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Abstract

An asymptotic approximation methodology for solving standard random eigenvalue problems is generalized herein to account
for structural systems with singular random parameter matrices. In this regard, resorting to the concept of Moore-Penrose matrix
inverse and generalizing expressions for the rate of change of the eigenvalues, novel closed-form expressions are derived for
the joint moments of the system natural frequencies. Two indicative examples pertaining to multi-degree-of-freedom structural
systems are considered for demonstrating the reliability of the methodology. Comparisons with pertinent Monte Carlo simulation
data are included as well.
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1 Introduction

Uncertainty modeling of media properties and of external excitations based on stochastic process theory leads,
typically, to stochastic partial differential equations governing the dynamics of engineering systems (e.g., [11, 22]).
Naturally, various diverse solution methodologies have been developed over the last few decades for determining
the stochastic response of such systems; see, for instance, [28], [23], [36], and [26] for a broad perspective and
some recent indicative research efforts.

Further, spatial discretization of the stochastic field modeling the material properties of the engineering system
yields stochastic differential equations with random parameter matrices (e.g., [17]). These matrices are related to
the formulation of a random eigenvalue problem, which is of paramount importance to the dynamic analysis of
stochastic structural systems. In this regard, various solution schemes have been developed for determining statistics
of the eigenvalues, or equivalently, of the natural frequencies corresponding to the considered dynamic system.
Indicatively, these include methodologies based on Monte Carlo simulation (MCS) (e.g., [49]), on perturbation
analysis (e.g., [4, 31, 47]), on polynomial chaos expansions (e.g., [18, 16]), on crossing theory (e.g., [20, 21]),
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on dimensional decomposition approaches (e.g., [43, 44, 45]), and on stochastic order reduction schemes (e.g.,
[55, 12]).

Note, however, that the aforementioned solution schemes routinely rely on the assumption of parameter matrices
with appealing properties, such as symmetry and positive definiteness. Unfortunately, it is not possible to employ
these techniques in a straightforward manner for addressing cases of asymmetric and singular random matrices. In
fact, the authors and co-workers have generalized recently standard random vibration input-output relationships
and related solution techniques to account for systems with singular matrices (e.g., [14, 15, 25, 41, 40, 35, 24, 32]).
Indicative cases where singular matrices may appear include multi-body system modeling based on dependent
coordinates, hysteresis modeling via auxiliary state equations, and energy harvesters with coupled electro-mechanical
equations (e.g., [53, 3, 37, 38, 39]).

In this paper, the asymptotic approximation methodology developed in [1] for solving standard random eigen-
value problems is generalized for determining joint moments of natural frequencies corresponding to systems with
singular random parameter matrices. This is done by resorting to the concept of Moore-Penrose matrix inverse and
by generalizing expressions for the rate of change of eigenvalues to account for asymmetric matrices. Two indicative
examples pertaining to multi-degree-of-freedom (MDOF) structural systems are considered for demonstrating the
reliability of the methodology. Comparisons with pertinent MCS data are included as well.

2 Random eigenvalue problem formulation to account for dynamic systems
with singular parameter matrices

2.1 Standard random eigenvalue problem
Following the standard modeling in structural dynamics (e.g., [8, 7]), the governing equation of a linear n-degree-
of-freedom (n-DOF) undamped system is given by

M(ααα)q̈ + K(ααα)q = 000, (1)

where q denotes the n-dimensional displacement vector defined based on generalized coordinates (e.g., [46]).
Further, the random parameter matrices M(ααα),K(ααα) : Rk → Rn2

are considered to be continuous and at least
twice differentiable functions of the random parameter vector ααα ∈ Rk, which may relate to material or geometric
properties (e.g., [1, 9]). In this regard, the statistical properties of the system in Eq. (1) are characterized completely
by the joint probability density function (PDF)

pααα(ααα) = exp {−f(ααα)} , (2)

which is non-Gaussian in general and f : Rk → R denotes an arbitrary function of the parameter vector ααα (e.g.,
[1, 2]).

Next, considering a solution of Eq. (1) in the form (e.g., [46]) q(t) = q0 exp(iω(ααα)t), where ω(ααα) denotes the
system natural frequency and q0 is an n-dimensional amplitude vector, and substituting into Eq. (1) yields(

K(ααα)− ω2(ααα)M(ααα)
)
q0 = 0. (3)

Clearly, Eq. (3) has a non-trivial solution if, and only if, the determinant of the matrix on the left-hand side is equal
to zero, i.e., ∥∥(K(ααα)− ω2(ααα)M(ααα)

)∥∥ = 0. (4)

It is readily seen that Eq. (4) constitutes an n-th order polynomial of ω2(ααα), whose root ω2
i (ααα) is the square of the

system i-th natural frequency ωi(ααα), for i = 1, 2, . . . , n. Further, each of the natural frequencies ωi(ααα) corresponds
to an eigenvector (or mode shape) φφφi(ααα); that is, the value of q0 in Eq. (3). Further, denoting λi(ααα) = ω2

i (ααα) and
considering Eq. (3), the random generalized eigenvalue problem takes the form

K(ααα)φφφi(ααα) = λi(ααα)M(ααα)φφφi(ααα), (5)

for i = 1, 2, . . . , n. Specifically, for the pair of random matrices M(ααα) and K(ααα) the problem in Eq. (5) consists in
determining the random eigenvalue λi(ααα) : Rk → R and its corresponding random eigenvector φφφi(ααα) : Rk → Rn.

It is worth noting that a large number of researchers have developed various diverse techniques for solving Eq.
(5) (e.g., [21, 43, 1]). However, these solution techniques rely on standard modeling of structural systems yielding
parameter matrices with appealing properties, such as symmetry and positive definiteness. Unfortunately, it is not
possible to employ these techniques in a straightforward manner for addressing cases of asymmetric and singular
matrices presented in the following.



3

2.2 Random eigenvalue problem considering singular matrices
As shown in various theoretical analyses and applications (e.g., [53, 54, 14]), it can be argued that adopting a dynamic
system modeling based on non-generalized (dependent) coordinates can be advantageous from a computational
efficiency perspective (e.g., [29]). Specifically, following [48] and [14], consider the system in Eq. (1) modeled in
the form

Mx(ααα)ẍ + Kx(ααα)x = 0, (6)

where x denotes an l-dimensional (dependent) coordinates vector (l > n). Further, to account for the relationships
between the dependent coordinates and other forms of constraints, Eq. (6) is considered in conjunction with

Aẍ + Lx = 0 (7)

where A and L denote m× l matrices. Next, combining Eq. (6) and Eq. (7) yields

M̄x(ααα)ẍ + K̄x(ααα)x = 0, (8)

where M̄x(ααα), K̄x(ααα) : Rk → R(l+m)×l denote the augmented (l +m)× l mass and stiffness random matrices of
the system, given by (e.g., [14])

M̄x(ααα) =

[
[(Il −A+A)Mx(ααα)]l×l

[A]m×l

]
, K̄x(ααα) =

[
[(Il −A+A)Kx(ααα)]l×l

[L]m×l

]
. (9)

In Eq. (9), Il is the l × l identity matrix, and “+” denotes the Moore-Penrose matrix inverse operation (see also
Appendix I). A detailed derivation of Eqs. (6)-(9) can be found, indicatively, in [25] and in [52].

Clearly, matrices M̄x(ααα) and K̄x(ααα) in Eq. (9) are rectangular, and thus, a straightforward formulation of the
random eigenvalue problem according to Eq. (5), which refers to square matrices, is not possible. In passing, it is
worth noting various research efforts for addressing eigenvalue problems associated with rectangular/asymmetric
matrices. These include, indicatively, solution frameworks based on perturbation methods (e.g., [50]) and approaches
based on the concept of matrix pseudo-spectrum (e.g., [51, 19]).

In the ensuing analysis, the random eigenvalue problem corresponding to Eq. (8) is formulated by exploiting the
relationship between the system of Eq. (1) modeled via generalized (independent) coordinates, and the system of
Eq. (6) modeled via dependent coordinates. This implies that the system of Eq. (6) has n non-zero eigenvalues
coinciding with the ones obtained by solving Eq. (5), whereas the remaining l − n eigenvalues are expected to be
equal to zero. Further, it was shown in [34], based on the Cauchy-Binet formula of linear algebra, that the same n
non-zero and l − n zero eigenvalues are obtained by removing m linearly dependent rows from the (l +m)× l
matrices M̄x and K̄x in Eq. (8) and by considering the eigenvalue problem corresponding to the resulting l × l
matrices.

An intuitive explanation of the validity of the above argument is that the l − n zero eigenvalues correspond to
rigid body motions resulting from the l − n dependent coordinates used to model the system of Eq. (6). In fact,
despite the redundant coordinates modeling, the constituent parts of the system under consideration remain the
same, and thus, it is anticipated that the non-zero eigenvalues of the system of Eq. (8) are exactly the same as the
eigenvalues of the system whose governing equations of motion are modeled by utilizing an n-dimensional vector
of independent coordinates; see also [10].

In this regard, following [34], m linearly dependent rows of sub-matrices [(Il −A+A)Mx(ααα)]l×l and
[(Il −A+A)Kx(ααα)]l×l of the block matrices M̄x(ααα) and K̄x(ααα) in Eq. (9) are removed. This leads to the
random generalized eigenvalue problem(

K̃(ααα)− λ̃i(ααα)M̃(ααα)
)
φ̃φφi(ααα) = 000, (10)

where λ̃i(ααα) and φ̃φφi(ααα), i = 1, 2, . . . , l, denote the i-th random eigenvalue and the corresponding right random
eigenvector. Further, the l × l random parameter matrices M̃(ααα), K̃(ααα) : Rk → Rl2 are defined as

M̃(ααα) =

[
[(Il −A+A)Mx(ααα)](l−m)×l

[A]m×l

]
, K̃(ααα) =

[
[(Il −A+A)Kx(ααα)](l−m)×l

[L]m×l

]
. (11)

Thus, in the ensuing analysis the random eigenvalue problem defined in Eq. (10) is considered in conjunction
with generalizing an asymptotic approximation methodology for determining joint moments of natural frequencies
corresponding to systems with singular parameter matrices. Note that although the matrices involved in Eq. (10) are
square, they are asymmetric in general. This hinders the straightforward generalization of the technique developed
in [1] and poses certain challenges to be addressed in the following.
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3 Generalization of an asymptotic approximation methodology for determining
the joint moments of natural frequencies corresponding to dynamic systems
with singular parameter matrices

3.1 Standard formulation
In this section, a concise presentation of the standard approximation methodology proposed in [1] for determining
the joint moments of natural frequencies is included for completeness. The methodology pertains to evaluating a
multi-dimensional integral based on the saddle point approximation (e.g., [5, 56]).

Specifically, considering that the smooth and twice differentiable function g(ααα) : G ⊂ Rk → R exhibits its
unique global minimum at ααα = ααα0 ∈ G, and denoting its positive definite Hessian matrix evaluated at ααα0 as
Dg(ααα0) =

(
∂2g

∂αi∂αj

) ∣∣∣
ααα=ααα0

, the integral

I =

∫
G

exp {−g(ααα)} dααα (12)

is approximated by (e.g., [5, 56])

I ≈ (2π)k/2 exp {−g(ααα0)} ‖Dg(ααα0)‖−1/2 . (13)

Further, taking into account the system parameter vector ααα and its joint PDF defined in Eq. (2), the arbitrary
order si (i = 1, 2, . . . , n) joint moments of multiple natural frequencies are given by

µ
(s1,s2,...,sn)
i1,i2,...,in

=

∫
Rk

{
ωs1i1 (ααα)ωs2i2 (ααα) . . . ωsnin (ααα)

}
pααα(ααα)dααα, (14)

where the natural frequencies are determined by solving the standard random generalized eigenvalue problem of Eq.
(5). Next, substituting Eq. (2) into Eq. (14) yields

µ
(s1,s2,...,sn)
i1,i2,...,in

=

∫
Rk

exp {− (f(ααα)− s1 lnωi1(ααα)− s2 lnωi2(ααα)− . . .− sn lnωin(ααα))}dααα. (15)

Taking into account the integral form in Eq. (12), setting g(ααα) = f(ααα) − s1 lnωi1(ααα) − s2 lnωi2(ααα) − . . . −
sn lnωin(ααα) and employing the approximation of Eq. (13), Eq. (15) becomes

µ
(s1,s2,...,sn)
i1,i2,...,in

≈ (2π)k/2
{
ωs1i1 (ααα0)ωs2i2 (ααα0) . . . ωsnin (ααα0)

}
exp {−f(ααα0)} ‖Dg(ααα0)‖−1/2 . (16)

Clearly, an integral part of the methodology pertains to the efficient calculation of point ααα0 to be used in the
approximation of Eq. (16). In this regard, considering the exponent of Eq. (15), and applying the condition
∂g(ααα)
∂αk

= 0, for all k, satisfied at point ααα = ααα0 where g(ααα) exhibits a unique global minimum (see [56]), yields the
expression

df (ααα0) =
s1

ωi1(ααα0)
dωi1 (ααα0) +

s2
ωi2(ααα0)

dωi2 (ααα0) + . . .+
sn

ωin(ααα0)
dωin (ααα0), (17)

where df (ααα0) = ∂f(ααα)
∂αααiρ

∣∣∣
ααα=ααα0

and dωiρ (ααα0) =
∂ωiρ (ααα)

∂αiρ

∣∣∣
ααα=ααα0

, for all iρ ∈ {i1, i2, . . . , in}. Further, considering the

exponent of Eq. (15) and differentiating yields the Hessian matrix evaluated at ααα = ααα0 in the form

Dg(ααα0) = Df (ααα0) +

in,jn∑
i=i1,j=j1

iω−1i (ααα0)

{
dωi(ααα0)dT

ωi(ααα0)

ωi(ααα0)
−Dωi(ααα0)

}
. (18)

Obviously, point ααα0 can be determined by solving the nonlinear system of equations shown in Eq. (17). This
can be done by employing any standard numerical optimization algorithm (e.g., [33]), or by utilizing the simple
iterative solution scheme till convergence followed in [1]. It is worth noting that df (ααα) can be evaluated explicitly
based on knowledge of the PDF pααα(ααα), whereas the computationally cumbersome numerical differentiation of ωiρ
at each step of the solution algorithm is avoided, since closed-form expressions can be derived for dωiρ in terms of
the derivative of the mass and stiffness matrices. Specifically, considering the normalization of the eigenvectors φφφj
of the n-DOF system in Eq. (1) in the form

φφφTi (ααα)M(ααα)φφφj(ααα) = δij , i, j = 1, 2, . . . , n, (19)
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where δij denotes the Kronecker delta function, and differentiating Eq. (5) yields the expressions [13, 42]

∂ωj(ααα)

∂αj1
=
φφφTj (ααα)Gj,j1(ααα)φφφj(ααα)

2ωj(ααα)
(20)

and
∂2ωj(ααα)

∂αj1∂αj2
=

[
1

2ωj(ααα)

∂2
(
ω2
j (ααα)

)
∂αj1∂αj2

− 1

ωj(ααα)

∂ωj(ααα)

∂αj2

∂ωj(ααα)

∂αj1

]
, (21)

where

Gj,j1(ααα) =

[
∂K(ααα)

∂αj1
− ω2

j (ααα)
∂M(ααα)

∂αj1

]
(22)

and

∂2
(
ω2
j (ααα)

)
∂αj1∂αj2

= φφφTj (ααα)

[
∂2K(ααα)

∂αj1∂αj2
− ω2

j (ααα)
∂2M(ααα)

∂αj1∂αj2

]
φφφj(ααα)−

(
φφφTj (ααα)

∂M(ααα)

∂αj1
φφφj(ααα)

)
×
(
φφφTj (ααα)Gj,j2(ααα)φφφj(ααα)

)
−
(
φφφTj (ααα)

∂M(ααα)

∂αj2
φφφj(ααα)

)(
φφφTj (ααα)Gj,j1(ααα)φφφj(ααα)

)
+2

n∑
r=1

(
φφφTr (ααα)Gj,j1(ααα)φφφj(ααα)

) (
φφφTr (ααα)Gj,j2(ααα)φφφj(ααα)

)
ω2
j (ααα)− ω2

r(ααα)
. (23)

It is noted that the application of the methodology developed in [1] and described in this section relies on the
assumption of parameter matrices exhibiting symmetry. Specifically, the mass normalization considered in Eq.
(19), which holds only for symmetric random eigenvalue problems such as in Eq. (5), is a necessary condition for
deriving the expressions in Eqs. (20) and (21) for the rate of change of the eigenvalues. Clearly, Eqs. (20) and (21)
are not valid for the herein considered random eigenvalue problem described in Eq. (10), where matrices M̃(ααα) and
K̃(ααα) are asymmetric in general. In this regard, new generalized expressions are developed next pertaining to the
derivatives of random eigenvalues corresponding to asymmetric matrices. Subsequently, the latter are employed
in conjunction with the asymptotic approximation methodology for determining the joint moments of natural
frequencies corresponding to dynamic systems with singular parameter matrices.

3.2 Proposed generalized formulation
In this section, the random eigenvalue problem of Eq. (10) pertaining to asymmetric matrices is considered. In this
regard, novel closed-form expressions for the rate of change of eigenvalues are derived. First, some fundamental
definitions are provided for completeness.

Definition 1. A matrix pencil for the n× n matrices A and B is defined as B + λA, where λ ∈ R.

Definition 2. A matrix pencil B + λA is defined as regular if A,B are square matrices and A is non-singular.

Definition 3. A matrix pencil B+λA is defined as simple of order n, if it is regular and has n-linearly independent
right eigenvectors.

Theorem 1. [27] Consider the n× n matrices Ψ =
[
ψψψ1 ψψψ2 . . . ψψψn

]
and ΦΦΦ =

[
φφφ1 φφφ2 . . . φφφn

]
, where

ψψψi and φφφi, i = 1, 2, . . . , n denote, respectively, the i-th left and right eigenvectors of the simple matrix pencil
B + λA. Then, the relationships ΨTAΦΦΦ = In and ΨTBΦΦΦ = −Λ apply, where In is the n × n identity matrix
and Λ denotes an n× n diagonal matrix, whose diagonal elements are the eigenvalues λi, i = 1, 2, . . . , n.

Next, attention is directed to the random eigenvalue problem defined in Eq. (10). Note that, in contrast to the
standard eigenvalue problem in Eq. (5) pertaining to symmetric and positive definite matrices, M̃(ααα) and K̃(ααα) in
Eq. (10) are asymmetric in general. As a result, the standard mass normalization condition of Eq. (19), applicable
for symmetric matrices, is not valid anymore. Therefore, Eqs. (20) and (21) for the rate of change of the eigenvalues
need to be generalized. In the following, relying on Theorem 1, a generalized solution framework is developed.

In this regard, the left eigenvectors for the eigenvalue problem of Eq. (10) are defined as the l-dimensional
random vectors ψ̃ψψi(ααα) : Rk → Rl, such that

ψ̃ψψ
T

i (ααα)
(
K̃(ααα)− λ̃i(ααα)M̃(ααα)

)
= 000, (24)
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for i = 1, 2, . . . , l (e.g., [30, 27]). Next, considering the matrices Ψ̃(ααα) =
[
ψ̃ψψ1(ααα) ψ̃ψψ2(ααα) . . . ψ̃ψψl(ααα)

]
and

Φ̃(ααα) =
[
φ̃φφ1(ααα) φ̃φφ2(ααα) . . . φ̃φφl(ααα)

]
of the simple matrix pencil K̃(ααα)− λ̃i(ααα)M̃(ααα), and relying on Theorem

1 (see also [27]), the matrix Ψ̃(ααα) formulated by the left eigenvectors ψ̃ψψi(ααα), i = 1, 2, . . . , l is given by

Ψ̃(ααα) =
(
M̃(ααα)Φ̃(ααα)

)−1
. (25)

Therefore, the orthogonality conditions for the random parameter matrices in Eq. (11) become [27]

ψ̃ψψ
T

i (ααα)M̃(ααα)φ̃φφj(ααα) = δij (26)

and
ψ̃ψψ

T

i (ααα)K̃(ααα)φ̃φφj(ααα) = −δij λ̃i(ααα), (27)

for i, j = 1, 2, . . . , l. It can be readily seen that Eq. (26) can be construed as a generalization of the mass
normalization condition of Eq. (19) to account for asymmetric matrices.

As explained in section ”Generalization of the random eigenvalue problem to account for singular parameter
matrices”, the random eigenvalue problem of Eq. (10) yields the n distinct eigenvalues corresponding to the original
system of Eq. (1) in addition to l − n zero eigenvalues corresponding to rigid body motions. In the ensuing
analysis, the n non-zero eigenvalues are placed in descending order followed by the l − n zero eigenvalues. The
corresponding left and right eigenvectors ψ̃ψψi(ααα) and φ̃φφi(ααα) (i = 1, 2, . . . , l) are arranged accordingly, and thus,
matrices Ψ̃ΨΨ(ααα) and Φ̃ΦΦ(ααα) contain the eigenvectors corresponding to the n non-zero eigenvalues followed by the
eigenvectors corresponding to the l − n zero eigenvalues.

Further, pre-multiplying Eq. (10) by ψ̃ψψ
T

i (ααα) and differentiating with respect to the j-th component of the random
parameter αααT = [α1 α2 . . . αk] ∈ Rk leads to(

∂ψ̃ψψi(ααα)

∂αj

)T (
K̃(ααα)− λ̃i(ααα)M̃(ααα)

)
φ̃φφi(ααα) + ψ̃ψψ

T

i (ααα)
(
K̃(ααα)− λ̃i(ααα)M̃(ααα)

)(∂φ̃φφi(ααα)

∂αj

)

+ψ̃ψψ
T

i (ααα)

(
∂K̃(ααα)

∂αj
− ∂λ̃i(ααα)

∂αj
M̃(ααα)− λ̃i(ααα)

∂M̃(ααα)

∂αj

)
φ̃φφi(ααα) = 0. (28)

Taking into account Eqs. (10), (24) and (26), Eq. (28) yields

∂λ̃i(ααα)

∂αj
= ψ̃ψψ

T

i (ααα)G̃i,j(ααα)φ̃φφi(ααα), (29)

for i = 1, 2, . . . , l and j = 1, 2, . . . , k, where

G̃i,j(ααα) =
∂K̃(ααα)

∂αj
− λ̃i(ααα)

∂M̃(ααα)

∂αj
. (30)

Finally, considering that for i = 1, 2, . . . , l the eigenvalue λ̃i coincides with the square of the i-th natural frequency
of the system in Eq. (8), i.e., λ̃i(ααα) = ω̃2

i (ααα), Eq. (29) is written, equivalently, as

∂ω̃i(ααα)

∂αj
=
ψ̃ψψ

T

i (ααα)G̃i,j(ααα)φ̃φφi(ααα)

2ω̃i(ααα)
. (31)

Clearly, Eq. (31) can be construed as a generalization of Eq. (20) to account for asymmetric matrices corresponding
to the eigenvalue problem of Eq. (10).

Next, attention is directed to generalizing also Eq. (21). First, the derivatives of the left eigenvectors
ψ̃ψψ1(ααα), ψ̃ψψ2(ααα), . . . , ψ̃ψψl(ααα) and right eigenvectors φ̃φφ1(ααα), φ̃φφ2(ααα), . . . , φ̃φφl(ααα) are expressed in the form [13](

∂ψ̃ψψi(ααα)

∂αj

)T

=

l∑
s=1

cijsψ̃ψψ
T

s (ααα) ,
∂φ̃φφi(ααα)

∂αj
=

l∑
s=1

dijsφ̃φφs(ααα), (32)

where cijs and dijs (s = 1, 2, . . . , l) denote real coefficients to be determined. Further, setting i = j in Eq. (26),
differentiating with respect to αj , and taking into account the orthogonality conditions in Eqs. (26) and (27) yields

ciji + dijs = −ψ̃ψψ
T

i (ααα)
∂M̃(ααα)

∂αj
φ̃φφi(ααα). (33)
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Furthermore, considering the left eigenvectors Ψ̃(ααα), Eq. (24) is post-multiplied by φ̃φφρ(ααα) and subsequently
differentiated with respect to αj . Also, taking into account the orthogonality conditions in Eqs. (26) and (27) leads
to

cijρ =
1

λ̃i(ααα)− λ̃ρ(ααα)
ψ̃ψψ

T

i (ααα)G̃i,j(ααα)φ̃φφρ(ααα), (34)

for ρ 6= i. Similarly, pre-multiplying Eq. (10) by ψ̃ψψ
T

ρ (ααα) and manipulating yields

dijρ =
1

λ̃i(ααα)− λ̃ρ(ααα)
ψ̃ψψ

T

ρ (ααα)G̃i,j(ααα)φ̃φφi(ααα), (35)

for ρ 6= i. Next, differentiating Eq. (29) with respect to αr and considering Eq. (32) leads to

∂2λ̃i(ααα)

∂αj∂αr
= ψ̃ψψ

T

i (ααα)

(
∂2K̃(ααα)

∂αj∂αr
− λ̃i(ααα)

∂2M̃(ααα)

∂αj∂αr

)
φ̃φφi(ααα)−

(
ψ̃ψψ

T

i (ααα)
∂M̃(ααα)

∂αj
φ̃φφi(ααα)

)

×
(
ψ̃ψψ

T

i (ααα)G̃i,r(ααα)φ̃φφi(ααα)
)
−

(
ψ̃ψψ

T

i (ααα)
∂M̃(ααα)

∂αr
φ̃φφi(ααα)

)(
ψ̃ψψ

T

i (ααα)G̃i,j(ααα)φ̃φφi(ααα)
)

+

l∑
ρ=1,ρ 6=i


(
ψ̃ψψ

T

ρ (ααα)G̃i,r(ααα)φ̃φφi(ααα)
)(

ψ̃ψψ
T

i (ααα)G̃i,j(ααα)φ̃φφρ(ααα)
)

λ̃i(ααα)− λ̃ρ(ααα)

+

(
ψ̃ψψ

T

i (ααα)G̃i,r(ααα)φ̃φφρ(ααα)
)(

ψ̃ψψ
T

ρ (ααα)G̃i,j(ααα)φ̃φφi(ααα)
)

λ̃i(ααα)− λ̃ρ(ααα)

 , (36)

whereas differentiating the expression λ̃i(ααα) = ω̃2
i (ααα) with respect to αj and αr yields

∂2ω̃i(ααα)

∂αj∂αr
=

1

2ω̃i(ααα)

∂2λ̃i(ααα)

∂αj∂αr
− 1

ω̃i(ααα)

∂ω̃i(ααα)

∂αr

∂ω̃i(ααα)

∂αj
, (37)

where ∂2λ̃i(ααα)
∂αj∂αr

is given by Eq. (36).
It is readily seen that Eq. (37) constitutes a generalization of Eq. (21) to account for asymmetric matrices in

the eigenvalue problem of Eq. (10). Further, it is worth noting that Eqs. (31) and (37) degenerate to the standard
expressions of Eqs. (20) and (21), respectively, for the special case of symmetric matrices M(ααα) and K(ααα). Thus,
relying on Theorem 1, generalized expressions have been derived herein for the rate of change of the eigenvalues to
be used in Eqs. (17) and (18) of the proposed asymptotic approximation methodology.

4 Numerical examples

In the following numerical examples, without loss of generality and for facilitating the derivation of compact
closed-form expressions, the random vector ααα ∈ Rk is modeled as a multivariate Gaussian distribution; that is, Eq.
(2) takes the form

pααα(ααα) = (2π)−k/2 ‖ΣΣΣ‖−1/2 exp

{
−1

2
(ααα−µµµ)

T
ΣΣΣ−1 (ααα−µµµ)

}
, (38)

where µµµ ∈ Rk and ΣΣΣ ∈ Rk2 denote, respectively, the mean vector and the covariance matrix. Next, utilizing Eq.
(38), df (ααα) and Df (ααα) become

df (ααα) = ΣΣΣ−1(ααα−µµµ), Df (ααα) = ΣΣΣ−1. (39)

Further, considering Eq. (39) in conjunction with Eq. (17), and setting s1 = s2 = 1, the equation for determining
the optimal point ααα0 becomes

ααα0 = µµµ+ ΣΣΣ

(
dω̃i(ααα0)

ω̃i(ααα0)
+

dω̃j (ααα0)

ω̃j(ααα0)

)
, (40)

which is solved iteratively in the ensuing analysis based on the following scheme proposed in [1]. The scheme is
initiated by selecting an initial value for ααα0 = µµµ and an error tolerance ε. Next, an updated value αααupd0 is computed
by resorting to Eq. (40). If the criterion |αααupd0 −ααα0| < ε is satisfied, ααα0 is set equal toαααupd0 and the iterative scheme
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ends. In a different case, ααα0 = αααupd0 , and the iterations continue until convergence. Following determination of the
optimal point ααα0, the joint moment of the natural frequencies ω̃i(ααα), ω̃j(ααα) is obtained from Eq. (16) as

µ
(1,1)
ij ≈ ω̃i(ααα0)ω̃j(ααα0) exp

{
−1

2
(ααα0 −µµµ)TΣΣΣ−1(ααα0 −µµµ)

}
‖Ik +DDDg(ααα0)‖−1/2 , (41)

where

Dg(ααα0) = Ik + ΣΣΣ−1

(
dω̃i(ααα0)dT

ω̃i
(ααα0)

ω̃2
i (ααα0)

− Dω̃i(ααα0)

ω̃i(ααα0)
+

dω̃j (ααα0)dT
ω̃j

(ααα0)

ω̃2
j (ααα0)

− Dω̃i(ααα0)

ω̃i(ααα0)

)
. (42)

Note that for the evaluation of the mean of the natural frequencies, i.e., s1 = 1, Eq. (40) for the optimal point
becomes

ααα1 = µµµ+ ΣΣΣ
dω̃i(ααα1)

ω̃i(ααα1)
, (43)

and the mean value is given by

E[ω̃i(ααα)] = ω̃i(ααα1) exp

{
−1

2
(ααα1 −µµµ)TΣΣΣ−1(ααα1 −µµµ)

}
‖Ik +DDDg(ααα1)‖−1/2 , (44)

where

Dg(ααα1) = Ik + ΣΣΣ−1

(
dω̃i(ααα1)dT

ω̃i
(ααα1)

ω̃2
i (ααα1)

− Dω̃i(ααα1)

ω̃i(ααα1)

)
. (45)

4.1 2-DOF system with singular matrices
The 2-DOF system in Fig. 1 is considered next, where mass m1 is connected to the foundation by a linear spring of
stiffness coefficient k1 and to mass m2 by a linear spring of stiffness coefficient k2. The equation of motion is given
by Eq. (1) with

M(ααα) =

[
m1 0
0 m2

]
, K(ααα) =

[
k1 + k2 −k2
−k2 k2

]
, (46)

where the matrix elements mi, ki are defined as functions of the random variable
ααα = (α1, α2, α3, α4) ∈ R4, which follows the Gaussian PDF of Eq. (38) with µµµ = 000 and ΣΣΣ = I4. These
are given by

mi = m̄i (1 + εmαi) , ki = k̄i (1 + εkα2+i) , i = 1, 2. (47)

In Eq. (47), the mean parameter values m̄1 = 1.6, m̄2 = 0.1 and k̄1 = 1, k̄2 = 0.11 are considered with εm = 0.15
and εk = 0.15.

Fig. 1: A 2-DOF linear system with random parameter matrices.

Next, following the standard approach in [1], the mean values of the natural frequencies of the 2-DOF system in
Fig. 1(a), as well as their covariance matrix are computed. The obtained results are shown in Table 1.

Further, the system equations of motion are formulated by adopting a redundant DOFs modeling approach (see
also [14]). In this regard, considering the dependent coordinates vector xT =

[
x1 x2 x3

]
, the system in Fig. 1 is

decomposed into its constituent parts as shown in Fig. 2. The system governing equations of motion are given in the
matrix form of Eq. (6), where the random mass and stiffness matrices become

Mx(ααα) =

m1 0 0
0 m2 m2

0 m2 m2

 , Kx(ααα) =

k1 0 0
0 0 0
0 0 k2

 . (48)
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Considering the constraint equations in Eq. (7), i.e., x2 = x1 + d, where d denotes the physical length of mass m1,
leads to A =

[
1 −1 0

]
and L =

[
0 0 0

]
. Therefore, Eq. (8) is formulated with

M̄x(ααα) =


0.5m1 0.5m2 0.5m2

0.5m1 0.5m2 0.5m2

0 m2 m2

1 −1 0

 , K̄x(ααα) =


0.5k1 0 0
0.5k1 0 0

0 0 k2
0 0 0

 . (49)

Fig. 2: The system in Fig. 1 modeled by adopting redundant (dependent) DOFs.

Obviously, matrices M̄x(ααα) and K̄x(ααα) in Eq. (49) are rectangular. In this regard, the generalized eigenvalue
problem of Eq. (10) is formulated by removing the dependent rows from the matrices in Eq. (49). Also, considering
Eq. (47), Eq. (11) yields

M̃(ααα) =

0.5m̄1 (1 + εmα1) 0.5m̄2 (1 + εmα2) 0.5m̄2 (1 + εmα2)
0 m̄2 (1 + εmα2) m̄2 (1 + εmα2)
1 −1 0

 (50)

and

K̃(ααα) =

0.5k̄1 (1 + εkα3) 0 0
0 0 k̄2 (1 + εkα4)
0 0 0

 . (51)

Next, the generalized expressions given by Eqs. (31) and (37) for the rate of change of natural frequencies of
systems with singular and asymmetric matrices are used for determining the mean values of the natural frequencies,
as well as the corresponding covariance matrix. In this regard, the eigenvalue problem defined by Eq. (10) yields
the right eigenvectors φ̃φφi(ααα) (i = 1, 2, 3) of the system shown in Fig. 2, whereas the corresponding left eigenvectors
ψ̃ψψi(ααα) are determined by resorting to the eigenvalue problem in Eq. (24) in conjunction with Eq. (25). The 3-DOF
system in Fig. 2 has three distinct eigenvalues, one of which is equal to zero due to employing an additional
redundant DOF for modeling the governing equations of motion. The left and right eigenvectors corresponding to
the zero eigenvalue are placed last in order when formulating matrices Φ̃ΦΦ(ααα) and Ψ̃ΨΨ(ααα). Further, the derivatives of
the random matrices in Eqs. (50) and (51) are required for evaluating Eqs. (31) and (37). Therefore, differentiating
Eq. (50) with respect to the random variable ααα ∈ R4 yields

∂M̃(ααα)

∂α1
= 0.5εmm̄1

1 0 0
0 0 0
0 0 0

 , ∂M̃(ααα)

∂α2
= 0.5εmm̄2

0 1 1
0 1 1
0 0 0

 (52)

and ∂M̃(ααα)
∂αi

= 0003×3, for i = 3, 4. Similarly, Eq. (51) yields ∂K̃(ααα)
∂αi

= 0003×3, for i = 1, 2, whereas

∂K̃(ααα)

∂α3
= 0.5εkk̄1

1 0 0
0 0 0
0 0 0

 , ∂K̃(ααα)

∂α4
= 0.5εkk̄1

0 0 0
0 0 1
0 0 0

 . (53)
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Resorting to Eqs. (41) and (44), the mean vector and covariance matrix of the non-zero natural frequencies of
the system depicted in Fig. 2 are determined and compared in Table 1 with the respective ones obtained based on
the standard approach in [1] corresponding to the eigenvalue problem of Eq. (5). It can be readily seen the results
from the two approaches are in very good agreement with each other, whereas comparisons with pertinent MCS
data (20,000 samples) demonstrate the high accuracy degree of the methodology.

Tab. 1: Mean vector and covariance matrix of the natural frequencies corresponding to systems shown in Figs. 1 and
2. Results obtained by applying both the standard and the generalized approaches are compared with MCS data
(20,000 samples).

- µω̃1
µω̃2

covω̃1,ω̃1
covω̃2,ω̃2

covω̃1,ω̃2

standard approach 1.1261 0.7425 0.0109 0.0045 0.0029
generalized approach 1.1176 0.7476 0.0111 0.0048 0.0025

MCS 1.1273 0.7411 0.0108 0.0046 0.0028

4.2 3-DOF system with singular matrices
In this section, the 3-DOF system in Fig. 3 is considered for demonstrating that the proposed solution framework
can be used also for treating classes of systems with repeated zero eigenvalues, as well as cases pertaining to systems
with closely spaced eigenvalues.

In this regard, mass m1 is connected to the foundation by a linear spring of stiffness coefficient k1 and to masses
m2 and m3 by linear springs of stiffness coefficients k2 and k4, respectively. Further, mass m2 is connected to mass
m3 by a linear spring of stiffness coefficient k3. The system governing equation of motion is given by Eq. (1) with

M(ααα) =

m1 0 0
0 m2 0
0 0 m3

 , K(ααα) =

k1 + k2 + k4 −k2 −k4
−k2 k2 + k3 −k3
−k4 −k3 k3 + k4

 , (54)

where
mi = m̄i (1 + εmαi) , i = 1, 2, 3, kj = k̄j (1 + εkα3+j) , j = 1, 2, 3, 4. (55)

The matrix elements in Eq. (55) are functions of the random variable ααα = (α1, α2, . . . , α7) ∈ R7, which follows
the Gaussian PDF of Eq. (38) with µµµ = 000 and ΣΣΣ = I7. Moreover, the mean parameter values m̄1 = m̄3 = 4,
m̄2 = 1, k̄1 = k̄2 = k̄3 = 1, k̄4 = 0.8 are considered in conjunction with εm = 0.15 and εk = 0.2.

Fig. 3: A 3-DOF linear system with random parameter matrices.

Following the standard approach in [1], the mean values of the system natural frequencies and the corresponding
covariance matrix are computed. The obtained results are shown in Tables 2 and 3.

Next, a redundant coordinates modeling for the system in Fig. 3 is considered (e.g., [25]) based on the 5-
dimensional (dependent) coordinates vector xT =

[
x1 x2 x3 x4 x5

]
and the system in Fig. 3 is decomposed

into its constituent parts as shown in Fig. 4. The system governing equations of motion are written in the matrix
form of Eq. (6), where

Mx(ααα) =


m1 0 0 0 0
0 m2 m2 0 0
0 m2 m2 0 0
0 0 0 m3 m3

0 0 0 m3 m3

 , Kx(ααα) =


k1 0 0 0 0
0 k4 0 −k4 −k4
0 0 k2 0 0
0 −k4 0 k4 k4
0 −k4 0 k4 k3 + k4

 . (56)
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Further, considering the constraint equations in Eq. (7), i.e., x2 = x1 + d1 and x4 = x2 + x3 + d2, where di
(i = 1, 2) denotes the length of mass mi, the 2× 5 matrices A and L become

A =

[
1 −1 0 0 0
0 1 1 −1 0

]
, E = 02×5, (57)

and thus, the 7× 5 matrices M̄x(ααα) and K̄x(ααα) in Eq. (8) take the form

M̄x(ααα) =



0.4m1 0.2m2 0.2m2 0.2m3 0.2m3

0.4m1 0.2m2 0.2m2 0.2m3 0.2m3

−0.2m1 0.4m2 0.4m2 0.4m3 0.4m3

0.2m1 0.6m2 0.6m2 0.6m3 0.6m3

0 0 0 m3 m3

1 −1 0 0 0
0 1 1 −1 0


(58)

and

K̄x(ααα) =



0.4k1 0.2k4 −0.2k2 −0.2k4 −0.2k4
0.4k1 0.2k4 −0.2k2 −0.2k4 −0.2k4
−0.2k1 −0.6k4 0.6k2 0.6k4 0.6k4
0.2k1 −0.4k4 0.4k2 0.4k4 0.4k4

0 −1.0k4 0 k4 k3 + k4
0 0 0 0 0
0 0 0 0 0


, (59)

respectively.

Fig. 4: The system in Fig. 3 modeled by adopting redundant (dependent) DOFs.

Next, directing attention to formulating the generalized eigenvalue problem defined in Eq. (10), the dependent
rows in matrices M̄x(ααα) and K̄x(ααα) are removed, and Eq. (11) yields

M̃(ααα) =


0.4m1 0.2m2 0.2m2 0.2m3 0.2m3

−0.2m1 0.4m2 0.4m2 0.4m3 0.4m3

0 0 0 m3 m3

1 −1 0 0 0
0 1 1 −1 0

 (60)

and

K̃(ααα) =


0.4k1 0.2k4 −0.2k2 −0.2k4 −0.2k4
−0.2k1 −0.6k4 0.6k2 0.6k4 0.6k4

0 −1.0k4 0 k4 k3 + k4
0 0 0 0 0
0 0 0 0 0

 . (61)
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Similarly to the analysis pertaining to the 2-DOF example, the 5-DOF system in Fig. 4 has three distinct
eigenvalues, coinciding with the ones corresponding to the original system in Fig. 3, and two eigenvalues equal
to zero due to redundant coordinates modeling. In this regard, the matrices Φ̃ΦΦ(ααα) and Ψ̃ΨΨ(ααα) are formed such that
the eigenvectors corresponding to zero eigenvalues are placed last in order. Further, to determine the expressions
given by Eqs. (31) and (37) for the rate of change of natural frequencies, first, the random matrix in Eq. (60) is
differentiated with respect to the random variable ααα ∈ R7, yielding

∂M̃(ααα)

∂α1
= εmm̄1


0.4 0 0 0 0
−0.2 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , ∂M̃(ααα)

∂α2
= εmm̄2


0 0.2 0.2 0 0
0 0.4 0.4 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , (62)

∂M̃(ααα)

∂α3
= εmm̄3


0 0 0 0.2 0.2
0 0 0 0.4 0.4
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0

 , (63)

and ∂M̃(ααα)
∂αi

= 0005×5, for i = 4, 5, 6, 7. Similarly, taking into account Eq. (61) leads to ∂K̃(ααα)
∂αi

= 0005×5, for i = 1, 2, 3,

∂K̃(ααα)

∂α4
= εkk̄1


0.4 0 0 0 0
−0.2 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , ∂K̃(ααα)

∂α5
= εkk̄2


0 0 −0.2 0 0
0 0 0.6 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 (64)

and

∂K̃(ααα)

∂α6
= εkk̄3


0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

 , ∂K̃(ααα)

∂α7
= εkk̄4


0 0.2 0 −0.2 −0.2
0 −0.6 0 0.6 0.6
0 −1 0 1 1
0 0 0 0 0
0 0 0 0 0

 . (65)

Then, utilizing Eqs. (41) and (44), the mean values of the non-zero natural frequencies of the system in Fig. 4
and the corresponding covariance matrix are computed. The results are shown in Tables 2 and 3, and compared with
estimates obtained by the standard approach and by pertinent MCS data (20,000 samples). It is readily seen that
the methodology exhibits a high accuracy degree. Furthermore, the correlation coefficients corresponding to the
eigenvalues are calculated as

ρρρω̃j =

1.0000 0.2502 0.1416
0.2502 1.0000 0.6371
0.1416 0.6371 1.0000

 . (66)

As anticipated, it is seen that the eigenvalues that are closer to each other (e.g., ω2 and ω3) are more statistically
correlated than the ones that are further apart (e.g., ω1 and ω3).

Finally, the reliability of the proposed methodology with respect to cases of closely spaced eigenvalues is
investigated next. In particular, the mean parameter values m̄1 = m̄3 = 5, m̄2 = 1, k̄1 = k̄2 = k̄3 = 1, k̄4 = 3.5 in
conjunction with εm = 0.15 and εk = 0.2 are considered. First, the mean values and the covariance matrix of the
natural frequencies of the system in Fig. 3 are computed by applying the standard approach in [1]. The results are
shown in Tables 4 and 5, where it is seen that the first and second eigenvalues of the system are relatively close
to each other. Next, applying the herein developed methodology, and utilizing Eqs. (41) and (44), leads to the
computation of the mean values and covariance matrix of the non-zero natural frequencies of the system in Fig. 4.
These results are shown in Tables 4 and 5, respectively, whereas the correlation coefficients are calculated as

ρρρω̃j =

1.0000 0.0976 0.0668
0.0976 1.0000 0.3590
0.0668 0.3590 1.0000

 . (67)

In general, it is seen that the natural frequencies are only moderately correlated. Also, the correlation between ω1

and ω2 is higher than that between ω1 and ω3. This is anticipated since ω1 and ω3 are further apart than ω1 and ω2.
However, the correlation between ω2 and ω3 is higher than that between ω1 and ω2 in spite of ω1 being closer to ω2

compared to ω3. Comparisons with pertinent MCS data (20, 000 samples) are included as well, demonstrating that
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the proposed methodology is capable of determining joint statistics of systems with singular parameter matrices
and with closely spaced eigenvalues with a reasonable degree of accuracy. Of course, it is noted that, similarly to
the standard approach by [1], the exhibited accuracy is unavoidably affected by the saddle point approximation of
Eq. (13), and worsens the more closely spaced the eigenvalues are. This can be seen by comparing the accuracy
degree of the results in Tables 2 and 3, with the accuracy degree of the estimates in Tables 4 and 5.

Tab. 2: Mean vector of the natural frequencies corresponding to systems shown in Figs. 3 and 4. Results obtained
by applying both the standard and the generalized approaches are compared with MCS data (20,000 samples).

- µω̃1
µω̃2

µω̃3

standard approach 1.5189 0.8940 0.2988
generalized approach 1.5118 0.8936 0.3008

MCS 1.5187 0.8934 0.2985

Tab. 3: Covariance matrix of the natural frequencies corresponding to systems shown in Figs. 3 and 4. Results
obtained by applying both the standard and the generalized approaches are compared with MCS data (20,000
samples).

- covω̃1,ω̃1
covω̃2,ω̃2

covω̃3,ω̃3
covω̃1,ω̃2

covω̃1,ω̃3
covω̃2,ω̃3

standard approach 0.0224 0.0054 0.0009 0.0029 0.0007 0.0013
generalized approach 0.0224 0.0052 0.0008 0.0027 0.0006 0.0013

MCS 0.0228 0.0054 0.0009 0.0030 0.0007 0.0013

Tab. 4: Mean vector of the natural frequencies corresponding to systems shown in Figs. 3 and 4 for the set of mean
parameter values m̄1 = m̄3 = 5, m̄2 = 1, k̄1 = k̄2 = k̄3 = 1, k̄4 = 3.5. Results obtained by applying both the
standard and the generalized approaches are compared with MCS data (20,000 samples).

- µω̃1 µω̃2 µω̃3

standard approach 1.5061 1.3032 0.2905
generalized approach 1.4940 1.3066 0.2913

MCS 1.5242 1.2865 0.2904

Tab. 5: Covariance matrix of the natural frequencies corresponding to systems shown in Figs. 3 and 4 for the set of
mean parameter values m̄1 = m̄3 = 5, m̄2 = 1, k̄1 = k̄2 = k̄3 = 1, k̄4 = 3.5. Results obtained by applying both
the standard and the generalized approaches are compared with MCS data (20,000 samples).

- covω̃1,ω̃1 covω̃2,ω̃2 covω̃3,ω̃3 covω̃1,ω̃2 covω̃1,ω̃3 covω̃2,ω̃3

standard approach 0.0208 0.0152 0.0010 0.0040 0.0005 0.0013
generalized approach 0.0224 0.0169 0.0009 0.0019 0.0003 0.0014

MCS 0.0188 0.0138 0.0010 0.0058 0.0007 0.0012

5 Concluding remarks

In this paper, the asymptotic approximation methodology developed in [1] for solving standard random eigenvalue
problems has been generalized for determining joint moments of natural frequencies corresponding to systems with
singular random parameter matrices. This has been done by resorting to the concept of Moore-Penrose matrix inverse
and by generalizing expressions for the rate of change of eigenvalues to account for asymmetric matrices. Two
indicative examples pertaining to MDOF structural systems have been considered for demonstrating the reliability
of the methodology. It has been shown that the eigenvalue statistics obtained by the herein developed methodology,
and pertaining to system modeling based on dependent coordinates, agree very well with the respective ones
corresponding to the conventionally formulated random eigenvalue problem. In this regard, the proposed framework
can be construed as a generalization of the approach in [1] to treat systems with singular random parameter matrices.
Also, comparisons with relevant MCS data demonstrate a high degree of accuracy.
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8 APPENDIX I. Moore-Penrose matrix inverse

Consider a linear system of equations in the form Ax = b, where A is either a rectangular m× n, or a square but
singular n× n matrix, and x, b are n-dimensional vectors. It is readily seen that solving Ax = b necessitates the
generalization of the concept of matrix inverse, which has given birth to the theory of generalized matrix inverses
[6]. In particular, the Moore-Penrose generalized matrix inverse is utilized throughout the paper.

Definition 4. For any matrix A ∈ Cm×n, there is a unique matrix A+ ∈ Cn×m such that:
(i) AA+A = A, (ii) A+AA+ = A+, (iii) (AA+)∗ = AA+, (iv) (A+A)∗ = A+A.

The matrix A+ in Definition 4 is called the Moore-Penrose inverse of A. If A is a square, real and non-singular
matrix, then A+ coincides with the inverse of A, i.e., A+ = A−1. Using the Moore-Penrose inverse, a closed form
solution to the algebraic system Ax = b is attained, which for any matrix A ∈ Rm×n is given by

x = A+b + (In −A+A)y. (68)

In Eq. (68), y denotes an arbitrary n-dimensional vector and In represents the n × n identity matrix. A more
detailed presentation of the topic can be found in [6].
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