CERN-EP-2021-186

Search for massive long-lived particles decaying semileptonically at $\sqrt{s}=13 \mathrm{TeV}$

LHCb collaboration ${ }^{\dagger}$

Abstract

A search is performed for massive long-lived particles (LLP) decaying semileptonically into a muon and two quarks. Two kinds of LLP production processes were considered. In the first a Higgs-like boson with mass from 30 to $200 \mathrm{GeV} / c^{2}$ is produced by gluon fusion and decays into two LLPs. The analysis covers LLP mass values from $10 \mathrm{GeV} / c^{2}$ up to about one half the Higgs-like boson mass. The second LLP production mode is directly from quark interactions, with LLP masses from 10 to $90 \mathrm{GeV} / c^{2}$. The LLP lifetimes considered range from 5 to 200 ps . This study uses LHCb data collected from proton-proton collisions at $\sqrt{s}=13 \mathrm{TeV}$, corresponding to an integrated luminosity of $5.4 \mathrm{fb}^{-1}$. No evidence of these long-lived states has been observed, and upper limits on the production cross-section times branching ratio have been set for each model considered.

Submitted to Eur. Phys. J. C
(C) 2021 CERN for the benefit of the LHCb collaboration. CC BY 4.0 licence

[^0]
1 Introduction

Supersymmetry (SUSY) is one of the most popular extensions of the Standard Model (SM), which solves the hierarchy problem, unifies the gauge couplings at the Planck scale and proposes dark matter candidates. The minimal supersymmetric extension of the Standard Model (MSSM) is the simplest phenomenologically viable realization of SUSY [1,2]. The present study addresses a subset of models featuring massive long-lived particles (LLP) with a measurable flight distance [3, 4]. Searches for LLPs have been performed by the Tevatron and LHC experiments [5-12], often using the Hidden Valley framework [4] as a benchmark model. In particular, the production of LLPs from the decay of a SM-like Higgs boson has been studied in several searches at LHC assuming LLP decays to light-flavour jets [7, 12 15], b-quark jets [16] and light leptons [17-19]. Additional information on searches for LLPs at collider experiments can be found in Refs. [20] and [21].

This analysis focuses on LLPs decaying semileptonically into SM particles. It uses proton-proton $(p p)$ collision data at a centre-of-mass energy $\sqrt{s}=13 \mathrm{TeV}$ collected by the LHCb experiment at LHC, corresponding to a total integrated luminosity of $5.4 \mathrm{fb}^{-1}$. It extends the analysis of Ref. [14 on data collected at $\sqrt{s}=7$ and 8 TeV . A reinterpretation of the LHCb results in terms of sterile neutrinos searches can be found in Ref. [22].

The theoretical model chosen as benchmark is the minimal SUper GRAvity (mSUGRA) with R-parity violation (RPV) [23], in which the neutralino can decay into a muon and two quarks: $\tilde{\chi}_{1}^{0} \rightarrow \mu^{+} q_{i} q_{j}\left(\mu^{-} \bar{q}_{i} \bar{q}_{j}\right)$. Neutralinos can be produced by a variety of processes. In this paper the analysis has been performed assuming the two simple mechanisms depicted in Fig. 1. In the first process, a Higgs-like particle, h^{0}, is produced by gluon fusion and decays into two LLPs. The analysis covers h^{0} masses from 30 to $200 \mathrm{GeV} / c^{2}$, LLP lifetimes from 5 to 200 ps and LLP mass values from $10 \mathrm{GeV} / c^{2}$ up to about one half the h^{0} mass. The second mode is a direct LLP production from quark interactions. The LLP lifetime range considered is from 5 to 200 ps and the mass range from 10 to $90 \mathrm{GeV} / c^{2}$. The LLP lifetime range begins at 5 ps , well above the typical b-hadron lifetime, and extends up to 200 ps , where most of the vertices are still within the LHCb vertex locator (VELO). The mass range avoids the region of the SM b-quark states, but also takes into account the forward acceptance of the LHCb detector within which the decay products of relatively light LPPs can be efficiently detected.

Figure 1: LLP production processes considered in this paper, where the $\tilde{\chi}_{1}^{0}$ represents the LLP: (a) di-LLP production via a scalar particle h^{0}; (b) non-resonant, direct LLP production from quark interactions, where X is a stable particle, with mass identical to the LLP. The LLP decays into a muon and two quarks: $\tilde{\chi}_{1}^{0} \rightarrow \mu^{+} q_{i} q_{j}\left(\mu^{-} \bar{q}_{i} \bar{q}_{j}\right)$.

The LLP signature is a displaced vertex made of charged particles tracks accompanied by an isolated muon with high transverse momentum with respect to the proton beam direction, p_{T}. This study benefits from the excellent vertex reconstruction provided by the VELO, and by the low p_{T} threshold of the muon trigger, compared to the other LHC experiments. In addition, the LHCb experiment is probing a rapidity region only partially accessible by other LHC experiments. These properties allow the LHCb experiment to be complementary to similar analyses performed by the two central detectors at LHC and even explore regions of the theoretical parameter space where these experiments are limited by their low efficiency to reconstruct highly boosted LLPs.

2 Detector description and simulation

The LHCb detector 24,25 is a single-arm forward spectrometer covering the pseudorapidity range $2<\eta<5$, designed for the study of particles containing b or c quarks. The detector includes a high-precision tracking system consisting of the VELO which is a silicon-strip detector surrounding the $p p$ interaction region [26], a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about 4 Tm , and three stations of silicon-strip detectors and straw drift tubes [27,|28] placed downstream of the magnet. The tracking system provides a measurement of the momentum, p, of charged particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at $200 \mathrm{GeV} / c$. The minimum distance of a track to a primary $p p$ collision vertex (PV), the impact parameter, is measured with a resolution of $\left(15+29 / p_{T}\right) \mu \mathrm{m}$, where p_{T} is in GeV / c. Different types of charged hadrons are distinguished using information from two ring-imaging Cherenkov detectors [29]. Photons, electrons and hadrons are identified by a calorimeter system consisting of scintillating-pad and preshower detectors, an electromagnetic (ECAL) and a hadronic calorimeter (HCAL). Muons are identified by a system composed of alternating layers of iron and multiwire proportional chambers [30]. The online event selection is performed by a trigger [31], which consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software stage, which applies a full event reconstruction.

Simulation is used to model the effects of the detector acceptance and the imposed selection requirements. In the simulation, pp collisions are generated using Pythia 8 [32] with a specific LHCb configuration [33] and with parton density functions taken from CTEQ6L [34]. The interaction of the generated particles with the detector, and its response, are implemented using the GEANT4 toolkit [35] as described in Ref. [36].

Several sets of signal events have been produced assuming the processes illustrated in Fig. 1. where the $\tilde{\chi}_{1}^{0}$ plays the role of a long-lived particle. For the first process considered, two $\tilde{\chi}_{1}^{0}$ particles are obtained from the decay of the Higgs-like boson produced by gluon fusion, $g g \rightarrow h^{0} \rightarrow \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0}$. The $\tilde{\chi}_{1}^{0}$ lifetime, $\tau_{\tilde{\chi}_{1}^{0}}$, is chosen from 5 to 200 ps . The mass value of the Higgs-like boson, $m_{h^{0}}$, is in the range 30 to $200 \mathrm{GeV} / c^{2}$, the $\tilde{\chi}_{1}^{0}$ mass, $m_{\tilde{\chi}_{1}^{0}}$, varies from $10 \mathrm{GeV} / c^{2}$ to about half $m_{h^{0}}$. For the second process, the LLP is produced in a non-resonant mode, $q \bar{q} \rightarrow \tilde{\chi}_{1}^{0} X$. Here X is a stable particle with the same mass as that of the $\tilde{\chi}_{1}^{0}$ state, varying from 10 to $90 \mathrm{GeV} / c^{2}$.

The LLP decays into a muon and two quarks; the branching ratio of $\tilde{\chi}_{1}^{0} \rightarrow \mu^{+} q_{i} q_{j}\left(\mu^{-} \bar{q}_{i} \bar{q}_{j}\right)$ is set to be equal for each quark combination $\left(q_{i}=u, c\right.$ and $\left.q_{j}=\bar{d}, \bar{s}, \bar{b}\right)$, with an equal proportion of μ^{+}and μ^{-}.

In the following, the model name is indicated by the values of $m_{h^{0}}, m_{\tilde{\chi}_{1}^{0}}$ and $\tau_{\tilde{\chi}_{1}^{0}}$; h125-chi40-10ps, for example, corresponds to $m_{h^{0}}=125 \mathrm{GeV} / c^{2}, m_{\tilde{\chi}_{1}^{0}}=40 \mathrm{GeV} / c^{2}, \tau_{\tilde{\chi}_{1}^{0}}=$ 10 ps . For the direct production, the Higgs mass is omitted from this notation, such as for example in chi30-10ps.

The most relevant background in this analysis is from events containing heavy quarks. The background from heavy quarks directly produced in $p p$ collisions, as well as from W, Z, Higgs boson and top quark decays, is studied using the simulation. The simulation of inclusive $b \bar{b}$ and $c \bar{c}$ events is not efficient to produce a large enough sample to cover the relevant high- p_{T} muon kinematic region. Hence, a dedicated sample of $20 \times 10^{6}\left(1 \times 10^{6}\right)$ simulated $b \bar{b}(c \bar{c})$ events has been produced with a minimum parton \hat{p}_{T} of $20 \mathrm{GeV} / c$ and requiring a muon with $p_{\mathrm{T}}>12 \mathrm{GeV} / c$ and $1.5<\eta<5.0$. All the simulated background species are suppressed by the multivariate analysis presented in the next section. Therefore a data-driven approach is employed for the final background estimation.

3 Signal selection

Signal events are selected by requiring a vertex displaced from any PV in the event and containing one isolated, high- p_{T} muon. Due to the relatively high LLP mass, the muons from the LLP decay are expected to be more isolated than muons from hadron decays. The events from $p p$ collisions are selected online by a trigger requiring muons with $p_{\mathrm{T}}>10 \mathrm{GeV} / c$. The offline analysis requires that the triggering muon has an impact parameter, IP^{μ}, with respect to any PV , larger than 0.25 mm and a transverse momentum, p_{T}^{μ}, larger than $12 \mathrm{GeV} / c$. Primary and displaced vertices are reconstructed offline from charged tracks [37]. Genuine PVs are identified by a small radial distance from the beam axis, $R_{\mathrm{xy}}<0.3 \mathrm{~mm}$. Once the set of PVs is identified, all the other vertices are candidates for the decay position of LLPs. An LLP candidate is formed of three or more tracks including the muon and having an invariant mass above $4.5 \mathrm{GeV} / c^{2}$. Particles interacting with the detector material are an important source of background. Therefore a geometric veto is used to reject candidates with vertices in regions occupied by detector material [38]. The event preselection requires at least one PV in the event and at least one LLP candidate.

Figure 2 compares the distributions from data and from the simulated $b \bar{b}$ events for the relevant observables, after preselection. For illustration the shapes of simulated h125-chi40-10ps events are also superimposed. The effect of the geometric veto is visible in the R_{xy} distribution, for candidates with R_{xy} above 5 mm . The muon-isolation variable is defined as the sum of the energy of tracks surrounding the muon direction, including the muon itself, in a cone of radius $R_{\eta \phi}=0.3$ in the pseudorapidity-azimuthal (η, ϕ) space, divided by the energy of the muon track. The radius is reduced to $R_{\eta \phi}=0.2$ when the theoretical hypothesis assumes a LLP mass of $10 \mathrm{GeV} / c^{2}$, to account for the reduced aperture of the jet of particles produced by the LLP decay. A muon-isolation value of unity denotes a fully isolated muon. In simulation the muon from the signal is found to be more isolated than the hadronic background.

Figure 2: Distributions from data compared to simulated $b \bar{b}$ events (blue) and the simulated signal h125-chi40-10p (red), after preselection. From (a) to (j): muon transverse momentum; muon impact parameter; muon isolation; the calorimetric energy, $\mathrm{E}_{\text {calorimeters }}$, associated with the muon normalised by the muon energy, $\mathrm{E}_{\text {muon }}$; the number of tracks used to reconstruct the LLP vertex including the muon; the radial distance to the beam line of the reconstructed vertex; longitudinal and radial vertex fit errors, σ_{Z} and σ_{R}; reconstructed transverse momentum and mass of the LLP candidate. The distributions from simulated events are normalised to the data.

The shapes of the distributions in Fig. 2 are all consistent with a dominant $b \bar{b}$ composition of the background. This is confirmed by comparing the yields in data and simulation: after preselection and requiring the isolation parameter below 1.2, the total number of LLP candidates in data is 148×10^{3}. The predicted background yields from $b \bar{b}$ and $c \bar{c}$ events are $(120 \pm 20) \times 10^{3}$ and $(14 \pm 4) \times 10^{3}$, respectively. Small contributions are expected from processes with W, Z bosons plus jets, top and Standard Model Higgs events: $260,20,2$, and 1 candidates, respectively. The $b \bar{b}$ and $c \bar{c}$ prediction uses the cross-sections measured by the LHCb experiment at 13 TeV [39, 40]. The acceptance of this analysis is computed with MadGraph5-aMC@NLO [41] and the detection efficiency is obtained from simulated events. As already stated, these background estimations are only used for cross-checks.

A multivariate analysis (MVA) based on a boosted decision tree [42, 43] is used to further purify the data sample. Ten MVA input variables are selected to optimise the signal-background separation. They are: p_{T}^{μ} and IP^{μ}, the ratio of the energies associated with the muon measured in ECAL and HCAL normalised to the muon energy, the LLP candidate p_{T}, its pseudorapidity, the number of tracks forming the LLP, the vertex uncertainties in the radial direction, σ_{R}, and in the z direction, σ_{Z}, and the vertex R_{xy} distance.

Larger vertex uncertainties are expected on the vertices of candidates from $b \bar{b}$ events compared to signal LLPs. The former are more boosted and produce more collimated tracks, while the relatively heavier signal LLPs decay into more divergent tracks. This effect decreases when the mass of the LLP approaches the mass of b-quark hadrons. The selection based on the energy deposit in the calorimeters is efficient to suppress the background due to kaons or pions punching through the calorimeters and being misidentified as muons. The muon-isolation variable and the reconstructed mass of the long-lived particles are not included in the classifier; the discrimination power of these two variables is subsequently exploited for the signal determination.

The signal MVA training samples are provided by simulation. The background training sample is obtained from data, based on the hypothesis that the fraction of signal in the data after preselection is small. This automatically includes all possible background sources, with the correct relative abundance. The training is performed independently for each simulated model. The classifier output value is then calculated for data, simulated signal and all the background species considered. For each model, the optimal MVA cut value is chosen by an iterative minimization procedure to give the best expected cross-section upper limit, but keeping at least ten candidates to allow the invariant-mass fit to work properly.

The classifier can be biased by the presence of signal in data used as background training set. To quantify the potential bias, the MVA training is performed adding a fraction of simulated signal events (up to 5%) to the background set. This test demonstrates a negligible effect on the MVA performance for all the signal models.

4 Determination of the signal yield

The signal yield is determined with an unbinned extended maximum-likelihood fit to the distribution of the reconstructed LLP mass. The shape of the signal component is taken from the simulated models, and a background component is added. After the MVA
selection, no simulated background survives, therefore a data-driven method is adopted to determine the background shape. The data candidates are separated into a signal region with muon isolation below 1.2 and a background region with isolation values from 1.4 to 2.0 . The signal-region selection accepts more than 80% of the signal for all the models considered (see e.g. Fig. 22). Any potential signal yield in the background region is considered negligible. The reconstructed mass distribution obtained from the background candidates is used to constrain an empirical probability density function (PDF) consisting of the sum of two negative-slope exponential functions, one of them convolved with a Gaussian function. Shape parameters and amplitudes are left to vary in the fit. It is possible that the mass distribution obtained after selection of the background region does not represent exactly the background component in the signal region. Hence a correction is applied before performing the fit: the mass distribution selected in the background region is weighted with weights deduced from the comparison of the candidate mass distributions of signal and background regions obtained from data with a relaxed MVA selection. This relaxed selection is required to have sufficiently populated samples and to minimise the correlation with the final distributions from which signal yields are obtained. The consistency of this procedure is tested on $b \bar{b}$ simulated events.

Table 1: Signal detection efficiency, in percent, after preselection, $\varepsilon_{\text {presel }}$, including the geometrical acceptance, and after MVA selection, ε, and numbers of fitted signal and background events in the signal region, N_{s} and N_{b}, for the different signal hypotheses with resonant LLP production (masses units are GeV / c^{2}, lifetimes in ps). The last column gives the value of χ^{2} per degree of freedom, ndf, from the fit.

$m_{h 0}$	$\mathrm{m}_{\tilde{\chi}_{1}^{0}}$	$\tau_{k h i}$	$\varepsilon_{\text {presel }}$	ε		$N_{\text {b }}$	$N_{\text {s }}$	χ^{2} / ndf
30	10	10	0.19	0.03	1025.7	± 159.4	-89.7 ± 39.1	2.75
41	10	10	0.29	0.01	61.3	± 51.7	-5.3 ± 5.2	0.67
41	20	10	0.53	0.08	73.2	± 14.2	13.8 ± 12.8	1.22
50	10	10	0.46	0.09	1421.3	± 84.4	-71.4 ± 75.1	1.03
50	20	10	0.95	0.12	18.3	$\pm \quad 6.9$	6.7 ± 6.4	1.12
80	10	10	0.74	0.05	127.0	± 17.8	1.0 ± 14.5	1.35
80	20	10	1.86	0.42	53.9	± 45.3	-5.4 ± 5.0	1.07
80	30	10	2.34	0.72	22.4	± 4.2	-0.4 ± 4.2	0.67
80	40	10	1.83	0.43	12.1	± 4.1	1.9 ± 4.5	0.53
125	10	5	0.63	0.04	333.7	± 28.0	-10.6 ± 21.7	0.77
125	10	10	0.68	0.06	198.3	± 19.2	4.7 ± 14.7	1.72
125	10	20	0.73	0.09	1680.8	± 42.9	-172.2 ± 34.0	0.96
125	10	30	0.64	0.08	419.0	± 45.1	-29.9 ± 34.8	1.43
125	10	40	0.49	0.06	184.7	± 30.4	8.3 ± 28.2	0.77
125	10	50	0.51	0.11	667.0	± 46.9	-2.0 ± 39.5	1.20
125	10	100	0.32	0.04	53.7	± 12.4	10.3 ± 11.7	1.14
125	10	200	0.19	0.03	71.5	± 8.4	-0.5 ± 4.1	0.57
125	20	5	1.86	0.36	56.1	± 43.3	-5.8 ± 5.6	1.27
125	20	10	2.28	0.67	39.6	± 36.8	-3.9 ± 5.4	1.06
125	20	20	2.24	0.47	18.1	± 15.4	-0.1 ± 5.5	0.97
125	20	30	2.10	0.35	9.5	± 4.0	7.5 ± 4.2	0.93
125	20	50	1.73	0.44	28.9	$\pm \quad 9.4$	8.1 ± 8.7	1.67
125	20	80	1.36	0.21	22.9	$\pm \quad 5.8$	2.1 ± 5.5	0.24
125	20	100	1.18	0.25	15.0	± 14.9	-1.0 ± 4.1	0.80
125	20	200	0.71	0.09	11.0	± 2.0	-3.5 ± 2.2	0.40
125	30	5	2.24	0.68	93.5	± 8.8	-15.0 ± 5.5	2.26

Table 1 - continued from previous page

$m_{h^{0}}$	$m_{\tilde{\chi}_{1}^{0}}$	$\tau_{k h i}$	$\varepsilon_{\text {presel }}$	ε	$N_{\text {b }}$		$N_{\text {s }}$	χ^{2} / ndf
125	30	10	3.13	0.72	$7.0 \pm$	4.0	3.9 ± 4.0	0.84
125	30	20	3.24	0.93	$6.6 \pm$	3.2	3.4 ± 3.1	0.35
125	30	30	2.92	0.87	$14.3 \pm$	2.9	-1.6 ± 2.8	0.84
125	30	50	2.51	1.00	$22.7 \pm$	22.6	-1.7 ± 6.2	0.83
125	30	100	1.84	0.58	$8.8 \pm$	5.5	-2.7 ± 2.1	0.96
125	30	200	1.09	0.45	$25.3 \pm$	4.8	-4.8 ± 4.1	1.16
125	40	5	2.41	0.59	$9.9 \pm$	6.3	-2.5 ± 1.9	0.77
125	40	10	3.44	0.84	$11.0 \pm$	1.6	-2.2 ± 2.1	0.94
125	40	20	3.79	1.90	$10.5 \pm$	3.2	4.5 ± 2.6	0.72
125	40	30	3.71	1.37	$6.3 \pm$	3.4	4.7 ± 3.4	1.31
125	40	50	3.24	1.39	$28.6 \pm$	1.7	-10.6 ± 4.8	0.87
125	40	100	2.30	0.64	$9.9 \pm$	8.3	-1.4 ± 2.2	0.56
125	40	200	1.49	0.61	$9.9 \pm$	8.1	-1.5 ± 2.2	1.28
125	50	5	2.25	0.48	$8.3 \pm$	1.5	-0.3 ± 2.4	0.60
125	50	10	3.41	1.60	$20.9 \pm$	4.0	1.1 ± 1.8	0.58
125	50	20	4.10	2.01	$16.5 \pm$	0.5	-14.9 ± 11.9	0.57
125	50	30	4.13	2.04	$4.2 \pm$	2.4	3.9 ± 2.5	0.69
125	50	50	3.86	2.30	$17.5 \pm$	0.5	-0.5 ± 0.3	0.64
125	50	100	3.02	1.74	$15.4 \pm$	0.8	-9.3 ± 2.9	0.95
125	50	200	2.00	0.90	$4.4 \pm$	1.9	3.5 ± 2.1	0.76
125	60	5	1.64	0.48	$20.9 \pm$	15.8	-2.6 ± 3.1	0.64
125	60	10	2.85	1.22	$9.8 \pm$	2.1	-0.8 ± 2.2	1.10
125	60	20	3.98	2.04	$22.8 \pm$	4.8	1.2 ± 1.9	0.88
125	60	30	4.20	2.39	$16.5 \pm$	0.3	-10.0 ± 0.9	0.73
125	60	50	4.57	2.87	$20.9 \pm$	2.9	3.1 ± 1.4	1.13
125	60	100	3.68	2.30	$9.9 \pm$	1.9	-1.3 ± 2.4	1.73
125	60	200	2.75	1.90	$10.7 \pm$	3.8	3.3 ± 3.0	1.58
150	10	10	0.62	0.12	$1514.7 \pm$	52.5	-152.0 ± 30.8	2.01
150	20	10	2.19	0.67	66.0 土	13.6	-8.2 ± 6.0	1.47
150	30	10	3.20	0.60	$6.9 \pm$	2.0	1.1 ± 1.1	0.67
150	40	10	3.55	1.44	$15.4 \pm$	12.1	-2.1 ± 2.8	1.35
150	50	10	3.79	1.06	$6.9 \pm$	2.0	1.1 ± 1.1	0.87
150	60	10	3.68	1.79	$25.3 \pm$	1.5	-15.0 ± 1.7	1.41
200	10	10	0.46	0.05	$433.1 \pm$	34.2	7.0 ± 27.6	1.59
200	20	10	1.93	0.45	$136.2 \pm$	26.2	21.8 ± 24.5	0.95
200	30	10	2.94	0.48	$8.6 \pm$	3.9	4.4 ± 4.2	0.79
200	40	10	3.43	0.84	$9.3 \pm$	2.8	3.7 ± 2.2	1.30
200	50	10	3.84	1.48	$12.1 \pm$	2.1	-1.8 ± 2.3	0.50
200	60	10	3.97	1.81	$12.1 \pm$	2.1	-1.8 ± 2.5	0.56
200	50	5	2.90	1.20	$11.8 \pm$	2.1	-0.8 ± 1.2	0.57
200	50	20	3.80	1.79	$7.7 \pm$	2.7	1.3 ± 2.8	0.70
200	50	30	3.45	0.98	$17.6 \pm$	1.7	-6.0 ± 2.7	0.62
200	50	50	2.91	1.14	$7.7 \pm$	0.8	-3.4 ± 1.9	1.07
200	50	100	1.95	1.04	$10.0 \pm$	3.0	1.0 ± 3.0	1.07
200	50	200	1.17	0.72	$17.6 \pm$	3.5	-4.0 ± 3.6	0.50

Examples of the invariant mass of the selected LLP candidates are shown in Fig. 3 for the signal and background regions. The invariant-mass fit is performed simultaneously on LLP candidates from the signal and from the background regions. In the former, the numbers of signal and background events are free parameters of the fit. The results of the fit are shown in the figure. The sensitivity of the fit procedure is studied by adding a

Table 2: Signal detection efficiency, in percent, after preselection, $\varepsilon_{\text {presel }}$, including the geometrical acceptance, and after MVA selection, ε, and numbers of fitted signal and background events in the signal region, N_{s} and N_{b}, for the different signal hypotheses for the LLP non-resonant production models (masses units are $\mathrm{GeV} / \mathrm{c}^{2}$, lifetimes in ps). The last column gives the value of χ^{2} per degree of freedom, ndf, from the fit.

$m_{\tilde{\chi}_{1}^{0}}$	$\tau_{\tilde{\chi}_{1}^{0}}$	$\varepsilon_{\text {presel }}$	ε	$N_{\text {b }}$			$N_{\text {s }}$	χ^{2} / ndf
10	10	0.61	0.13	2767.9	\pm	88.2	-141.8 ± 69.7	1.69
20	10	0.66	0.23	43.9	\pm	40.1	-4.2 ± 5.0	0.67
30	10	2.29	0.47	15.7	\pm	5.8	3.3 ± 5.2	0.90
40	10	2.49	0.52		\pm	1.4	5.9 ± 2.8	0.96
60	10	3.81	1.97	45.1	\pm	5.6	-8.0 ± 4.3	0.80
90	10	2.52	1.68	30.8	\pm	2.2	-9.8 ± 5.0	1.04
30	5	1.44	0.21	11.0	\pm	2.5	-1.0 ± 2.7	0.67
30	20	2.64	0.66	13.8	\pm	4.4	3.2 ± 4.2	0.65
30	30	2.52	0.74		\pm	2.2	2.4 ± 2.1	0.41
30	50	2.25	0.81	16.5	\pm	16.1	-1.8 ± 3.2	0.69
30	100	1.68	0.61		\pm	7.4	-1.7 ± 3.1	1.10
30	200	1.06	0.29	38.0	\pm	6.3	0.0 ± 2.3	0.79

small number of simulated signal events to the data according to a given signal model. The fitted yields are on average consistent with the numbers of added events. The fitted signal yields, given in Tables 1 and 2 are compatible with the background-only hypothesis for all the theoretical models.

5 Detection efficiency and systematic uncertainties

The signal detection efficiency is estimated from the simulated signal events. The efficiencies after preselection and after MVA selection are shown in Table 11 and 2, for the considered models of resonant and non-resonant LLP productions, respectively. The values include the geometrical acceptance. Several phenomena compete to determine the detection efficiency. In general the efficiency after preselection increases with the LLP mass because more particles are produced in the decay of heavier LLPs. There is a loss of particles outside the spectrometer acceptance, especially when the LLPs are produced from the decay of heavier states, such as the Higgs-like particle. In addition, the lower boost of heavier LLPs results in a shorter average flight length, which is disfavoured by the requirement of a minimum R_{xy} value. With increasing LLP lifetimes a larger portion of the decays falls into the material region and is vetoed. Finally, a drop of sensitivity is expected for LLPs with a lifetime close to the b-hadron lifetimes, where the contamination from $b \bar{b}$ events becomes even more important, especially for low-mass LLPs. The detection efficiency is reduced by up to one order of magnitude after the optimised MVA selection while the background is reduced by 3-4 orders of magnitude.

A breakdown of the relative systematic uncertainties is shown in Table 3. The uncertainties of the partonic luminosity depend upon the process considered; they are estimated following the procedure explained in Ref. [44, 45] and vary from 3% up to 6%, which is found for the gluon fusion process. The integrated luminosity [46] contributes with an uncertainty of 2%. The statistical precision of the efficiencies determined from simulation is in the range $2-4 \%$ for the different models. Different sources of systematic

Figure 3: Reconstructed invariant mass of the LLP candidates. Subfigures (a), (c), and (e) correspond to the signal selections which assume the models h80-chi30-10ps, h200-chi20-10ps, and the non-resonant model chi30-10ps, respectively. Subfigures (b), (d), and (f) are the corresponding distributions for candidates selected in the background region. The results of the fits are superimposed.
uncertainty arising from discrepancies between data and simulation have been considered. The size of those discrepancies for the relevant observables are inferred from a comparison of the distributions obtained from data and from $b \bar{b}$ simulated events, which describes the data quite completely, or from other calibration processes.

The muon detection efficiency, including trigger, tracking, and muon identification efficiencies, is studied by a tag-and-probe technique applied to muons from $J / \psi \rightarrow \mu^{+} \mu^{-}$, $\Upsilon(1 S) \rightarrow \mu^{+} \mu^{-}$and $Z \rightarrow \mu^{+} \mu^{-}$decays. The corresponding systematic effects due to differences between data and simulation are estimated to be between 2% and 3.7%, depending on the theoretical model considered.

A comparison of the simulated and observed p_{T} distributions of muons from $Z \rightarrow \mu^{+} \mu^{-}$ decays shows a maximum difference of $0.2 \mathrm{GeV} / c$ in the selected region; this difference is propagated to the LLP analysis by shifting the muon p_{T} threshold by the same amount. The corresponding systematic uncertainty is below 1% for all models under consideration.

The muon impact-parameter distribution is also studied from Z decays and shows a discrepancy between data and simulation of about $10 \mu \mathrm{~m}$ close to the p_{T}^{μ} threshold. By changing the minimum IP^{μ} requirement by this amount, the change in the detection efficiency is below 1% for all the models.

Uncertainties in the estimated vertex-finding efficiency are due to the per-track efficiency, track resolution, and differences in the contribution from background tracks due to the underlying interaction and pile-up. The loss in the vertex-finding efficiency, in addition to detector acceptance effects, occurs mostly because tracks that belong to the signal vertex are erroneously assigned to another vertex. A study of vertices from $B^{0} \rightarrow J / \psi K^{* 0}$ decays with $J / \psi \rightarrow \mu^{+} \mu^{-}$and $K^{* 0} \rightarrow K^{+} \pi^{-}$, has shown that the vertex detection efficiencies in data and simulation agree within 10%. This result, obtained from a process with four final-state particles, is propagated to a LLP decay into a larger number of charged tracks and a detection threshold of three tracks. A discrepancy of at most 2% between the LLP efficiency in data and simulation is found.

The uncertainty on the position of the beam line in the transverse plane is less than $20 \mu \mathrm{~m}$ [26]. It can affect the secondary-vertex selection, mainly via the requirement on R_{xy}. By altering the PV position in simulated signal events, the effect is estimated to be below 1%.

The effect of the imperfect modelling on the observables used in the MVA training is estimated with pseudoexperiments. As previously stated, the bias on each input variable is determined by comparing simulated and experimental distributions of muons and LLP candidates from Z and W events, as well as from $b \bar{b}$ events. At the MVA test stage, each input variable is modified by a scale factor randomly selected from a Gaussian distribution of width equal to the corresponding bias. The standard deviation of the signal efficiency distribution is taken as systematic uncertainty.

The signal and background samples are obtained through a selection on the muon isolation parameter. By a comparison of data and muons from simulated $b \bar{b}$ events, the maximum uncertainty on this variable is estimated to be ± 0.015 in the proximity of the thresholds, with a maximal effect on the efficiency of 1.7%.

Comparing the mass distributions of $b \bar{b}$ and $Z \rightarrow b \bar{b}$ events, a maximum mass-scale discrepancy between data and simulated events of 10% is estimated in the proximity of the threshold, which translates into a 1.4% contribution to the detection uncertainty.

Finally, the total systematic uncertainty is obtained as the sum in quadrature of all contributions, where the different components of the detection efficiency are assumed to be fully correlated.

The choice of the signal and background invariant-mass templates can affect the results of the LLP mass fits. The uncertainty due to the signal model accounts for the mass scale and the mass resolution. The mass scale and resolution discrepancies between data and simulation are below 1% and 1.5% respectively, as obtained from $b \bar{b}$ and $Z \rightarrow b \bar{b}$ events. Pseudoexperiments are used to estimate the effect on the cross-section calculation. For each theoretical model, ten simulated signal events are added to the selected data after a Gaussian smearing or after changing the mass scale. The average deviation of the observed upper limits with respect to the one obtained from the default signal and background distributions is below 2%.

The background shape is deduced from data selected in the poorly isolated region after reweighting, with weights inferred from the data distributions obtained with relaxed selection criteria. The overall uncertainty is estimated by reducing by half the weights

Table 3: Contributions to the relative systematic uncertainties. The indicated ranges cover the theoretical models considered. The contributions from the signal and background models used in the LLP mass fit are treated separately.

Source	Contribution [\%]
Integrated luminosity	2.0
Parton luminosity gluons fusion (quarks)	$6.0(3.0)$
Simulation statistics	$2.0-4.0$
Muon reconstruction	$2.0-3.7$
p_{T}^{μ}	1.0
IP^{μ}	1.0
Vertex reconstruction	2.0
Beam line uncertainty $\left(R_{\mathrm{xy}}\right)$	0.9
Muon isolation	1.7
MVA	$1.7-16$
Mass calibration	1.4
Total	$7.3-18.9$

and running pseudoexperiments as before. The average deviation of the observed upper limits is below 14%.

6 Results

The 95% confidence level (CL) upper limits, expected and observed, on the production crosssections times branching fraction are computed for each model using the CLs approach 47 . Statistical and systematic uncertainties on the signal efficiencies are included as nuisance parameters of the likelihood function, assuming Gaussian distributions. Finally, the upper limit values are corrected by the factors which account for the imperfect modelling of signal and background templates.

The numerical results for all the models are given in Tables 4 and 5. The figures from 4 to 7 show the measured cross-section times branching ratio upper limits, for different theoretical models. The decrease of sensitivity for relatively low LLP mass value is explained by the above-mentioned effects on the detection efficiency. The upper limits for the processes with $m_{h^{0}}=125 \mathrm{GeV} / c^{2}$ can be compared to the prediction of the Standard Model Higgs production cross-section from gluon fusion of about 46 pb at $\sqrt{s}=13 \mathrm{TeV}$ [48].

7 Conclusion

Long-lived massive particles decaying into a muon and two quarks have been searched for using proton-proton collision data collected by the LHCb experiment at $\sqrt{s}=13 \mathrm{TeV}$, corresponding to an integrated luminosity of $5.4 \mathrm{fb}^{-1}$. The LLP lifetime range considered is from 5 ps to 200 ps . The background is dominated by $b \bar{b}$ events and is reduced by tight selection requirements, including a dedicated multivariate classifier. The signal yield is determined by a fit to the LLP reconstructed mass with a signal shape inferred from the theoretical models.

The forward acceptance of the LHCb experiment makes it complementary to other LHC experiments, while its low trigger p_{T} threshold allows to explore relatively small LLP masses. Two types of LLP productions have been assumed. In the first a Higgs-like particle is produced by gluon fusion and decays into two LLPs. The analysis covers Higgs-like boson masses from 30 to $200 \mathrm{GeV} / c^{2}$, and LLP mass range from $10 \mathrm{GeV} / c^{2}$ up to about one half of the mass of the parent boson. The second mode is a direct LLP production from quark interactions, covering the LLP mass range from $10 \mathrm{GeV} / c^{2}$ up to $90 \mathrm{GeV} / c^{2}$.

The results for all theoretical models considered are compatible with the backgroundonly hypothesis. The upper limits at 95% CL set on the cross-section times branching fractions are mostly of $\mathrm{O}(0.1 \mathrm{pb})$, but the sensitivity is limited to $\mathrm{O}(10 \mathrm{pb})$ for the lowest LLP mass value considered of $10 \mathrm{GeV} / c^{2}$.

Table 4: Upper limits at 95% CL on the production cross-section times branching ratio for signal models with a resonant production via an Higgs-like boson. Masses are given in $\mathrm{GeV} / \mathrm{c}^{2}$, lifetimes in ps, cross-sections in pb.

$m_{h^{0}}$	$\mathrm{~m}_{\tilde{\chi}_{1}^{0}}$	$\tau_{\tilde{\chi}_{1}^{0}}$	expected UL	$-\sigma$	$+\sigma$	observed UL
30	10	10	40.24	16.52	31.86	28.34
41	10	10	30.89	11.41	41.72	22.37
41	20	10	7.95	2.24	3.55	10.07
50	10	10	13.72	4.39	11.90	17.37
50	20	10	2.65	0.82	1.67	3.46
80	10	10	13.72	4.36	9.37	14.00
80	20	10	0.81	0.26	0.40	0.64
80	30	10	0.36	0.10	0.18	0.29
80	40	10	0.48	0.12	0.20	0.56
125	10	5	22.06	6.37	32.95	21.53
125	10	10	17.76	0.26	15.73	18.08
125	10	20	20.64	7.89	16.67	12.49
125	10	30	17.21	5.37	13.22	15.40
125	10	40	11.10	4.01	9.27	20.91
125	10	50	8.11	2.63	6.80	13.42
125	10	100	7.89	2.74	5.99	16.99
125	10	200	7.50	1.13	8.19	7.82
125	20	5	1.38	0.45	0.60	0.89
125	20	10	0.56	0.15	0.22	0.47
125	20	20	0.49	0.13	0.22	0.55
125	20	30	0.73	0.21	0.34	0.87
125	20	50	0.91	0.21	0.32	1.00
125	20	80	1.11	0.20	0.40	1.11
125	20	100	0.82	0.22	0.38	0.72
125	20	200	0.94	0.38	0.77	0.98
125	30	5	0.55	0.15	0.23	0.30
125	30	10	0.18	0.04	0.09	0.25
125	30	20	0.20	0.05	0.08	0.23
125	30	30	0.22	0.06	0.09	0.19
125	30	50	0.34	0.07	0.11	0.29
125	30	100	0.17	0.06	0.11	0.17
125	30	200	0.48	0.15	0.17	0.46
125	40	5	0.18	0.06	0.10	0.15
125	40	10	0.17	0.05	0.08	0.14
				$C o n t i n u e d$ on	next page	

Table 4 - continued from previous page

$m_{h^{0}}$	$m_{\tilde{\chi}_{1}^{0}}$	$\tau_{\tilde{\chi}_{1}^{0}}$	expected UL	$-\sigma$	$+\sigma$	observed UL
125	40	20	0.10	0.02	0.04	0.11
125	40	30	0.16	0.04	0.06	0.17
125	40	50	0.18	0.05	0.07	0.14
125	40	100	0.20	0.06	0.11	0.20
125	40	200	0.23	0.07	0.11	0.20
125	50	5	0.28	0.08	0.13	0.35
125	50	10	0.07	0.02	0.04	0.07
125	50	20	0.05	0.02	0.03	0.04
125	50	30	0.09	0.02	0.04	0.10
125	50	50	0.08	0.02	0.03	0.09
125	50	100	0.07	0.03	0.04	0.05
125	50	200	0.18	0.04	0.08	0.20
125	60	5	0.49	0.13	0.21	0.49
125	60	10	0.11	0.03	0.05	0.10
125	60	20	0.05	0.02	0.03	0.06
125	60	30	0.04	0.01	0.03	0.03
125	60	50	0.06	0.02	0.03	0.06
125	60	100	0.07	0.02	0.03	0.07
125	60	200	0.15	0.02	0.06	0.14
150	10	10	14.85	5.52	9.07	9.81
150	20	10	0.60	0.18	0.35	0.41
150	30	10	0.15	0.05	0.09	0.16
150	40	10	0.10	0.03	0.05	0.09
150	50	10	0.08	0.03	0.05	0.09
150	60	10	0.04	0.02	0.03	0.04
200	10	10	22.48	6.43	14.67	28.12
200	20	10	2.47	0.61	0.85	2.71
200	30	10	0.48	0.12	0.19	0.53
200	40	10	0.19	0.05	0.09	0.22
200	50	10	0.08	0.03	0.05	0.07
200	60	10	0.07	0.02	0.04	0.06
200	50	5	0.12	0.04	0.06	0.12
200	50	20	0.09	0.02	0.04	0.09
200	50	30	0.12	0.04	0.07	0.11
200	50	50	0.08	0.03	0.05	0.07
200	50	100	0.15	0.04	0.08	0.16
200	50	200	0.19	0.06	0.12	0.20

Table 5: Upper limits at 95% CL on the production cross-section times branching ratio for signal models with a non-resonant production. Masses are given in GeV / c^{2}, lifetimes in ps, cross-sections in pb.

$m_{\tilde{\chi}_{1}^{0}}$	$\tau_{\tilde{\chi}_{1}^{0}}$	expected UL	$-\sigma$	$+\sigma$	observed UL
10	10	23.67	6.31	12.90	28.84
20	10	0.92	0.24	0.46	0.82
30	10	0.49	0.12	0.19	0.50
40	10	0.31	0.09	0.14	0.44
60	10	0.08	0.03	0.04	0.06
90	10	0.10	0.03	0.05	0.08
30	5	0.86	0.24	0.40	0.90
30	20	0.32	0.08	0.13	0.36
30	30	0.19	0.05	0.09	0.20
30	50	0.22	0.06	0.09	0.20
30	100	0.11	0.04	0.07	0.13
30	200	0.36	0.12	0.23	0.33

Figure 4: Expected (open dots and 1σ and 2σ bands) and observed (full dots) cross-section times branching fraction upper limits $(95 \% \mathrm{CL})$ as a function of $\mathrm{m}_{\tilde{\chi}_{1}^{0}}$ for the resonant production processes with $m_{h^{0}}=125 \mathrm{GeV} / c^{2}$, and, from (a) to (g), $\tau_{\tilde{\chi}_{1}^{0}}$ of $5,10,20,30,50,100$, and 200 ps .

Figure 5: Expected (open dots and 1σ and 2σ bands) and observed (full dots) cross-section times branching fraction upper limits $(95 \% \mathrm{CL})$ as a function of $\tau_{\tilde{\chi}_{1}^{0}}$ for the resonant production with $m_{h^{0}}=125 \mathrm{GeV} / c^{2}$, and, from (a) to (e), $m_{\tilde{\chi}_{1}^{0}}$ of $20,30,40,50$, and $60 \mathrm{GeV} / c^{2}$.

Figure 6: Expected (open dots and 1σ and 2σ bands) and observed (full dots) cross-section times branching fraction upper limits ($95 \% \mathrm{CL}$) as a function of $m_{h^{0}}$ and, from from (a) to (f), $m_{\tilde{\chi}_{1}^{0}}$ of $10,20,30,40,50$, and $60 \mathrm{GeV} / c^{2}$.

Figure 7: Expected (open dots and 1σ and 2σ bands) and observed (full dots) cross-section times branching fraction upper limits $(95 \% \mathrm{CL})$, (a): as a function of $\tau_{\tilde{\chi}_{1}^{0}}$ with $m_{\tilde{\chi}_{1}^{0}}=30 \mathrm{GeV} / c^{2}$, (b): as a function of $m_{\tilde{\chi}_{1}^{0}}$ with $\tau_{\tilde{\chi}_{1}^{0}}=10 \mathrm{ps}$. The processes are from direct, non-resonant, LLP production.

Acknowledgements

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MSHE (Russia); MICINN (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); DOE NP and NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and NERSC (USA). We are indebted to the communities behind the multiple open-source software packages on which we depend. Individual groups or members have received support from ARC and ARDC (Australia); AvH Foundation (Germany); EPLANET, Marie Skłodowska-Curie Actions and ERC (European Union); A*MIDEX, ANR, IPhU and Labex P2IO, and Région Auvergne-Rhône-Alpes (France); Key Research Program of Frontier Sciences of CAS, CAS PIFI, CAS CCEPP, Fundamental Research Funds for the Central Universities, and Sci. \& Tech. Program of Guangzhou (China); RFBR, RSF and Yandex LLC (Russia); GVA, XuntaGal and GENCAT (Spain); the Leverhulme Trust, the Royal Society and UKRI (United Kingdom).

References

[1] S. Dimopoulos, S. Raby, and F. Wilczek, Supersymmetry and the scale of unification, Phys. Rev. D24 (1981) 1681.
[2] S. P. Martin, A Supersymmetry primer, Adv. Ser. Direct. High Energy Phys. 21 (2010) 1, arXiv:hep-ph/9709356
[3] P. W. Graham, D. E. Kaplan, S. Rajendran, and P. Saraswat, Displaced supersymmetry, JHEP 07 (2012) 149, arXiv:1204.6038.
[4] M. J. Strassler and K. M. Zurek, Discovering the Higgs through highly-displaced vertices, Phys. Lett. B661 (2008) 263, arXiv:hep-ph/0605193.
[5] D0 collaboration, V. M. Abazov et al., Search for resonant pair production of neutral long-lived particles decaying to $b \bar{b}$ in $p \bar{p}$ collisions at $\sqrt{s}=1.96$ TeV, Phys. Rev. Lett. 103 (2009) 071801, arXiv:0906.1787.
[6] CDF collaboration, T. Aaltonen et al., Search for heavy metastable particles decaying to jet pairs in $p \bar{p}$ collisions at $\sqrt{s}=1.96$ TeV, Phys. Rev. D85 (2012) 012007, arXiv:1109.3136.
[7] ATLAS collaboration, G. Aad et al., Search for pair-produced long-lived neutral particles decaying in the ATLAS hadronic calorimeter in pp collisions at $\sqrt{s}=8$ TeV, Phys. Lett. B743 (2015) 15, arXiv:1501.04020.
[8] ATLAS collaboration, G. Aad et al., Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS, Phys. Lett. B707 (2012) 478, arXiv:1109.2242.
[9] ATLAS collaboration, G. Aad et al., Search for massive, long-lived particles using multitrack displaced vertices or displaced lepton pairs in pp collisions at $\sqrt{s}=8 \mathrm{Te} \mathrm{V}$ with the ATLAS detector, Phys. Rev. D92 (2015) 072004, arXiv:1504.05162.
[10] CMS collaboration, V. Khachatryan et al., Search for long-lived neutral particles decaying to quark-antiquark pairs in proton-proton collisions at $\sqrt{s}=8$ TeV, Phys. Rev. D91 (2015) 012007, arXiv:1411.6530.
[11] LHCb collaboration, R. Aaij et al., Search for long-lived particles decaying to jet pairs, Eur. Phys. J. C75 (2015) 152, arXiv:1412.3021.
[12] LHCb collaboration, R. Aaij et al., Search for Higgs-like boson decaying into pair of long-lived particles, Eur. Phys. J. C76 (2016) 664, arXiv:1609.03124.
[13] ATLAS collaboration, G. Aad et al., Search for long-lived, weakly interacting particles that decay to displaced hadronic jets in proton-proton collisions at $\sqrt{s}=8 \mathrm{TeV}$ with the ATLAS detector, Phys. Rev. D92 (2015) 012010, arXiv:1504.03634.
[14] LHCb collaboration, R. Aaij et al., Search for massive long-lived particles decaying semileptonically in the LHCb detector, Eur. Phys. J. C77 (2017) 224, arXiv:1612.00945,
[15] LHCb collaboration, R. Aaij et al., Updated search for long-lived particles decaying to jet pairs, Eur. Phys. J. C77 (2017) 812, arXiv:1705.07332.
[16] ATLAS collaboration, M. Aaboud et al., Search for the Higgs boson produced in association with a vector boson and decaying into two spin-zero particles in the $H \rightarrow a a \rightarrow 4 b$ channel in pp collisions at $\sqrt{s}=13$ TeV with the ATLAS detector, JHEP 10 (2018) 031, arXiv:1806.07355.
[17] CMS collaboration, V. Khachatryan et al., Search for long-lived particles that decay into final states containing two electrons or two muons in proton-proton collisions at $\sqrt{s}=8 \mathrm{Te} V$, Phys. Rev. D91 (2015) 052012, arXiv:1411.6977.
[18] ATLAS collaboration, M. Aaboud et al., Search for long-lived particles in final states with displaced dimuon vertices in pp collisions at $\sqrt{s}=13 \mathrm{TeV}$ with the ATLAS detector, Phys. Rev. D99 (2019) 012001, arXiv:1808.03057.
[19] LHCb collaboration, R. Aaij et al., Search for long-lived particles decaying to $e^{ \pm} \mu^{\mp} \nu$, Eur. Phys. J. C81 (2021) 261, arXiv:2012.02696.
[20] P. W. Graham, S. Rajendran, and P. Saraswat, Supersymmetric crevices: missing signatures of R-parity violation at the LHC, Phys. Rev. D90 (2014) 075005, arXiv:1403.7197.
[21] L. Lee, C. Ohm, A. Soffer, and T.-T. Yu, Collider searches for long-lived particles beyond the Standard Model, Prog. Part. Nucl. Phys. 106 (2019) 210, arXiv:1810.12602.
[22] S. Antusch, E. Cazzato, and O. Fischer, Sterile neutrino searches via displaced vertices at LHCb, Physics Letters B774 (2017) 114, arXiv:1706.05990.
[23] B. C. Allanach, A. Dedes, and H. K. Dreiner, R parity violating minimal supergravity model, Phys. Rev. D69 (2004) 115002, arXiv:hep-ph/0309196.
[24] LHCb collaboration, A. A. Alves Jr. et al., The LHCb detector at the LHC, JINST 3 (2008) S08005
[25] LHCb collaboration, R. Aaij et al., LHCb detector performance, Int. J. Mod. Phys. A30 (2015) 1530022, arXiv:1412.6352.
[26] R. Aaij et al., Performance of the LHCb Vertex Locator, JINST 9 (2014) P09007, arXiv:1405.7808.
[27] R. Arink et al., Performance of the LHCb Outer Tracker, JINST 9 (2014) P01002, arXiv:1311.3893.
[28] P. d'Argent et al., Improved performance of the LHCb Outer Tracker in LHC Run 2, JINST 12 (2017) P11016, arXiv:1708.00819.
[29] M. Adinolfi et al., Performance of the LHCb RICH detector at the LHC, Eur. Phys. J. C73 (2013) 2431, arXiv:1211.6759.
[30] A. A. Alves Jr. et al., Performance of the LHCb muon system, JINST 8 (2013) P02022, arXiv:1211.1346.
[31] R. Aaij et al., The LHCb trigger and its performance in 2011, JINST 8 (2013) P04022, arXiv:1211.3055.
[32] T. Sjöstrand, S. Mrenna, and P. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852, arXiv:0710.3820; T. Sjöstrand, S. Mrenna, and P. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026, arXiv:hep-ph/0603175.
[33] I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb simulation framework, J. Phys. Conf. Ser. 331 (2011) 032047.
[34] J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012, arXiv:hep-ph/0201195.
[35] Geant4 collaboration, J. Allison et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270; Geant4 collaboration, S. Agostinelli et al., Geant4: A simulation toolkit, Nucl. Instrum. Meth. A506 (2003) 250.
[36] M. Clemencic et al., The LHCb simulation application, Gauss: Design, evolution and experience, J. Phys. Conf. Ser. 331 (2011) 032023.
[37] M. Kucharczyk, P. Morawski, and M. Witek, Primary vertex reconstruction at LHCb, CERN-LHCb-PUB-2014-044, LHCb-PUB-2014-044, 2014.
[38] LHCb collaboration, R. Aaij et al., Search for the rare decay $K_{\mathrm{S}}^{0} \rightarrow \mu^{+} \mu^{-}$, JHEP 01 (2013) 090, arXiv:1209.4029.
[39] LHCb collaboration, R. Aaij et al., Measurement of the b-quark production crosssection in 7 and 13 TeV pp collisions, Phys. Rev. Lett. 118 (2017) 052002, Erratum ibid. 119 (2017) 169901, arXiv:1612.05140.
[40] A. Pearce, LHCb early Run 2 measurements of B and charm production, LHCb-PROC-2016-001.
[41] J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 2014 (2014), arXiv:1405.0301.
[42] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and regression trees, Wadsworth international group, Belmont, California, USA, 1984.
[43] Y. Freund and R. E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, J. Comput. Syst. Sci. 55 (1997) 119.
[44] M. Botje et al., The PDF4LHC working group interim recommendations, arXiv:1101.0538.
[45] J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G43 (2016) 023001, arXiv:1510.03865.
[46] LHCb collaboration, R. Aaij et al., Precision luminosity measurements at LHCb, JINST 9 (2014) P12005, arXiv:1410.0149.
[47] A. L. Read, Presentation of search results: The $C L_{s}$ technique, J. Phys. G28 (2002) 2693.
[48] ATLAS collaboration, G. Aad et al., Combined measurements of Higgs boson production and decay using up to $80 \mathrm{fb}^{-1}$ of proton-proton collision data at $\sqrt{s}=$ 13 TeV collected with the ATLAS experiment, Phys. Rev. D101 (2020) 012002, arXiv:1909.02845.

LHCb collaboration

R. Aaij ${ }^{32}$, A.S.W. Abdelmotteleb ${ }^{56}$, C. Abellán Beteta ${ }^{50}$, F.J. Abudinen Gallego ${ }^{56}$ T. Ackernley ${ }^{60}$, B. Adeva ${ }^{46}$, M. Adinolf ${ }^{54}$, H. Afsharnia ${ }^{9}$, C. Agapopoulou ${ }^{13}$, C.A. Aidala ${ }^{87}$, S. Aiola ${ }^{25}$, Z. Ajaltouni ${ }^{9}$, S. Akar ${ }^{65}$, J. Albrecht ${ }^{15}$, F. Alessio ${ }^{48}$, M. Alexander ${ }^{59}$, A. Alfonso Albero ${ }^{45}$, Z. Aliouche ${ }^{62}$, G. Alkhazov ${ }^{38}$, P. Alvarez Cartelle ${ }^{55}$, S. Amato ${ }^{2}$, J.L. Amey ${ }^{54}$, Y. Amhis ${ }^{11}$, L. An ${ }^{48}$, L. Anderlini ${ }^{22}$, A. Andreianov ${ }^{38}$, M. Andreotti ${ }^{21}$, F. Archilli ${ }^{17}$, A. Artamonov ${ }^{44}$, M. Artuso ${ }^{68}$, K. Arzymatov ${ }^{42}$, E. Aslanides ${ }^{10}$, M. Atzeni ${ }^{50}$, B. Audurier ${ }^{12}$, S. Bachmann ${ }^{17}$, M. Bachmayer ${ }^{49}$, J.J. Back ${ }^{56}$, P. Baladron Rodriguez ${ }^{46}$, V. Balagura ${ }^{12}$, W. Baldini ${ }^{21}$, J. Baptista Leite ${ }^{1}$, M. Barbetti ${ }^{22}$, R.J. Barlow ${ }^{62}$, S. Barsuk ${ }^{11}$, W. Barter ${ }^{61}$, M. Bartolini ${ }^{24, h}$, F. Baryshnikov ${ }^{83}$, J.M. Basels ${ }^{14}$, S. Bashir ${ }^{34}$, G. Bassi ${ }^{29}$, B. Batsukh ${ }^{68}$, A. Battig ${ }^{15}$, A. Bay ${ }^{49}$, A. Beck ${ }^{56}$, M. Becker ${ }^{15}$, F. Bedeschi ${ }^{29}$, I. Bediaga ${ }^{1}$, A. Beiter ${ }^{68}$, V. Belavin ${ }^{42}$, S. Belin ${ }^{27}$, V. Bellee ${ }^{50}$, K. Belous ${ }^{44}$, I. Belov ${ }^{40}$, I. Belyaev ${ }^{41}$, G. Bencivenni ${ }^{23}$, E. Ben-Haim ${ }^{13}$, A. Berezhnoy ${ }^{40}$, R. Bernet ${ }^{50}$, D. Berninghof ${ }^{17}$, H.C. Bernstein ${ }^{68}$, C. Bertella ${ }^{48}$, A. Bertolin ${ }^{28}$, C. Betancourt ${ }^{50}$, F. Betti ${ }^{48}$, Ia. Bezshyiko ${ }^{50}$, S. Bhasin ${ }^{54}$, J. Bhom ${ }^{35}$, L. Bian ${ }^{73}$, M.S. Bieker ${ }^{15}$, S. Bifani ${ }^{53}$, P. Billoir ${ }^{13}$, M. Birch ${ }^{61}$, F.C.R. Bishop ${ }^{55}$, A. Bitadze ${ }^{62}$, A. Bizzeti ${ }^{22, k}$, M. Bjørn ${ }^{63}$, M.P. Blago ${ }^{48}$, T. Blake ${ }^{56}$, F. Blanc ${ }^{49}$, S. Blusk ${ }^{68}$, D. Bobulska ${ }^{59}$, J.A. Boelhauve ${ }^{15}$, O. Boente Garcia ${ }^{46}$, T. Boettcher ${ }^{65}$, A. Boldyrev ${ }^{82}$, A. Bondar ${ }^{43}$, N. Bondar ${ }^{38,48}$, S. Borghi ${ }^{62}$, M. Borisyak ${ }^{42}$, M. Borsato ${ }^{17}$, J.T. Borsuk ${ }^{35}$, S.A. Bouchiba ${ }^{49}$, T.J.V. Bowcock ${ }^{60}$, A. Boyer ${ }^{48}$, C. Bozzi ${ }^{21}$, M.J. Bradley ${ }^{61}$, S. Braun ${ }^{66}$, A. Brea Rodriguez ${ }^{46}$, M. Brodski ${ }^{48}$, J. Brodzicka ${ }^{35}$, A. Brossa Gonzalo ${ }^{56}$, D. Brundu ${ }^{27}$, A. Buonaura ${ }^{50}$, L. Buonincontri ${ }^{28}$, A.T. Burke ${ }^{62}$, C. Burr ${ }^{48}$, A. Bursche ${ }^{72}$, A. Butkevich ${ }^{39}$, J.S. Butter ${ }^{32}$, J. Buytaert ${ }^{48}$, W. Byczynski ${ }^{48}$, S. Cadeddu ${ }^{27}$, H. Cai ${ }^{73}$, R. Calabrese ${ }^{21, f}$, L. Calefice ${ }^{15,13}$, L. Calero Diaz ${ }^{23}$, S. Cali ${ }^{23}$, R. Calladine ${ }^{53}$, M. Calvi ${ }^{26, j}$, M. Calvo Gomez ${ }^{85}$, P. Camargo Magalhaes ${ }^{54}$, P. Campana ${ }^{23}$, A.F. Campoverde Quezada ${ }^{6}$, S. Capelli ${ }^{26, j}$, L. Capriotti ${ }^{20, d}$, A. Carbone ${ }^{20, d}$, G. Carboni ${ }^{31}$, R. Cardinale ${ }^{24, h}$, A. Cardini ${ }^{27}$, I. Carli ${ }^{4}$, P. Carniti ${ }^{26, j}$, L. Carus ${ }^{14}$, K. Carvalho Akiba ${ }^{32}$, A. Casais Vidal ${ }^{46}$, G. Casse ${ }^{60}$, M. Cattaneo ${ }^{48}$, G. Cavallero ${ }^{48}$, S. Celani ${ }^{49}$, J. Cerasoli ${ }^{10}$, D. Cervenkov ${ }^{63}$, A.J. Chadwick ${ }^{60}$, M.G. Chapman ${ }^{54}$, M. Charles ${ }^{13}$, Ph. Charpentier ${ }^{48}$, G. Chatzikonstantinidis ${ }^{53}$, C.A. Chavez Barajas ${ }^{60}$, M. Chefdeville ${ }^{8}$, C. Chen ${ }^{3}$, S. Chen ${ }^{4}$, A. Chernov ${ }^{35}$, V. Chobanova ${ }^{46}$, S. Cholak ${ }^{49}$, M. Chrzaszcz ${ }^{35}$, A. Chubykin ${ }^{38}$, V. Chulikov ${ }^{38}$, P. Ciambrone ${ }^{23}$, M.F. Cicala ${ }^{56}$, X. Cid Vidal ${ }^{46}$, G. Ciezarek ${ }^{48}$, P.E.L. Clarke ${ }^{58}$, M. Clemencic ${ }^{48}$, H.V. Cliff ${ }^{55}$, J. Closier ${ }^{48}$, J.L. Cobbledick ${ }^{62}$, V. Coco ${ }^{48}$, J.A.B. Coelho ${ }^{11}$, J. Cogan ${ }^{10}$, E. Cogneras ${ }^{9}$, L. Cojocariu ${ }^{37}$, P. Collins ${ }^{48}$, T. Colombo ${ }^{48}$, L. Congedo ${ }^{19, c}$, A. Contu ${ }^{27}$, N. Cooke ${ }^{53}$, G. Coombs ${ }^{59}$, I. Corredoira ${ }^{46}$, G. Corti ${ }^{48}$, C.M. Costa Sobral ${ }^{56}$, B. Couturier ${ }^{48}$, D.C. Craik ${ }^{64}$, J. Crkovská ${ }^{67}$, M. Cruz Torres ${ }^{1}$, R. Currie ${ }^{58}$, C.L. Da Silva ${ }^{67}$, S. Dadabaev ${ }^{83}$, L. Dai ${ }^{71}$, E. Dall'Occo ${ }^{15}$, J. Dalseno ${ }^{46}$, C. D'Ambrosio ${ }^{48}$, A. Danilina ${ }^{41}$, P. d'Argent ${ }^{48}$, J.E. Davies ${ }^{62}$, A. Davis ${ }^{62}$, O. De Aguiar Francisco ${ }^{62}$, K. De Bruyn ${ }^{79}$, S. De Capua ${ }^{62}$, M. De Cian ${ }^{49}$, J.M. De Miranda ${ }^{1}$, L. De Paula ${ }^{2}$, M. De Serio ${ }^{19, c}$, D. De Simone ${ }^{50}$, P. De Simone ${ }^{23}$, J.A. de Vries ${ }^{80}$, C.T. Dean ${ }^{67}$, D. Decamp ${ }^{8}$, V. Dedu ${ }^{10}$, L. Del Buono ${ }^{13}$, B. Delaney ${ }^{55}$, H.-P. Dembinski ${ }^{15}$, A. Dendek ${ }^{34}$, V. Denysenko ${ }^{50}$, D. Derkach ${ }^{82}$, O. Deschamps ${ }^{9}$, F. Desse ${ }^{11}$, F. Dettori ${ }^{27, e}$, B. Dey ${ }^{77}$, A. Di Cicco ${ }^{23}$, P. Di Nezza ${ }^{23}$, S. Didenko ${ }^{83}$, L. Dieste Maronas ${ }^{46}$, H. Dijkstra ${ }^{48}$, V. Dobishuk ${ }^{52}$, C. Dong ${ }^{3}$, A.M. Donohoe ${ }^{18}$, F. Dordei ${ }^{27}$, A.C. dos Reis ${ }^{1}$, L. Douglas ${ }^{59}$, A. Dovbnya ${ }^{51}$, A.G. Downes ${ }^{8}$, M.W. Dudek ${ }^{35}$, L. Dufour ${ }^{48}$, V. Duk ${ }^{78}$, P. Durante ${ }^{48}$, J.M. Durham ${ }^{67}$, D. Dutta ${ }^{62}$, A. Dziurda ${ }^{35}$, A. Dzyuba ${ }^{38}$, S. Easo ${ }^{57}$, U. Egede ${ }^{69}$, V. Egorychev ${ }^{41}$, S. Eidelman ${ }^{43, v}$, S. Eisenhardt ${ }^{58}$, S. Ek-In ${ }^{49}$, L. Eklund ${ }^{59,86}$, S. Ely ${ }^{68}$, A. Ene ${ }^{37}$, E. Epple ${ }^{67}$, S. Escher ${ }^{14}$, J. Eschle ${ }^{50}$, S. Esen ${ }^{13}$, T. Evans ${ }^{48}$, A. Falabella ${ }^{20}$, J. Fan ${ }^{3}$, Y. Fan ${ }^{6}$, B. Fang ${ }^{73}$, S. Farry ${ }^{60}$, D. Fazzini ${ }^{26, j}$, M. Féo ${ }^{48}$, A. Fernandez Prieto ${ }^{46}$, J.M. Fernandez-tenllado Arribas ${ }^{45}$, A.D. Fernez ${ }^{66}$, F. Ferrari ${ }^{20, d}$, L. Ferreira Lopes ${ }^{49}$, F. Ferreira Rodrigues ${ }^{2}$, S. Ferreres Sole ${ }^{32}$, M. Ferrillo ${ }^{50}$, M. Ferro-Luzzi ${ }^{48}$, S. Filippov ${ }^{39}$, R.A. Fini ${ }^{19}$, M. Fiorini ${ }^{21, f}$, M. Firlej ${ }^{34}$,
K.M. Fischer ${ }^{63}$, D.S. Fitzgerald ${ }^{87}$, C. Fitzpatrick 62, T. Fiutowski ${ }^{34}$, A. Fkiaras ${ }^{48}$, F. Fleuret ${ }^{12}$, M. Fontana ${ }^{13}$, F. Fontanelli ${ }^{24, h}$, R. Forty ${ }^{48}$, D. Foulds-Holt ${ }^{55}$, V. Franco Lima ${ }^{60}$, M. Franco Sevilla ${ }^{66}$, M. Frank ${ }^{48}$, E. Franzoso ${ }^{21}$, G. Frau ${ }^{17}$, C. Frei ${ }^{48}$, D.A. Friday ${ }^{59}$, J. Fu ${ }^{6}$, Q. Fuehring ${ }^{15}$, E. Gabriel ${ }^{32}$, G. Galati ${ }^{19, c}$, A. Gallas Torreira ${ }^{46}$, D. Galli ${ }^{20, d}$, S. Gambetta ${ }^{58,48}$, Y. Gan ${ }^{3}$, M. Gandelman ${ }^{2}$, P. Gandini ${ }^{25}$, Y. Gao ${ }^{5}$, M. Garau ${ }^{27}$, L.M. Garcia Martin ${ }^{56}$, P. Garcia Moreno ${ }^{45}$, J. García Pardiñas ${ }^{26, j}$, B. Garcia Plana ${ }^{46}$, F.A. Garcia Rosales ${ }^{12}$,
L. Garrido ${ }^{45}$, C. Gaspar ${ }^{48}$, R.E. Geertsema ${ }^{32}$, D. Gerick ${ }^{17}$, L.L. Gerken ${ }^{15}$, E. Gersabeck ${ }^{62}$, M. Gersabeck ${ }^{62}$, T. Gershon ${ }^{56}$, D. Gerstel ${ }^{10}$, Ph. Ghez ${ }^{8}$, L. Giambastiani ${ }^{28}$, V. Gibson ${ }^{55}$, H.K. Giemza ${ }^{36}$, A.L. Gilman ${ }^{63}$, M. Giovannetti ${ }^{23, p}$, A. Gioventù ${ }^{46}$, P. Gironella Gironell ${ }^{45}$, L. Giubega ${ }^{37}$, C. Giugliano ${ }^{21, f, 48}$, K. Gizdov ${ }^{58}$, E.L. Gkougkousis ${ }^{48}$, V.V. Gligorov ${ }^{13}$, C. Göbel ${ }^{70}$, E. Golobardes ${ }^{85}$, D. Golubkov ${ }^{41}$, A. Golutvin ${ }^{61,83}$, A. Gomes ${ }^{1}{ }^{1, a}$, S. Gomez Fernandez ${ }^{45}$, F. Goncalves Abrantes ${ }^{63}$, M. Goncerz ${ }^{35}$, G. Gong ${ }^{3}$, P. Gorbounov ${ }^{41}$, I.V. Gorelov ${ }^{40}$, C. Gotti ${ }^{26}$, E. Govorkova ${ }^{48}$, J.P. Grabowski ${ }^{17}$, T. Grammatico ${ }^{13}$,
L.A. Granado Cardoso ${ }^{48}$, E. Graugés ${ }^{45}$, E. Graverini ${ }^{49}$, G. Graziani ${ }^{22}$, A. Grecu ${ }^{37}$, L.M. Greeven ${ }^{32}$, N.A. Grieser ${ }^{4}$, L. Grillo ${ }^{62}$, S. Gromov ${ }^{83}$, B.R. Gruberg Cazon ${ }^{63}$, C. Gu ${ }^{3}$, M. Guarise ${ }^{21}$, M. Guittiere ${ }^{11}$, P. A. Günther ${ }^{17}$, E. Gushchin ${ }^{39}$, A. Guth ${ }^{14}$, Y. Guz ${ }^{44}$, T. Gys ${ }^{48}$, T. Hadavizadeh ${ }^{69}$, G. Haefeli ${ }^{49}$, C. Haen ${ }^{48}$, J. Haimberger ${ }^{48}$, T. Halewood-leagas ${ }^{60}$, P.M. Hamilton ${ }^{66}$, J.P. Hammerich ${ }^{60}$, Q. Han 7, X. Han ${ }^{17}$, T.H. Hancock ${ }^{63}$,
S. Hansmann-Menzemer ${ }^{17}$, N. Harnew ${ }^{63}$, T. Harrison ${ }^{60}$, C. Hasse ${ }^{48}$, M. Hatch ${ }^{48}$, J. He ${ }^{6, b}$, M. Hecker ${ }^{61}$, K. Heijhoff ${ }^{32}$, K. Heinicke ${ }^{15}$, A.M. Hennequin ${ }^{48}$, K. Hennessy ${ }^{60}$, L. Henry ${ }^{48}$, J. Heuel ${ }^{14}$, A. Hicheur ${ }^{2}$, D. Hill ${ }^{49}$, M. Hilton ${ }^{62}$, S.E. Hollitt ${ }^{15}$, R. Hou ${ }^{7}$, Y. Hou ${ }^{6}$, J. Hu^{17}, J. Hu^{72}, W. Hu^{7}, X. Hu^{3}, W. Huang ${ }^{6}$, X. Huang ${ }^{73}$, W. Hulsbergen ${ }^{32}$, R.J. Hunter ${ }^{56}$, M. Hushchyn ${ }^{82}$, D. Hutchcroft ${ }^{60}$, D. Hynds 32, P. Ibis 15, M. Idzik ${ }^{34}$, D. Ilin ${ }^{38}$, P. Ilten ${ }^{65}$, A. Inglessi ${ }^{38}$, A. Ishteev 83, K. Ivshin 38, R. Jacobsson ${ }^{48}$, H. Jage ${ }^{14}$, S. Jakobsen ${ }^{48}$, E. Jans ${ }^{32}$, B.K. Jashal ${ }^{47}$, A. Jawahery ${ }^{66}$, V. Jevtic ${ }^{15}$, F. Jiang ${ }^{3}$, M. John ${ }^{63}$, D. Johnson ${ }^{48}$, C.R. Jones ${ }^{55}$, T.P. Jones ${ }^{56}$, B. Jost ${ }^{48}$, N. Jurik ${ }^{48}$, S.H. Kalavan Kadavath ${ }^{34}$, S. Kandybei ${ }^{51}$, Y. Kang ${ }^{3}$, M. Karacson ${ }^{48}$, M. Karpov ${ }^{82}$, F. Keizer ${ }^{48}$, D.M. Keller ${ }^{68}$, M. Kenzi ${ }^{56}$, T. Ketel ${ }^{33}$, B. Khanji ${ }^{15}$, A. Kharisova ${ }^{84}$, S. Kholodenko ${ }^{44}$, T. Kirn ${ }^{14}$, V.S. Kirsebom ${ }^{49}$, O. Kitouni ${ }^{64}$, S. Klaver ${ }^{32}$, N. Kleijne ${ }^{29}$, K. Klimaszewski ${ }^{36}$, M.R. Kmiec ${ }^{36}$, S. Koliev ${ }^{52}$, A. Kondybayeva ${ }^{83}$, A. Konoplyannikov ${ }^{41}$, P. Kopciewicz ${ }^{34}$, R. Kopecna ${ }^{17}$, P. Koppenburg ${ }^{32}$, M. Korolev ${ }^{40}$, I. Kostiuk ${ }^{32,52}$, O. Kot 52, S. Kotriakhova ${ }^{21,38}$, P. Kravchenko ${ }^{38}$, L. Kravchuk ${ }^{39}$, R.D. Krawczyk ${ }^{48}$, M. Kreps 56, F. Kress ${ }^{61}$, S. Kretzschmar ${ }^{14}$, P. Krokovny ${ }^{43, v}$, W. Krupa ${ }^{34}$, W. Krzemien ${ }^{36}$, M. Kucharczyk ${ }^{35}$, V. Kudryavtsev ${ }^{43, v}$, H.S. Kuindersma ${ }^{32,33}$, G.J. Kunde ${ }^{67}$, T. Kvaratskheliya ${ }^{41}$, D. Lacarrere ${ }^{48}$, G. Lafferty ${ }^{62}$, A. Lai ${ }^{27}$, A. Lampis ${ }^{27}$, D. Lancierini ${ }^{50}$, J.J. Lane ${ }^{62}$, R. Lane ${ }^{54}$, G. Lanfranchi ${ }^{23}$, C. Langenbruch ${ }^{14}$, J. Langer ${ }^{15}$, O. Lantwin ${ }^{83}$, T. Latham ${ }^{56}$, F. Lazzari ${ }^{29, q}$, R. Le Gac ${ }^{10}$, S.H. Lee ${ }^{87}$, R. Lefèvre ${ }^{9}$, A. Leflat ${ }^{40}$, S. Legotin ${ }^{83}$, O. Leroy ${ }^{10}$, T. Lesiak ${ }^{35}$, B. Leverington ${ }^{17}$, H. Li^{72}, P. $\mathrm{Li}^{17}, \mathrm{~S} . \mathrm{Li}^{7}, \mathrm{Y} . \mathrm{Li}^{4}, \mathrm{Y} . \mathrm{Li}^{4}, \mathrm{Z} . \mathrm{Li}^{68}$, X. Liang ${ }^{68}$, T. Lin 61, R. Lindner ${ }^{48}$, V. Lisovskyi ${ }^{15}$, R. Litvinov ${ }^{27}$, G. Liu ${ }^{72}$, H. Liu ${ }^{6}$, Q. Liu ${ }^{6}$, S. Liu ${ }^{4}$, A. Lobo Salvia ${ }^{45}$, A. Loi ${ }^{27}$, J. Lomba Castro ${ }^{46}$, I. Longstaff ${ }^{59}$, J.H. Lopes ${ }^{2}$, S. Lopez Solino ${ }^{46}$, G.H. Lovell ${ }^{55}$, Y. Lu ${ }^{4}$, C. Lucarelli ${ }^{22}$, D. Lucchesi ${ }^{28, l}$, S. Luchuk ${ }^{39}$, M. Lucio Martinez ${ }^{32}$, V. Lukashenko ${ }^{32,52}$, Y. Luo ${ }^{3}$, A. Lupato ${ }^{62}$, E. Luppi ${ }^{21, f}$, O. Lupton ${ }^{56}$, A. Lusiani ${ }^{29, m}$, X. Lyu ${ }^{6}$, L. Ma^{4}, R. Ma^{6}, S. Maccolini ${ }^{20, d}$, F. Machefert ${ }^{11}$, F. Maciuc ${ }^{37}$, V. Macko ${ }^{49}$, P. Mackowiak ${ }^{15}$, S. Maddrell-Mander ${ }^{54}$, O. Madejczyk ${ }^{t}$, L.R. Madhan Mohan ${ }^{54}$, O. Maev ${ }^{38}$, A. Maevskiy ${ }^{82}$, D. Maisuzenko ${ }^{38}$, M.W. Majewski ${ }^{t}$, J.J. Malczewski ${ }^{35}$, S. Malde ${ }^{63}$, B. Malecki ${ }^{48}$, A. Malinin ${ }^{81}$, T. Maltsev ${ }^{43, v}$, H. Malygina ${ }^{17}$, G. Manca ${ }^{27, e}$, G. Mancinelli ${ }^{10}$, D. Manuzzi ${ }^{20, d}$, D. Marangotto ${ }^{25, i}$, J. Maratas ${ }^{9, s}$, J.F. Marchand ${ }^{8}$, U. Marconi ${ }^{20}$, S. Mariani ${ }^{22, g}$, C. Marin Benito ${ }^{48}$, M. Marinangeli ${ }^{49}$, J. Marks ${ }^{17}$, A.M. Marshall ${ }^{54}$, P.J. Marshall ${ }^{60}$, G. Martelli ${ }^{78}$, G. Martellotti ${ }^{30}$, L. Martinazzoli ${ }^{48, j}$, M. Martinelli ${ }^{26, j}$, D. Martinez Santos ${ }^{46}$, F. Martinez Vidal ${ }^{47}$, A. Massafferri ${ }^{1}$, M. Materok ${ }^{14}$, R. Matev ${ }^{48}$, A. Mathad ${ }^{50}$, Z. Mathe ${ }^{48}$, V. Matiunin ${ }^{41}$, C. Matteuzzi ${ }^{26}$, K.R. Mattioli ${ }^{87}$, A. Mauri ${ }^{32}$, E. Maurice ${ }^{12}$, J. Mauricio ${ }^{45}$,
M. Mazurek ${ }^{48}$, M. McCann ${ }^{61}$, L. Mcconnell ${ }^{18}$, T.H. Mcgrath ${ }^{62}$, N.T. Mchugh ${ }^{59}$, A. McNab ${ }^{62}$, R. McNulty ${ }^{18}$, J.V. Mead ${ }^{60}$, B. Meadows ${ }^{65}$, G. Meier ${ }^{15}$, N. Meinert ${ }^{76}$, D. Melnychuk ${ }^{36}$,
S. Meloni ${ }^{26, j}$, M. Merk ${ }^{32,80}$, A. Merli ${ }^{25}$, L. Meyer Garcia ${ }^{2}$, M. Mikhasenko ${ }^{48}$, D.A. Milanes ${ }^{74}$, E. Millard ${ }^{56}$, M. Milovanovic ${ }^{48}$, M.-N. Minard ${ }^{8}$, A. Minotti ${ }^{26, j}$, L. Minzoni ${ }^{21, f}$, S.E. Mitchell ${ }^{58}$, B. Mitreska ${ }^{62}$, D.S. Mitzel ${ }^{48}$, A. Mödden ${ }^{15}$, R.A. Mohammed ${ }^{63}$, R.D. Moise ${ }^{61}$, S. Mokhnenko ${ }^{82}$, T. Mombächer ${ }^{46}$, I.A. Monroy ${ }^{74}$, S. Monteil ${ }^{9}$, M. Morandin ${ }^{28}$, G. Morello ${ }^{23}$, M.J. Morello ${ }^{29, m}$, J. Moron ${ }^{34}$, A.B. Morris ${ }^{75}$, A.G. Morris ${ }^{56}$, R. Mountain ${ }^{68}$, H. Mu ${ }^{3}$, F. Muheim ${ }^{58,48}$, M. Mulder ${ }^{48}$, D. Müller ${ }^{48}$, K. Müller ${ }^{50}$, C.H. Murphy ${ }^{63}$, D. Murray ${ }^{62}$, P. Muzzetto ${ }^{27,48}$, P. Naik ${ }^{54}$, T. Nakada ${ }^{49}$, R. Nandakumar ${ }^{57}$, T. Nanut ${ }^{49}$, I. Nasteva ${ }^{2}$, M. Needham ${ }^{58}$, I. Neri ${ }^{21}$, N. Neri ${ }^{25, i}$, S. Neubert ${ }^{75}$, N. Neufeld ${ }^{48}$, R. Newcombe ${ }^{61}$, T.D. Nguyen ${ }^{49}$, C. Nguyen-Mau ${ }^{49, w}$, E.M. Niel ${ }^{11}$, S. Nieswand ${ }^{14}$, N. Nikitin ${ }^{40}$, N.S. Nolte ${ }^{64}$, C. Normand ${ }^{8}$, C. Nunez ${ }^{87}$, A. Oblakowska-Mucha ${ }^{34}$, V. Obraztsov ${ }^{44}$, T. Oeser ${ }^{14}$, D.P. O'Hanlon ${ }^{54}$, S. Okamura ${ }^{21}$, R. Oldeman ${ }^{27, e}$, F. Oliva ${ }^{58}$, M.E. Olivares ${ }^{68}$, C.J.G. Onderwater ${ }^{79}$, R.H. O'nei ${ }^{58}$, J.M. Otalora Goicochea ${ }^{2}$, T. Ovsiannikova ${ }^{41}$, P. Owen ${ }^{50}$, A. Oyanguren ${ }^{47}$, K.O. Padeken ${ }^{75}$, B. Pagare ${ }^{56}$, P.R. Pais ${ }^{48}$, T. Pajero ${ }^{63}$, A. Palano ${ }^{19}$, M. Palutan ${ }^{23}$, Y. Pan ${ }^{62}$, G. Panshin ${ }^{84}$, A. Papanestis ${ }^{57}$, M. Pappagallo ${ }^{19, c}$, L.L. Pappalardo ${ }^{21, f}$, C. Pappenheimer ${ }^{65}$, W. Parker ${ }^{66}$, C. Parkes ${ }^{62}$, B. Passalacqua ${ }^{21}$, G. Passaleva ${ }^{22}$, A. Pastore ${ }^{19}$, M. Patel ${ }^{61}$, C. Patrignani ${ }^{20, d}$, C.J. Pawley ${ }^{80}$, A. Pearce ${ }^{48}$, A. Pellegrino ${ }^{32}$, M. Pepe Altarelli ${ }^{48}$, S. Perazzini ${ }^{20}$, D. Pereima ${ }^{41}$, A. Pereiro Castro ${ }^{46}$, P. Perret ${ }^{9}$, M. Petric ${ }^{59,48}$, K. Petridis ${ }^{54}$, A. Petrolini ${ }^{24, h}$, A. Petrov ${ }^{81}$, S. Petrucci ${ }^{58}$, M. Petruzzo ${ }^{25}$, T.T.H. Pham ${ }^{68}$, L. Pica ${ }^{29, m}$, M. Piccini ${ }^{78}$, B. Pietrzyk ${ }^{8}$, G. Pietrzyk ${ }^{49}$, M. Pili ${ }^{63}$, D. Pinci ${ }^{30}$, F. Pisani ${ }^{48}$, M. Pizzichemi ${ }^{48}$, Resmi P.K ${ }^{10}$, V. Placinta ${ }^{37}$, J. Plews ${ }^{53}$, M. Plo Casasus ${ }^{46}$, F. Polci ${ }^{13}$, M. Poli Lener ${ }^{23}$, M. Poliakova ${ }^{68}$, A. Poluektov ${ }^{10}$, N. Polukhina ${ }^{83, u}$, I. Polyakov ${ }^{68}$, E. Polycarpo ${ }^{2}$, S. Ponce ${ }^{48}$, D. Popov ${ }^{6,48}$, S. Popov ${ }^{42}$, S. Poslavskii ${ }^{44}$, K. Prasanth ${ }^{35}$, L. Promberger ${ }^{48}$, C. Prouve ${ }^{46}$, V. Pugatch ${ }^{52}$, V. Puill ${ }^{11}$, H. Pullen ${ }^{63}$, G. Punzi ${ }^{29, n}$, H. Qi ${ }^{3}$, W. Qian ${ }^{6}$, J. Qin ${ }^{6}$, N. Qin ${ }^{3}$, R. Quagliani ${ }^{49}$, B. Quintana ${ }^{8}$, N.V. Raab ${ }^{18}$, R.I. Rabadan Trejo ${ }^{6}$, B. Rachwal ${ }^{34}$, J.H. Rademacker ${ }^{54}$, M. Rama ${ }^{29}$, M. Ramos Pernas ${ }^{56}$, M.S. Rangel ${ }^{2}$, F. Ratnikov ${ }^{42,82}$, G. Raven ${ }^{33}$, M. Reboud ${ }^{8}$, F. Redi ${ }^{49}$, F. Reiss ${ }^{62}$, C. Remon Alepuz ${ }^{47}$, Z. Ren ${ }^{3}$, V. Renaudin ${ }^{63}$, R. Ribatti ${ }^{29}$, S. Ricciardi ${ }^{57}$, K. Rinnert ${ }^{60}$, P. Robbe ${ }^{11}$, G. Robertson ${ }^{58}$, A.B. Rodrigues ${ }^{49}$, E. Rodrigues ${ }^{60}$, J.A. Rodriguez Lopez ${ }^{74}$, E.R.R. Rodriguez Rodriguez ${ }^{46}$, A. Rollings ${ }^{63}$, P. Roloff ${ }^{48}$, V. Romanovskiy ${ }^{44}$, M. Romero Lamas ${ }^{46}$, A. Romero Vidal ${ }^{46}$, J.D. Roth ${ }^{87}$, M. Rotondo ${ }^{23}$, M.S. Rudolph ${ }^{68}$, T. Ruf ${ }^{48}$, R.A. Ruiz Fernandez ${ }^{46}$, J. Ruiz Vidal ${ }^{47}$, A. Ryzhikov ${ }^{82}$, J. Ryzka ${ }^{34}$, J.J. Saborido Silva ${ }^{46}$, N. Sagidova ${ }^{38}$, N. Sahoo ${ }^{56}$, B. Saitta ${ }^{27, e}$, M. Salomoni ${ }^{48}$,
D. Sanchez Gonzalo ${ }^{45}$, C. Sanchez Gras 32, R. Santacesaria ${ }^{30}$, C. Santamarina Rios ${ }^{46}$, M. Santimaria ${ }^{23}$, E. Santovetti ${ }^{31, p}$, D. Saranin ${ }^{83}$, G. Sarpis ${ }^{14}$, M. Sarpis ${ }^{75}$, A. Sarti ${ }^{30}$, C. Satriano ${ }^{30, o}$, A. Satta ${ }^{31}$, M. Saur ${ }^{15}$, D. Savrina ${ }^{41,40}$, H. Sazak ${ }^{9}$, L.G. Scantlebury Smead ${ }^{63}$, A. Scarabotto ${ }^{13}$, S. Schael ${ }^{14}$, S. Scherl ${ }^{60}$, M. Schiller ${ }^{59}$, H. Schindler ${ }^{48}$, M. Schmelling ${ }^{16}$, B. Schmidt ${ }^{48}$, S. Schmitt ${ }^{14}$, O. Schneider ${ }^{49}$, A. Schopper ${ }^{48}$, M. Schubiger ${ }^{32}$, S. Schulte ${ }^{49}$, M.H. Schune ${ }^{11}$, R. Schwemmer ${ }^{48}$, B. Sciascia ${ }^{23,48}$, S. Sellam ${ }^{46}$, A. Semennikov ${ }^{41}$, M. Senghi Soares ${ }^{33}$, A. Sergi ${ }^{24, h}$, N. Serra ${ }^{50}$, L. Sestini ${ }^{28}$, A. Seuthe ${ }^{15}$, Y. Shang ${ }^{5}$, D.M. Shangase ${ }^{87}$, M. Shapkin ${ }^{44}$, I. Shchemerov ${ }^{83}$, L. Shchutska ${ }^{49}$, T. Shears ${ }^{60}$,
L. Shekhtman ${ }^{43, v}$, Z. Shen ${ }^{5}$, V. Shevchenko ${ }^{81}$, E.B. Shields ${ }^{26, j}$, Y. Shimizu ${ }^{11}$, E. Shmanin ${ }^{83}$, J.D. Shupperd ${ }^{68}$, B.G. Siddi ${ }^{21}$, R. Silva Coutinho ${ }^{50}$, G. Simi ${ }^{28}$, S. Simone ${ }^{19, c}$, N. Skidmore ${ }^{62}$, T. Skwarnicki ${ }^{68}$, M.W. Slater ${ }^{53}$, I. Slazyk ${ }^{21, f}$, J.C. Smallwood ${ }^{63}$, J.G. Smeaton ${ }^{55}$, A. Smetkina ${ }^{41}$, E. Smith ${ }^{50}$, M. Smith ${ }^{61}$, A. Snoch ${ }^{32}$, M. Soares ${ }^{20}$, L. Soares Lavra ${ }^{9}$, M.D. Sokoloff ${ }^{65}$, F.J.P. Soler ${ }^{59}$, A. Solovev ${ }^{38}$, I. Solovyev ${ }^{38}$, F.L. Souza De Almeida ${ }^{2}$, B. Souza De Paula ${ }^{2}$, B. Spaan ${ }^{15}$, E. Spadaro Norella ${ }^{25}$, P. Spradlin ${ }^{59}$, F. Stagni ${ }^{48}$, M. Stahl ${ }^{65}$, S. Stahl ${ }^{48}$, S. Stanislaus ${ }^{63}$, O. Steinkamp ${ }^{50,83}$, O. Stenyakin ${ }^{44}$, H. Stevens ${ }^{15}$, S. Stone ${ }^{68}$, M. Straticiuc ${ }^{37}$, D. Strekalina ${ }^{83}$, F. Suljik ${ }^{63}$, J. Sun ${ }^{27}$, L. Sun ${ }^{73}$, Y. Sun ${ }^{66}$, P. Svihra ${ }^{62}$, P.N. Swallow ${ }^{53}$, K. Swientek ${ }^{34}$, A. Szabelski ${ }^{36}$, T. Szumlak ${ }^{34}$, M. Szymanski ${ }^{48}$, S. Taneja ${ }^{62}$,
A.R. Tanner ${ }^{54}$, M.D. Tat ${ }^{63}$, A. Terentev ${ }^{83}$, F. Teubert ${ }^{48}$, E. Thomas ${ }^{48}$, D.J.D. Thompson ${ }^{53}$, K.A. Thomson ${ }^{60}$, V. Tisserand ${ }^{9}$, S. T'Jampens ${ }^{8}$, M. Tobin ${ }^{4}$, L. Tomassetti ${ }^{21, f}$, X. Tong ${ }^{5}$, D. Torres Machado ${ }^{1}$, D.Y. Tou ${ }^{13}$, M.T. Tran 49, E. Trifonova ${ }^{83}$, C. Trippl ${ }^{49}$, G. Tuci ${ }^{6}$, A. Tully ${ }^{49}$, N. Tuning ${ }^{32,48}$, A. Ukleja ${ }^{36}$, D.J. Unverzagt ${ }^{17}$, E. Ursov ${ }^{83}$, A. Usachov ${ }^{32}$, A. Ustyuzhanin ${ }^{42,82}$, U. Uwer ${ }^{17}$, A. Vagner ${ }^{84}$, V. Vagnoni ${ }^{20}$, A. Valassi ${ }^{48}$, G. Valenti ${ }^{20}$, N. Valls Canudas ${ }^{85}$, M. van Beuzekom ${ }^{32}$, M. Van Dijk ${ }^{49}$, E. van Herwijnen ${ }^{83}$, C.B. Van Hulse ${ }^{18}$, M. van Veghel ${ }^{79}$, R. Vazquez Gomez ${ }^{46}$, P. Vazquez Regueiro ${ }^{46}$, C. Vázquez Sierra ${ }^{48}$, S. Vecchi ${ }^{21}$, J.J. Velthuis ${ }^{54}$, M. Veltri ${ }^{22, r}$, A. Venkateswaran ${ }^{68}$, M. Veronesi ${ }^{32}$, M. Vesterinen ${ }^{56}$, D. Vieira ${ }^{65}$, M. Vieites Diaz ${ }^{49}$, H. Viemann ${ }^{76}$, X. Vilasis-Cardona ${ }^{85}$, E. Vilella Figueras ${ }^{60}$, A. Villa ${ }^{20}$, P. Vincent ${ }^{13}$, F.C. Volle ${ }^{11}$, D. Vom Bruch ${ }^{10}$, A. Vorobyev ${ }^{38}$, V. Vorobyev ${ }^{43, v}$, N. Voropaev ${ }^{38}$, K. Vos ${ }^{80}$, R. Waldi ${ }^{17}$, J. Walsh ${ }^{29}$, C. Wang ${ }^{17}$, J. Wang ${ }^{5}$, J. Wang ${ }^{4}$, J. Wang ${ }^{3}$, J. Wang ${ }^{73}$, M. Wang ${ }^{3}$, R. Wang ${ }^{54}$, Y. Wang ${ }^{7}$, Z. Wang ${ }^{50}$, Z. Wang ${ }^{3}$, Z. Wang ${ }^{6}$, J.A. Ward ${ }^{56}$, N.K. Watson ${ }^{53}$, S.G. Weber ${ }^{13}$, D. Websdale ${ }^{61}$, C. Weisser ${ }^{64}$, B.D.C. Westhenry ${ }^{54}$, D.J. White ${ }^{62}$, M. Whitehead ${ }^{54}$, A.R. Wiederhold ${ }^{56}$, D. Wiedner ${ }^{15}$, G. Wilkinson ${ }^{63}$, M. Wilkinson ${ }^{68}$, I. Williams ${ }^{55}$, M. Williams ${ }^{64}$, M.R.J. Williams ${ }^{58}$, F.F. Wilson ${ }^{57}$, W. Wislicki ${ }^{36}$, M. Witek ${ }^{35}$, L. Witola ${ }^{17}$, G. Wormser ${ }^{11}$, S.A. Wotton ${ }^{55}$, H. Wu ${ }^{68}$, K. Wyllie ${ }^{48}$, Z. Xiang ${ }^{6}$, D. Xiao ${ }^{7}$, Y. Xie ${ }^{7}$, A. Xu^{5}, J. Xu^{6}, L. Xu^{3}, M. Xu^{7}, Q. Xu^{6}, Z. Xu^{5}, Z. Xu ${ }^{6}$, D. Yang^{3}, S. Yang ${ }^{6}$, Y. Yang ${ }^{6}$, Z. Yang ${ }^{5}$, Z. Yang ${ }^{66}$, Y. Yao ${ }^{68}$, L.E. Yeomans ${ }^{60}$, H. Yin ${ }^{7}$, J. Yu ${ }^{71}$, X. Yuan ${ }^{68}$, O. Yushchenko ${ }^{44}$, E. Zaffaroni ${ }^{49}$, M. Zavertyaev ${ }^{16, u}$, M. Zdybal ${ }^{35}$, O. Zenaiev ${ }^{48}$, M. Zeng ${ }^{3}$, D. Zhang ${ }^{7}$, L. Zhang ${ }^{3}$, S. Zhang ${ }^{71}$, S. Zhang ${ }^{5}$, Y. Zhang ${ }^{5}$, Y. Zhang ${ }^{63}$, A. Zharkova ${ }^{83}$, A. Zhelezov ${ }^{17}$, Y. Zheng ${ }^{6}$, T. Zhou ${ }^{5}$, X. Zhou ${ }^{6}$, Y. Zhou ${ }^{6}$, V. Zhovkovska ${ }^{11}$, X. Zhu ${ }^{3}$, X. Zhu ${ }^{7}$, Z. Zhu ${ }^{6}$, V. Zhukov ${ }^{14,40}$, J.B. Zonneveld ${ }^{58}$, Q. Zou ${ }^{4}$, S. Zucchelli ${ }^{20, d}$, D. Zuliani ${ }^{28}$, G. Zunica ${ }^{62}$.
${ }^{1}$ Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
${ }^{2}$ Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
${ }^{3}$ Center for High Energy Physics, Tsinghua University, Beijing, China
${ }^{4}$ Institute Of High Energy Physics (IHEP), Beijing, China
${ }^{5}$ School of Physics State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
${ }^{6}$ University of Chinese Academy of Sciences, Beijing, China
${ }^{7}$ Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China
${ }^{8}$ Univ. Savoie Mont Blanc, CNRS, IN2P3-LAPP, Annecy, France
${ }^{9}$ Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
${ }^{10}$ Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France
${ }^{11}$ Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
${ }^{12}$ Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
${ }^{13}$ LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France
${ }^{14}$ I. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
${ }^{15}$ Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
${ }^{16}$ Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
${ }^{17}$ Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
${ }^{18}$ School of Physics, University College Dublin, Dublin, Ireland
${ }^{19}$ INFN Sezione di Bari, Bari, Italy
${ }^{20}$ INFN Sezione di Bologna, Bologna, Italy
${ }^{21}$ INFN Sezione di Ferrara, Ferrara, Italy
${ }^{22}$ INFN Sezione di Firenze, Firenze, Italy
${ }^{23}$ INFN Laboratori Nazionali di Frascati, Frascati, Italy
${ }^{24}$ INFN Sezione di Genova, Genova, Italy
${ }^{25}$ INFN Sezione di Milano, Milano, Italy
${ }^{26}$ INFN Sezione di Milano-Bicocca, Milano, Italy
${ }^{27}$ INFN Sezione di Cagliari, Monserrato, Italy
${ }^{28}$ Universita degli Studi di Padova, Universita e INFN, Padova, Padova, Italy
${ }^{29}$ INFN Sezione di Pisa, Pisa, Italy
${ }^{30}$ INFN Sezione di Roma La Sapienza, Roma, Italy
${ }^{31}$ INFN Sezione di Roma Tor Vergata, Roma, Italy
${ }^{32}$ Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands
${ }^{33}$ Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, Netherlands
${ }^{34}$ AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
${ }^{35}$ Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
${ }^{36}$ National Center for Nuclear Research (NCBJ), Warsaw, Poland
${ }^{37}$ Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
${ }^{38}$ Petersburg Nuclear Physics Institute NRC Kurchatov Institute (PNPI NRC KI), Gatchina, Russia
${ }^{39}$ Institute for Nuclear Research of the Russian Academy of Sciences (INR RAS), Moscow, Russia
${ }^{40}$ Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
${ }^{41}$ Institute of Theoretical and Experimental Physics NRC Kurchatov Institute (ITEP NRC KI), Moscow, Russia
${ }^{42}$ Yandex School of Data Analysis, Moscow, Russia
${ }^{43}$ Budker Institute of Nuclear Physics (SB RAS), Novosibirsk, Russia
${ }^{44}$ Institute for High Energy Physics NRC Kurchatov Institute (IHEP NRC KI), Protvino, Russia, Protvino, Russia
${ }^{45}$ ICCUB, Universitat de Barcelona, Barcelona, Spain
${ }^{46}$ Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
${ }^{47}$ Instituto de Fisica Corpuscular, Centro Mixto Universidad de Valencia-CSIC, Valencia, Spain
${ }^{48}$ European Organization for Nuclear Research (CERN), Geneva, Switzerland
${ }^{49}$ Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
${ }^{50}$ Physik-Institut, Universität Zürich, Zürich, Switzerland
${ }^{51}$ NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
${ }^{52}$ Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
${ }^{53}$ University of Birmingham, Birmingham, United Kingdom
${ }^{54}$ H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
${ }^{55}$ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
${ }^{56}$ Department of Physics, University of Warwick, Coventry, United Kingdom
${ }^{57}$ STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
${ }^{58}$ School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
${ }^{59}$ School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
${ }^{60}$ Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
${ }^{61}$ Imperial College London, London, United Kingdom
${ }^{62}$ Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
${ }^{63}$ Department of Physics, University of Oxford, Oxford, United Kingdom
${ }^{64}$ Massachusetts Institute of Technology, Cambridge, MA, United States
${ }^{65}$ University of Cincinnati, Cincinnati, OH, United States
${ }^{66}$ University of Maryland, College Park, MD, United States
${ }^{67}$ Los Alamos National Laboratory (LANL), Los Alamos, United States
${ }^{68}$ Syracuse University, Syracuse, NY, United States
${ }^{69}$ School of Physics and Astronomy, Monash University, Melbourne, Australia, associated to ${ }^{56}$
${ }^{70}$ Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to ${ }^{2}$
${ }^{71}$ Physics and Micro Electronic College, Hunan University, Changsha City, China, associated to ${ }^{7}$
${ }^{72}$ Guangdong Provincial Key Laboratory of Nuclear Science, Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Institute of Quantum Matter, South China Normal University, Guangzhou, China, associated to ${ }^{3}$
${ }^{73}$ School of Physics and Technology, Wuhan University, Wuhan, China, associated to ${ }^{3}$
${ }^{74}$ Departamento de Fisica, Universidad Nacional de Colombia, Bogota, Colombia, associated to ${ }^{13}$
${ }^{75}$ Universität Bonn - Helmholtz-Institut für Strahlen und Kernphysik, Bonn, Germany, associated to ${ }^{17}$
${ }^{76}$ Institut für Physik, Universität Rostock, Rostock, Germany, associated to ${ }^{17}$
${ }^{77}$ Eotvos Lorand University, Budapest, Hungary, associated to ${ }^{48}$
${ }^{78}$ INFN Sezione di Perugia, Perugia, Italy, associated to ${ }^{21}$
${ }^{79}$ Van Swinderen Institute, University of Groningen, Groningen, Netherlands, associated to ${ }^{32}$ ${ }^{80}$ Universiteit Maastricht, Maastricht, Netherlands, associated to ${ }^{32}$
${ }^{81}$ National Research Centre Kurchatov Institute, Moscow, Russia, associated to ${ }^{41}$
${ }^{82}$ National Research University Higher School of Economics, Moscow, Russia, associated to ${ }^{42}$
${ }^{83}$ National University of Science and Technology "MISIS", Moscow, Russia, associated to ${ }^{41}$
${ }^{84}$ National Research Tomsk Polytechnic University, Tomsk, Russia, associated to ${ }^{41}$
${ }^{85}$ DS4DS, La Salle, Universitat Ramon Llull, Barcelona, Spain, associated to ${ }^{45}$
${ }^{86}$ Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden, associated to ${ }^{59}$
${ }^{87}$ University of Michigan, Ann Arbor, United States, associated to ${ }^{68}$
${ }^{a}$ Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil
${ }^{b}$ Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
${ }^{c}$ Università di Bari, Bari, Italy
${ }^{d}$ Università di Bologna, Bologna, Italy
${ }^{e}$ Università di Cagliari, Cagliari, Italy
${ }^{f}$ Università di Ferrara, Ferrara, Italy
${ }^{g}$ Università di Firenze, Firenze, Italy
${ }^{h}$ Università di Genova, Genova, Italy
${ }^{i}$ Università degli Studi di Milano, Milano, Italy
${ }^{j}$ Università di Milano Bicocca, Milano, Italy
${ }^{k}$ Università di Modena e Reggio Emilia, Modena, Italy
${ }^{l}$ Università di Padova, Padova, Italy
${ }^{m}$ Scuola Normale Superiore, Pisa, Italy
${ }^{n}$ Università di Pisa, Pisa, Italy
${ }^{\circ}$ Università della Basilicata, Potenza, Italy
${ }^{p}$ Università di Roma Tor Vergata, Roma, Italy
${ }^{q}$ Università di Siena, Siena, Italy
${ }^{r}$ Università di Urbino, Urbino, Italy
${ }^{s}$ MSU - Iligan Institute of Technology (MSU-IIT), Iligan, Philippines
${ }^{t}$ AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland
${ }^{u}$ P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
${ }^{v}$ Novosibirsk State University, Novosibirsk, Russia
${ }^{w}$ Hanoi University of Science, Hanoi, Vietnam

[^0]: ${ }^{\dagger}$ Authors are listed at the end of this paper.

