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A B S T R A C T   

The current global redistribution of biota is often attributed to two main drivers: contemporary climate change 
(CCC) and non-indigenous species (NIS). Despite evidence of synergetic effects, however, studies assessing long- 
term effects of CCC conditions on NIS fitness remain rare. We examined the interactive effects of warming, ocean 
acidification and reduced salinity on the globally distributed marine NIS Magallana gigas (Pacific oyster) over a 
ten-month period. Growth, clearance and oxygen consumption rates were measured monthly to assess individual 
fitness. Lower salinity had a significant, permanent effect on M. gigas, reducing and increasing clearance and 
oxygen consumption rates, respectively. Neither predicted increases in seawater temperature nor reduced pH had 
a long-term physiological effect, indicating conditions predicted for 2100 will not affect adult physiology and 
survival. These results suggest that M. gigas will remain a globally successful NIS and predicted CCC will continue 
to facilitate their competitive dominance in the near future.   

1. Introduction 

Non-indigenous species (NIS) and contemporary climate change 
(CCC) are two of the most significant threats to global biodiversity. From 
their main points of introduction (e.g. agricultural exploitations, har-
bours and aquaculture sites), NIS can spread to surrounding areas and 
establish new populations, becoming invasive (Eno et al., 1997; Man-
chester and Bullock, 2000; Richardson et al., 2000; Jensen et al., 2004; 
Hellmann et al., 2008). In addition, NIS can negatively impact native 
biodiversity and alter the structure and functioning of ecosystems 
(Nichols et al., 1990; Carlton and Geller, 1993; Travis, 1993; Grosholz 
Edwin et al., 2000). Knowledge of the potential impacts of CCC on 
marine NIS has advanced rapidly in recent years through the use of 
laboratory and field experiments (for example Lemasson et al., 2018; 
Miranda et al., 2019; Nguyen et al., 2020), habitat suitability modelling 
(for example Sarà et al., 2018; D’Amen and Azzurro, 2019; Zhang et al., 
2020) and mechanistic modelling (Thomas et al., 2016). Mounting ev-
idence suggests that CCC is likely to facilitate NIS spread and alter the 
current global distribution of species (Dukes and Mooney, 1999; Carl-
ton, 2000; Occhipinti-Ambrogi, 2007; Hellmann et al., 2008; Rahel and 

Olden, 2008; Occhipinti-Ambrogi and Galil, 2010; Smith et al., 2012). 
Anthropogenic activities have led to both an increase in global 

temperatures and ocean acidification over the last 150 years (Caldeira 
and Wickett, 2003; Caldeira and Wickett, 2005; Gattuso et al., 2015; 
IPCC, 2019). It is expected that by the end of the century, global surface 
temperatures and ocean pH will rise by 2–4 ◦C and decrease by 0.3–0.4 
units, respectively, relative to 1986–2005 (Caldeira and Wickett, 2003; 
Sabine et al., 2004; Caldeira and Wickett, 2005; IPCC, 2019). In 
response to these environmental changes, species distributions are 
shifting to higher latitudes and altitudes, or deeper depths in the oceans 
(Parmesan and Yohe, 2003; Parmesan et al., 2005; Helmuth et al., 2006; 
Hickling et al., 2006; Mieszkowska et al., 2006; Cheung et al., 2009; 
Rijnsdorp et al., 2009; Chen et al., 2011; Pecl et al., 2017). Range ex-
pansions and increases in abundance have already been reported on NIS 
that have experienced a 50-year period of warming (Rius et al., 2014). 
Consequently, range expansions of NIS are expected throughout this 
century in both marine and terrestrial ecosystems (Occhipinti-Ambrogi, 
2007; Rahel and Olden, 2008; Pecl et al., 2017). A meta-analysis of NIS 
performance under CCC conditions showed that NIS displayed more 
positive responses to increased ocean acidification and warming than 
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native species (Sorte et al., 2013), probably due to successful NIS being 
able to survive across a wider range of these parameters (Le Cam et al. 
2019). Overall, the potential positive effects of CCC on NIS may ulti-
mately facilitate NIS dominance in the near future. 

The environmental factors linked to CCC rarely act in isolation and 
interactions between multiple environmental stressors are known to 
exacerbate the effects of CCC on species performance (Przeslawski et al., 
2005, 2015; Staudt et al., 2013; Delorme and Sewell, 2014). It is, 
therefore, crucial to study the combined effects of multiple abiotic 
stressors on species physiology to fully understand how CCC will affect 
the success of NIS. However, assessments of the effects of multiple 
stressors, particularly those using more than two stressors, are uncom-
mon with the majority of CCC experiments focusing on short-term ex-
posures (Kroeker et al., 2013). Although these experiments provide key 
insights into how CCC affects the physiology of both native and NIS, 
short-term experiments may not account for the acclimation of the 
species to experimental conditions and only provide limited evidence of 
chronic stress responses (Hollister et al., 2005; Leuzinger et al., 2011; 
Dupont et al., 2013; Smith and Dukes, 2013; Stewart et al., 2013; 
Suckling et al., 2015). Data from long and short-term experiments have 
revealed contrasting results (Form and Riebesell, 2011; Dupont et al., 
2013; Munday et al., 2013; Suckling et al., 2015), with species showing 
acclimation and resilience only in long-term and/or trans-generational 
exposure to abiotic stressors (Donelson et al., 2011; Munday, 2014; 
Palumbi et al., 2014; Suckling et al., 2015; Ross et al., 2016). Long-term 
studies are, therefore, crucial for accurate predictions of the effects of 
CCC on species fitness. Another advantage of long-term experiments is 
that they can encompass seasonal changes in environmental conditions, 
which are often overlooked in short-term experiments. By including 
maximum and minimum temperatures, an assessment can be made of 
the effects of stressors across phenological cycles. 

In this study we assessed how changes in key environmental condi-
tions, as predicted under CCC at the end of the 21st century, interact and 
affect the long-term performance of the highly successful marine NIS the 
Pacific oyster, Magallana gigas (Thunberg, 1793). From its native range 
in northeast Asia, M. gigas has been introduced into over 65 countries for 
use in aquaculture worth approximately $1.2 – $1.4 billion per year 
(Fig. S1a). M. gigas has already established wild populations in more 
than 17 countries (Fig. S1b), making it a globally successful NIS (Herbert 
et al., 2016). M. gigas is classified as an invasive species due to its ability 
to spread and form extensive reefs, modifying the habitats and threat-
ening indigenous biodiversity (Richardson et al., 2000; Lejart and Hily, 
2005; Smaal et al., 2008; Troost, 2010; Holm et al., 2016). 

There are a wealth of studies investigating environmental change on 
M. gigas fitness, however, contrasting results have shown both neutral/ 
positive (Havenhand and Schlegel, 2009; Falkenberg et al., 2019) and 
negative (Kurihara et al., 2007; Lannig et al., 2010; Barros et al., 2013; 
Lemasson et al., 2018) effects of warming and ocean acidification on 
adult and larval stages. Whilst the majority of these experiments have 
shown the short-term sensitivity of M. gigas to CCC, M. gigas may 
acclimate and express resilience to these conditions in the long-term. 
Further investigation is, therefore, needed to assess the effects of pro-
longed, seasonal exposure of adult M. gigas to predicted CCC conditions 
and how the long-term interactive effects between altered abiotic factors 
will contribute to their continued success. 

Here, M. gigas were exposed to varying levels of three abiotic 
stressors, temperature, pH and salinity, over a ten-month period. We 
hypothesized that: (1) long-term exposure to expected CCC conditions 
and reduced salinity would negatively affect M. gigas fitness, and (2) the 
manipulated environmental conditions will have synergistic in-
teractions, ultimately affecting the performance of M. gigas. 

2. Methods 

2.1. Mesocosm set up and conditions 

We created a mesocosm system with 12 independent experimental 
treatments (Fig. 1). Each treatment consisted of a closed system with a 
header and footer tank circulating approximately 200 L of natural, un-
treated, filtered seawater from Plymouth Sound through six, 9 L 
experimental tanks. The 12-level (2 temperature x 3 pH treatments x 2 
salinity) factorial experiment included different temperature (ambient 
and +4 ◦C), pH (ambient at 8.1, 7.7 and 7.5), and salinities (34 and 20) 
levels (Fig. 1). Temperature and pH were chosen to reflect ambient and 
forecasted projections from both IPCC and UKCP09 reports (Jenkins 
et al., 2009; Lowe et al., 2009; Hughes et al., 2017; IPCC, 2019). 
Reduced salinity is a key range limiting factor for marine species, often 
having a negative impact on species physiology and survival (Cognetti 
and Maltagliati, 2000; Paavola et al., 2005; Braby and Somero, 2006; 
Pourmozaffar et al., 2020), and thus salinity was manipulated to reflect 
the tolerance range of M. gigas with conditions experienced in northwest 
Europe as intertidal coastal and estuarine organisms. Salinities above 20 
are regarded as important for the establishment of Pacific oysters and 
adult oysters having been observed in salinities ranging from 20 
(Scandinavian coast, Wrange et al., 2010) to more than 35. M. gigas are 
also common in estuaries where salinity fluctuates on a semi-diurnal 
basis. Each of the 12 treatments was run for 10 months between June 
2018 to March 2019. 

The pH was regulated using Aqua Medic pH computers, which 
administered CO2 when the pH deviated by 0.02 above the treatment 
value. To reflect seasonality in natural systems, daylength and temper-
ature were adjusted at the start of every month, with seawater tem-
perature reflecting the average sea surface temperature at L4 station in 
the Western English Channel off the coast of Plymouth (www.weste 
rnchannelobservatory.org.uk) (Fig. 2). Air temperature was used to 
control ambient seawater temperature and was adjusted to 2 ◦C below 
the monthly average at L4 to achieve the desired seawater temperatures. 
Seawater temperature in the +4 ◦C treatments were achieved by placing 
heaters in the reservoir tanks. Seawater temperatures varied by ±0.5 ◦C 
across the two temperature levels. Total alkalinity for each treatment 
was measured every other week using an Alkalinity Titrator (Model AS- 
ALK2, Apollo SciTech, Bogart). The water chemistry recorded for each 
treatment is shown in Table S1. 

Adult M. gigas individuals (60–113 mm maximum length) were 
collected at the end of March 2018 from the low intertidal zone of the 
River Yealm estuary (50.3098◦N, 4.0537◦W), which is 15 km away from 
the laboratories of the Marine Biological Association of the United 
Kingdom (50.3641◦N, 4.1391◦W) where the experiments were con-
ducted. The collected individuals were placed in insulated containers 
that were transported to the laboratory within 1 h. Once cleaned of 
epibionts, a total of 288 oysters were randomly allocated to tanks, with 
24 M. gigas per treatment across six replicate tanks, i.e. four oysters per 
tank (based off Utting and Spencer, 1991) (Fig. 1). M. gigas were initially 
acclimated to their temperature and salinity treatments for four weeks 
prior to introducing CO2 to the systems, then acclimated for a further 
four weeks before measuring physiological parameters. Oysters were fed 
with a diet of Isochrysis galbana and Tetraselmis sp. (Instant Algae® by 
Reed Mariculture) five days a week at an amount equivalent to 2% of the 
mean oyster dry weight (dry weights based on destructively sampling a 
representative sample of oysters from the Yealm Estuary) (Helm and 
Bourne, 2004). The concentration of food in the tanks at each feed was in 
the order of x108 cells per litre. Tanks were checked prior to feeding and 
dead oysters removed; only 11 oysters died over the duration of the 
experiment. A 10% water change with filtered seawater occurred twice a 
week; freshwater was added to reduce salinity to 20 in half of the 
treatments. 
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2.2. Growth 

Initially, all 288 oysters were weighed to the nearest 0.01g prior to 
treatment exposure to obtain a baseline weight. Weight of the oysters 
was then assessed at the start of each month (with the exception of 
January and February). Every oyster was removed from their tank, 
carefully dried to remove excess water from the shell and total live wet 
weight (shell and wet tissue) of each individual oyster was measured. 
Weight change was then determined as the difference in the monthly 
weight compared to baseline weight. 

2.3. Physiological measurements 

Physiological measurements were taken during the fourth week of 

each month, after M. gigas were exposed to the monthly environmental 
conditions for three weeks. Daily feeding was stopped two days prior to 
measuring physiological parameters to obtain values at a routine 
metabolic rate. Oysters were returned to their respective tanks after 
physiological measurements were taken. 

2.3.1. Clearance rate 
The clearance rates for M. gigas (i.e. the volume of water cleared of 

algal cells per hour) were measured to assess their efficiency to remove 
seston within each treatment. Clearance rates were measured on six 
individual oysters from each treatment (one randomly selected from the 
replicate tanks). Oysters were placed in an enclosed chamber with 1 L of 
filtered seawater with temperature, pH and salinity levels matching 
their respective treatments. Once the oyster was visibly feeding (valves 

Fig. 1. Experimental design used for the 12-level factorial experiment and the layout of each closed treatment system. Treatment refers to each of the 12 independent 
combinations of the environmental parameters. The six, nine litre tanks per treatment acted as the units of replication. 

Fig. 2. Monthly mean seawater temperature (ambient and +4 ◦C) and daylight hours in the mesocosm system between June 2018 and March 2019.  
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open) a concentration of 2 × 108 cells per litre (below pseudofaeces 
production threshold) of Isochrysis sp. was added to the water and the 
oyster left to feed for 30 min. Strong, continuous aeration was used to 
keep the water constantly mixed and prevent the settlement of algae 
cells. Water samples at the beginning and end of each 30-min period 
were collected and the cell concentration of each sample analyzed using 
a Beckman Coulter Counter Z Series. Clearance rate (CR) was calculated 
from the exponential decrease in cells using the following equation 
described in Coughlan (1969): 

CR=V × ln(C0) − ln(C1) / t  

where V is the volume of water in the enclosed chamber, C1 and C2 are 
the concentration of cells before and after 30 min, respectively, and t is 
the time in hours. Clearance rates were then standardized to 1 g total wet 
weight of the oyster. Total wet weight was used to standardize the rates 
due to oyster size and condition having an effect on physiological pa-
rameters. As a control, tanks were run without oysters to assess potential 
algal settlement during clearance rate measurements. 

Due to unforeseen circumstances, the clearance rates in August from 
all four treatments with a pH of 8.1 were removed from the analysis due 
to an equipment failure leading to measurements being unreliable. 

2.3.2. Oxygen consumption 
Oxygen removal from the water by M. gigas, a proxy for metabolic 

demand (Treberg et al., 2016), was measured monthly (last week of 
every month) using a fibre-optic oxygen logger (Piccolo2; PyroScience). 
Oxygen consumption rates were obtained from four oysters per treat-
ment (one randomly selected from four tanks per treatment). Individuals 
were isolated in a closed chamber with 1 L of seawater with tempera-
ture, pH and salinity levels matching their respective treatments. Oys-
ters were left to acclimatize to the chamber for at least 15 min before 
measuring oxygen concentration. Once the oysters began to uptake ox-
ygen (valves opened), after the acclimatizing period, oxygen concen-
tration was recorded every second for a minimum of 30 min. If the oyster 
closed its values during the recording, the timer was restarted when 
valves were opened to ensure 30 min of continuous oxygen decline in 
the water. Seawater was continuously stirred during each trial with a 
magnetic stirrer to ensure oxygen was equally mixed throughout the 
water. If the individual remained shut for more than 60 min, and 
therefore was not taking up oxygen, the individual was replaced with 
another from within the same tank. Oxygen in the water did not fall 
below 70% saturation during any of the trials and therefore did not limit 
oxygen consumption (Ren et al., 2000). Oxygen removal in control 
tanks, without oysters, was measured for each treatment each month to 
determine the potential rate of decline from bacterial respiration. 

Oxygen consumption was estimated as the rate of oxygen decrease 
per second in the chamber. Linear regression was used to obtain the 
average rate of oxygen consumption. The rate was taken after the first 
10 min of the oyster consuming oxygen to allow time for the oyster to 
reach a steady state of respiration. The rate of change was then scaled up 
to obtain a rate of uptake per hour and standardized to 1 g total wet 
weight of the oyster by dividing the rate by the total wet weight 
(including shell) of the oyster. 

2.4. Data analysis 

Weight change from baseline, clearance rates and oxygen con-
sumption rates were analyzed separately using linear, mixed effect, 
repeated measures analysis of variance (RM-ANOVA) models with an 
autocorrelated error structure (Quinn and Keough, 2002). The models 
included a term for month and the 12 treatments (see details in Fig. 2) 
were fitted as a 2 × 2 × 3 factorial with main effects, 2-factor in-
teractions, and the 3-factor interaction (Quinn and Keough, 2002). 
Month-by-treatment interactions were also fitted. For weight change, 
individual oyster was used in the model as the repeated measure, and for 

clearance and oxygen consumption rates, tank was used as the repeated 
measure. 

Assumptions of parametric tests were checked by analyzing: 
normality, which was assessed by plotting theoretical quantiles with 
versus standardized residuals (Q-Q plots) and using Shapiro-Wilk test; 
and homogeneity of variances, which was tested by plotting residuals 
versus fitted values and Levene test. All assumptions were met, except 
for clearance rate where there was evidence of non-normality. A non- 
parametric ANOVA (randomization test) was performed and the re-
sults were consistent with the parametric test, therefore, given the 
conclusions are the same, we have reported the values from the para-
metric model. All models were fitted in R (R Core Team, 2019). 

3. Results 

3.1. Growth 

Oysters lost an average of approximately 0.5g in weight in the first 
month after establishment in the mesocosm. Weight increased at the 
start of the experiment before decreasing for all treatments to a mini-
mum in September (Fig. 3a). There were statistically significant in-
teractions between month and the three treatment factors however, as 
no clear or consistent treatment-related trends were observed (Fig. 3b, c, 
d). 

3.2. Clearance rate 

Overall, mean clearance rates were highest at the beginning of the 
experiment in June and July 2018 at a maximum of 0.024 (±0.001) l 
hr− 1, standardized to 1g total weight. Clearance rate then decreased by 
more than half in August at 0.011 (±0.001) l hr− 1 and reached a mini-
mum in January 2019 at 0.005 (±0.0004) l hr− 1. Clearance rate was also 
relatively stable between November 2018 and March 2019 (Fig. 4a). 

The estimate of the autocorrelation parameter for both clearance rate 
models was 0.04 indicating almost complete independence of the mea-
surements over time. There was no significant three-factor or two-factor 
interaction between any of the factors nor was there a significant long- 
term effect of temperature or pH (Fig. 4b and c). There was a statistically 
significant difference between the two salinity levels, with a larger 
volume of water cleared in a salinity of 34 compared a salinity of 20 
(Table 1, Fig. 4d). There was no significant interaction between month 
and salinity, therefore the difference between the salinity levels was 
constant over time. Oysters in a salinity of 20 cleared an estimated 
0.0016 (±0.0004) l hr− 1 less per month, approximately 20% less than 
those in a salinity of 34. 

Overall, mean clearance rate across all treatments did not change 
with actual temperature of the water (Weighted linear regression: R2 =

0.38, F1, 8 = 4.78, p = 0.06). Further, the salinity effect (difference 
between the two salinity levels per month) did not correlate actual 
temperature (Weighted linear regression: R2 = 0.39, F1, 8 = 5.02, p =
0.06). 

3.3. Oxygen consumption 

Mean oxygen consumption rate across all treatments was highest 
between June and September 2018 before decreasing between 
September 2018 at 0.0077 (±0.0024) mg hr− 1, standardized to 1g total 
weight, to March 2019 at 0.0038 (±0.0019) mg hr− 1 (Fig. 5a). This 
decrease coincided with a decrease of 6 ◦C between the warmest and 
coldest months of the experiment. Consumption was high at the begin-
ning of the experiment although temperatures in June and July 2018 are 
similar to those in October and November 2018 where rates were lower. 

The estimate of the autocorrelation parameter for oxygen con-
sumption rate models was 0.04 indicating almost complete indepen-
dence of the measurements over time. There was no significant 
interaction between any of the three experimental factors. There was a 
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significant effect of temperature (Table 1, Fig. 5b). This was observed as 
those at +4 ◦C had either equal to or higher oxygen consumption rates 
than the ambient treatments. There was a significant interaction be-
tween month and temperature, therefore, the difference in oxygen 
consumption rates between the temperature levels was not constant over 
time. There was, however, a large difference between factors during the 
first couple of months and minimal difference in oxygen consumption 
rates between August and January (Fig. 5b). 

Oxygen consumption rate had no long-term trend with pH (Fig. 5c) 
and overall, the effect of pH was not statistically significant. There was a 
statistically significant effect of salinity (Table 1, Fig. 5d). There was no 
significant interaction between month and salinity, therefore the 
observed differences between the two salinity levels was constant over 
time. On average, a salinity of 20 led to an estimated 0.00056 (±0.0002) 
mg hr− 1 more oxygen being consumed, approximately 10%, compared 
to those kept at a salinity of 34. 

Oxygen consumption increased significantly with increasing actual 
temperature (Fig. S2) (Weighted linear regression: R2 = 0.89, F1, 8 =

66.42, p < 0.001) at 0.0004 mg h− 1 every 1 ◦C increase. The salinity 
effect was not significantly affected by actual temperature. 

4. Discussion 

Our long-term mesocosm experiment showed that reduced salinity 
conditions had a statistically significant, persistent impact on the 
physiology of M. gigas. In turn, water temperature and pH had little to no 
impact on clearance and oxygen consumption rates of M. gigas. This 
suggests that key environmental conditions as predicted by the end of 
the century will not negatively affect adult physiology and survival of 
this highly successful NIS. Our study highlights the importance of con-
ducting long-term, seasonal experiments to fully understand the toler-
ance of NIS to abiotic stressors. 

Broad environmental tolerance and phenotypic plasticity to envi-
ronmental change are common traits of NIS compared to native species 
in marine and terrestrial environments (Daehler, 2003; Funk, 2008; 
Davidson et al., 2011; Tepolt and Somero, 2014). The ability of a species 
to alter its physiology and morphology to novel environmental condi-
tions, such as CCC, may give them a competitive advantage over other 
species and, in the case of NIS, enable them to spread to a wide range of 
habitats (Stachowicz et al., 2002; Davidson et al., 2011). Our results 
support growing evidence that successful NIS have high environmental 
tolerance and will tolerate predicted future environmental conditions. 

Salinity had a constant effect on M. gigas physiology over the dura-
tion of the experiment. It may, therefore, be physiologically necessary 
for M. gigas individuals to increase oxygen consumption rates and 
decrease clearance rates to ensure survival in areas of freshening. Other 
physiological studies have shown that M. gigas have faster growth and 
gonadal development at a salinity of 30 and reduced growth and larval 
mortality at lower salinities (Shumway and Koehn, 1982; Muranaka and 
Lannan, 1984; Brown and Hartwick, 1988; His et al., 1989). Environ-
mental stressors such as low salinity result in changes in water chemistry 
(Dickinson et al., 2012; Casas et al., 2018b) and osmotic pressure 
(Maoxiao et al., 2019), which in turn increases energy expenditure 
(increase metabolic rate) or reduced energy storage capacity leading to 
reduced fitness, survival and growth (Lannig et al., 2006; Dickinson 
et al., 2012; Maoxiao et al., 2019). Our results showed that a salinity of 
20 led to an increase in energy demand of M. gigas, as shown by an 
increased oxygen uptake (Hawkins and Hilbish, 1992; Lannig et al., 
2006; Sokolova et al., 2012), therefore, may have had a negative impact 
on performance. This negative effect of salinity has also been observed 
in European flat oysters (Ostrea edulis) and eastern oysters (Crassostrea 
virginica) (Hutchinson and Hawkins, 1992; Dickinson et al., 2012). 

Decreased clearance rates with salinity have already been reported 
as a stress response in other bivalves (Wang et al., 2011). Our results are 

Fig. 3. Mean weight change (l hr− 1 ± standard error) from their baseline weight at collection between June 2018 and March 2019 (a) across all treatments, (b) 
averaged for treatments at ambient or +4 ◦C to investigate temperature effect (c) averaged for treatments at a pH of 8.1, 7.7 or 7.5 to investigate pH effects and (d) 
averaged for treatments at a salinity of 20 or 34 to investigate salinity effect. 

K.E. Pack et al.                                                                                                                                                                                                                                  



Marine Environmental Research 164 (2021) 105226

6

consistent with the findings in Gray and Langdon (2018) which showed 
a decrease in the clearance rates of M.gigas under reduced salinity 
conditions. Sarà et al. (2008) described how clearance rate decreased 
with lower salinities in the non-indigenous bivalve Brachidontes phar-
aonis but salinity followed the normal-shaped tolerance curve (decline in 
rates towards the extremes) and concluded this species can tolerate a 
wide range of salinities. Although lower salinities may be less favour-
able, M. gigas may be able to tolerate and survive these conditions better 
over the long-term compared to indigenous species. Whilst lower sa-
linities may reduce the fitness of M. gigas, areas with low salinity such as 
estuaries have fewer competing species and predators, therefore, set-
tlement will likely occur in these locations if conditions are tolerable to 
larval stages (Gunter, 1955). 

It has been proposed that organisms inhabiting coastal areas and 
exposed to a range of temperatures and carbonate chemistry are more 
likely tolerant of future warming and ocean acidification (Range et al., 
2012). M. gigas individuals used in our experiment were collected from a 
low-intertidal, estuarine environment that is classed as highly stressful 
for marine organisms as temperature, salinities and pH fluctuate on a 
daily basis (Lannig et al., 2006; Range et al., 2012). Local adaptation to 
this type of environment may explain why our manipulation of tem-
perature and pH showed little to no long-term effect on M. gigas physi-
ology. Although ocean acidification has been shown in many cases to 
suppress the growth and important physiological processes such as 
feeding and respiration (Range et al., 2012; Barros et al., 2013; Gazeau 
et al., 2013; Ivanina et al., 2013; Bressan et al., 2014; Zhao et al., 2017), 
some species show neutral or positive effects to near-future pH levels 
(Ries et al., 2009; Matoo et al., 2013; Gazeau et al., 2014). Zhang et al. 
(2012) found that M. gigas have an extensive set of genes that leads to 
unique adaptation to the stressful conditions of intertidal and estuarine 
environments. Further, both adult and early life-history stages of 
M. gigas have shown to have a high degree of plasticity in their physi-
ology, such as thermal stress (Hamdoun et al., 2003), resource allocation 
and feeding (Honkoop et al., 2003; Ernande et al., 2004; Dutertre et al., 
2007), reproductive timing (Fabioux et al., 2005), growth (Bayne, 2002; 
Taris et al., 2006), and circadian rhythms (Mat et al., 2012). 

No clear temperature effect was observed in clearance rates whereby 
the overall rates were relatively similar between the highest and lowest 
temperatures. A similar trend has been recorded in Crassostrea virginica 
with no difference in clearance rate between individuals in the winter 
(17 ◦C) and summer (27 ◦C) (Casas et al., 2018b). Seasonality can have 
an important influence on physiological energetics. Studies have shown 
that clearance rates in bivalves are not always temperature dependent as 
seasonal cycles in life history traits (reproduction and growth) can lead 
to variation in filtration rates in bivalves, typically with reduced feeding 

Fig. 4. Mean clearance rates (l hr− 1 
± standard error) between June 2018 and March 2019 (a) across all treatments, (b) averaged for treatments at ambient or +4 ◦C 

to investigate temperature effect, (c) averaged for treatments at a pH of 8.1, 7.7 or 7.5 to investigate pH effects and (d) averaged for treatments at a salinity of 20 or 
34 to investigate salinity effect. All rates are standardized to 0.01g total weight. 

Table 1 
Repeated measures ANOVA output stating the degrees of freedom, F-statistic 
and p-values for each individual factor and their interactions. Significant effects 
are denoted with an asterisk.   

Clearance rate Oxygen consumption rate 

df F (df, 
94) 

P df F (df, 
101) 

P 

Month 9 112.1 <0.0001* 9 21.8 <0.0001* 
Temperature 1 0.04 0.83 1 11.29 0.001* 
pH 2 0.11 0.90 2 1.44 0.24 
Salinity 1 10.1 <0.002* 1 7.37 0.009* 
Temp X pH 2 0.95 0.39 2 0.71 0.50 
Temp X Salinity 1 0.72 0.40 1 0.06 0.81 
pH X Salinity 2 0.85 0.43 2 1.17 0.32 
Temp X pH X 

Salinity 
2 1.68 0.19 2 0.35 0.71 

Month X Temp 9 0.21 0.99 9 2.05 0.03* 
Month X pH 18 0.72 0.78 18 0.89 0.59 
Month X Salinity 9 1.63 0.11 9 0.77 0.65  
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in the winter months and an increase in spring and summer (Hornbach 
et al., 1984; Viergutz et al., 2012; Rahman et al., 2020). For example, 
Viergutz et al. (2012) showed that at peaks in clearance rate of the 
invasive bivalve Corbicula fluminea likely corresponded to spawning 
patterns increasing food (energy) demand. In our study, M. gigas clear-
ance rates were not directly influence by seawater temperature, how-
ever, high rates were measured in the spring/early summer (at the start 
of the experiment). These rates were followed with a decrease in oyster 
weight in all treatments. M. gigas typically spawn between July and 
October in Europe which leads to a substantial decrease in wet meat 
weight (up to 50%) (Enríquez-Díaz et al., 2009; Bernard et al., 2016; 
Reise et al., 2017; Ubertini et al., 2017; Balić et al., 2020). It is, therefore, 
likely that an increase in energy demand (and, therefore, clearance rate) 
occurred prior to spawning. 

Whilst a seasonal pattern in clearance rate is likely to have been 
observed, acclimation to new environmental conditions at the start of 
the experiment may have also led to increased clearance rates through 
an increased stress response. Acclimation can be characterized by an 
initial stress response (for example, increased metabolic rate) followed 
by a stabilization of the organism’s response (Suckling et al., 2015). The 
acclimation of species to new environmental conditions can take several 
months (Dupont et al., 2013; Suckling et al., 2015; Pintor et al., 2016) 
and, as clearance rates were high at the very start of the experiment, the 
effects of species acclimation on M. gigas cannot be fully ruled out. 

A seasonal effect on oxygen consumption was observed across all 
treatments in line with changes in SST. Similar trends in oxygen con-
sumption rates have been reported in situ for M. gigas where the highest 
and lowest oxygen consumption rates occurred in the summer and 
winter, respectively (Mao et al., 2006; Casas et al., 2018b). Increasing 
oxygen consumption with actual temperature agrees with several 
studies on marine bivalves (Bougrier et al., 1995; Ren et al., 2000; Sarà 
et al., 2008; Casas et al., 2018b), reflecting an increase in physiological 

and biochemical reactions with warming. Seasonality in metabolic de-
mand may also reflect life history cycles, which are often linked to 
seawater temperature (Clarke, 1993; Casas et al., 2018a). Oxygen con-
sumption rates also showed a significant effect of temperature with 
month, however, the effect of +4 ◦C was variable. Rates were similar to 
that of the ambient temperature treatment with the exception of June 
and July and, to a lesser extent, February and March where +4 ◦C is 
associated with higher oxygen consumption rate (Fig. 4b). The effects of 
end of the century temperatures on M. gigas may, therefore, be depen-
dent on time of the year. 

Although the adult oysters used in this study exhibited no negative 
effect with ocean acidification, studies on early life stages have shown 
vastly different results. Ocean acidification has been shown to have a 
negative effect on the development and calcification of early life-history 
stage M. gigas under pH values predicted for 2100 and 2300 (Kurihara 
et al., 2007; Parker et al., 2010) and varying effects on fertilization due 
to intraspecific differences between populations (Havenhand and 
Schlegel, 2009; Parker et al., 2010; Barros et al., 2013). Studies over 
multiple generations are rare but give an important insight on the po-
tential carry-over effects between different life stages. These studies 
would increase understanding regarding trans-generational acclimation 
which has been shown in a variety of species to reduce the effects of CCC 
(Donelson et al., 2011; Munday, 2014; Parker et al., 2015; Ross et al., 
2016). For a more complete understanding of the long-term effects of 
CCC on individual species, it is crucial for future work to incorporate 
individuals from multiple populations and multiple generations into 
their experimental designs to investigate both intraspecific differences 
and the potential acclimation of a species through trans-generational 
carry-over effects to environmental change. 

Fig. 5. Mean oxygen consumption rates (mg hr− 1 ± standard error) between June 2018 and March 2019 (a) averaged across all treatments (b) averaged across 
treatments at ambient or +4 ◦C to investigate temperature effect, (c) averaged across treatments at a pH of 8.1, 7.7 or 7.5 and (d) averaged across treatments at a 
salinity of 20 or 34. All rates are standardized to 0.01 g total weight. 
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5. Conclusion 

This long-term multiple stressor study on M. gigas demonstrated that 
a globally distributed NIS is tolerant to key CCC stressors, as predicted 
for the end of the century. Our results imply that NIS with broad envi-
ronmental tolerances like M. gigas may thrive under expected CCC 
conditions, potentially leading to an increase in NIS populations and 
further impacting native biodiversity (Dubois et al., 2006; Kelly et al., 
2008; Lejart and Hily, 2011; Anglès d’Auriac et al., 2017). Although 
previous studies have shown negative synergistic effects of CCC factors 
on organism fitness, we found no interactive effects between any of the 
three stressors over the long-term. However, further long-term, trans--
generational studies are required to investigate the presence of possible 
synergistic effects across multiple life-history stages (Rius et al., 2010). 
Our results also demonstrated how seasonality may influence physio-
logical rates and the importance of allowing the studied organism to 
reach a physiologically stable state (Suckling et al., 2015), which is key 
for interpreting laboratory experiments of differing temporal lengths. 
Ultimately, the long-term effects of CCC on NIS are still relatively un-
known and continued research in this area will advance our under-
standing on the physiological resilience of NIS to environmental change. 
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Richardson, D.M., Pyšek, P., Rejmánek, M., Barbour, M.G., Panetta, F.D., West, C.J., 
2000. Naturalization and invasion of alien plants: concepts and definitions. Divers. 
Distrib. 6, 93–107. 

Ries, J.B., Cohen, A.L., Mccorkle, D.C., 2009. Marine calcifiers exhibit mixed responses to 
CO2-induced ocean acidification. Geology 37, 1131–1134. 

Rijnsdorp, A.D., Peck, M.A., Engelhard, G.H., Möllmann, C., Pinnegar, J.K., 2009. 
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Corrigendum to “Long-term environmental tolerance of the non-indigenous 
Pacific oyster to expected contemporary climate change conditions” [Mar. 
Environ. Res. 164(2021)] 

Kathryn E. Pack a,b,*, Marc Riusa c, Nova Mieszkowska b,d 

a School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, United Kingdom 
b Marine Biological Association, Plymouth, United Kingdom 
c Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, South Africa 
d School of Environmental Sciences, University of Liverpool, Liverpool, United Kingdom 

The authors discovered some minor errors in the original article. 
Table S1of the Supplementary Material to this article contained a small 
error in the final column titled “Total alkalinity μmol kg− 1. The values 
were input in the wrong order due to human error but have been 
amended. This error does not affect any of the results or conclusions of 
the paper as the table was used just to summarise the monitored 

conditions within the treatment tanks. 
A reference to Fig. 1 in Section 2.4 Data analysis was written 

incorrectly as Fig. 2. This has been amended to reference Fig. 1. 
The figure legend of Fig. 3 stated the wrong units. This has been 

amended to reflect the graphs which show mean weight change in grams 
(g). 

DOI of original article: https://doi.org/10.1016/j.marenvres.2020.105226. 
* Corresponding author. School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, United 

Kingdom. 
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Fig. S1. (a) The global aquaculture value of M. gigas between 1984 and 2017 (FAO, 2019) and (b) the global distribution of wild Magallana gigas from Global 
Biodiversity Information Facility (GBIF, accessed: 7th October 2019).  

Table S1 
Mean (±standard deviation) salinity, pH and total alkalinity for each of the 12 treatments over 10 months. Salinity and pH were monitored every 1–2 days, and total 
alkalinity measured every 2 weeks for the duration of the experiment.  

Treatment temperature (◦C) - salinity - pH Salinity pH Total alkalinity (μmol kg− 1) 

Ambient - 20 - 7.5 19.9 ± 0.9 7.54 ± 0.05 1835.4 ± 81.4 
Ambient - 20 - 7.7 20.2 ± 1.1 7.70 ± 0.04 1828.0 ± 81.5 
Ambient - 20 - 8.1 21.2 ± 1.6 8.05 ± 0.04 1807.4 ± 98.4 
Ambient - 34 - 7.5 33.5 ± 1.8 7.54 ± 0.04 2317.0 ± 93.1 
Ambient - 34 - 7.7 33.0 ± 1.4 7.72 ± 0.03 2293.9 ± 15.4 
Ambient - 34 - 8.1 33.9 ± 1.2 8.01 ± 0.03 2302.6 ± 95.3 
+4–20–7.5 20.4 ± 1.1 7.51 ± 0.06 1833.4 ± 102.9 
+4–20–7.7 21.3 ± 1.1 7.72 ± 0.04 1810 ± 105.1 
+4–20–8.1 20.5 ± 1.3 8.10 ± 0.06 1838.5 ± 88.2 
+4–34–7.5 34.3 ± 0.9 7.53 ± 0.06 2332.7 ± 92.1 
+4–34–7.7 34.1 ± 1.9 7.72 ± 0.03 2304.6 ± 92.0 
+4–34–8.1 34.0 ± 1.8 8.07 ± 0.05 2334.6 ± 95.2   

K.E. Pack et al.                                                                                                                                                                                                                                  
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Fig. S2. Mean oxygen consumption rates (mg hr− 1) across all treatments against average monthly temperature of the water. Temperature was based on mean 
monthly SST from the Western Channel Observatory L4 station data. Data were weighted by sample size and standardized to 1g oyster (R2 = 0.87).  
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