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ABSTRACT
The present paper is mainly focused on analyzing the flexural wave
dispersion of imperfect Ti-6Al-4V foam circular cylindrical shells in a
thermal environment. The pores were supposed to be distributed
across the thickness (z-direction) in the form of three different pat-
terns as follows: symmetric porosity distribution (SPD), asymmetric
porosity distribution (ASPD) and uniformporosity distribution (UPD).
Besides, various kinds of temperature variations, including sinu-
soidal, linear and uniform temperature variations, were studied. The
strain-displacement relationship of the shell was derived based on
the first-order shear deformable theory (FSDT) of shells. Hamilton’s
principlewas also applied toobtain thegoverningequationsofmetal
foam shells which were then solved using an analytical method.
Finally, influences of different parameters including circumferential
wave number, different kinds of temperature variation, temperature
change, radius to thickness ratio R/h, types of porosity distribution
across the thickness, porosity coefficient and mode number on the
variations of phase velocity and wave frequency were investigated
and the results were illustrated and discussed.
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Introduction

Oneof the essential parameters in thedesign andanalysis of structures is theweight of their
constitutivematerials. Various lightweightmaterials havebeenwidely exploited for numer-
ous engineering applications owing to their favorable properties. Porous materials such as
metal foams, ceramic foams and graphene foams are among themost ubiquitous classes of
lightweight materials with diverse applications in the automotive, aerospace, marine and
civil engineering industries. For instance, aluminum foams have been utilized for energy
absorption to reduce the structural mass of vehicles in the automotive industry [1,2]. A
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metal foam is a cellular structure consisting of solidmetal with gas-filled pores, which com-
prise a largeportionof its volume. As such a structure is typically strongand lightweight, the
mechanical properties of porousmaterials have been the focus of numerous investigations
over the last two decades [3–5]. More specifically, porous functionally graded materials
(FGMs) are considered to be generally desirable in terms of structural mass; hence analyz-
ing their mechanical behavior has been an interesting topic for scientists and engineers.
For example, the dynamic response of doubly-curved nanosize shellsmade of porous FGMs
basedon thenonlocal strain gradient theory (NSGT)was analyzedbyKarami, Shahsavari [6].
Furthermore, the influence of imperfections on the vibrational behavior of FGMs tapered
nanoscale beams and plates in a thermal environment according to NSGT was surveyed by
Karami, Janghorban [7], Karami, Shahsavari [8].

Owing to their high melting points, titanium foams can be used in applications such as
heat exchangers and catalyst substrateswith temperatures up to 400°C.Moreover, titanium
foams and titanium alloy foams have been utilized as structural elements in load-bearing
sandwich cores for aerospace and transportation applications. Also, low density, superb
biocompatibility and good corrosion resistance are some desirable properties of titanium
alloy foams (e.g. Ti-6Al-4V)whichmake themof great interest in the biomedical industry for
applications such as implants. In electrolytic equipment, to generate sodiumhydroxide and
chlorine by the electrolysis of aqueous sodium chloride, titanium-based electrodes have
been used [9–11]. Porous titanium alloys (e.g. Ti-6Al-4V) are also preferred in the biomed-
ical industry due to the formation of a passive TiO2 layer when in contact with oxidizing
environments.

In addition, many recent studies considered the engineering properties and behavior of
metal foam structures. For instance, the stability, static, and free and forced dynamic char-
acteristics of imperfect metal foam Timoshenko beams were discussed by Chen, Yang [12],
Chen, Yang [13]. Wang and Wu [14] investigated the influence of various boundary condi-
tionson the vibrational responseof ametal foamshell basedon theRayleigh-Ritzmethod in
conjunction with the sinusoidal shear deformable model. Considering graphene platelets
(GPLs), Kitipornchai, Chen [15] also studied the dynamic and buckling behaviors of GPLs-
reinforcedmetal foambeamswhere the internal pores andnanofillers are distributed either
uniformly andnon-uniformly in variousmetalmatrices including titanium, aluminum,mag-
nesium, copper and nickel matrices. Forced vibrational analysis of nanoscale plates of
porous metal foam lying on an elastic foundation was explored by Barati [16] based on
the 4-variable plate theory and NSGT. Barati and Zenkour [17] used Galerkin’s method to
solve the post-buckling problem of porous metal foam nanoscale beams in the frame-
work of the nonlocal nonlinear refined shear deformable beam theory. Stability and natural
frequency characteristics of graphene-reinforced porous metal foam plates were assessed
by Yang, Chen [18] based on the Chebyshev-Ritz method. Eringen’s nonlocal elas-
ticity theory was also employed by Wang and Zhang [19] to examine the stabil-
ity of metal foam refined nanoplates using the Navier solution method. Gao, Gao
[20] performed a nonlinear vibration analysis on plates made of GPLs-reinforced
metal foam lying on an elastic substrate with various boundary conditions using
the differential quadrature method. The effect of spinning motion on the natu-
ral frequency of graphene-reinforced metal foam cylindrical shells was investigated
by Dong, Li [21] according to the first-order shear deformable theory (FSDT). Fen-
jan, Ahmed [22] conducted a vibration analysis on the double-coupled imperfect
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metal foam nanoscale plate rested on an elastic medium based on NSGT. Moreover,
Wang, Ye [23] studied the nonlinear dynamic response of GPL-reinforced metal foam
circular cylindrical shells according to the modified Donnell nonlinear shell theory. In
another attempt, Wang, Liu [24] utilized Navier’s solution and Galerkin’s method to solve
the vibrational problemofmetal foam cylindrical nanoshells under different boundary con-
ditions using themodified couple stress theory (MCST) in conjunctionwith Love’s thin shell
theory. The dynamic analysis of metal foam cylindrical microscale shells in contact with a
moving load was presented by Mirjavadi, Forsat [25] based on the shell FSDT. The same
method was also implemented by Zhang and Zhang [26] to probe the vibration and buck-
ling responses of nanoshells made of nanoporous metal foam utilizing Navier’s solution.
In addition, the nonlinear vibrational behavior of nanoscale thick metal foam beams on a
nonlinear foundation was surveyed by Alasadi, Ahmed [27] according to Eringen’s nonlo-
cal elasticity theory. Lately, Liu and Wang [28] discussed the dynamics and stability of 3D
graphene foammicroshellswhoseporeswere considered tobedistributedeither uniformly
or non-uniformly according to Love’s thin shell theory andMCST, respectively. Propagation
of waves inmetal foam rectangular plateswith graded porosities lying on Kerr’s foundation
in a thermal environment based on the refined higher-order plate theory was analyzed by
Ebrahimi and Seyfi [29].

In the context of imperfect metal foams, wave propagation analysis is one of the most
significant mechanical analyzes which has been less surveyed in scientific papers. Hence,
it is necessary to inspect such structures in the framework of wave propagation analy-
sis [30–33]. For instance, Karami, Shahsavari [34] used the bi-Helmholtz NSGT to solve
the wave dispersion problem of an embedded viscoelastic single-layer graphene sheet
under an in-plane magnetic field in a hygrothermal environment. She, Yuan [35] exam-
ined thermal effects on wave dispersion behaviors, including the longitudinal, shear and
flexural waves of porous FGM nanotubes based on NSGT. Ayache, Bennai [36] also inves-
tigated wave propagations and vibrations in beams consisted of porous FGM on the basis
of high-order hyperbolic shear deformable theory. The influence of an in-plane magnetic
field on the propagation of waves within an embedded nanosize plate made of imperfect
FGMs was explored by Karami, Shahsavari [37] based on the second-order shear deforma-
tion theory and NSGT. Wave dispersion in an FG porous nanobeam and nanoplate was
examined by Ebrahimi, Seyfi [38], Ebrahimi, Seyfi [39] in the framework of refined higher-
order shear deformable beam and plate theories in conjunction with NSGT. Furthermore,
Ebrahimi, Seyfi [38] studied the flexuralwavepropagation in aGPLs-reinforcedmetalmatrix
nanocomposite considering the porosity effect within the framework of FSDT. Wang and
Liang [40] presented wave propagation analysis of the Euler-Bernoulli and Timoshenko
nanobeams made of nanoporous metal foams on the basis of Eringen’s nonlocal theory.
A quasi-3D refined plate theory was implemented by Sobhy and Zenkour [41] in conjunc-
tion with NSGT to study the wave dispersion behavior in an embedded bi-layer porous
FG nanoplates subjected to an in-plane 2D-magnetic field. Lately, Faroughi, Rahmani [42]
probed the wave propagation characteristics of a bi-dimensional porous FGM nanobeam
taking into account the impact of rotation based on Reddy’s beam theory. In order to
solve wave propagation problems, an analytical method is implemented, which consists
of a harmonic solution. By utilizing this solution procedure, far from any boundary condi-
tion, the behavior of wave propagation can be analyzed. The literature review, however,
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Figure 1. Coordinate system and geometry of a typical cylindrical shell.

showed no study addressing the wave propagation of metal foam shells in thermal envi-
ronments. Thus, the present paper is aimed at filling this gap by presenting the results
of an investigation on the dispersion of flexural waves in metal foam shells in a thermal
environment for the first time. Three various porosity distribution patterns were consid-
ered. Besides, the cylindrical shell was modeled by FSDT, and Hamilton’s principle was
implemented to determine motion equations. Subsequently, a harmonic solution method
was applied to solve the obtained governing equations. The influence of various variables
on the phase velocity and wave frequency of shells made of imperfect metal foam was
explored and presented.

Theoretical basis and problem formulation

The geometry and the coordinate system of a metal foam circular cylindrical shell are
depicted in Figure 1, where the radius, length, and thickness of the cylindrical shell are
denoted by R, L and h, respectively.

Three different uniformandnon-uniformporosity distribution patternswere considered
to evaluate their influence on the corresponding properties of imperfect metal foam. The
illustration of the distribution of pores across the shell thickness can be found in Figure 2
[12,17,43,44].

The equivalent properties of a uniformly imperfect metal foam can be calculated by the
following equations:

E(z) = E1(1 − ξχ) (1)

α(z) = α1(1 − ξχ) (2)

ρ(z) = ρ1
√
1 − ξρχ (3)
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Figure 2. Schematic representation of different porosity distributions across the shell thickness for (a)
symmetric porosity distribution, (b) asymmetric porosity distribution and (c) uniform porosity distribu-
tion [29].

The term λ in Equations (1)–(3) can be expressed as follows:

χ = 1
ξ

− 1
ξ

[
2
π

(√
1 − ξ − 1

)
+ 1

]2
(4)

Besides, two patterns were considered for non-uniform distribution of pores: symmetric
and asymmetric. The equivalent properties of the asymmetrically imperfectmetal foam are
determined by:

E(z) = E1
(
1 − ξ cos

(πz

h

))
(5)

α(z) = α1

(
1 − ξ cos

(πz

h

))
(6)

ρ(z) = ρ1

(
1 − ξρ cos

(πz

h

))
(7)

Also, the above equations can be determined for the asymmetric porosity distribution
as follow:

E(z) = E1

(
1 − ξ cos

π

2

(
z

h
+ 1

2

))
(8)

α(z) = α1

(
1 − ξ cos

π

2

(
z

h
+ 1

2

))
(9)

ρ(z) = ρ1

(
1 − ξρ cos

π

2

(
z

h
+ 1

2

))
(10)
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where E(z), α(z) and ρ(z) denotes Young’s modulus, thermal expansion coefficient, and
mass density across the thickness of the imperfectmetal foamcylindrical shell, respectively.
In the current method, as the variation of Poisson’s ratio is very small, it can be taken into
account as a constant. In addition, the porosity coefficient (ξ ) can be formulated as:

ξ = 1 − E2
E1

= 1 − G2

G1
(11)

Also, density coefficient (ξρ ) can be formulated as:

ξρ = 1 − ρ2

ρ1
(12)

where E1, α1 and ρ1 represents the maximum values of Young’s modulus, thermal expan-
sion coefficient, and mass density of the imperfect metal foam, respectively. Similarly, E2,
α2 and ρ2 represents the minimum values of the aforenoted parameters. It is worth not-
ing that the porosity coefficient and also density coefficient vary between 0 and 1. On the
other hand, such coefficients cannot take values greater than 1.Moreover, there is a relation
between Young’s modulus and mass density for open-cell metal foams as follows:

ρ2

ρ1
=

√
E2
E1

(13)

By using this relation, density coefficient (Equation (12)) can be rewritten as:

ξρ = 1 −
√
E2
E1

(14)

By substituting Equation (11) into Equation (14), the following equation can be obtained
that in the framework of this equation, porosity coefficient and density coefficient are
related together.

ξρ = 1 −
√
1 − ξ (15)

The following equation states the stress-strain relationship of imperfect metal foam:

σij = Cijkl(εkl − αij
T) (16)

whereσij stands for Cauchy stress components, εkl is strain tensor components,Cijkl denotes
elasticity tensor components, αij is thermal expansion tensor components and finally, 
T
denotes temperature change.

Based on the former investigations, which were considering thermal environments, the
effects of various kindsof temperature variationor thermal loading calleduniform tempera-
ture variation (UTV), linear temperature variation (LTV) and sinusoidal temperature variation
(STV) on the behavior of propagated waves has been examined in the current investiga-
tion. The initial temperature was regarded to be room temperature T0 = 300K. The final
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temperature (T) of various types of temperature rise can be formulated as [45]:⎧⎪⎪⎨
⎪⎪⎩
T = T0 + ΔT

( 1
2 + z

h

)
LTV

T = T0 + ΔT
(
1 − cos π

2

( 1
2 + z

h

))
STV

T = T0 + ΔT UTV

(17)

According to FSDT, the motion relations of a shell can be stated in the following form
[46]:

ux(x,φ, z, t) = u(x,φ, t) + zθx(x,φ, t) (18)

uφ(x,φ, z, t) = v(x,φ, t) + zθφ(x,φ, t) (19)

uz(x,φ, z, t) = w(x,φ, t) (20)

where u denotes axial displacement, v denotes circumferential displacement and w
denotes lateral displacement. Additionally, θφ and θx illustrates the circumferential andaxial
rotation components. Therefore, the following equation presents the nonzero strains of a
shell:

εxx = ∂u

∂x
+ z

∂θx

∂x
(21)

εφφ = 1
R

(
w + ∂v

∂φ
+ z

∂θφ

∂φ

)
(22)

εxz = θx + ∂w

∂x
(23)

εxφ = ∂v

∂x
+ 1

R

∂u

∂φ
+ z

R

∂θx

∂φ
+ z

∂θφ

∂x
(24)

εφz = θφ + 1
R

∂w

∂φ
− v

R
(25)

Thereupon, to attain Euler-Lagrangeequations ofmetal foamshells, Hamilton’s principle
is employed: ∫ t1

t0
[δU − δK − δWnc]dt = 0 (26)

where U denotes strain energy, K is kinetic energy and Wnc represents work done by the
non-conservative external loads. The variation of strain energy can be stated as follow:

δU =
∫ h

2

− h
2

∫ 2π

0

∫ L

0
σijδεijRdxdφdz

=
∫ h

2

− h
2

∫ 2π

0

∫ L

0
[σxxδεxx + σφφδεφφ + σxzδεxz + σxφδεxφ + σφzδεφz]Rdxdφdz

=
∫ h

2

− h
2

∫ 2π

0

∫ L

0

⎡
⎢⎢⎢⎣

σxxδ
(

∂u
∂x + z ∂θx

∂x

)
+ σφφδ

(
1
R

(
w + ∂v

∂φ
+ z ∂θφ

∂φ

))
+σxzδ

(
θx + ∂w

∂x

) + σxφδ
(

∂v
∂x + 1

R
∂u
∂φ

+ z
R

∂θx
∂φ

+ z ∂θφ

∂x

)
+σφzδ

(
θφ + 1

R
∂w
∂φ

− v
R

)
⎤
⎥⎥⎥⎦ Rdxdφdz (27)
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Besides, the following equation shows the variation of kinetic energy:

δK =
∫ h

2

− h
2

∫ 2π

0

∫ L

0
ρ(z)

[(
∂δux
∂t

)2

+
(

∂δuφ

∂t

)2

+
(

∂δuz
∂t

)2
]
Rdxdφdz (28)

Eventually, the work done’s variation by external loads can be computed by the follow-
ing equation:

δWnc =
∫ h

2

− h
2

∫ 2π

0

∫ L

0

(
NT
1
∂w

∂x
+ NT

2
∂v

∂x

)
δwRdxdφdz (29)

where NT
1 and NT

2 denote the thermal loading resultants and it shall be noted that both
thermal resultants are equal and can be calculated as:

NT
1 = NT

2 = NT =
∫ h

2

− h
2

2μ(1 + υ)

1 − υ
α(z)
Tdz (30)

in which, temperature change equals ΔT = T − T0 and T0 is reference temperature which
is considered to be room temperature. Furthermore, μ stands for Lamé parameter. Thus,
to achieve the equations of motion of the shell, Equations (27)–(29) shall be substituted in
Equation (26):

∂Nxx

∂x
+ 1

R

∂Nxφ

∂φ
= I0

∂2u

∂t2
+ I1

∂2θx

∂t2
(31)

∂Nxφ

∂x
+ 1

R

∂Nφφ

∂φ
+ Qzφ

R
− NT ∂2v

∂x2
= I0

∂2v

∂t2
+ I1

∂2θφ

∂t2
(32)

∂Qxz

∂x
+ 1

R

∂Qzφ

∂φ
− Nφφ

R
− NT ∂2w

∂x2
= I0

∂2w

∂t2
(33)

∂Mxx

∂x
+ 1

R

∂Mxφ

∂φ
− Qxz = I1

∂2u

∂t2
+ I2

∂2θx

∂t2
(34)

∂Mxφ

∂x
+ 1

R

∂Mφφ

∂φ
− Qφz = I1

∂2v

∂t2
+ I2

∂2θφ

∂t2
(35)

in which, force and momentum resultants can be expressed as:

⎡
⎣Nxx

Nφφ

Nxφ

⎤
⎦ =

∫ h
2

− h
2

⎡
⎣σxx

σφφ

σxφ

⎤
⎦ dz (36)

⎡
⎣Mxx

Mφφ

Mxφ

⎤
⎦ =

∫ h
2

− h
2

z

⎡
⎣σxx

σφφ

σxφ

⎤
⎦ dz (37)

[
Qxz

Qzφ

]
= κs

∫ h
2

− h
2

[
σxz

σzφ

]
dz (38)
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where κs denotes the shear correction factor considered as 5/6. Also, mass inertias can be
stated as follow:

⎡
⎣I0
I1
I2

⎤
⎦ =

∫ h
2

− h
2

ρ(z)

⎡
⎣ 1
z
z2

⎤
⎦ dz (39)

Integrating Equations (36)–(38) over the thickness of the shell, the following relations
will be computed:

Nxx = A11
∂u

∂x
+ B11

∂θx

∂x
+ A12

R

(
∂v

∂φ
+ w

)
+ B12

R

∂θφ

∂φ
(40)

Nxφ = A66

(
1
R

∂u

∂φ
+ ∂v

∂x

)
+ B66

(
1
R

∂θx

∂φ
+ ∂θφ

∂x

)
(41)

Nφφ = A12
∂u

∂x
+ B12

∂θx

∂x
+ A11

R

(
∂v

∂φ
+ w

)
+ B11

R

∂θφ

∂φ
(42)

Mxx = B11
∂u

∂x
+ D11

∂θx

∂x
+ B12

R

(
∂v

∂φ
+ w

)
+ D12

R

∂θφ

∂φ
(43)

Mxφ = B66

(
1
R

∂u

∂φ
+ ∂v

∂x

)
+ D66

(
1
R

∂θx

∂φ
+ ∂θφ

∂x

)
(44)

Mφφ = B12
∂u

∂x
+ D12

∂θx

∂x
+ B11

R

(
∂v

∂φ
+ w

)
+ D11

R

∂θφ

∂φ
(45)

Qxz = As55

(
θx + ∂w

∂x

)
(46)

Qzφ = As44

(
θφ + 1

R

∂w

∂φ
− v

R

)
(47)

in which

⎡
⎣A11
A12
A66

⎤
⎦ =

∫ h
2

− h
2

⎡
⎢⎣

2μ
1−ν
2νμ
1−ν

μ

⎤
⎥⎦ dz (48)

⎡
⎣B11
B12
B66

⎤
⎦ =

∫ h
2

− h
2

z

⎡
⎢⎣

2μ
1−ν
2νμ
1−ν

μ

⎤
⎥⎦ dz (49)

⎡
⎣D11

D12

D66

⎤
⎦ =

∫ h
2

− h
2

z2

⎡
⎢⎣

2μ
1−ν
2νμ
1−ν

μ

⎤
⎥⎦ dz (50)

As44 = As55 = κs

∫ h
2

− h
2

μdz (51)
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Finally, by inserting Equations (40)–(47) into Equations (31)–(35) and also performing
simplification, the governing equations of imperfect metal foam shell will be calculated:

A11
∂2u

∂x2
+ B11

∂2θx

∂x2
+ A12

R

(
∂2v

∂x∂φ
+ ∂w

∂x

)
+ B12

R

∂2θφ

∂x∂φ

+ A66
R

(
1
R

∂2u

∂φ2 + ∂2v

∂x∂φ

)
+ B66

R

(
1
R

∂2θx

∂φ2 + ∂2θφ

∂x∂φ

)
− I0

∂2u

∂t2
− I1

∂2θx

∂t2
= 0 (52)

A66

(
1
R

∂2u

∂x∂φ
+ ∂2v

∂x2

)
+ B66

(
1
R

∂2θx

∂x∂φ
+ ∂2θϕ

∂x2

)
+ A12

R

∂2u

∂x∂φ
+ B12

R

∂2θx

∂x∂φ

+ A11
R2

(
∂2v

∂φ2 + ∂w

∂φ

)
+ B11

R2
∂2θφ

∂φ2 + As55
R

(
θφ + 1

R

∂w

∂φ
− v

R

)

− NT ∂2v

∂x2
− I0

∂2v

∂t2
− I1

∂2θφ

∂t2
= 0 (53)

As55

(
∂θx

∂x
+ ∂2w

∂x2

)
+ As55

R

(
∂θφ

∂φ
+ 1

R

∂2w

∂φ2 − 1
R

∂v

∂φ

)
− A12

R

∂u

∂x

− B12
R

∂θx

∂x
− A11

R2

(
∂v

∂φ
+ w

)
− B11

R2
∂θφ

∂φ
− NT ∂2w

∂x2
− I0

∂2w

∂t2
= 0 (54)

B11
∂2u

∂x2
+ D11

∂2θx

∂x2
+ B12

R

(
∂2v

∂x∂φ
+ ∂w

∂x

)
+ D12

R

∂2θφ

∂x∂φ
+ B66

R

(
1
R

∂2u

∂φ2 + ∂2v

∂x∂φ

)

+ D66

R

(
1
R

∂2θx

∂φ2 + ∂2θφ

∂x∂φ

)
− As55

(
θx + ∂w

∂x

)
− I1

∂2u

∂t2
− I2

∂2θx

∂t2
= 0 (55)

B66

(
1
R

∂2u

∂x∂φ
+ ∂2v

∂x2

)
+ D66

(
1
R

∂2θx

∂x∂φ
+ ∂2θφ

∂x2

)
+ B12

R

∂2u

∂x∂φ
+ D12

R

∂2θx

∂x∂φ

+ B11
R2

(
∂2v

∂φ2 + ∂w

∂φ

)
+ D11

R2
∂2θφ

∂φ2 − As55

(
θϕ + 1

R

∂w

∂φ
− v

R

)
− I1

∂2v

∂t2
− I2

∂2θφ

∂t2
= 0

(56)

A harmonic solution is implemented in order to solve the obtained governing equa-
tions of imperfect metal foam shells. Thus, the displacement fields were supposed in the
following form [47]: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u
v
w
θx

θφ

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Un

Vn
Wn

�xn

�φn

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
e(iβx+inφ−iωnt) (57)

In the above equation, U, V andW represents the amplitudes of displacements, respec-
tively, while θx and θφ denotes rotation amplitudes, respectively. Plus, β represents the
longitudinal wavenumber and n represents the circumferential wave number. Also, ωn is
the circular frequency and i = √−1 is the imaginary unit. In this case, the simply-supported
boundary condition is taken into account. Next, by replacing Equation (57) into Equations
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(52)–(56), the following equation can be attained:

([K − ω2
nM]5×5)

⎡
⎢⎢⎢⎢⎣

Un

Vn
Wn

�xn

�φn

⎤
⎥⎥⎥⎥⎦ = 0 (58)

in which K represents stiffness matrix andM represents mass matrix. The elements of such
matrices are provided in the Appendix.

The determinant of the coefficient matrix of Equation (58) shall be set to zero to solve
such eigenvalue problem and calculate the value of natural frequency:

|[K − ω2
nM]5×5| = 0 (59)

By dividing the circular frequency by 2π , the wave frequency will be calculated. Besides,
by setting β = n = η, the phase velocity will be computed as follow:

cPhase = ωn

η
(60)

Numerical findings and discussion

In the current part, several diagrams are presented to clarify the influence of different
parameters on the wave propagation behavior of metal foam circular cylindrical shells. In
this research, the thickness of the shell was assumed to be 3 cm; also, both the length and
radius of the shell were taken 40 times greater than the shell’s thickness. The mechanical
properties of the material at room temperature (T = 300 K) are presented in Table 1.

First of all, the introducedmethodologywas validated by comparing the presented out-
comes with those stated by Pradhan, Loy [48], Wang andWu [14] and Li, Pang [49]. Accord-
ing to Table 2, there is an acceptable consistency between the results of the presented
method and those reported by previous investigations.

Figure 3 reveals the changes in wave frequency as a function of circumferential wave
numbers for various types of porosity distribution. According to this diagram, it can be
inferred that theoretically, SPD metal foam structures are the best choice in various indus-
tries since SPDexperiences the highestwave frequency followedbyASPD andUPD, respec-
tively. This result should be examined experimentally. Manufacturingmetal foamwith SPD
can be a challenging task. Besides, the circumferential wave number had an increasing
influence on the variation of wave frequency in the circular cylindrical metal foam shell.

Table 1. Mechanical properties of
Ti-6Al-4V foam at room tempera-
ture.

Mechanical properties Value

E1(GPa) 105.7
ν 0.2981
ρ1 (Kg/m3) 4429
α1(µ/K) 6.941
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Table 2. Comparison of the dimensionless natural frequency(
Ω = ωR

√
ρ

E(1−υ2)

)
of the cylindrical shell for the C-C boundary

condition.

N Pradhan, Loy [48] Wang and Wu [14] Li, Pang [49] Present

1 0.0342 0.0340 0.0332 0.0351
2 0.0119 0.0119 0.0117 0.0122
3 0.0072 0.0072 0.0071 0.0072
4 0.0089 0.0090 0.0090 0.0089
5 0.0136 0.0137 0.0137 0.0135

Figure 3. Illustration of variation of wave frequency as a function of circumferential wave number for
various types of porosity distribution through the thickness of the shell.

The effect of different types of porosity distribution through the shell thickness on
phase velocity is demonstrated in Figure 4 as a function of circumferential wave number.
A decreasing trend can be observed with different slopes. At lower circumferential wave
numbers, curves or values of phase velocity decreased with a steep slope; while at greater
circumferential wave numbers, this decrease occurred atmilder slopes. Furthermore, based
on themagnified diagram, it can be understood that the lower effects on the phase velocity
can be observed in the case of SPD as higher phase velocity happened in SPD. Also, UPDhas
the greatest negative effect on the phase velocity values as compared to ASPD and SPD.

The effects of both the porosity coefficient and porosity distribution on the variation of
phase velocity are illustrated in Figure 5. As can be seen, the phase velocity is inversely pro-
portional to the porosity coefficient. In other words, the presence of pores weakens the
structure and declines its stiffness; hence the non-porous structure can tolerate greater
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Figure 4. The effect of different types of porosity distribution through the shell thickness on changes of
phase velocity against the circumferential wave number.

Figure 5. Variation of phase velocity against porosity coefficient for different kinds of porosity distribu-
tion through the thickness of the shell.
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Figure 6. Variation of wave frequency against wave number for various amounts of porosity coefficient.

phase velocity than the porous one. Furthermore, the SPD corresponds to greater phase
velocity values.

Figure 6 indicates the influence of the porosity coefficient on the variation of wave
frequency as a function of the circumferential wave number. At a certain circumferential
wave number, an increment in the porosity coefficient declined thewave frequency, more-
over, it canbe seen that the circumferentialwavenumber possesses an increasing influence
on wave frequency. Porosity is an unavoidable phenomenon during the manufacturing
process. This phenomenon is also known as a defect and can negatively affect themechan-
ical performance of structures. This can explain the trend of this diagram inwhich thewave
frequency decreased by augmentation of the porosity coefficient.

Variations of phase velocity by the circumferential wave number are plotted in Figure7
for different porosity coefficients. As shown, the curves exhibited an initial dramatic
decrease followed by a gradually decrementing slope by the further increment of the cir-
cumferential wave number. For further elucidation of the impact of the porosity coefficient
on the phase velocity, a more accurate magnifier was utilized. According to the magnified
diagram, the porosity coefficient influenced the phase velocity value similar to the case of



WAVES IN RANDOM AND COMPLEX MEDIA 15

Figure 7. The influence of porosity coefficient on the variation of phase velocity against the circumfer-
ential wave number.

thewave frequency: thephase velocity valueswere reducedbyan incrementof theporosity
coefficient.

Figure 8 demonstrates the effect of radius to thickness ratio on the variation of phase
velocity for different porosity coefficients. As observed, the curves have adescending trend.
In other words, the radius to thickness ratio caused a decreasing effect on the variation
of phase velocity. This could be ascribed to the softening influence of radius to thickness
ratio increment and the decline of the structure stiffness by the growth of this ratio. As
mentioned before, increasing the porosity coefficient decreases phase velocity.

Figure 9 is drawn to probe the effect of temperature change on the variation of wave
frequency versus circumferential wave number for (a) SPD, (b) ASPD and (c) UPD. Based
on these diagrams, it can be realized that temperature change possesses a negative effect
on the value of wave frequency. That is, the value of wave frequency will be reduced with
increasing temperature change value. The corresponding reason for this behavior is that
the stiffness of the structure will be lessened, i.e. the structure becomes weaker by rising
temperature change amount. Moreover, by comparing plotted diagrams, it is clear that
their trends are similar and by rising circumferential wave number, wave frequency value
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Figure 8. Variation of phase velocity against radius to thickness ratio for different amounts of porosity
coefficients.

grows. However, they are different in terms of values: SPD, ASPD andUPDhave the greatest
values, respectively.

In Figures 10 and 11, the effect of various kinds of temperature variation on changes
of wave frequency and phase velocity values versus temperature change for (a) the first
mode, (b) the second mode and (c) the third mode, respectively. According to this figure,
it can be understood that wave frequency and phase velocity values experience higher
values at higher frequency modes. Besides, the decreasing effect of temperature change
whichwasmentioned in the discussion of Figure 9 is also observed in these diagrams. From
these figures, we can see how various kinds of temperature variations affect values of wave
frequency andphase velocity. As observed, STV has the least negative influence on the vari-
ation of wave frequency and phase velocity and inversely, UTV has themost negative effect
on wave frequency and phase velocity values by rising temperature change amount.

Concluding remarks

The present investigation was aimed to assess wave propagation in a porous metal foam
circular cylindrical shell in a thermal environment. To this end, FSDT and Hamilton’s prin-
ciple were employed to obtain the governing equations. Various porosity distribution
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Figure 9. Illustration of variation of wave frequency versus circumferential wave number for various
temperature changes for (a) SPD, (b) ASPD and (c) UPD.

patterns were considered through the shell thickness. Also, various types of variation of
temperatures such as STV, LTV and UTVwere surveyed. Eventually, the obtained governing
equations were analytically solved. The most remarkable highlights are expressed in the
following.

We observed that the phase velocity and wave frequency of the porous metal foam cir-
cular cylindrical shell decrease with the elevation of porosity coefficient, and an increment
in the radius to thickness ratio has a decreasing effect on the phase velocity. Also, the SPD
and UPD models can tolerate the highest and lowest phase velocity and wave frequency,
respectively, and higher values of phase velocity and wave frequency are associated with
higher circumferential wave numbers. Finally, we concluded that temperature change has
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Figure 10. Illustration of variation of wave frequency versus temperature change for various kinds of
temperature variation for (a) first mode, (b) second mode and (c) third mode.

a decreasing effect on the variation of wave frequency values. In other words, the value
of wave frequency will be reduced with increasing temperature change value, as the stiff-
ness of the structure will be decreased. Comparing the resulted curves demonstrated that
the variation of wave frequency versus circumferential wave number for various tempera-
ture changes for SPD, ASPD andUPD are qualitatively similar, with SPD andUPD having the
largest and smallest values, respectively. Also, the influence of various types of temperature
variation was investigated. Based on the presented diagrams, it can be figured out that a
thermal environment in which temperature varies according to a sinusoidal model has a
less decreasing effect on the variations of wave frequency and phase velocity compared
to the linear and uniform models. On the other hand, greater wave frequencies and phase
velocities happen in thermal environments with STV, LTV and UTV, respectively. Further-
more, wave frequency and phase velocity values become greater with the growth of mode
number.
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Figure 11. Variation of phase velocity versus temperature change for various kinds of temperature
variation for the (a) first mode, (b) second mode, and (c) third mode.
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Appendix

The components of stiffness and mass matrices are as follows:

K11 = −A11β2 − A66
R2

n2, K12 = −βn( A12+A66
R ), K13 = A12

R β i,

K14 = −B11β2 − B66
R2

n2, K15 = −βn( B12+B66
R ), K22 = −A66β2 − A11

R2
n2 − As55

R2
− NTβ2,

K23 = n(
A11+As55

R2
)i, K24 = −βn( B12+B66

R ), K25 = −B66β2 − B11
R2

n2 − As55
R ,

K33 = −As55β
2 −

[
A11
R2

+ n2
As55
R2

]
− NTβ2, K34 =

(
As55 − B12

R

)
iβ , K35 = n

(
As55
R − B11

R2

)
i,

K44 = −D11β
2 − n2 D66

R2
− As55, K45 = −βnD12+D66

R , K55 = −D66β
2 − n2 D11

R2
− As55.

M11 = I0, M14 = I1, M22 = I0, M25 = I1, M33 = I0, M44 = I2, and M55 = I2.
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