multiplier bootstrap-based Kolmogorov-Smirnov test statistic

[KST ] for c = 0 under the i.i.d. process (i.e, the autoregressive parameter in AR(1) process is set to zero)

when L = 1

Nominal Sizes DGPs

DGP S1 DGP P1 DGP P2 DGP P3 DGP P4 DGP P5

T = 240

α = 1% 0.008 0.009 0.023 0.025 0.028 0.067

α = 5% 0.039 0.034 0.094 0.109 0.133 0.209

α = 10% 0.091 0.078 0.165 0.1900 0.239 0.331

T = 600

α = 1% 0.010 0.011 0.058 0.094 0.153 0.296

α = 5% 0.044 0.040 0.164 0.248 0.341 0.548

α = 10% 0.096 0.095 0.264 0.355 0.482 0.680

T = 1600

α = 1% 0.008 0.024 0.192 0.343 0.538 0.857

α = 5% 0.049 0.091 0.407 0.597 0.782 0.977

α = 10% 0.100 0.174 0.542 0.731 0.871 0.995

T = 3200

α = 1% 0.007 0.066 0.493 0.731 0.925 0.997

α = 5% 0.045 0.208 0.735 0.911 0.989 1.000

α = 10% 0.098 0.316 0.844 0.967 0.999 1.000

T = 4800

α = 1% 0.013 0.086 0.726 0.936 0.991 1.000

α = 5% 0.053 0.290 0.908 0.989 0.999 1.000

α = 10% 0.099 0.423 0.961 0.999 1.000 1.000

Note: This table reports the empirical size and power of multiplier bootstrap-based test statistic KST for testing the

null of symmetric comovements in (1) against the alternative in (2) under the DGPs in Table 1 of the main paper and

for α = 1%, 5%, and 10% significance levels. The number of simulations is 1000, the number of bootstrap resamples

is B = 200, and the block length is L = 1 (for i.i.d. data). Here we set the exceedance level to be c = 0.
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Table 19: Empirical rejection rates of the block multiplier bootstrap-based Cramér-von Mises test statistic

[CvMT ] for c = 0 under the AR(1) process with the autoregressive parameter being 0.8 when L = [T 1/4]

Nominal Sizes DGPs

DGP S1 DGP P1 DGP P2 DGP P3 DGP P4 DGP P5

T = 240

α = 1% 0.001 0.001 0.001 0.003 0.001 0.002

α = 5% 0.013 0.023 0.014 0.021 0.026 0.021

α = 10% 0.046 0.047 0.046 0.060 0.053 0.043

T = 600

α = 1% 0.003 0.001 0.001 0.002 0.002 0.002

α = 5% 0.010 0.016 0.016 0.023 0.020 0.029

α = 10% 0.029 0.045 0.048 0.051 0.054 0.067

T = 1600

α = 1% 0.001 0.001 0.001 0.001 0.007 0.007

α = 5% 0.007 0.011 0.016 0.022 0.044 0.040

α = 10% 0.021 0.033 0.047 0.070 0.089 0.121

T = 3200

α = 1% 0.001 0.001 0.003 0.007 0.009 0.015

α = 5% 0.006 0.014 0.029 0.044 0.049 0.085

α = 10% 0.021 0.037 0.086 0.097 0.125 0.192

T = 4800

α = 1% 0.001 0.002 0.007 0.011 0.013 0.039

α = 5% 0.004 0.016 0.058 0.059 0.087 0.172

α = 10% 0.018 0.044 0.108 0.152 0.197 0.327

Note: This table reports the empirical size and power of block multiplier bootstrap-based test statistic CvMT for

testing the null of symmetric comovements in (1) against the alternative in (2) under the DGPs in Table 1 of the main

paper and for α = 1%, 5%, and 10% significance levels. The number of simulations is 1000, the number of bootstrap

resamples is B = 200, and the block length is L = [T 1/4]. Here we set the exceedance level to be c = 0.
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Table 20: Empirical rejection rates of the block multiplier bootstrap-based Kolmogorov-Smirnov test statistic

[KST ] for c = 0 under the AR(1) process with the autoregressive parameter being 0.8 when L = [T 1/4]

Nominal Sizes DGPs

DGP S1 DGP P1 DGP P2 DGP P3 DGP P4 DGP P5

T = 240

α = 1% 0.002 0.001 0.001 0.001 0.001 0.004

α = 5% 0.013 0.023 0.013 0.021 0.026 0.021

α = 10% 0.034 0.045 0.034 0.054 0.057 0.050

T = 600

α = 1% 0.004 0.002 0.001 0.002 0.003 0.005

α = 5% 0.014 0.011 0.017 0.026 0.024 0.035

α = 10% 0.032 0.043 0.053 0.047 0.056 0.090

T = 1600

α = 1% 0.001 0.001 0.002 0.004 0.006 0.015

α = 5% 0.010 0.017 0.028 0.037 0.046 0.080

α = 10% 0.024 0.031 0.060 0.084 0.103 0.152

T = 3200

α = 1% 0.001 0.001 0.005 0.014 0.018 0.043

α = 5% 0.007 0.013 0.037 0.064 0.099 0.158

α = 10% 0.021 0.043 0.098 0.124 0.189 0.283

T = 4800

α = 1% 0.001 0.002 0.019 0.027 0.026 0.095

α = 5% 0.003 0.022 0.072 0.109 0.155 0.293

α = 10% 0.015 0.057 0.134 0.200 0.273 0.445

Note: This table reports the empirical size and power of block multiplier bootstrap-based test statistic KST for

testing the null of symmetric comovements in (1) against the alternative in (2) under the DGPs in Table 1 of the main

paper and for α = 1%, 5%, and 10% significance levels. The number of simulations is 1000, the number of bootstrap

resamples is B = 200, and the block length is L = [T 1/4]. Here we set the exceedance level to be c = 0.

46



Table 21: Empirical rejection rates of the block multiplier bootstrap-based Cramér-von Mises test statistic

[CvMT ] for c = 0 under the AR(1) process with the autoregressive parameter being 0.9 when L = [T 1/4]

Nominal Sizes DGPs

DGP S1 DGP P1 DGP P2 DGP P3 DGP P4 DGP P5

T = 240

α = 1% 0.007 0.006 0.006 0.011 0.011 0.011

α = 5% 0.043 0.042 0.038 0.053 0.044 0.052

α = 10% 0.098 0.088 0.073 0.099 0.094 0.092

T = 600

α = 1% 0.001 0.007 0.007 0.007 0.002 0.008

α = 5% 0.031 0.026 0.030 0.031 0.021 0.039

α = 10% 0.067 0.057 0.062 0.061 0.051 0.075

T = 1600

α = 1% 0.003 0.002 0.008 0.003 0.004 0.007

α = 5% 0.022 0.020 0.031 0.033 0.025 0.039

α = 10% 0.051 0.050 0.065 0.068 0.075 0.079

T = 3200

α = 1% 0.001 0.003 0.002 0.007 0.006 0.014

α = 5% 0.011 0.013 0.029 0.032 0.032 0.061

α = 10% 0.027 0.036 0.070 0.070 0.076 0.122

T = 4800

α = 1% 0.001 0.001 0.005 0.007 0.011 0.009

α = 5% 0.008 0.016 0.028 0.036 0.041 0.070

α = 10% 0.025 0.044 0.072 0.086 0.084 0.131

Note: This table reports the empirical size and power of block multiplier bootstrap-based test statistic CvMT for

testing the null of symmetric comovements in (1) against the alternative in (2) under the DGPs in Table 1 of the main

paper and for α = 1%, 5%, and 10% significance levels. The number of simulations is 1000, the number of bootstrap

resamples is B = 200, and the block length is L = [T 1/4]. Here we set the exceedance level to be c = 0.
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Table 22: Empirical rejection rates of the block multiplier bootstrap-based Kolmogorov-Smirnov test statistic

[KST ] for c = 0 under the AR(1) process with the autoregressive parameter being 0.9 when L = [T 1/4]

Nominal Sizes DGPs

DGP S1 DGP P1 DGP P2 DGP P3 DGP P4 DGP P5

T = 240

α = 1% 0.010 0.011 0.008 0.012 0.011 0.013

α = 5% 0.057 0.044 0.037 0.042 0.048 0.053

α = 10% 0.096 0.106 0.087 0.090 0.101 0.111

T = 600

α = 1% 0.001 0.009 0.007 0.008 0.006 0.012

α = 5% 0.034 0.033 0.037 0.033 0.027 0.048

α = 10% 0.072 0.074 0.073 0.075 0.063 0.088

T = 1600

α = 1% 0.004 0.004 0.009 0.009 0.007 0.010

α = 5% 0.028 0.022 0.043 0.040 0.035 0.044

α = 10% 0.069 0.055 0.074 0.079 0.097 0.104

T = 3200

α = 1% 0.001 0.003 0.006 0.010 0.007 0.013

α = 5% 0.015 0.014 0.034 0.045 0.039 0.078

α = 10% 0.034 0.040 0.082 0.092 0.096 0.150

T = 4800

α = 1% 0.001 0.001 0.002 0.005 0.016 0.022

α = 5% 0.012 0.014 0.036 0.049 0.064 0.095

α = 10% 0.027 0.046 0.074 0.105 0.127 0.170

Note: This table reports the empirical size and power of block multiplier bootstrap-based test statistic KST for

testing the null of symmetric comovements in (1) against the alternative in (2) under the DGPs in Table 1 of the main

paper and for α = 1%, 5%, and 10% significance levels. The number of simulations is 1000, the number of bootstrap

resamples is B = 200, and the block length is L = [T 1/4]. Here we set the exceedance level to be c = 0.

48



Table 23: Empirical rejection rates of the block multiplier bootstrap-based Cramér-von Mises test statistic

[CvMT ] for c = 0 under the AR(1) process with the autoregressive parameter being 0.9 when L = 2× [T 1/4]

Nominal Sizes DGPs

DGP S1 DGP P1 DGP P2 DGP P3 DGP P4 DGP P5

T = 240

α = 1% 0.004 0.005 0.005 0.002 0.002 0.001

α = 5% 0.018 0.021 0.023 0.019 0.017 0.018

α = 10% 0.048 0.049 0.043 0.047 0.047 0.052

T = 600

α = 1% 0.001 0.001 0.005 0.001 0.001 0.002

α = 5% 0.007 0.009 0.016 0.014 0.015 0.021

α = 10% 0.031 0.032 0.038 0.040 0.040 0.046

T = 1600

α = 1% 0.001 0.001 0.001 0.001 0.001 0.001

α = 5% 0.002 0.002 0.009 0.010 0.009 0.017

α = 10% 0.020 0.019 0.024 0.027 0.033 0.034

T = 3200

α = 1% 0.001 0.001 0.001 0.001 0.001 0.002

α = 5% 0.006 0.006 0.008 0.015 0.005 0.017

α = 10% 0.017 0.014 0.026 0.046 0.037 0.047

T = 4800

α = 1% 0.001 0.002 0.001 0.001 0.001 0.002

α = 5% 0.003 0.002 0.009 0.010 0.016 0.024

α = 10% 0.008 0.015 0.031 0.029 0.056 0.070

Note: This table reports the empirical size and power of block multiplier bootstrap-based test statistic CvMT for

testing the null of symmetric comovements in (1) against the alternative in (2) under the DGPs in Table 1 of the main

paper and for α = 1%, 5%, and 10% significance levels. The number of simulations is 1000, the number of bootstrap

resamples is B = 200, and the block length is L = 2× [T 1/4]. Here we set the exceedance level to be c = 0.
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Table 24: Empirical rejection rates of the block multiplier bootstrap-based Kolmogorov-Smirnov test statistic

[KST ] for c = 0 under the AR(1) process with the autoregressive parameter being 0.9 when L = 2× [T 1/4]

Nominal Sizes DGPs

DGP S1 DGP P1 DGP P2 DGP P3 DGP P4 DGP P5

T = 240

α = 1% 0.003 0.003 0.003 0.002 0.002 0.003

α = 5% 0.018 0.024 0.026 0.021 0.018 0.018

α = 10% 0.055 0.054 0.050 0.049 0.052 0.044

T = 600

α = 1% 0.001 0.001 0.003 0.001 0.006 0.004

α = 5% 0.009 0.008 0.021 0.019 0.017 0.022

α = 10% 0.037 0.028 0.044 0.045 0.049 0.041

T = 1600

α = 1% 0.001 0.001 0.001 0.003 0.002 0.002

α = 5% 0.006 0.007 0.010 0.011 0.016 0.017

α = 10% 0.020 0.019 0.029 0.029 0.038 0.046

T = 3200

α = 1% 0.001 0.001 0.001 0.002 0.001 0.004

α = 5% 0.005 0.004 0.011 0.024 0.015 0.025

α = 10% 0.015 0.015 0.029 0.055 0.040 0.068

T = 4800

α = 1% 0.001 0.001 0.001 0.001 0.002 0.007

α = 5% 0.003 0.007 0.014 0.011 0.029 0.038

α = 10% 0.014 0.021 0.034 0.045 0.069 0.085

Note: This table reports the empirical size and power of block multiplier bootstrap-based test statistic KST for

testing the null of symmetric comovements in (1) against the alternative in (2) under the DGPs in Table 1 of the main

paper and for α = 1%, 5%, and 10% significance levels. The number of simulations is 1000, the number of bootstrap

resamples is B = 200, and the block length is L = 2× [T 1/4]. Here we set the exceedance level to be c = 0.
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Table 25: Empirical rejection rates of the Jρ test statistic for c = 0

Nominal Sizes DGPs

DGP S1 DGP P1 DGP P2 DGP P3 DGP P4 DGP P5

T = 240

α = 1% 0 0.001 0.009 0.030 0.096 0.396

α = 5% 0 0.005 0.051 0.145 0.326 0.755

α = 10% 0 0.008 0.139 0.318 0.532 0.895

T = 600

α = 1% 0 0 0.041 0.191 0.492 0.916

α = 5% 0 0.002 0.247 0.596 0.861 0.989

α = 10% 0 0.016 0.498 0.787 0.951 0.998

T = 1600

α = 1% 0 0 0.478 0.879 0.971 1.000

α = 5% 0 0.032 0.874 0.984 0.998 1.000

α = 10% 0 0.105 0.961 0.994 1.000 1.000

T = 3200

α = 1% 0 0.012 0.955 0.993 0.998 1.000

α = 5% 0 0.251 0.992 1.000 1.000 1.000

α = 10% 0 0.560 0.998 1.000 1.000 1.000

T = 4800

α = 1% 0 0.058 0.991 1.000 1.000 1.000

α = 5% 0 0.586 0.999 1.000 1.000 1.000

α = 10% 0 0.875 1.000 1.000 1.000 1.000

Note: This table reports the empirical size and power of test statistic Jρ of Hong, Tu and Zhou (2007) for testing the

null of symmetric comovements in (1) against the alternative in (2) under the DGPs in Table 1 of the main paper and

for α = 1%, 5%, and 10% significance levels. The number of simulations is 1000. Here we set the exceedance level to

be c = 0.
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Table 26: Empirical rejection rates of the Cρ test statistic for c = 0

Nominal Sizes DGPs

DGP S1 DGP P1 DGP P2 DGP P3 DGP P4 DGP P5

T = 240

α = 1% 0.006 0.180 0.746 0.904 0.981 1.000

α = 5% 0.054 0.448 0.933 0.980 0.999 1.000

α = 10% 0.104 0.596 0.968 0.989 0.999 1.000

T = 600

α = 1% 0.009 0.618 0.992 1.000 1.000 1.000

α = 5% 0.062 0.846 1.000 1.000 1.000 1.000

α = 10% 0.122 0.919 1.000 1.000 1.000 1.000

T = 1600

α = 1% 0.009 0.984 1.000 1.000 1.000 1.000

α = 5% 0.039 0.997 1.000 1.000 1.000 1.000

α = 10% 0.090 0.998 1.000 1.000 1.000 1.000

T = 3200

α = 1% 0.009 0.999 1.000 1.000 1.000 1.000

α = 5% 0.043 0.999 1.000 1.000 1.000 1.000

α = 10% 0.081 0.999 1.000 1.000 1.000 1.000

T = 4800

α = 1% 0.005 0.999 1.000 1.000 1.000 1.000

α = 5% 0.047 1.000 1.000 1.000 1.000 1.000

α = 10% 0.094 1.000 1.000 1.000 1.000 1.000

Note: This table reports the empirical size and power of test statistic Cρ of Chen (2016) for testing the null of

symmetric comovements in (1) against the alternative in (2) under the DGPs in Table 1 of the main paper and for

α = 1%, 5%, and 10% significance levels. The number of simulations is 1000. Here we set the exceedance level to be

c = 0.
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