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Purpose of review

Translation of genetic information encoded within mRNA molecules by ribosomes into proteins is a key part of
the central dogma of molecular biology. Despite the central position of the ribosome in the translation of
proteins, and considering the major proteomic changes that occur in the joint during osteoarthritis development
and progression, the ribosome has received very limited attention as driver of osteoarthritis pathogenesis.

Recent findings

We provide an overview of the limited literature regarding this developing topic for the osteoarthritis field.
Recent key findings that connect ribosome biogenesis and activity with osteoarthritis include: ribosomal
RNA transcription, processing and maturation, ribosomal protein expression, protein translation capacity
and preferential translation.

Summary

The ribosome as the central cellular protein synthesis hub is largely neglected in osteoarthritis research.
Findings included in this review reveal that in osteoarthritis, ribosome aberrations have been found from
early-stage ribosome biogenesis, through ribosome build-up and maturation, up to preferential translation.
Classically, osteoarthritis has been explained as an imbalance between joint tissue anabolism and
catabolism. We postulate that osteoarthritis can be interpreted as an acquired ribosomopathy. This
hypothesis fine-tunes the dogmatic anabolism/katabolism point-of-view, and may provide novel molecular
opportunities for the development of osteoarthritis disease-modifying treatments.
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INTRODUCTION

The dogmatic long-standing view on the molecular
pathobiology of osteoarthritis is that of an imbalance
between anabolism and catabolism of tissues and
cells of the joint [1]. From a plethora of studies
reported over the past decades, it has become over-
whelmingly clear that the low turn-over homeostatic
balance of a healthy joint becomes compromised in
osteoarthritis and a net loss of tissue occurs. This is
caused by a compromised balance between anabolic
reparative capacity and catabolic degenerative activ-
ity, resulting in the destruction of anatomical joint
function. A major part of the extracellular matrix of
joint tissues and many of the molecules involved in
anabolic and catabolic cellular events are proteins.
Osteoarthritis-related aberrations in gene and pro-
tein expression are widely reported in the literature.
However, the central cellular hub that critically catal-
yses the biosynthesis of these proteins from dedicated
gene transcripts; the ribosome, has been largely
neglected in osteoarthritis research. In addition to
a variety of genetic and epigenetic regulatory mech-
anisms of protein expression, it has nowbecomeclear
uthor(s). Published by Wolters Kluwe
that regulation of protein expression also takes place
at the level of the ribosome itself [2]. Environmental,
developmental and pathological conditions are all
able to influence the protein translation character-
istics of the cellular ribosome pool [3], including
r Health, Inc. www.co-rheumatology.com



KEY POINTS

� Ribosome biogenesis and activity are dysfunctional
in osteoarthritis.

� The ribosome-related consequences for the proteomes
in the joint need to be determined.

� Osteoarthritis can be seen as an
acquired ribosomopathy.

� Targeting ribosomes is a novel avenue to develop
osteoarthritis disease-modifying treatments.

Osteoarthritis
ribosome heterogeneity as a mechanism for prefer-
ential translation [4]. This has major consequences
for total protein translation capacity but also for the
synthesis of specific proteins involved in develop-
ment, homeostasis and pathology.
THE RIBOSOME IN OSTEOARTHRITIS

Disrupted ribosome biogenesis in
osteoarthritis

In order to build a ribosome, the cell is equipped with
sophisticated mechanisms that support the biogenesis
of a ribosome in a highly orchestrated and regulated
manner (Fig. 1). Although the pathway of ribosome
biogenesis is tightly integrated in the cell, the high
complexity of this process makes it relatively vulnera-
ble to aberrations that may result in pathological
consequences. In the field of oncology, a wide variety
of alterations in ribosome biogenesis are known to
promote carcinogenesis [5–7], and a number of anti-
cancer drugs target ribosome biogenesis pathways
[8,9]. In osteoarthritis, however, the role of ribosome
biogenesis is only beginning to be studied. Human
ribosome biogenesis is initiated in the nucleolus and
starts with the transcription of the 47S preribosomal
RNA (rRNA) precursor by the dedicated RNA polymer-
ase I transcription complex [10] (Fig. 1). There are
�200 copies of the 47S gene spread over five chromo-
somes, forming the nucleolus organizer regions. Fol-
lowing transcription, the 47S prerRNA transcript is
endoribonucleolytically and exoribonucleolytically
processed into the 18S, 5.8S and 28S rRNAs, and a
number of these processing steps take place co-tran-
scriptionally. The 5S rRNA is transcribed separately in
the nucleus by RNA polymerase III and imported in
the nucleolus to be integrated into the ribosome
biogenesis pathway. In ageing (a major risk factor
for osteoarthritis), mouse bone marrow cells have
been shown to have an increased rDNA copy number
[11]. However, these rDNA copies have increased CpG
methylation levels [11,12], probably leading to the
62 www.co-rheumatology.com
observed reduction of rRNA expression [11]. Recent
work demonstrated regulation of rRNA expression by
a Chromobox 4 (CBX4)-dependent mechanism. This
mechanism of nucleolar homeostasis protects against
mesenchymal stem cell senescence and against
murine osteoarthritis development [13]. In addition,
cartilage ageing led to lower expression of the RNA
component of mitochondrial RNA processing endor-
ibonuclease (RMRP) in equine chondrocytes [14]. This
small nucleolar RNA (snoRNA) is a key factor in the
endoribonucleolytic processing of the 47S prerRNA
[15] and provides an indication of age-related
impairment of chondrocyte rRNA processing. This
was confirmed in human chondrocytes, when RMRP
snoRNA expression was found to be enriched in
hypertrophic chondrocytes in a single-cell sequencing
analysis of osteoarthritis cartilage [16

&

,17]. Another
key factor in the endoribonucleolytic processing of the
47S prerRNA is U3 snoRNA [18]. The expression of U3
snoRNA was reduced in human osteoarthritis cartilage
and chondrocytes, as well as in murine joints in which
experimental osteoarthritis [destabilization of the
medial meniscus (DMM)] was induced [19

&&

]. Osteo-
arthritis-dependent inhibition of U3 snoRNA tran-
scription was identified as one of the causes of
reduced U3 snoRNA expression in osteoarthritis chon-
drocytes and resulted in a decrease of chondrocyte
rRNA levels [19

&&

].
Except for 5S rRNA, all rRNAs are targets of

snoRNA-mediated site-specific posttranscriptional
modification (PTM) by 2’O-ribose methylation and
pseudouridylation by fibrillarin and dyskerin, respec-
tively. A total of 226 of these PTMs have been identi-
fied onhuman rRNAs [20]. A large family of canonical
snoRNAs [active as small nucleolar ribonucleopro-
tein particles (snoRNPs)] ensures the site-directional-
ity of these PTMs [21]. Differential expression of
canonical snoRNAs was demonstrated in human age-
ing and osteoarthritis cartilage [22

&&

], in murine
DMM joints [23], and in equine ageing cartilage
[14]. Mechanistic analysis of the role of a number
of these snoRNAs in chondrocyte biology demon-
strated that SNORD26 and SNORD96A are involved
in determining the chondrocyte phenotype [22

&&

]
and SNORD32A, SNORD33 and SNORD35A in
oxidative stress responses [24]. A great number of
differentially expressed snoRNAs await further
mechanistic studies and their consequences for rRNA
PTM and ribosome function in cells from joints tis-
sues need to be dissected. In this respect, our group
mapped the rRNA PTM landscape in an in-vitro
model for osteoarthritis chondrocytes and identi-
fied osteoarthritis-dependent changes in rRNA
PTMs with consequences for the modus of ribosome
translation initiation [25]. Differential expression of
canonical snoRNAs was also detected in synovial
Volume 34 � Number 1 � January 2022



FIGURE 1. An overview of ribosome biogenesis and activity. 47S prerRNA is transcribed in the nucleolus from rDNA clusters
by RNA polymerase I. The 47S precursor is simultaneously processed by endoribonucleases and exoribonucleases and
posttranscriptionally modified by snoRNPs. These snoRNPs consist of an enzyme, accessory proteins and box C/D or box H/
ACA snoRNAs that guide site-specific 2’-O ribose methylation or pseudouridylation of rRNA nucleotides. These canonical
snoRNAs originate from intronic regions of RNA polymerase II-transcribed mRNAs and are liberated by the splicing machinery
and subsequent processing. Together with mature rRNA, ribosomal proteins assemble into the small 40S and large 60S
ribosomal subunits. This highly coordinated process requires additional assembly factors. After nuclear export, the 40S subunit
can form a 43S preinitiation complex together with eukaryotic translation initiation factors that recognize the m7G cap of
mRNAs and initiate protein translation after recruitment of the 60S large subunit, resulting in the formation of an active 80S
ribosome. In addition to cap-mediated translation, Internal Ribosome Entry Sites (IRESs) can mediate direct recruitment of the
ribosome to a translation start site. This process is of paramount importance under cellular stress conditions, where cap-
mediated translation is generally inhibited. Ribosome activity is tightly regulated by a multitude of signalling pathways (e.g.
AKT/mTOR, TGF/BMP, FGF), and other important factors are energy status and amino acid availability for aminoacyl-tRNA
formation. The most rate-limiting step of ribosome activity is translation initiation by eIF4E, which is counteracted by 4E-BP1. In
addition, ribosomes can preferentially translate a certain mRNA because of specific (IRES) trans-acting factors. To add to the
complexity, the ribosome can generate multiple protein variants from a single mRNA, when more than one or alternative
translation initiation sites are present (e.g. in VEGF, MYC and FGF2 mRNAs). Ribosome core protein composition and rRNA
posttranscriptional modification levels can vary [4,10], which leads to heterogeneous ribosomes with distinct translational
characteristics.

Ribosome dysfunction in osteoarthritis van den Akker et al.
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Osteoarthritis
fluid of early equine osteoarthritis [26], in the serum
of DMM mice and horses [26] and in the serum of an
anterior cruciate ligament injury cohort [27]. These
studies may provide snoRNA-based biomarkers for
musculoskeletal ageing and osteoarthritis develop-
ment.

In addition to the rRNAs, the ribosome consists
of 79 proteins [33 RPS (ribosomal protein small
subunit) proteins in the 40S subunit and 46 RPL
(ribosomal protein large subunit) proteins in the 60S
subunit]. These proteins are imported into the
nucleus and depending on the protein species and
its position in the ribosome’s biomolecular architec-
ture, are assembled in a highly orchestrated
sequence, which requires over 100 ancillary proteins
to achieve this task [10,28]. This number excludes
snoRNP-related proteins. The 40S and 60S ribosomal
subunits are then transported to the cytoplasm and
undergo several final maturation steps before they
are ready to engage in the translation of mRNA into
protein. Emerging evidence indicates that in osteo-
arthritis, the proteinaceous part of the ribosome’s
architecture may change. In recent single-cell
sequencing work, it was demonstrated that
increased RPS29 (ribosomal protein S29) expression
in chondrocytes is associated with osteoarthritis
progression [16

&

]. The involvement of ribosomal
protein expression in osteoarthritis was also
highlighted in a recent single-cell sequencing study
that investigated cross-talk between the synovium
and cartilage in osteoarthritis [29]. A great number
of ribosomal proteins were found to be differentially
expressed in cell subpopulations of osteoarthritis
synovium and osteoarthritis cartilage from damaged
and nondamaged areas [29]. Although their associ-
ation with functional ribosomes needs to be inves-
tigated, these observations at least highlight an
interaction between the osteoarthritis disease stage,
the chondrocyte phenotype, and the regulation of
the expression of core ribosomal proteins. Indeed,
recent work from our group demonstrated that in
chondrogenesis, the expression of the chondrogenic
transcription factor Sox9 regulates the expression of
ribosomal proteins as well as proteins involved in
the ribosome biogenesis pathway [30

&&

]. The osteo-
arthritis disease-dependent regulation of expression
of core ribosomal subunits hints towards ribosome
heterogeneity, which is a level of protein transla-
tional control that was recently discovered [31].
Altered ribosome activity in osteoarthritis

The primary function of the ribosome is the trans-
lation of mRNAs into proteins (Fig. 1). Multiple
studies have gathered compelling evidence of major
proteomic changes in fluids, cells and tissues of the
64 www.co-rheumatology.com
osteoarthritis joint [32–39]. For a long time, it was
assumed that these changes originate from major
mRNA transcriptomic changes only. An additional
important level of epitranscriptomic regulation was
later introduced by the identification of microRNA
networks that control the translation of mRNAs
involved in osteoarthritis development [40]. How-
ever, it was only recently demonstrated that protein
synthesis in osteoarthritis is also regulated at the
level of ribosome activity (Fig. 1). It was shown that
ribosome protein translation activity was increased
in human osteoarthritis chondrocytes, in a rat
model for traumatic osteoarthritis, and in an IL-
1b-dependent in-vitro chondrocyte model for oste-
oarthritis [41]. The identified mechanism behind
this observation was a mammalian target of rapa-
mycin complex 1 (mTORC1)-mediated inhibition of
eIF4E-binding protein 1 (4E-BP1). As the activity of
4E-BP1 is rate-limiting for the activity of eIF4E, the
cap-binding protein responsible for cap-dependent
protein translation, this indicates that this mecha-
nism primarily involves cap-mediated translation
initiation. In concert with involvement of mTORC1
in cartilage homeostasis, mTOR activity was shown
to be increased in osteoarthritis but was then linked
to cartilage autophagy [42]. The finding that the
mTORC1-mediated inhibition of 4E-BP1 precedes
cartilage degeneration in rat osteoarthritis knees
[43] strongly suggests its involvement in early oste-
oarthritis. In contrast to an overall increased level of
chondrocyte protein translation activity, work from
our group demonstrated that protein translation
activity was reduced in chondrocytes isolated from
end-stage knee osteoarthritis cartilage [19

&&

]. This
was accompanied by lower levels of rRNA in osteo-
arthritis chondrocytes and chondrocytes treated
with osteoarthritis synovial fluid. In addition, in a
study comparing end-stage osteoarthritis cartilage
with normal cartilage, it was found that expression
of 4E-BP1 was higher in osteoarthritis cartilage,
which is indicative of a reduction of translational
activity [44

&

]. Fibroblast growth factor (FGF) signal-
ling [45] was described as another mechanism
underlying a reduction in chondrocyte protein
translation [46]. However, this mechanism was
mTOR-independent. In addition, the recent sin-
gle-cell sequencing work in chondrocytes demon-
strated differential expression of translation
initiation factors 4E-BP1 [in proliferative chondro-
cytes (ProCs)] and EIF4A1, EIF4A2, EIF4A3, EIF1 and
EIF5 [in homeostatic chondrocytes (HomCs)]
[16

&

,29]. Interestingly, in an osteoarthritis serum
biomarker study, patients with knee osteoarthritis
had significantly lower serum levels of 4E-BP1,
which was found be positively correlated with oste-
oarthritis pain intensity [34]. Together, this suggests
Volume 34 � Number 1 � January 2022



Ribosome dysfunction in osteoarthritis van den Akker et al.
that the mechanisms and involvement of deregu-
lated ribosome protein translation activity in osteo-
arthritis chondrocytes are far more complex and
depend on the stage of osteoarthritis progression
and the chondrocyte phenotype, warranting further
studies to dissect its complexity.

Rather than performing protein translation in a
textbook manner, it has become clear that there is a
large level of translational regulation that drives
preferential translation of specific mRNAs [47]. Pro-
tein translation initiation can occur via multiple
mechanisms and two well described mechanisms
are cap-dependent translation and IRES-dependent
translation (Fig. 1). Although cap-dependent trans-
lation is considered to constitute the majority of
translation events, the cell preferentially uses IRES-
dependent translation for the synthesis of many of
its stress-related proteins. Indeed, ongoing work by
our group demonstrates that in chondrocytes TNFa

induces protein translation from the FGF1 IRES [48].
In addition, treatment of chondrocytes with TGFb

induced their protein translational activity [44
&

,49]
but skewed their preferential mode of translation
toward cap-dependent translation [49]. The balance
between cap-dependent and IRES-dependent trans-
lation is amongst others determined by specific
snoRNA-mediated PTMs on the rRNA [18] and by
expression of IRES-transacting factors (ITAFs). With
the mapping of differential expression of snoRNAs
[14,22

&&

,23,26,50] and rRNA PTMs [25], as well as
high-resolution proteomics [30

&&

,39] in cells from
joint tissues as a function of ageing [51,52] and
osteoarthritis, it is expected that insight into this
level of ribosome translation regulation will further
unfold. The existence of other mechanisms of pref-
erential translation in cell types from the joint is
only starting to emerge. Recently ribosome profiling
coupled to protein mass-spectrometry demon-
strated that treatment of chondrocytic cells with
IL-1b induced the preferential translation of pro-
teins associated with inflammatory responses and
oxidative stress [53

&&

]. IL-1b -induced preferential
translation of osteoarthritis-related proteins in
chondrocytes was suggested to be mediated by their
50 untranslated regions [54].
Future perspectives

It is becoming clear that alterations in ribosome
biogenesis and ribosome function find their place
in themolecularpathobiology ofosteoarthritis.How-
ever, considering the incredible complexity of ribo-
some biogenesis and the many mechanisms bywhich
ribosome activity and modus can be influenced, this
field of osteoarthritis research is only just emerging.
In discovery-driven approaches, we need to further
1040-8711 Copyright � 2021 The Author(s). Published by Wolters Kluwe
chart the levels and identify the molecules by which
ribosomebiogenesis and function arebeingdisturbed
in osteoarthritis. Cellular stress signalling provoked
by environmental factors like growth factors, cyto-
kines, chemokines, damage-associated molecular
patterns, senescence, metabolites, mechanosensing
mechanisms and the extracellular matrix are all, in
one way or the other, involved in osteoarthritis
development and its progression. The osteoarthri-
tis-related proteomic changes in the tissues of the
joint induced by these pathological stress signalling
events can all be candidates for regulation at the
translational level by the ribosome. This can either
be caused by changes in ribosome biogenesis, total
protein translation capacity, or by mechanisms of
preferential translation of mRNAs. An interesting
connection between ribosome biogenesis and cellu-
lar stress is p53. P53 expression is upregulated in
senescent and osteoarthritis chondrocytes [55,56].
In addition, p53 is a major regulator of ribosome
biogenesis stress and p53 activation shuts down ribo-
some biogenesis at multiple levels [57]. This can lead
to impairment of the total protein translation capac-
ity with consequences for cartilage proteostasis [52].
Another ribosome-related stress factor relevant to
chondrocytes is endoplasmic reticulum (ER) stress
[58]. ER stress triggers the unfolded protein response
(UPR). UPR activation has been demonstrated in
osteoarthritis chondrocytes [59,60] and recently it
was shown that ER stress and the UPR are specifically
involved in the onset of experimental osteoarthritis
but not in its progression [61]. Whether alterations in
ribosome biogenesis are involved in osteoarthritis
chondrocyte ER stress is currently unclear. However,
ribosome translation activity can be connected to ER
stress and the UPR via inactivation of eukaryotic
translation initiation factor (eIF) 2a and inhibition
of 80S ribosome assembly [58,62]. Recent evidence
demonstrates that translation of catabolic proteins in
chondrocytic cells is preferred in osteoarthritis-mim-
icking environments [53

&&

,54]. The finding that
mechanisms of such preferential translation can also
include heterogeneity of the cellular ribosome pool is
an exciting development that may further unveil
how cells in joints tissues can translationally respond
to changes in their environment at the protein level
(Fig. 1). However, the potential ribosome biogenesis-
related and ribosome activity-related consequences
for the proteomes of different tissue types from the
joint still need to be determined.
CONCLUSION

As outlined above, a slowly increasing amount of
experimental evidence highlights that molecular
mechanisms involved in ribosome biogenesis and
r Health, Inc. www.co-rheumatology.com 65



Osteoarthritis
ribosome activity are deregulated in osteoarthritis.
The fact that we can find these aberrations from
early-stage ribosome biogenesis, through ribosome
build-up and maturation, up to preferential transla-
tion by the ribosome is fascinating. Underlying
genetic factors do not seem to be the cause of these
translational deficits. In contrast, ageing and many
environmental factors are clearly connected to dis-
turbances in ribosome biogenesis and ribosome activ-
ity in general, and also represent main risk factors for
the development and progression of osteoarthritis.
Classically, osteoarthritis has been explained as a
disbalance between joint tissue anabolism and catab-
olism. Considering the current evidence collected in
this article on osteoarthritis-related aberrations in
ribosome biogenesis and ribosome function, we
therefore hypothesize that osteoarthritis can be
molecularly interpreted as an acquired ribosomop-
athy [63

&

]. This hypothesis further fine-tunes the
dogmatic anabolism/catabolism point-of-view by
adding aberrations in total protein translation capac-
ityand preferential translation to the molecular path-
ogenesis of osteoarthritis. This may provide novel
molecular opportunities for the development of oste-
oarthritis disease-modifying treatments.
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