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Abstract 

Infectious plant diseases are caused by pathogenic microorganisms, such as fungi, oomycetes, 

bacteria, viruses, phytoplasma, and nematodes. Plant diseases have a significant effect on the 

plant quality and yield and they can destroy the entire plant if they are not controlled in time. 

To minimize disease-related losses, it is essential to identify and control pathogens in the early 

stages. Plant disease control is thus a fundamental challenge both for global food security and 

sustainable agriculture. Conventional methods for plant diseases control have given place to 

electronic control (E-monitoring) due to their lack of portability, being time consuming, need 

for a specialized user, etc. E-monitoring using electronic nose (e-nose), biosensors, wearable 

sensors, and 'electronic eyes' has attracted increasing attention in recent years. Detection, 

identification, and quantification of pathogens based on electronic sensors (E-sensors) are both 

convenient and practical and may be used in combination with conventional methods. This 

paper discusses recent advances made in E-sensors as component parts in combination with 

wearable sensors, in electronic sensing systems to control and detect viruses, bacteria, 
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pathogens and fungi. In addition, future challenges using sensors to manage plant diseases are 

investigated. 

Keywords: E-sensing, Electronic head, Biosensor, Disease control, Wearable sensor. 

 

 

1. Introduction 

During the last century, the world population increased exponentially from 1.6 billion people 

in 1900 to 7.7 billion in 2019. With the current rates of population growth, it is predicted that 

in 2050 the world population will approach 10 billion, which will lead to a huge rise in the 

consumption of resources. In this context, it is calculated that to feed the world population, 

crop production will have to increase by 60-100% by 2050, and this simultaneously with the 

reduction of environmental damage caused by agriculture (Emadi & Rahmanian, 2020; Hunter 

et al., 2017; Struik & Kuyper, 2017). Therefore, the current rate of population growth makes it 

essential to develop new strategies for sustainable food production (Poveda, 2021). 

To increase crop production, the development of new technologies in the agricultural sector is 

essential. This includes the development of new forms of agriculture, such as vertical farming 

or controlled-environment culture (Benke & Tomkins, 2017), together with the implementation 

of precision agriculture (Vuran et al., 2018) controlled by artificial intelligence (AI) (Jha et al., 

2019) (Pathan et al., 2020). Therefore, the agriculture of the future will have to face important 

challenges based on increasing crop productivity while maintaining environmental 

sustainability (Tian et al., 2021). 

One of the main threats to increasing crop productivity is the losses caused by the attack of 

pathogens. Phytopathology is the study of plant diseases through their detection, the 

understanding of host-pathogen interactions, and the development of strategies to reduce the 

agricultural losses they cause (Mitra, 2021). Together, pathogens, animals and weeds annually 

cause losses in world crops between 20 and 40% of global agricultural productivity, of which 

between 10 and 15% are direct losses caused by pathogens (Savary et al., 2012) (Mitra, 2021). 

Specifically, plant pathogens are responsible for annual economic losses of around $220 billion 

for the agricultural sector, causing problems of access to food for more than 800 million people 

(Mitra, 2021).  
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Plants affected by pathogens suffer from various plant diseases that cause poor yields in terms 

of both quantity and quality, by affecting their roots, stem, shoots, leaves, flowers, and fruits. 

The main microorganisms that cause disease in crops are viruses, bacteria, fungi, oomycetes 

and nematodes as shown in Table 1, indicating the species of greatest agricultural importance. 
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Table 1. Main agricultural pathogens 1 

Group Species Reference Group Species Reference Group Species Reference 

Viruses 

Tobacco mosaic virus 

Tomato yellow leaf curl 

virus 

Tomato spotted wilt virus 

Cucumber mosaic virus 

Cauliflower mosaic virus 

Potato virus Y 

African cassava mosaic 

virus 

Plum pox virus 

Potato virus X 

Bromemosaic virus 

Citrus tristeza virus 

Potato leafroll virus 

Barley yellow dwarf 

virus 

Scholthof et al., 2011 Bacteria 

Pseudomonas syringae 

P. savastanoi 

Xanthomonas oryzae pv. 

oryzae 

X. campestris 

X. axonopodis 

Ralstonia solanacearum 

Erwinia amylovora 

Dickeya dadantii 

D. solani 

Xylella fastidiosa 

Pectobacterium 

carotovorum 

Candidatus Liberibacter 

asiaticus 

Clavibacter 

michiganensis 

Mansfield et al., 2012 

Nematodes 

Heterodera spp. 

Globodera spp. 

Meloidogyne spp. 

Pratylenchus spp. 

Ditylenchus dipsaci 

Radopholus similis 

Bursaphelenchus 

xylophilus 

Rotylenchulus reniformis 

Nacobbus aberrans 

Xiphinema index 

Aphelenchoides besse 

Jones et al., 2013 

Oomycetes 

Phytophthora infestans 

P. ramorum 

P. sojae 

P. capsica 

P. parasítica 

P. cinnamomi 

Plasmopara vitícola 

Pythium ultimum 

Albugo candida 

Kamoun et al., 2015 Fungi 

Magnaporthe oryza 

Puccinia spp. 

Botrytis cinerea 

Fusarium graminearum 

F. oxysporum 

Mycosphaerella 

graminicola 

Blumeria graminis 

Colletotrichum spp. 

Melampsora lini 

Ustilago maydis 

Verticillium dahlia 

Phakopsora pachyrhizi, 

Rhizoctonia solani 

Dean et al., 201 

 2 
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Detecting the presence of the pathogen in the crop as soon as possible minimizes the losses that 

may occur in productivity, allowing a targeted and specific treatment. In this sense, there are 

different methods of detecting diseases in crops, grouped into direct methods, if they detect the 

presence of the pathogen, or indirect methods, if they detect the effects they cause in plants. 

Within the direct methods, molecular and biochemical tools are currently used, such as 

polymerase chain reaction (PCR), fluorescence in situ hybridization (FISH) for bacterial 

detection, enzyme-linked immunosorbent assay (ELISA), immunofluorescence (IF), or flow 

cytometry (FCM). However, pathogen detection can sometimes deliver erroneous data, as it 

does not differentiate living microorganisms from components. For example, the detection of 

viruses, the use of methodologies that detect in the same way virion particles and their scattered 

components (proteins or nucleic acids). Furthermore, the protocol to be carried out for the 

detection of each of the different plant pathogens can be very different and complicated, also 

vary according to the affected crop. This may significantly complicate the testing procedure.  

On the other hand, indirect methods analyze parameters such as morphological change, 

transpiration rate change, temperature change, and the volatile organic compounds released by 

infected plants. Such methods include thermography, hyperspectral techniques, fluorescence 

imaging, or gas chromatography (Fang & Ramasamy, 2015) (Martinelli et al., 2015). In 

addition, biosensors, e-nose, optical-based sensors and wearable sensors provide indirect 

assays for e-monitoring of plant disease management that are discussed in the following 

sections. Therefore, the use of new electronic and information technologies in crop production 

will allow agriculture to meet the future challenges of rapidly predicting plant diseases and 

acting effectively in a targeted manner, reducing the use of chemical pesticides and improving 

environmental sustainability. 

 

2. Importance of E-monitoring 

Reducing plant losses due to environmental stresses and pathogens, improving resources 

utilization efficiency, and selecting optimal plant traits are major challenges in the field of 

agricultural industries across the world. The ability of e-monitoring to provide accurate 

quantitative and qualitative identification of plant pathogens would be a turning point in plant 

pathology. Reliable and accurate identification of organisms responsible for a plant disease is 

the main prerequisite for implementation of disease management strategies (Ray et al., 2017).  



6 
 

Since many plant pathogens cause similar symptoms, it is important to be able to distinguish 

between different species using e-monitoring. Conventional methods for plant disease 

management are not usually sensitive enough and are off-site, expensive, time-consuming, and 

need trained personnel. The need for a sensitive, specific, user-friendly and rapid methods, 

providing on-site sampling for plant disease management is becoming increasingly apparent 

(Fang & Ramasamy, 2015). E-monitoring with the aid of intelligent plant sensors connected to 

electronic devices improves plant productivity (Lee et al., 2018). Therefore, new technologies 

are needed to accurately monitor the physiological and growth responses of plants to the 

environment in real time with high spatial and temporal resolution (Giraldo et al., 2019). 

Wearable technology composed of biosensors, gas sensors, and optical sensors embedded in 

clothes or worn as accessories on the body have been extensively studied in biomedical 

applications to continually track the health or fitness-related biometric information. Such 

wearable technology has also been considered as an emerging tool for the electronic control 

and detection of plant diseases. Due to the ability of these tools to continuously track important 

physiological and pathological parameters in situ, as well as remote control and communication 

in plants, they have attracted attention in recent years.  

Plant wearables have the ability to achieve simple, accurate and continuous monitoring of plant 

health at large-scale compared to IR fluorescence-based nanobionics and/or Raman 

spectroscopy, which often require sophisticated tools and require off-site analysis (Yin et al., 

2021). Thin-film plant wearable (TFPWs) have the ability to bind to irregular plant tissue 

surfaces due to their noninvasive and flexible properties. TFPW is suitable to monitor 

environmental parameters such as temperature, moisture, and biological parameters such as 

water potential, plant tissue displacement/strain and volatile organic matter composition. For 

example, (Lee et al., 2014) developed an all-carbon film based on field-effect transistor (FET) 

sensors using single walled carbon nanotubes (SWCNTs) that can wirelessly measure the 

concentrations of toxic gases of plants down to part-per-million (ppm) sensitivity. The results 

of their study showed that these flexible sensors have excellent mechanical properties and good 

adhesion to nonplanar surfaces of biological materials, which show a unique potential for both 

wearable electronic sensors and bio-implantable sensors. 

3. Electronic Sensing Systems 

As a new strategy, an electronic agricultural sensing system (EASS) using interconnected 

individual sensors (Fig 1) to form a composite intelligent biosensing system which is analogous 
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to an artificial nervous system and brain. So far, this concept has not been used in agriculture. 

Such an electronic sensing system uses individual artificial sensors including electronic tongue 

(biosensors), e-nose, electronic eye, and electronic ear (acoustic-based sensors) connected 

together and has been termed 'the artificial head' (Wide, 2001). It may be possible to add other 

wearable sensors to such a composite sensor system e.g. e-touch (haptic sensing) as electronic 

'skin' and adapting the concept for agricultural use.  

 

Fig 1. Application of biosensing systems for plant infection sensing 

The chewing process can also be considered in this regard for which a significant application 

has not yet been defined in agriculture. In general terms an EASS could include the chewing 

process, as a video recording system to identify a given sample, employing an artificial sensor 

'mouth' to measure the crushing and chewing process of a sample, an e-nose to measure the 

emitted odour, an electronic ear to determine the resistance to chewing and to hear the sound 

of crushing, and an e-tongue to measure the food taste (Wide et al., 1999).  

By combining data from the individual sensors into a system, we can obtain more useful 

information compared when we obtain the response from each sensor separately. Data fusion 

uses different information sources to better understand the response of individual sensors 

(Sundic et al., 2000). In this paper, for the first time, the concept of EASS is proposed for use 



8 
 

in identifying plant diseases based on the following biosensors: e-nose, electronic eye, 

acoustic-based sensors, combined with wearable sensors. These concepts are discussed in the 

following sections.  

4. Different types of biosensors for plant disease sensing 

4.1. E-nose 

The electronic nose (e-nose), which is also called artificial nose or artificial olfaction system, 

is an apparatus that simulates human olfactory senses (Sun et al., 2019; Zhong, 2019). An e-

nose system is a sensor based intelligent tool that is designed to detect and discriminate 

complex odors using an array of non-selective sensors (Jiarpinijnun et al., 2020; Santos et al., 

2019). A typical e-nose system consists of three main elements including: sample handling and 

odour delivery system, detection system (sensor array), and data processing and machine-

learning algorithms (Long et al., 2019; Rahman et al., 2020) 

The sensor array is composed of different gas sensors treated with different odour-sensitive 

biological or chemical materials to be sensitive to different substances (Boeker, 2014; Kiani et 

al., 2016). Different types of gas-sensitive sensors including metal oxide semiconductor (MOS) 

sensors, quartz crystal microbalance (QCM) sensors, surface acoustic wave (SAW) sensors, 

electrochemical (EC) sensors, optical sensors, calorimetric sensors, and biomimetic sensors 

can be employed in e-nose systems (Bonah et al., 2020; Gliszczyńska-Świgło & Chmielewski, 

2017; Sanaeifar et al., 2017). 

When a gas, from the headspace of a sample, comes in contact with individual sensors in the 

sensor array, the sensor produces a signal that is proportional to the concentration of the 

substance detected (Deshmukh et al., 2015; Jasinski et al., 2017). This signal is typically a 

change in the output voltage of the sensor. The sensor reaction signals are recorded and 

converted into digital data by the signal processing system to generate a database that is 

subjected to multivariate analysis, to identify and characterize the experimented odour (Peris 

& Escuder-Gilabert, 2016). The voltage variation signals are loaded in processing system. 

Different numerical characteristic parameters can be extracted from these curves and analyzed. 

These features include : maximum sensor response, sensor impregnation time, sensor recovery 

time, mean and maximum slopes of the sensor response, and area under curve (Huang et al., 

2017; Ordoñez-Araque, 2020). Differently supervised and unsupervised chemometrics can be 

applied on the multidimensional output data of sensor arrays to provide precise and predictive 

results (Li et al., 2020). These statistical analysis approaches include Principal Components 
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Analysis (PCA), Artificial Neural Networks (ANNs), Linear Discriminant Analysis (LDA), 

Partial Least Square Regression (PLSR), and Support Vector Machines (SVM), which are fully 

described in a reviews by (Di Rosa et al., 2017; Karakaya et al., 2020). 

The organic volatile compounds (VOCs) released by agricultural material can be detected by 

e-nose system and used for various applications in agricultural and food related fields. 

Accordingly, several literature reviews have revealed the applications of e-nose in the agro-

food arena (Ali et al., 2020; Jia, Liang, Jiang, et al., 2019; Roy & Yadav, 2021; Shi et al., 2018). 

In the case of plants, which are among the organisms emitting the highest diversity of VOCs 

(Tholl et al., 2021), the released VOCs serve excellent information about plants health status 

(Effah, 2020), since the composition of emitted VOCs by plants is changed regarding of the 

type of biotic or abiotic stresses that the plant is exposed to (Cellini et al., 2018). The specific 

and characteristic VOCs that are emitted by pathogenic microorganisms provide unique odour 

fingerprints that can be used as biomarkers for pathogen identification and discrimination 

(Bonah et al., 2020; Moisan et al., 2019). Although the e-nose system cannot quantify the 

various volatile compounds in a plant headspace gas, the sensor array of e-nose setup can 

generate a unique profile regarding the composition of the VOCs generated by a specific 

pathogen or pest infected plant (Fig 2). The system can be then trained to discriminate between 

healthy and infected plants or even among multiple infections induced by different agents in a 

non-destructive manner based on only the sample odour (Laref et al., 2019). 
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Fig 2. A typical e-nose system for plant disease monitoring 

An e-nose system having ten different MOS sensors was used by Chang et al. (2014) for 

detection of plant pathogenic bacteria on chilli and papaya plants. The chilli samples were 

infected by three different bacteria including E. carotovora, R. solanacearum, and X. 

campestris pv. vesicatoria, meanwhile the papaya samples were infected by two types of 

bacteria namely Rickettesia sp and Erwinia sp. PCA showed that the sensor data was significant 

toward discrimination of the odours emitted by plants infected by different bacteria. 

An electronic nose system was applied by Jiarpinijnun et al. (2020) for early monitoring of 

Aspergillus fungus contamination on Jasmine brown rice grains. PCA, LDA and SVM 

classifiers were used to discriminate different levels of contamination and PLS model was used 

for fungal growth prediction. It was reported that an e-nose is an accurate technique for early 

detection of fungal infection on rice grains prior to visual symptoms emergence.  

In another study, the application of e-nose system was evaluated for detecting the Citrus 

Tristeza virus infection in mandarin orange. A classification accuracy of 97.58% was obtained 

for differentiating between thee healthy and infected samples using adaptive boost ensemble 

of decision tree classifier (Hazarika et al., 2020).  
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A study was conducted by Borowik et al. (2021), in which an e-nose was successfully 

employed for distinguishing between two important forest pathogenic oomycetes namely 

Pythium and Phytophthora using SVM classification model. 

A summary of some studies on plant disease detection using e-noses is presented in Table 2. It 

should be stated that most of research studies in this arena are about detection of bacterial or 

fungal infections, while diseases with other agents have been less focused. There are also good 

review articles that have provided detailed information about the e-nose and its applications in 

plant disease detection (Bonah et al., 2020; Cellini et al., 2017; Wilson, 2018), showing great 

potential of e-nose systems to be developed and used for non-destructive and early stage 

detection of plant diseases. 

Table 2. Summary of e-nose applications for plant disease detection. 

Disease 

name 

Disease 

agent 

E-nose 

system 

Most 

effective 

sensors 

VOC 
Acquisitio

n time (s) 

Modeling 

algorith

m 

Referenc

e 

Potato brown 

and ring rot 

Bacteria

l 
PEN3 - 

Alcohols and 

aliphatic 

substances 

60 
PCA, 

LDA 

(Biondi et 

al., 2014) 

Fire blight 

and blossom 

blight in 

apple plant 

Bacteria

l 

EOS507C 

, PEN3 
- 

hexenal 

isomers, 2,3-

butanediol, 

3-hydroxy-2-

butanone 

, phenylethyl 

alcohol 

EOS507C: 

180, PEN3: 

120 

 

PCA, 

LDA 

(Cellini et 

al., 2016) 

Soft-rot 

infection in 

potatoes 

Bacteria

l 
WOLF 4.1 - 

carbon 

monoxide, 

ethylene 

oxide, nitric 

oxide 

120 

PCA , C5 

decision 

tree 

(Rutolo et 

al., 2018) 

Lethal 

Bronzing 

Disease in 

Cabbage 

Bacteria

l 

Laborator

y 

developed 

setup 

MQ5 , 

MQ8 
Hydrogen - PCA 

(Oates et 

al., 2020) 

Detection of 

potato tuber 

Bacteria

l 

Laborator

y 

TGS262

0 

Alcohol, 

organic 

solvents 

120 
 RBFNN, 

SVM 

(Chang et 

al., 2017) 
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soft rot 

disease 

developed 

setup 

Botrytis sp., 

Penicillium 

sp. and 

Rhizopus sp. 

in ripe 

strawberry 

fruits 

Fungal PEN3 

W1C, 

W3C, 

W1S, 

W2S , 

W3S 

Ammonia, 

aromatic 

compounds, 

methane, 

alcohols 

60 
PCA, 

ANN 

(Pan et 

al., 2014) 

B. cinerea 

infestation of 

tomato plant 

Fungal PEN3 
W1A, 

W5B 

2-Carene, β-

Phellandrene

, 2-ethyl-1 - 

Hexanol, 

Nonanal, 

Naphthalene 

70 

PCA, 

LDA,  

MLR 

(Sun et 

al., 2018) 

Aspergillus 

spp. 

contaminatio

n in rice 

Fungal PEN2 

W5B, 

W2B, 

W1B, 

W2C 

Nonanal, 

nonadecane, 

cis- 

Thujopsene, 

1-octanol, 1-

octen-3-ol 

and diethyl 

phthalate 

90 

PCA, 

BPNN, 

SVM, 

LVQ, 

PLS 

(Gu et al., 

2019) 

Penicillium 

expansum and 

Aspergillus 

niger in 

apples 

Fungal PEN2 

W5S, 

W1S, 

W1W, 

W2S, 

and 

W2W 

Oxynitride, 

Aromatic 

compounds, 

Sulfides , 

organic 

sulfides, 

methane, 

alcohols 

150 

LDA, 

SVM, 

BPNN, 

RBFNN 

(Jia, 

Liang, 

Tian, et 

al., 2019) 

 

 

4.2. Electrochemical Biosensors  

Common methods for detection and identification of fungal pathogens that cause disease in 

plants rely mainly on morphological, microbiological and biochemical identifications. 

Traditional methods are not sensitive enough, and therefore new methods have been developed 

in the last decade for identifying plant pathogens (Zhao et al., 2020). Over recent years, 
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biosensors have received special attention due to their promising results in identification, 

classification, detection, and quantification of plant diseases. Therefore, biosensors provide 

rapid and accurate plant disease diagnosis, reduce the prevalence of diseases, and effectively 

facilitate disease management (Ali et al., 2021). A sensor is a device that converts chemical 

information, such as the concentration of a particular sample into an analytical signal. The 

electrochemical method uses particular aspects of an electrochemical biosensor. In addition to 

the electrochemical method, the sensor signal readout format provides other aspects of 

biosensor-based methods for pathogen detection. Electrodes can be fabricated from several 

materials through fabrication processes (Berto et al., 2019). 

A "Biosensor" is therefore a device designed to measure the presence and amount of a 

particular biological substance through combining a mechanism that converts the 

physicochemical changes appearing in response to the analytes present in the sample with a 

receptor which is capable of manifesting this as a recognizable signal (Hong & Lee, 2018). 

Due to their ability in selective and rapid detection of only analyzed materials, biosensors are 

actively used in many industrial fields such as medical diagnosis, new drug development, plant 

pathology, food safety testing and environment monitoring. Moreover, the development of key 

supportive elements such as various interfaces and nanotechnology has increased the 

application range of biosensors to point-of-care tests and Internet-of-things (IoT) (Alonso et 

al., 2020). The transduction element of electrochemical biosensors is an electrochemical cell 

whose main component is a working electrode. A three-electrode system (including working, 

auxiliary, and reference electrodes) is usually used in potentiostatic system, while the two-

electrode format (working and auxiliary) is often used for conductometry and electrochemical 

impedance spectroscopy. An electrode is an electronic conductor in which the charge is 

transported by the movement of electrons and/or holes. Therefore, electrodes may be fabricated 

from conductors and semiconductors, including metals, like e.g., gold, and nonmetals, like e.g., 

carbon. The materials, fabrication methods and designs used for electrode fabrication affect the 

structure and properties of electrode, which result in the performance characteristics of the 

biosensor. The most important functional properties of biosensors are their sensitivity, 

selectivity, limit of detection (LOD) and dynamic range. Requirements for these affect the 

biosensor's fabrication cost, manufacturability, disposability and measurement capability 

(Kumar & Arora, 2020). 
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Over recent years, several studies have been reported on the development of biosensors for 

detection of plant diseases. Among the most important citrus viruses we can refer to citrus 

tristeza virus (CTV), which has caused high plant mortality, especially in grafted citrus 

seedlings worldwide (Harper & Cowell, 2016). Plants infected with CTV may show mild to 

severe symptoms depending on the type of virus and the sensitivity of different types of plants. 

Tables 3-5 show the summary results for the use of biosensors to identify plant fungi, 

oomycetes, bacteria, and viruses. 

Umasankar and Ramasamy (2013) reported a nanomaterial-based electrochemical sensor for 

plant disease diagnosis. Gold nanoparticles (GNP)-modified cathode was used for 

electrochemical detection of methyl salicylate, a major volatile organic compound released by 

plants during infection (Umasankar & Ramasamy, 2013). In DNA based electrochemical 

strategies, voltametric methods have been used for discriminative investigation of nucleic acid 

structure and its modification with the simultaneous identification of all DNA bases without 

any need for hydrolysis phase (Patel, 2021). Adding newer sensors for diagnosis of disease 

e.g., fibre-optic biosensors (FOBS) and electrochemical biological sensors is a more useful 

way to overcome uncertain diagnosis of plant infections. Considering the importance of 

monitoring plant health and the current status of nano-biosensors, and given the general 

drawback in existing techniques, advances made in nanomaterials and new biomarkers, will 

provide an appropriate impetus to researchers to switch their focus to growth monitoring and 

plant health.  
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Table 3. Different biosensors proposed for fungi and oomycete pathogen detection 3 

Reference 
Analysis 

time 
 Range LOD 

Signal 

mode 

Nano 

material 
Organism 

Sensing 

platform 

Type of  

pathogen 

(Fang et al., 

2014) 
- 

 

0.6 

µM–

0.17 

mM 

82 nM CV 

2SnO 

Phytophthora 

cactorum 
 SPCE Oomycete 

 

0.2 

µM–0.1 

mM 

62 nM  DPV 

 

0.6 

µM–

0.17 

mM 

126 nM CV 

2TiO 

 

0.2 

µM–0.1 

mM 

35 nM DPV 
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 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

(Zhan et al., 

2018) 
1.5 h  

0.1-100 

1-pg.µL 

0.1 pg. 

1-µL 

Color 

intensity 

(CI) 

GNP 
Phytophthora 

infestans 

Lateral 

flow 

biosensor 

(Silva et al., 

2013) 
30 min  

50 -200 

1-pg.µL 
- EIS  MNP 

Penicillium 

sclerotigenum 

Gold 

electrode 

Fungi 

(Luna-

Moreno et 

al., 2019) 

25 min  

39.1 - 

122 

1-µg.mL 

11.7 

-µg.mL

1 

SPR 

sensogram 
- 

Pseudocerocospora 

fijiensis 
  SPR 

(Mendes et al., 

2009) 
2 h  

3.5 - 

28.0 

1-gm.L 

800 

1-ng.mL 

SPR 

sensogram 

Gold 

disk 

Phakopsora 

Pachyrhizi 
SPR 
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Table 4. Different biosensors proposed for bacteria pathogen detection 14 

Method 
Sensing 

platform 

Signal 

mode 

Nano 

material 
Target LOD 

Working  

range 

Analysis 

time 
Reference 

Optical biosensor SPR 
SPR 

sensogram 

Ag-

BaTiO3-

graphene 

Pseudomonas 

spp. 

7.09 log 

CFU 

1−mL 

- - 
(Mudgal et 

al., 2020) 

Colorimetric 

biosensor 

GNP–probe 

DNA 

UV 

absorbance 

spectrum 

GNP P. syringae 

-ng.μL 15

1 

2-200 

1-ng.μL 
1 h 

(Vaseghi 

et al., 

2013) 

Nanobiosensor 
GNP–probe 

DNA 
SPR band GNP 

R. 

solanacearum 
7.5 ng 

7.5-100 

ng 
15 min 

(Khaledian 

et al., 

2017) 

Colorimetric 

biosensor 

Colorimetric 

Probe 

UV-vis 

spectroscopy 
GNP 

R. 

solanacearum 
0.2 ppm 

0.1-1.0 

ppm 
24 min 

Aoko et (

)al., 2021 

Immunochromatic Sensor strip 

digital 

colorimetric 

analysis 

- X. fastidiosa 

 80.8 × 10

cells. 

1−mL 

(0.8-4.1) 

 8× 10

cells. 

1−mL 

4 h 
Wen et (

)al., 2017 

Lateral flow assay 
GNP–probe 

DNA 
CI GNP Dickeya. solani 

14,000 

1-CFU.g 

8 10-0

1-CFU.g 
30 min 

Ivanov et (

)al., 2020 

Lab-on-chip 

device 

gold 

interdigitated 

electrode 

EIS - 
Pectobacterium 

atrosepticum 

CFU.  410

1−mL 

 910-410

CFU. 

1−mL 

1 h 

Hashemi (

Tameh et 

)al., 2020 
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Fluorescence 

biosensors. 

Optical 

system 
CI - 

C. Liberibacter 

asiaticus 

 4-1.0 x 10

1-ng.μL 
- 40 min 

Wu et al., (

)2021 

Chemiresistive 

biosensor 

-SWNT

based device 

Resistance 

changes 
SWNT 

C. Liberibacter 

asiaticus 
5 nM 

3 nM- 

Mμ2.6  
30 min 

Tran et (

)al., 2020 

 15 

Table 5. Different biosensors proposed for virus detection 16 

Method 
Sensing 

platform 

Signal 

mode 

Nano 

materi

al 

Target LOD 
Working  

range 

Analys

is time 
Reference 

Electrochemical 

biosensor 
SPCE EIS, CV GNP 

Citrus 

tristeza 

virus 

100 nM 0.1 - 10 µM 1 h 
(Khater et 

al., 2019) 

Electrochemical 

immunosensor 

Gold 

electrode 

EIS, CV, 

DPV 
- 

Fig 

mosaic 

virus 

0.03 nM 0.1 nM - 1 μM - 

(Haji-

Hashemi et 

al., 2019) 

Electrochemical 

immunosensor 

Gold 

electrode 

EIS, CV, 

DPV 
- 

Citrus 

tristeza 

virus 

.0.27 nM 1 nM - 5 μM 1.5 h 

(Haji-

Hashemi et 

al., 2017) 

Amperometric 

immunoassay 

Carbon 

electrode 

CV, UV–

Vis spectra 
GNP 

Citrus 

tristeza 

virus 

0.3 fg.mL

1− 

1.95–

10.0 × 103 fg.m

1−L 

1 h 
(Freitas et 

al., 2019) 

Bioelectronic 

biosensor 

Gold gate 

electrode 
CV - 

Plum 

Pox 

Virus 

180 

1-pg.mL 

50  -1-5 ng.mL

1-µg.mL 
- 

(Berto et al., 

2019) 
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Immunological 

technique 

Lateral 

flow 

immunoass

ay 

- 
MNP , 

GNP 

Potato 

virus Y 

0.25 ng.m

1-L 

1-125 ng.mL-0 25 min 
(Razo et al., 

2018) 

Electrochemical 

DNA sensor 
SPGE CV - 

Cucumb

er 

Mosaic 

- 1-100  ng.μL-1 2 h 
(Zulkifli et 

al., 2016) 

Immunochromatogra

phy 

Lateral 

flow 

immunoass

ay 

CI GNP 
potato 

virus X 

17 

1−pg.mL 

1−0.5 ng.mL-0 12 min 

(Panferov, 

Safenkova, 

Zherdev, et 

al., 2018) 

Amperometric 

biosensor 
Pt electrode 

Current 

signal 
- 

Tobacco 

mosaic 

virus 

0.1 mM 0.1–7.4 mM 1 h 
(Bäcker et 

al., 2017) 

Immunosensor 

technique 
SPCE 

Potential 

signal 
GNP 

cucumbe

r mosaic 
- 1-1.3 mg.mL-0.1 - 

(Uda et al., 

2017) 

Plasmon resonance 

biosensing 

Colorimetri

c assay 

UV-Vis 

spectra 
GNP 

tomato 

yellow 

leaf curl 

virus 

- 1-L5 pM.µ -1 - 
(Razmi et 

al., 2019) 

Lateral flow strips 
Lateral 

flow strips 
CI - 

tomato 

spotted 

wilt 

- - 10 min 
(Lee et al., 

2021) 

Nanobiosensor 

Fluorescen

ce 

resonance 

Fluorescen

ce 

emission 

 QD 

Citrus 

Tristeza 

Virus 

198 

1-ng.mL 
- - 

(Safarnejad 

et al., 2017) 
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energy 

transfer 

(FRET) 

 

Nanobiosensor FRET 

Fluorescen

-ce 

emission 

GNP/Q

D 

Citrus 

Tristeza 

virus 

130 

1-ng.mL 

1−1 μg.mL -0  1 h 
(Shojaei et 

al., 2016) 

Immunosensor 
Optical 

biosensor 

UV-Vis 

spectra 

ZnO 

films 

Grapevi

ne virus 

A-type 

- 
10  - 1−1 pg.mL

1−ng.mL 
- 

(Tereshchen

ko et al., 

2017) 

Immunoassay 
Lateral 

flow 
CI GNP 

potato 

leafroll 

virus 

0.2  

1−ng.mL 

0.2-100 

1−ng.mL 
15 min 

Panferov, (

Safenkova, 

Byzova, et 

)al., 2018 

 17 
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4.3. E-eye (optical sensors) 

A large variety of optically based sensors has been designed specifically for plant disease 

monitoring and reviewed over the last decade  (Sankaran et al., 2010)  (Li et al., 2014), (Fang 

& Ramasamy, 2015) (Barbedo, 2016) (Galatus et al., 2020) (Singh et al., 2020) (Mishra et al., 

2020).   

Techniques can be classified in many ways, for example local optical probes offer a precise 

measurement with limited impact of external parameters during acquisition. Imaging methods 

enable parallelization of the acquisition which is useful to increase the field of view ranging 

from proxi-detection (mm to m) to tele-detection (cm to km). While time processes in plant-

disease interactions are relatively long (from days to weeks for full process of infection), the 

movement of the plants may cause some acquisition artifacts depending on the acquisition time 

of the optical sensor. Some methods are designed for in vitro analysis of the development of 

disease on leaves or biological medium while others are suitable for in situ monitoring. For in 

situ monitoring constraints differ whether ones operate in controlled environment or in the 

field. Controlled environments enable a biological control of the entire plant-pathogens 

interaction and a control on the lighting conditions during acquisition (Kuska & Mahlein, 

2018). Field environment monitoring, while more realistic for agricultural applications is more 

difficult to tackle due to the possibility of multiple stresses and the non-controlled environment 

for optical acquisition.  Other discriminant parameters include the distinction between active 

and passive optical systems depending on whether or not purposely chosen light is required to 

shine onto the plants.  For active imaging systems the light sent can activate some physiological 

processes or just be used to generate contrast and, in this case, it is important to check that this 

light is in actinic, i.e. does not cause perturbation on the plant-disease interaction (Khater et al., 

2019). Finally, some methods may provide features on the symptoms of the disease, defense 

and resistance of the plant depending on the timing of the image acquisition in the plant-

pathogens interaction cycle. Fig 3 shows a schematic of optical sensor for plant monitoring. 
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Fig 3. Schematic of optical sensing for plant monitoring 

The observed contrast can originate from various physical phenomenon. Fungi sporulation, 

lesion, depigmentation, necrosis can create or destroy micro layers. This affects the refraction 

index, the absorption, and the scattering properties of the leaves. This produces contrast in 

reflectance in various wavelength as reported in (Barbedo, 2016; Fang & Ramasamy, 2015; Li 

et al., 2014; Mishra et al., 2020; Sankaran et al., 2010; Singh et al., 2020). for a large variety 

of plant pathogens interactions. These contrast in the spectral signature can be used in various 

ways: By selecting optimal wavelength and design optimal multispectral imaging or keep the 

entire spectrum for hyperspectral imaging. Multi and hyperspectral imaging are by far the most 

promising and already currently used techniques for plant-disease monitoring with optical-

based sensors (Bock et al., 2010; Golhani et al., 2018; Lowe et al., 2017; Mahlein et al., 2017; 

Moghadam et al., 2017). Trade-offs can be considered depending on the sensitivity of the 

resulting optical systems, their hardware cost, weight, size, or computational load. A current 

trend is on the reduction of the cost of multi and hyperspectral imaging either by developing 

snapshot hyperspectral systems (Douarre et al., 2021; Douarre et al., 2020) or through the 

development of custom Bayer filters  (Tisserand, 2019). 
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When perceptible by the human eye these contrasts can be compared to an expert ground truth. 

This has opened the way to the possibility of automated recognition, detection or quantification 

of plant diseases with supervised machine learning (Li et al., 2021). The bottleneck in the 

design of such algorithms now becomes the annotation of images. Indeed, after capturing 

images experts must watch each individual image and label them. This corresponds to a global 

label for recognition, bounding boxes for detection of lesion, and at a pixel level for 

segmentation. This error prone and time-consuming task is currently a limiting factor to the 

dissemination of computer vision technologies for plant disease analysis with optical systems. 

A method to circumvent this bottleneck is to use embedded eye tracking system capable of 

recording simultaneously images and the position of the human attention in these images 

(Samiei et al., 2020).  

When gazing outside the visible spectrum, it is more difficult to establish a ground truth and 

the recorded contrasts must be confronted to other types of measurements to validate the 

physiological interpretation of the contrast. This concerns a variety of optical techniques such 

as X-Ray imaging, fluorescence imaging, speckle imaging, thermal imaging, terahertz imaging 

and magnetic resonance imaging. Most of these techniques for plant health monitoring are 

however of limited applicability due to the duration of acquisition time, the current cost of 

instrumentation or the non-transferability to field experiments.  

The above criteria have been summarized in Table 6 to position the most promising optical 

systems found in the literature for plant disease monitoring based on review articles.  

Table 6. Imaging optical-sensors for plant-disease monitoring 

Technology used Environment 
Acquisition 

time 
Application Review Ref 

X-Ray Controlled min Microstructure (Du et al., 2019) 

Multi-

Hyperspectral 

lmaging 

All s Reflectance 

 (Bock et al., 2010; Golhani et al., 

2018; Lowe et al., 2017; Mahlein et 

al., 2017; Moghadam et al., 2017)  
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Chlorophyll 

Fluorescence 
Controlled min Photosynthesis 

 (Daley, 1995; Murchie & Lawson, 

2013; Pérez-Bueno et al., 2019) 

Speckle Controlled min Microdeformation  (Zdunek et al., 2014) 

Thermal Imaging Controlled s Evaporation (Ishimwe et al., 2014) 

TeraHertz 

Imaging 
All s Water content  (Afsah-Hejri et al., 2020) 

 Magnetic

 Resonance

Imaging 

Controlled 

 
Min Water content  (Faust et al., 1997) 

 

4.4. Acoustic sensors 

Sound, or acoustic energy, may produce in the form of an oscillating concussive pressure wave 

and transmitted through gases, liquids and solids. The lowest frequency in the acoustic 

spectrum is related to infrasound in the frequency range up to 20 Hz. Ultrasound is defined as 

acoustic waves at frequencies above 20 kHz, which are widely used in medical practice as a 

diagnostic and therapeutic tool. Ultrasound and infrasound can communicate with biological 

tissues through thermal and mechanical processes. Humans can detect sounds in a frequency 

range from about 20 Hz to 20 kHz (Speaks, 2017). Fig 4 shows principle of an acoustic-based 

sensor for plant disease application. 



 

25 
 

 

Fig 4. Schematic showing the use of acoustic sensors for plant monitoring 

 

The physiological effect of environmental factors, such as humidity, light, wind and 

temperature on plant stimulus and growth are well understood (Hassanien et al., 2014). 

However, little information is available on the effects of sound on plants. Sound stimulation 

can increase resistance to disease and reduce the need for chemical fertilizers and chemicals. 

Plants can spontaneously generate sound waves with relatively low frequencies of 50-120 Hz. 

Like humans and other animals, plants may have internal preferred frequencies of vibration. 

Plants can also absorb and amplify specific external sound frequencies. 

Dostál et al. (2016) detected the acoustic emission (AE) characteristics of the plant according 

to water stress conditions (Dostál et al., 2016). They concluded that the occurrence of AE 

signals caused by the transpiration system is related to the cavitation event in the plant. The 

results obtained using multiple regression analysis showed that the change in the amount of AE 

signal detected from the plant studied was affected the most and the least by temperature and 

light intensity, respectively. Using SAW (surface acoustic waves), Lee et al. (2018) captured 

consecutive images of increased water transfer in Epipremnum aureum at three different 

frequencies (10, 15 and 20 MHz) (Lee et al., 2018). A dye solution used at 15 MHz SAW 

showed the highest intensity value after 40 min of stimulation via SAW. The excitation areas 

for 15 and 20 MHz SAWs were respectively reduced to 42.3% and 22.6% in comparison to 

that of 10 MHz SAW.  
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Overall, the results obtained showed that regardless of excitation area, the transport of water in 

the leaves was maximized at 15 MHz SAW. You et al. (2011) developed an AE-based system 

to control crop disease stress (You et al., 2011). The results obtained showed this system is 

capable of adjusting to delivery volume, controlling valve speed under signals in AE and 

environmental information for partial crop growth, allowing the use of intelligent control to 

spray the crop and accordingly, reduce the consumption amount of pesticide. 

Qi et al., (2009) investigated the effect of sound wave stimulation on strawberry growth in a 

sunlit greenhouse (Qi et al., 2009). The experimental results of this study show that sound 

waves not only can improve the strawberry growth, but are also capable of increasing the 

resistance to disease. Three reasons were proposed as to how the use of sound waves improves 

the plant growth: (i) the fluidity and permeability of the plant membrane undergo change due 

to environmental stress (e.g., sound wave stimulation); (ii) stress is signaled to other molecules 

by the signaling molecule Ca2+; (iii) Related gene expression occurs due to the spread of stress 

signal. On the other hand, signal resonance will take place when the frequency between 

external vibration and the plants natural (spontaneous) sound are congruent. 

Kim et al. (2015) showed that sound vibrations (SVs) play an important role in increasing the 

postharvest shelf-life of tomatoes (Kim et al., 2019). They showed that fruit treated with sound 

vibrations at 1000 Hz delay the ripening of tomatoes in comparison to the control sample. 

Appel and Cocroft (2014) reported better defense of Arabidopsis rosettes against a subsequent 

attack by SVs after being pre-exposed to this pathogen caused by feeding of the Pieris rapae 

(L.) caterpillar(Appel & Cocroft, 2014). In comparison to untreated plants, treated plants 

exhibited higher levels of defence  to glucosinolate and anthocyanin. Results from this study 

proved that SVs sensors are environmentally favorable for plants. 

Using AE technology, Yang et al. (2014) developed a system for diagnosis of crop disease 

stress conditions (Yang et al., 2014). The results of their study showed that the continuous 

detection of AE signals of a disease stressed plant and according to the specific rules of the 

physiological cycle, the AE phenomena for the infected plants are dissimilar healthy plants. 

 

4.5. Wearable sensors 

The development of wearable sensors allows a nanotechnology-based platform as a non-

invasive tool for plants. Although these sensors are expensive, the cost of these sensors should 
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significantly reduce over time (Guk et al., 2019; Heikenfeld et al., 2018). The use of such 

sensors in plant science is a useful tool in the production of agricultural products that can collect 

real time information about the plant physiological status. A wearable plant sensor can be easily 

attached onto the plant surface due to its excellent mechanical compatibility (F. Zhao et al., 

2020). Sensor networks based on flexible wearable nanoelectronic circuits implanted on plants 

provide wireless communication via low concentrations of volatile organic molecules in real 

time. Fig 5 shows a schematic of plant wearable sensor for E-monitoring. 

 

Fig 5. A plant wearable sensor for E-monitoring 



 

28 
 

The high sensitivity of the integrated arrays of SWCNT channels and graphite electrodes 

transferred onto the surface of the live plants leaves can track chemicals in the air. The elastic 

properties of nanomaterials-based wearable sensors allow them to act like a flexible skin and 

bend over objects with a radius of curvature below 100 μm (Giraldo et al., 2019). SWCNT-

graphite-based wearable sensors that work with radio frequency (RF) can be used for wireless 

monitoring in combination with electronic devices without power consumption for gas 

molecules up to 5 ppm (Lee et al., 2014).  

Carbon-nanotube-based wearable sensors for measuring plant VOCs, such as polyethylene, are 

commercially available for agricultural use, but still are not used for electronic monitoring. 

Though many graphene and carbon nanotubes- based wearable stretchable sensors have been 

reported for wireless control of a wide range of gas and aqueous phase molecules, including 

glucose (Bandodkar et al., 2016), few publications have so far reported their applications in 

plants.  

Lan et al. (2020) developed a wearable humidity sensor based on laser-induced graphene to 

monitor transpiration of plant leaves (Lan et al., 2020). This wearable sensor with its high 

flexibility is capable of on-site monitoring of plant transpiration on the surface of plant leaves 

without causing prolonged and highly stable physical damage. Using this type of sensor 

combined with nanoparticles, such as graphene and laser technology is a promising choice for 

the next generation of wearable sensors to be used in intelligent agriculture. Little research has 

been published on the use of wearable sensors for diagnosis and management of plant diseases. 

A summary is given in Table 7.   

Table 7. Application of wearable-based sensors for plant monitoring 

Technology 

used 
Plant Signal mode 

Nano 

material 
Application References 

Eectrochemical 

biosensor 

Leaf of 

spinach 

and the 

fruit of 

apple 

Square wave 

voltammetry 

(SWV), CV 

GNP, 

grapheme 

Pesticide sensing/ 

methyl parathion 

( Zhao et al., 

2020) 

Laser - 
Capacitance 

signal 
Graphene 

Transpiration 

monitoring 

(Lan et al., 

2020) 
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Microneedle 

patch-based 

sensor 

Tomato 

leaves 

UV 

Absorption 

spectra 

- 
Pathogen/ P. 

infestans 

(Paul et al., 

2019) 

Electrochemical 

sensor 

Maize 

plant 
CV, EIS 

Pt 

Nanoparticles 
Methanol emission 

 (Moru et al., 

2020) 

OCT 

Apple, 

pear, and 

persimmon 

Leaves 

OCT signal 

intensity 
- 

monitoring quality 

of leaf 

 (Wijesinghe et 

al., 2017) 

Smartphone-

based 

Tomato 

leaves 

GC–MS 

spectra and 

Chemometric 

Analysis 

GNP P. infestans  (Li et al., 2019) 

Fluorescent 

fiber 
- 

Absorption 

spectrum 
- 

Growth rate 

Monitoring 

 (Galatus et al., 

2020) 

Strain sensor Eggplant 
Change of 

resistance 
CNT 

Plant growth 

monitoring 

 (Tang et al., 

2019)  

IOT-based 

sensor 
Rice 

AgriTalk 

data 
- Blast Detection 

 (Chen et al., 

2019) 

Lab-on-chip  

device 
Olive trees EIS - 

Xylella fastidiosa 

detection 

 (Chiriacò et al., 

2018) 

Optical sensor A leaf 

Light 

Absorption 

spectra 

ZIS 

nanosheets 

Plant growth 

monitoring 

 (Lu et al., 

2020) 

Wireless gas 

sensors 

Leaves of 

a live plant 

Radio 

frequency 
Graphene 

Dimethyl 

methylphosphonate 

(HyungáCheong 

et al., 2016) 

Chemi-resistive 

sensor array 

Tomato 

leaves 
- Graphene 

Monitoring of late 

blight 
(Li, 2021) 

Tang et al. (2017) fabricated a chitosan‐based flexible and stretchable sensor to capture the 

plant response to mechanical damage, methyl parathion, and nitrite (Tang et al., 2017). The 

resistance change caused by the change in strain due to mechanical damage confirmed that a 

wearable sensor can control plant wounding.   

Oren et al. (2017) developed a flexible microscale plant sensor with graphene nanomaterial-

based patterning onto different types of tapes (Oren et al., 2017). This sensor estimates the 

hydraulic conductivity by measuring the time taken for water transfer from root to leaf and the 

transpiration level of plants based on changes in the electrical resistance of graphene in 

different humidity environments. Hydraulic conductivity and transpiration rate of plants may 
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be used as an indicator for ambient temperature and drought stress in plants. Kim et al. (2019) 

vapor printed polymer electrodes directly on living plant tissue (Kim et al., 2019). The results 

of their study showed that the sensor used is capable of detecting many biological and abiotic 

stress factors in plants. In addition, this new electrode showed excellent adhesion to plant 

tissues during a 130- day period without affecting the plant's biocompatibility and natural 

growth pattern. 

Microneedles are another type of wearable sensors, which have shown their capability in 

reaching vasculature inside the plants with the minimum rate of invasion. These sensors are 

both capable of detecting sap flow rate and extracting sap and analyzing its physicochemical 

properties such as pH and electric conductivity. Baek et al. (2018) manufactured a microneedle 

sap flow sensor on the basis of the modified Granier method for monitoring water transport in 

the stem of tomato plants (Baek et al., 2018). This wearable sensor can potentially be used to 

show the environmental variables changes, such as intensity of solar irradiance, moisture, and 

soil water content (SWC). 

Jiao et al. (2019) developed a microneedle to detect the plant's nitrate using an insertable silicon 

chip consisting of a nitrate-selective field effect transistor (Jiao et al., 2019). Their wearable 

sensor indicated that the nitrate concentration inside the plant can be continuously detected 

under different light and irrigation patterns. Though thin-film wearable sensors allow for fast 

prefabrication and large-scale fabrication, they also have some limitations. They may lead to 

low accuracy and impaired normal plant function when adhering to irregular parts and complex 

plant tissue. This limitation will be significantly worsened due to the significant increase in the 

size of the plant tissue during growth. This challenge severely prevents long-term monitoring, 

especially for fast-growing plants such as vegetables. One way to overcome this limitation is 

to develop the flexible wearable sensors with greater deformation capability and good adhesion 

to irregular surfaces. The direct fabrication of such wearables on plant living tissues can 

potentially overcome this incompatible challenge because the device components can be placed 

along irregular surfaces (Wong et al., 2017). 

The materials printing/ writing/ deposition on plant tissues under mild conditions to develop a 

plant wearable sensor has received lots of attention. Among desirable properties of wearables, 

especially when they are used on fruits, vegetables, and agricultural products are their 

nontoxicity and controlled degradability. Portable devices to directly print/write/deposit on 

plants should be developed to be used on large-scale in-field operation (Huang et al., 2020). 
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Plant wearables on cellular scale that are capable of detecting localized signals may lose distal 

signals or signals via other pathways. They also require significant construction skills at the 

microscale level to be successfully fabricated onto living tissues. 

Microneedle-based wearable sensors do not suffer from mismatching on the plant irregular 

surface unless they have used an array of microneedles. However, depending on the size of 

the microneedle and the plant size, the invasive detection of microneedles may cause damage 

to the plant. By using biocompatible materials (e.g., pectin, cellulose, hemicellulose, lignin, 

etc.), decreasing dimensions of the microneedles, and applying other potential techniques (e.g., 

degradable microneedles), wounding effects such as callus formation may be minimized  

(Wong et al., 2017). 

In summary, plant wearables propose a robust and convenient way to follow the trace of the 

plant growth and health-related biometric information in situ. Moreover, combination of such 

plant wearables with sensors that detect environmental conditions such as temperature, light 

intensity, and RH may provide a robust tool to study the plant-environment interface, to 

preserve optimum environments for plant growth, and to strengthen crop yield with minimum 

agricultural inputs. Drawbacks are also observed in reported plant wearables, and challenges 

are ahead of their broad use in agriculture. In order to cope with the drawbacks discussed above 

the interdisciplinary combination of material characteristics (e.g., strength, compliance, 

adhesion, biocompatibility, and degradability), fabrication methods (e.g., low cost, large scale), 

and especially the plant morphology and physiology (e.g., signaling in growth and responses 

to biotic and abiotic stresses, wounding, etc) should be used (Yin et al., 2021). 

 

5. Conclusions, challenges, and perspectives 

In this review paper, we have investigated and reviewed the latest e-monitoring methods, 

including biosensors, e-noses, wearable technology, acoustic sensors, and light-based machine 

vision to detect various plant pathogens, including viruses, bacteria, and fungi from laboratory to 

farm. In the case of optically based machine vision, much effort has been directed towards 

spectral imaging. In controlled environments techniques using enhanced spectral contrast have 

demonstrated their value to identify lesion and pre symptoms due to diseases. However, the 

published literature shows that these gains tend to vanish when moving to less controlled 

environments. This is due to the heterogeneity of lighting and the complexity of the canopy. For 

high-throughput monitoring of diseases with light based machine vision we believe that 
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increasing the spatial resolution is a more promising methodology than increasing the spectral 

sensitivity. Diseases have textural spatial signature that can be discriminated more easily when 

the spatial resolution is high. 

Considering the rapid advances in nanotechnology and nano-based fabrication methods in the last 

decade, great advances are currently emerging in various types of biosensors, wearable sensors, 

bioelectronic noses, and nanostructured substrates for the analysis of plant diseases. One of the 

most important immediate effects of these new electronic diagnostic tools is that the accurate 

diagnosis of plant disease is now available to farm workers or farmers at reasonable cost. With 

the development of flexible tools that have biodiversity compatibility with plants, diagnostic tools 

are expected to be used in the form of an integrated and multi-mode detection mechanisms for 

rapid detection of infections caused by plant pathogens, as well as biotic stresses and plant growth 

control in real conditions.  

Future approaches to nanotechnology-based wearable sensors will require high sensitivity and 

increased signal-to-noise ratio under variable environmental conditions. Relative humidity (RH) 

near the plant surface leads to increased sensor noise and recovery time. Therefore, wearable 

sensor performance depends on the type of plant substrate they are interfaced to. Using wearable 

carbon nanomaterial-based sensors, the optimum choice can be balanced against variable 

environmental conditions under different factors, such as temperature, humidity, and wind. 

However, these tools used for e-monitoring of plant diseases are still accompanied by challenges, 

such as the environmental and toxic effects of nanomaterials used in measuring tools, data sharing 

speed and rapid disease prediction, and long-term sustainability of the sensor in different weather 

conditions, including hot and cold weather, moisture, strong sunlight, wind, heavy wear. The use 

of wearable sensors in the form of lab-on-a-chip as a flexible tool and compatible with plant 

conditions can to a large extent open a new path for e-monitoring without adversely affecting 

plant growth or crop production. However, currently its usage to understand some of the plant's 

physiological responses, such as water, nutrients and light has limitations. 

Despite the challenges, the recent development of small, portable, and cost-effective tools for the 

rapid and accurate detection of plant diseases, plant health management and monitoring long-

term, is showing great potential. The future of e-monitoring methods for developing of digital 

farm and precision agricultural is very promising. 
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