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1. Introduction 6 

In 2018, urban areas accommodated more than half of global population (Brelsford et al., 7 

2018). The 2018 population projections forecasted that urban areas will concentrate more than 8 

two thirds of the global population by 2050 (United Nations, 2018). This worldwide trend of 9 

urbanisation is expected to trigger economic growth and development as well as changes in the 10 

spatial organisation of population and land use (Batty, 2008). However, the rapid urban 11 

expansion of cities across the globe is also expected to put populations and natural environment 12 

under pressure. Additionally, the unfolding COVID-19 pandemic may influence future housing 13 

choices away from city centres to less dense areas. Current planning strategies promoting 14 

suburbanisation, land use zoning and low built-up density areas tend to increase the 15 

environmental footprint of cities (Jones and Kammen, 2014). In the last decades, international 16 

and local government plans are increasingly targeted at making urban areas more sustainable 17 

(Mohammed et al., 2016). Hence, urban smart growth policies, fostering compact and mixed 18 

land use development, walkable neighbourhoods and ensuring the availability of public 19 

transport and open spaces, have emerged as key strategies to create sustainable urban 20 

environments and improve neighbourhood social cohesion (Artmann et al., 2019). 21 

The urbanisation process can take the form of compact or sparsely populated developments. 22 

Debates around the benefits and disadvantages of compact city forms have been ongoing since 23 

1970s (Hamidi and Ewing, 2014). On the one hand, neighbourhoods with high density are often 24 

associated with low social interaction of local residents (Brueckner and Largey 2008) and 25 



 

suburban expansion is linked to increased productivity and wellbeing of populations in urban 26 

areas (Kotkin, 2016). On the other hand, proponents of compact cities argue that dense 27 

neighbourhoods increase the interaction and productivity of businesses due to the 28 

agglomeration economies (Ahfeldt and Pietrostefani, 2017), while cities characterised by low 29 

suburban density (i.e. urban sprawl) lead to greater private car usage (Glaeser and Kahn, 2004). 30 

Thus, sprawling areas have been blamed as a wasteful form of urban development due to longer 31 

commuting journeys (Batty et al., 2003); increased congestion (Bento et al., 2005), obesity 32 

(Ewing et al., 2003) and air and water pollution (Anderson et al., 1996). Nevertheless, the 33 

spatial organisation and form of built environment and their evolution over time is key to 34 

understand their impacts on people and the natural environment. To this end, urban 35 

morphology has emerged as a distinctive field of study seeking to quantify the physical form 36 

of cities and its evolution over time (Kropf, 2018). 37 

Statistical indicators extracted from built environment characteristics represent a useful tool 38 

for measuring the internal structure of urban areas (Galster et al., 2001). Compactness, green 39 

space availability and walkability are key features of the built environment. The importance of 40 

these urban features has been highlighted due to their benefits to economic productivity, 41 

individual well-being and sense of community creation. The relevance of measuring the 42 

structure of built environment features has been long argued (Jacobs, 1961). Concepts such as 43 

urban sprawl and compactness, access to green space and walkability of cities have emerged 44 

as important factors influencing public health and reducing the cost of public services 45 

(Carruthers and Ulfarsson, 2003; Lopez, 2004). 46 

More recently, quantitative approaches using geospatial vector data have been used to develop 47 

indicators capturing urban morphological structures such as built-up and green space density 48 

(Venerandi et al., 2018), street networks (Boeing, 2018), building shape (Fleischmann, 2019) 49 



 

and land use diversity (Reis et al., 2016). Open Street Map (OSM) comprises a novel source 50 

of vector geospatial data. OSM data is freely available and provide global coverage (Haklay 51 

and Weber, 2008), but over a restricted timeframe (i.e. not more than 10 years) limiting their 52 

applicability to track changes in the built environment over time. Also, the data coverage and 53 

quality are not consistent across cities as it depends on user inputs. Satellite imagery is also 54 

becoming increasingly used to develop indicators of built environment characteristics (Heiden 55 

et al., 2012) and study hard-to-access and scarce-data settlements, such as slums (Kuffer et al., 56 

2016). Yet, while endeavours exist, feature extraction from satellite imagery to capture features 57 

of the built environment remains a challenging task and is usually limited to land cover, rather 58 

than land use (such as residential versus commercial buildings). 59 

Compactness, green space and walkability stand out from the literature as key built 60 

environment features. These features are related to the way urban areas expand, impacts on 61 

individuals’ health and promote vibrant communities. Compactness is a measure that has been 62 

widely used to study urban sprawl (Galster et al., 2001). High built-up density and presence of 63 

residential and commercial developments (Burton, 2002) is a key contributing factor towards 64 

the urban smart growth (Mohammed et al., 2016), as it helps reducing the cost of public 65 

services and consequently reducing the overall environmental footprint of cities. Urban green 66 

space has also been shown to play a key role in improving individuals’ health, wellbeing and 67 

decreasing the risk of mortality (Mitchell and Popham, 2007). Yet, the spatial distribution of 68 

green space tends to be very unequal. In the United States, more affluent areas tend to have 69 

larger presence of private green space compared to more deprived areas (Barbosa et al., 2007). 70 

In the United Kingdom, urban forest is more abundant in peripheral areas than in central 71 

locations (Stubbings et al., 2019). Walkable neighbourhoods is another important feature of 72 

sustainable cities (Artmann et al., 2019), as they offer positive benefits to public health by 73 

providing activity-friendly environments (Owen et al., 2007) and creating more vibrant streets 74 



 

(Hess et al., 1999). Larger sidewalks can help in social interaction within neighbourhoods and 75 

creation of a “sense of community” (Talen, 1999).  76 

Monitoring the sustainability of urban areas has been recently encouraged (United Nations 77 

General Assembly, 2015, 2017; ISO, 2018) to facilitate comparisons across places and 78 

countries, and to enable reproducibility and share good practices between countries. A range 79 

of conceptual and methodological frameworks have been proposed to capture composite 80 

Sustainable Urban Indicators (OECD and JRC, 2008; Shen et al., 2011; Blackwood et al., 81 

2014; Science for Environment Policy, 2018). More recently, progress has been made on 82 

quantifying morphological features of urban areas and applications. This work has developed 83 

composite indicators focusing on Sustainable Urban Indicators, providing useful insights for 84 

urban areas development. However, gaps exist in three domains. First, composite indices have 85 

been developed to capture the built environment  (Koch and Krellenberg, 2018; Higgs et al., 86 

2019; Giles-Corti et al., 2020); yet, they do not consider the temporal dynamics of built 87 

environment features, which can enable valuable urban comparison over time and measure the 88 

pace of urban change. Second, the spatial granularity of data is often coarse (Boori et al., 2015); 89 

or, the study area is limited to a particular city (Nazarnia et al., 2016; Gullón et al., 2017; 90 

Assumma et al., 2021) which again hampers robust spatial comparability. Finally, the 91 

importance of measuring urban structures as a key to sustainable development in cities has 92 

been highlighted in UK-based studies (Dempsey et al., 2012). Yet, patterns of change in urban 93 

structures have not been examined, arguably because of the absence of a temporally and 94 

spatially consistent data. 95 

To address these gaps, we propose a set of simple yet robust summary indicators to capture 96 

change in the urban structure of the 12 largest British urban areas over the last 15 years, 2001-97 



 

2016. Drawing on a series of unique historical datasets obtained from Ordnance Survey, the 98 

national mapping agency of Great Britain, and we specifically aim to: 99 

1. Develop a set of twelve indicators at 1 km2 grid level to measure three dimensions of 100 

urban structure: Compactness, Green space availability, and Walkability; 101 

2. Build composite indices to combine individual indicators by domain – Compactness, 102 

Green space availability, and Walkability – and create an overall Sustainable Urban 103 

Development Index of British neighbourhoods; 104 

3. Establish the relative change of urban built structure at each point in time from 2001 to 105 

2016. 106 

The Sustainable Urban Development Index and its domain rankings provide a methodological 107 

framework to quantitatively measure and assess key built environment qualities and their 108 

relative change compared to other areas at each point in time based on regular 1 km2 grids. 109 

Such an approach can help understanding relative changes in the characteristics of urban built 110 

structure between and within urban areas at each point in time (Tunstall, 2016). It can help 111 

identify inequalities in the built environment within cities which are masked by city-level 112 

indicators (Giles-Corti et al., 2020). The proposed framework can be used to assess past urban 113 

planning interventions that have shaped the local built environment and resident populations 114 

and help inform future planning strategies. Ultimately it can  contribute to advance our 115 

understanding of cities and guide  urban planning interventions creating healthy and sustainable 116 

cities with equitable access to services and infrastructure (Giles-Corti et al., 2016). 117 

The rest of the paper is organised as follows: Section 2 describes the data and the 118 

methodological approach to create the proposed indices to measure neighbourhood-level urban 119 

structure as well as the data used in this study. Results are presented in Section 3 before we 120 



 

discuss the key findings in Section 4. Finally, Section 5 provides some concluding remarks and 121 

identify potential avenues for future research. 122 

2. Materials and Methods 123 

2.1.Data and study area 124 

We used four temporal samples (2001, 2006, 2011 and 2016) to cover 15 years of urban 125 

transformation extracting data from the Ordnance Survey (OS) database for the 12 largest 126 

urban areas in Great Britain: Bristol, Edinburgh, Glasgow, Leeds, Liverpool, London, 127 

Manchester, Newcastle upon Tyne, Nottingham, Sheffield, Southampton and Birmingham. 128 

According to 2011 Census, these areas cover 80% of the Great Britain population. We 129 

employed the Functional Urban Areas (FUAs) layer produced by OECD (OECD, 2013) to 130 

define urban area extents. FUAs provide a common definition of metropolitan areas as 131 

‘functional economic units’ across 29 OECD countries. These areas are dependent on 132 

population density and travel-to-work flows and offer a more accurate representation of 133 

functional labour market activity than administrative boundaries (Casado-Díaz et al., 2017; 134 

Rowe et al., 2017). 135 

We used data from three OS product sources:  136 

1. OS AddressPoint database - that provides information on residential and commercial 137 

addresses for 2001, 2006 and 2011;  138 

2. OS AddressBase - that provides information on residential and commercial addresses 139 

for 2016; and 140 

3. OS MasterMap Topography Layer - that provides information on polygons capturing 141 

building footprints, green space, roads and paths.  142 



 

Point data from OS AddressPoint and OS AddressBase are classified into residential and 143 

commercial addresses that are registered in the Royal Mail’s Postcode Address File (PAF) and 144 

were used to calculate the density of residential and commercial adresses. That is the number 145 

of addresses in each 1 km2 grid square. Polygon data were obtained from OS MasterMap 146 

Topography Layer and were used to calculate the density of each built environment feature 147 

(i.e. buildings, green space etc.). That is the area covered by each feature in each 1 km2 grid 148 

square.  Figure 1 highlights the complexity of the raw data used in a small area of two grids. 149 

In each grid, there is a high volume of information such as different classes point (residential 150 

and commercial) and polygon (buildings, open spaces and roads/paths) data. Hence, in order 151 

to extract actionable information, the raw data can be summarised at 1 km2 grids as it will be 152 

discussed in the following section (2.2) 153 

 154 

Figure 1 Raw point and polygon data. © Crown copyright and database rights 2020 Ordnance Survey 155 

The data are based on 6,767 1 km2 grid squares covering all 12 FUAs in our sample. Our focus 156 

is on examining urban structure, thus we used grids that correspond to areas with resident 157 

population. Similar to Patias et al. (2020) we considered grids with more than 15 people per 1 158 



 

km2 grid square, excluding unpopulated areas. Neighbourhoods -in the COVID-19 era- have 159 

been brought at the centre of discussions of urban planning. Proposals such as of 15-minute 160 

neighbourhoods suggest access to most of the essential amenities within short walk or ride. 161 

That is around 15 minutes of walk which is equivalent to about 1km distance. We therefore 162 

selected 1 km2 grids for our analysis which can be considered an approximation of a 163 

neighbourhood and we refer to them as neighbourhoods. We also used grids because they are 164 

not dependent on administrative boundaries. They are comparable over time and across space 165 

(i.e. areas varying in size and shape at various geographical scales, including cities, regions or 166 

countries). The importance of gridded data has been highlighted in a wide range of studies 167 

including population counts (C. T. Lloyd et al., 2017), census variables (C. D. Lloyd et al., 168 

2017), socioeconomic change (Patias et al., 2020) and land use patterns (Galster et al., 2001) 169 

as an appropriate and flexible geographical unit to assess the effects of the MAUP and create 170 

customisable geographies. Additionally, the Office for National Statistics in the UK is planning 171 

to produce population estimates on 1 km2 grids for the upcoming census in 2021 172 

acknowledging and facilitating the use of grids to harmonise datasets at various scales and time 173 

periods (Office for National Statistics, 2018). 174 

2.2.Overall methodology 175 

The methodological framework developed in this study includes four stages as presented in 176 

Figure 2. Stage 1 involved the calculation of 12 individual indicators of urban structure at 1 177 

km2 grid level using OS data. These indicators were used to capture three distinctive domains 178 

in Stage 2 and they were standardised and weighted within each domain in Stage 3. In the final 179 

Stage 4, we used the three domain-specific ranks to calculate an overall Sustainable Urban 180 

Development Index (SUDI). 181 



 

 182 

Figure 2. The diagram shows the overall methodology which consists of four stages, from raw data to the final output. The 183 

weights of each indicator to the creation of the corresponding Domain Index and the weights used for each of the three domains 184 

to the Composite Sustainable Urban Development Index (i.e. 33%). The figure contains Ordnance Survey data. 185 

2.3.Stage 1: Grid-level Indicators Calculation 186 

The first stage includes the computing process from raw geospatial data to creating 12 187 

statistical summary indicators at 1 km2 grids. The raw data are split into point and polygon 188 

data. In both cases we aimed to summarise the data by capturing their density in each grid 189 

square.  190 

For point data, we firstly divided them according to land use classification, specifically into 191 

residential and commercial points. For each of these two groups and the total number of points 192 

(i.e. the sum of residential and commercial points), we calculated the number of points by grid 193 

square. These numbers express the density of address points by grid square and class (i.e. 194 

residential, commercial and total). This process was performed for each of the years in our 195 

study (i.e. 2001, 2006, 2011 and 2016). 196 



 

For polygon data, in addition to applying the same steps as for the point data, we created an 197 

urban environment feature class field. The six classes are: (1) buildings; (2) public green 198 

spaces; (3) private green spaces; (4) paths; (5) sidewalks; and (6) roads. Then, for each of the 199 

feature classes, we calculated the density of each urban environment feature, which is the area 200 

covered by each feature in a 1 km2 grid square. 201 

We analysed changes in the set of 12 indicators over time. Our analysis captures the relative 202 

change of urban built structure at each point in time from 2001 to 2016 and it required 203 

consistent data over two different product specifications (OS AddressPoint 1999-2015 and OS 204 

AddressBase 2011-current). A key challenge was integration of data from OS AddressPoint 205 

1999-2015 and OS AddressBase 2011-current. The AddressPoint product only identifies 206 

residential and commercial address points, while the AddressBase product provides a detailed 207 

breakdown for commercial addresses, offering a very detailed classification of land use types 208 

(e.g. grocery shops, clothing, etc.). Thus, we opted to achieve data specification consistency 209 

over time compared to detailed categorical data available in data sets referring to the more 210 

recent years. We amalgamated the point data based on the two-class definition used in the 211 

AddressPoint product (i.e. residential and commercial). 212 

2.4.Stage 2: Indicators and domain selection 213 

To capture Compactness, four indicators were created by measuring: (1) the number of total 214 

address points; (2) the number of residential points; (3) the number of commercial points; and 215 

(4) the built-up area in m2 within each 1 km2 grid square. The first indicator captures the density 216 

of address points. This can reveal the overall density (i.e. number of points by grid square) of 217 

businesses and residential units within an area which is a key factor of measuring urban sprawl 218 

(Galster et al., 2001). The second and third indicators measure the abundance of residential 219 

and commercial properties. These two indicators act as decomposed variables to account for 220 



 

the balance between land uses and are linked to the idea of mixed land uses which promote 221 

human social interaction and represents a main advantage of the new urbanism perspective 222 

(Talen, 1999). The fourth indicator captures the area in m2 occupied by buildings in each 1 km2 223 

grid square. This indicator, in conjunction with the density of address points, can provide 224 

insights into high built-up density areas which contribute towards urban smart growth 225 

(Mohammed et al., 2016), by reducing the time people have to travel to access essential daily 226 

services. Another important consideration is to include the population density of each grid. 227 

However, some of the variables we include in the compactness domain -particularly built-up 228 

density and density of address points- already capture population density and are positively 229 

correlated. S9 in the Supplemental material presents a correlogram between population density 230 

and the domains included in our study.  231 

To capture Green space availability, we computed three indicators: (1) area in m2 occupied by 232 

public green spaces; (2) area in m2 occupied by private green spaces; and (3) lagged area in m2 233 

occupied by public green spaces. These three indicators were selected given the growing 234 

recognition that urban green spaces can have a positive impact on physical and psychological 235 

well-being, as well as the general public health of urban residents (Wolch et al., 2014). When 236 

selecting indicators, we accounted for both private and public green spaces to capture the 237 

overall presence of open spaces in each grid square. This is because the spatial distribution of 238 

green spaces can be unequal, where more affluent areas tend to have larger presence of private 239 

green spaces compared to more deprived areas (Barbosa et al., 2007). We also calculated the 240 

average area of public green spaces of the adjacent grids as a proxy for neighbouring green 241 

space availability captured by our geographically lagged measure of green space, reflecting 242 

that most people are willing to travel a short distance to access a public green space (Maat and 243 

de Vries, 2006). To identify adjacent cells, we considered the Queen’s contiguity method which 244 

accounts as neighbouring all cells that share a point-length border (Lloyd, 2010). This method 245 



 

takes into account the equal size of grids – other methods such as Rook contiguity or inverse 246 

distance have been proved to perform poorly by a series of goodness-of-fit regression tests 247 

(Getis and Aldstadt, 2004).  248 

To measure Walkability, we computed five indicators: (1) area in m2 occupied by roads; (2) 249 

area in m2 occupied by sidewalks; (3) area in m2 occupied by paths; (4) lagged area in m2 250 

occupied by sidewalks; and (5) lagged area in m2 occupied by paths. The selected features were 251 

based on the rationale that grids with large areas covered by roads leave less space for activity-252 

friendly environments (Owen et al., 2007). On the other hand, areas with large areas covered 253 

by paths and sidewalks, amplify the creation of more vibrant streets (Hess et al., 1999), which 254 

in turn enables more social interaction in local neighbourhoods (Talen, 1999).  255 

The way current studies methodologically approach walkability measures varies. Recent 256 

studies often incorporate one or more variables regarding population, land use and street 257 

network characteristics  (Dovey and Pafka, 2019). A collection of studies has focused on using 258 

population and land use characteristics, such as population density and mixed land use, to 259 

measure local walkability (Leslie et al., 2007). Other studies have used street network 260 

characteristics, such as street connectivity (Boeing, 2018), destination accessibility (Witten et 261 

al., 2011), total road and sidewalks length (Kotharkar et al., 2014) and area covered by 262 

sidewalks and roads (Galanis and Eliou, 2011) as proxies of walkability. While arguably these 263 

measures should be integrated to capture different domains of walkability in a more holistic 264 

manner, data availability imposes constraints on what can be done in practice. There is a trade-265 

off between detail in data and temporal availability, here we seek to balance these issues to 266 

provide insights into the dynamic nature of the built environment which is often considered as 267 

a static feature of places. To measure walkability, we considered the area covered by the road 268 

network properties as the preferred approach, due to data for two main reasons: first, because 269 



 

of a lack of data on land use mix and road network for matching years in our study period; and 270 

second, due to the focus of this study to highlight the area available for pedestrian use (i.e. area 271 

occupied by paths, sidewalks and roads in each grid). We made a distinction between paths 272 

and sidewalks, as paths are areas dedicated solely for pedestrian use and are usually found in 273 

city centres or in parks. Like for the green space domain, we also considered the values of 274 

adjacent grids for paths and sidewalks as a proxy of how walkable an area is. In the Walkability 275 

domain, the path and sidewalk indicators are considered as positive measures (i.e. the higher 276 

the area covered by paths and sidewalks the more walkable the neighbourhood), while roads 277 

as negative (i.e. the higher the area covered by roads the less walkable the neighbourhood). 278 

This means that the higher the area occupied by roads, the lower the overall domain Walkability 279 

score. On the other hand, the higher the area occupied by paths, the higher the overall domain 280 

Walkability score. 281 

2.5. Stage 3: Standardisation and weights 282 

All indicators were standardised by year and have been given equal weights for calculating the 283 

domain scores (see Figure 2). The standardisation process helps comparing all indicators with 284 

one another at a particular point in time. We standardised (i.e. using  z-scores) the indicators 285 

within each domain  to a common  scale with a mean of zero and a standard  deviation of one 286 

(OECD and JRC, 2008). Then we chose to use equal weights in each indicator for each domain 287 

in the absence of theoretical justification for using different weights. However, as discussed in 288 

the Supplemental Material our results do not differ much when using different sets of weights, 289 

where most of grids move up or down by one decile in the composite index ranking (S2 and 290 

S3 in the Supplemental Material present a sensitivity analysis by using different indicators and 291 

weights across domains). Finally, we ranked each grid square based on their corresponding 292 

domain score based on data for all 12 areas in our sample. The ranking was a two-level process. 293 



 

Firstly, we ranked the grids for each domain and then we ranked all three domains in the 294 

Sustainable Urban Development Index, as discussed in the following section (2.6). The higher 295 

the rank, the better the performance of the grids in each domain. 296 

2.6. Stage 4: Sustainable Urban Development Index 297 

Individual domain scores were combined to generate an overall Sustainable Urban 298 

Development Index (SUDI). First, grids with no data for a domain indicator are ranked last in 299 

the respective domain. For example, an extreme case could involve grids that have only Green 300 

space features. In this case, they would be ranked very high in the Green space domain but last 301 

in the Compactness and Walkability domains. Thus, the Sustainable Urban Development Index 302 

(SUDI) will reflect the overall rank of these grids. The ranks -R- are defined as R = 1/N which 303 

indicates best performing grid square; and, R = N/N (i.e. R = 1) which indicates the worst 304 

performing grid square; N is the total number of grids in the 12 urban areas in our sample. 305 

Second, we standardised the domain scores by ranking them to a range from 0 (worst 306 

performing) to 1 (best performing), so they have a common distribution. Then, we scaled the 307 

ranking of each domain score (Compactness, Green space and Walkability) R to lie within the 308 

range of [0,1]. 309 

Then, we combined the individual domain scores to generate the SUDI. This is achieved by 310 

transforming the domain ranks to a specified exponential distribution (see Equation 1). In this 311 

way, we ensured each domain score is comparable (with similar distributions) and selected an 312 

appropriate method to combine the indicators not leading to high values in one domain but 313 

‘cancelling out’ low values on another. We calculated the transformed domain score X (e.g. 314 

Compactness, Green space, Walkability) using: 315 

𝑋 = −23 ln (1 − 𝑅(1 − 𝑒𝑥𝑝−100/23))  (1) 316 



 

where: ‘ln’ denotes the natural logarithm, and ‘exp’ the exponential transformation. 317 

The three domains were weighted to create the overall SUDI. Identifying appropriate weights 318 

is a challenging task and there is a large literature suggesting various approaches, including 319 

factor analysis, data envelopment analysis and unobserved components models (OECD and 320 

JRC, 2008). Following the methodology used by a recently created Composite Index based on 321 

UK data and adopted by local government agencies –Access to Healthy Assets and Hazards-322 

AHAH (Green et al., 2018; Daras et al., 2019), we employed an equal weighting scheme as 323 

there is no theoretical justification or empirical evidence to place more importance on one 324 

domain over others. Thus, the SUDI derived after adding together all domain scores (post 325 

standardisation), by giving each domain an equal weight. As highlighted above, the results are 326 

not sensitive to using different sets of weights. Small changes are observed of grids moving 327 

only one decile in the composite index ranking as presented in S3 in the Supplemental Material.  328 

2.7.Analytical Strategy  329 

Our analytical strategy incorporates both the spatial and temporal change of the SUDI index. 330 

First, we analysed the temporal pattern of SUDI index for the 12 FUAs included in this study. 331 

Second, we sought to identify areas experiencing large changes in SUDI between 2001 and 332 

2016. We used these two analytical stages to establish the relative change of urban built 333 

structure at each point in time from 2001 to 2016. To measure temporal changes in urban 334 

structure, we analysed relative changes in the SUDI over a 15-year period. Specifically, we 335 

examined relative changes in the SUDI ranking at each time point 2001, 2006, 2011 and 2016.  336 

To analyse the temporal pattern of the SUDI, we classified the grids into deciles based on their 337 

SUDI ranking. The 1st decile includes the 10% best performing grids, while the 10th decile 338 

includes the 10% worst performing grids. We then calculated the distribution of grids that 339 



 

belong to each decile of SUDI by FUA and year. The same was done for each domain. With 340 

this analytical process, we identified areas with high concentration of the best or worse 341 

performing neighbourhoods (for each year) as well as differences between FUAs. Hence, we 342 

can get a better understanding on the distribution of SUDI index across space and over time. 343 

To identify areas experiencing large relative changes in SUDI at each point in time between 344 

2001 and 2016, we followed a two-step process to create a temporal typology of SUDI change. 345 

First, we calculated the absolute difference in the deciles for each grid square (for both SUDI 346 

and the three domains) in the overall period 2001-2016 and each sub-period (i.e. 2001-2006, 347 

2006-2011 and 2011-2016). The difference was calculated by subtracting the decile ranking 348 

position in t (i.e. 2006, 2011 and 2016) and t-n (i.e. 2001, 2006 and 2011). For the resulting 349 

ranking difference, positive scores indicate an increase in ranking, whereas negative scores 350 

indicate a decrease. The second step was to analyse the 10% of grids reporting the most change 351 

-both increasing and decreasing. We focused on large changes; that is, grids experiencing 352 

unusual changes moving over 3 deciles in a ranking composed of 538 grids. S5 in the 353 

Supplemental Material provides a diagram illustrating the process of selecting these grids. We 354 

identified 304 of which recorded a large increase of more than 3 deciles in the SUDI ranking, 355 

and 234 which registered a large decline of more than 3 deciles. We performed k-means 356 

clustering analysis to generate a classification of grids following similar trajectories of change. 357 

We evaluated cluster solutions by performing 1,000 iterations to achieve more distinct clusters 358 

and an elbow curve analysis based on the distance between clusters. A four-cluster was chosen 359 

as the optimal based on the evidence from the evaluation of these outcomes. Separate analyses 360 

were conducted for grids recording increases and grids recording decreases.  361 

3. Results 362 

3.1.Spatial and temporal structure of changes in urban fabric 363 



 

Figure 3 shows the distribution of neighbourhoods (grids) across SUDI deciles by FUA over 364 

2001-2016. FUAs have been ranked from top left to bottom right based on the number of best 365 

performing neighbourhoods (i.e. 1st decile) in 2016. The horizontal line indicates the average 366 

distribution for each decile (i.e. 10% as we have used deciles) and how each FUA deviates 367 

from this line. Our results reveal marked differences across the 12 FUAs in our sample. Out of 368 

all, 12-18% of neighbourhoods in Edinburgh, London and Newcastle scored in the best 369 

performing decile in 2016, while only 3-7% of neighbourhoods ranked in the best performing 370 

decile in Leeds, Southampton and Birmingham. When looking at the worst performing decile, 371 

British cities tended to be more similar than when analysing the best performing decile, yet 372 

variations exist. Around 13% of neighbourhoods are consistently at the worst performing decile 373 

in Manchester, but it accounts only for 3% in Newcastle.  374 

The overall score however conceals significant variability across subdomains. Hence, 375 

decomposing the SUDI to its constituent domains reveals considerable variation in their 376 

respective contribution (S6 in the Supplemental Material presents lines plots for each of the 377 

domains). Assessing individual domains shows that the primary urban feature contributing to 378 

high SUDI scores in Edinburgh, London and Newcastle differs. Green space drives high SUDI 379 

scores in Edinburgh, Compactness in London and Walkability in Newcastle. Similarly, lack of 380 

Walkability contributes to a low SUDI score in Leeds, while low Compactness and Green space 381 

contributes to low in SUDI scores in Southampton and Birmingham, respectively. 382 



 

 383 

Figure 3 Line plots of the distribution of grids that belong to each decile of the Sustainable Urban Development Index by FUA 384 

and year. 385 

Figure 3 also reveals remarkable stability in the overall sustainability of neighbourhood as 386 

captured by the SUDI. Very little changes in the SUDI distribution are recorded across most 387 

FUAs. Focusing on the worst performing neighbourhoods, little changes is observed across 388 

most FUAs, except for Nottingham (that recorded a decrease in the share of neighbourhoods 389 

in the worst performing decile by 4%) and Southampton (that reported an increase in the share 390 

of neighbourhoods in the worst performing decile by 3%).  391 



 

The situation differs when examining changes in the share of best performing neighbourhoods 392 

over time. Unusually large changes are observed for the highest SUDI decile neighbourhoods 393 

in Newcastle and Sheffield; that is, from 28% in 2001 to about 14% in 2016 in Newcastle, and 394 

from 13% in 2001 to 5% in 2016 in Sheffield. For other FUAs, the changes can be classified 395 

into four categories: (1) FUAs that do not change -Birmingham, Bristol, Glasgow and 396 

Southampton; (2) FUAs that slightly decreased the share of their neighbourhoods in the best 397 

performing decile by around 2-4% -Edinburgh and Leeds; (3) FUAs that considerably 398 

decreased the share of their neighbourhoods in the best performing decile by around 8-14% -399 

Newcastle and Sheffield; and (4) FUAs that increased the share of their neighbourhoods in the 400 

best performing decile by around 2-4% -Liverpool, Manchester, London and Nottingham. 401 

These variations across FUAs reflect differences in the scale and timing of urban restructuring 402 

across Britain during the first part of the 21st century. 403 

While differences across British urban areas exist, there seems to be a consistent local spatial 404 

pattern. Figure 4 shows the spatial distribution of SUDI deciles across FUAs in the sample in 405 

2016. It reveals that neighbourhoods in the best performing deciles tend to be in the urban cores 406 

of cities, while worst performing deciles in the periphery. Looking at the previous years, we 407 

see a gradual increase in the ranking of neighbourhoods in or around city centres (see S7 in the 408 

Supplemental Material). Arguably these patterns reflect the geography of implementation of 409 

city urban regeneration strategies in British metropolitan areas which have largely focused on 410 

revitalising city centres (Hamnett, 2003). 411 

 412 



 

 413 

Figure 4 Maps showing the spatial distribution of SUDI index ranking in 2016. Interactive maps showing the distribution of 414 

SUDI deciles can be found in [insert link to the maps]. 415 

3.2.Long-term trajectories of change of SUDI ranking 416 

To examine the timing and extent of changes in local urban structure across FUAs, we created 417 

a typology to capture the long-term trajectory of neighbourhood change (i.e. from 2001 to 418 

2016). We performed k-means cluster analysis and identified eight distinct classes of 419 

neighbourhood change as discussed in section 2.7. The input data was the absolute difference 420 

in the deciles for each neighbourhood (for both SUDI and the three domains) in the overall 421 

period 2001-2016 and each sub-period (i.e. 2001-2006, 2006-2011 and 2011-2016. Separate 422 

analyses were run for neighbourhoods displaying a decreasing SUDI decile rank change and 423 

for neighbourhoods reporting an increasing SUDI decile ranking change. 424 



 

Figure 5 shows the resulting clusters (columns) of neighbourhoods moving up and down in the 425 

SUDI ranking in separate panels for the overall index and each domain (rows). The top panel 426 

shows the changes over the entirety of the period in analysis (2001-16) and the three sub-panels 427 

for each of the three sub-periods, 2001-06, 2006-11 and 2011-16 (note that the total change is 428 

not the sum of the individual domains for a given year). Cell numbers represent the median 429 

decline change in the relevant ranking indicator (rows). Positive values indicate an increase in 430 

ranking, while negative values indicate a decrease in ranking (i.e. higher ranking in 2016 431 

compared to 2001 results in a positive number).  The first row in each period panel shows the 432 

change in the overall SUDI ranking, and second to fourth rows display the change in each 433 

constituent domain index. For example, a change in the SUDI of -4 would indicate increase 434 

from decile 6 in 2001 to decile 2 in 2016.   435 



 

 436 

Figure 5 Median value of decile change in ranking domain by cluster and trend (increase or decrease). The left panel 437 

(Decrease) shows clusters moving down in the SUDI ranking. The right panel (Increase) shows clusters for grids moving up 438 

in the SUDI ranking. Lighter colours indicate large decreases in the deciles. Darker colours indicate large increases in the 439 

deciles. 440 

The identified cluster classification captures distinctive trajectories of change. Clusters 441 

containing neighbourhoods experiencing a decrease in SUDI decile ranking reveal changes 442 

driven by distinctive set of urban features.  443 

• Cluster D1 encompasses neighbourhoods with a decline of a median equals to 4 in the overall SUDI 444 

ranking between 2001 and 2016 driven by a decline in the Compactness index. Urban Compactness 445 

seems to have declined during 2001-2006 and 2011-2016 but counterbalanced by rises in the intervening 446 

period 2006-2011. Neighbourhoods in this cluster are mainly found in London. Thus, an increase in 447 

Compactness domain in the intervening period 2006-2011 coincides with an intense period of urban 448 



 

development in London, resulting from a range of large-scale infrastructure projects undertaken in 449 

preparation for the Olympic Games of 2012. 450 

• Cluster D2 contains neighbourhoods experiencing a decline in the overall SUDI ranking mainly triggered 451 

by small drops in the Walkability domain. Drops of 1 decile change occurred in the three sub-periods in 452 

analysis but translated in a greater compounded decline of 4 declines in the overall SUDI ranking over 453 

the entire 2001-16 period.  454 

• Cluster D3 comprises neighbourhoods registering the largest declines in the SUDI ranking with a median 455 

of 6 deciles driven by reductions in the Walkability domain in 2001-2006.  456 

• Cluster D4 includes neighbourhoods recording declines in SUDI ranking triggered by reductions in the 457 

Green space and Walkability domains particularly in 2001-2006. Cluster D1, D3 and D4 consists of 458 

similar number of neighbourhoods. Cluster D2 is of smaller size. 459 

Figure 5 also displays clusters with neighbourhoods experiencing increases in SUDI ranking 460 

decile principally driven by an improvement in Walkability domain but with a differentiated 461 

temporal signature. Most clusters capture changes that are related to a single sub-period; that 462 

is, 2006-2011 for U1, 2011-2016 for U2, and 2001-2006 for U3. Cluster U4 captures changes 463 

in the sub-periods 2001-2006 and 2011-2016. These clusters also differ on their cluster 464 

membership size. Fewer neighbourhoods have increased their ranking due to Walkability 465 

domain change in 2006-2011 as captured by Cluster U1 and more in the sub-periods 2001-466 

2006 and 2011-2016 as captured by Cluster U4. 467 

There is a clear distinction in spatial arrangement of the neighbourhoods moving up or down 468 

in the SUDI index ranking. Neighbourhoods moving up are found mainly in the urban core, 469 

while neighbourhoods moving down in the periphery of FUAs. Neighbourhoods in clusters D1 470 

and U1 are predominantly found in London. Neighbourhoods in Cluster U1 tend to be 471 

predominantly urban areas, while neighbourhoods in Cluster D1 are prevalently in the 472 

periphery. Interactive maps that allow the user to zoom in areas of interest can be found here 473 



 

[insert link to the maps]. S8 of the Supplemental material examines two well-known areas to 474 

validate our cluster classification. 475 

4. Discussion 476 

This study developed a composite index for summarising a list of indicators relating to urban 477 

structure in Great Britain. It started by calculating 12 individual indicators of urban structure 478 

at 1 km2 grid level that are used to calculate distinctive domain ranks (i.e. Compactness, Green 479 

space and Walkability). The domain specific ranks were used to calculate an overall 480 

Sustainable Urban Development Index. The resulting index captures the sustainability of the 481 

urban structure and the relative change across areas at each point in time based on consistent 1 482 

km2 grids.  483 

Our study contributes to the literature through the development of multidimensional measures 484 

of urban structure. Previous research focused on studying urban structure capturing individual 485 

domains separately, ignoring the importance of temporal dynamics of changes, or use coarse 486 

geographic levels (Basaraner and Cetinkaya, 2017). Sustainable Urban Development indicators 487 

can also be extended beyond Compactness, Green space and Walkability to Housing, 488 

Education and Air quality. However, in the UK these data were not available over the period 489 

of study. As such, our proposed methodological framework aimed to facilitate the development 490 

of geographically and temporally consistent indicators to enable urban comparison across 491 

cities, countries and different time points. In our methodological framework, multiple 492 

dimensions of the built environment are measured and analysed to identify underlying 493 

connections between different built environment features and changes over time. Moreover, by 494 

capturing multiple time periods at 1 km2 grid level is proven useful to extract spatiotemporal 495 

signatures of urban structure. Although urban blocks provide a more organic delineation of 496 

space in cities, hence potentially adapting better to the underlying nature of the urban fabric, 497 



 

there are important advantages of using grids over more detailed urban blocks. Grids provide 498 

a geographically consistent geographical framework that can be used for temporal 499 

comparisons. Urban blocks are less robust in this sense as changes in one block would 500 

significantly alter the relevant indicators. Moreover, grids facilitate integration with other 501 

datasets such as satellite images and official national statistics based on varying spatial scales 502 

(Office for National Statistics, 2018). Finally, urban blocks could in some cases be riskier for 503 

data disclosure, particularly in low-density areas, something that grids allow to overcome. By 504 

addressing the above gaps, we provided a methodological framework which can capture the 505 

built environment configuration of local urban structures and can guide urban planning 506 

interventions to make neighbourhoods more sustainable. 507 

We identified changes in the urban structure within FUAs displaying similar trajectories of 508 

built environment change. We showed that the proportion of neighbourhoods in the worst 509 

performing decile between 2001 and 2016 remained stable in most FUAs. However, because 510 

our composite index is more limited to capturing the worst performing neighbourhoods, the 511 

stability of these neighbourhoods might just reflect the lack of sensitivity at this end of the 512 

distribution. In contrast, the change in the share of neighbourhoods in the best performing 513 

decile between 2001 and 2016 varied across British FUAs. We identified four groups of FUAs: 514 

(1) FUAs recording no change; (2) FUAs displaying small decreases in their share of 515 

neighbourhoods in the best performing deciles; (3) FUAs displaying large decreases in their 516 

share of neighbourhoods in the best performing decile; and, (4) FUAs displaying increases 517 

their share of neighbourhoods in the best performing decile. We identified a uniform increase 518 

in the ranking of neighbourhoods in and around city centres, likely a result of public 519 

expenditure on redeveloping urban centres or areas of interests, such as waterfronts (Butler, 520 

2007; Thorning et al., 2019). This can be attributed to the focus of local government on 521 

redeveloping urban centres given their perceived importance and contribution to economic 522 



 

productivity (Cottineau et al., 2018); and, on places of public interest (such as blue or green 523 

spaces) due to their importance on social wellbeing, interaction and inclusion (Wood et al., 524 

2017). 525 

We proposed a methodology for identifying signatures of relative changes in SUDI at each 526 

point in time between 2001 and 2016 in its constituent domains and sub-periods. We identified 527 

eight distinct signatures of neighbourhoods to capturing the underpinning nature of the local 528 

trajectories of built environment change. We identified four signatures capturing 529 

neighbourhoods which experienced relative increase in the SUDI ranking with a distinctive 530 

temporal signature of change. The primary built environment feature driving these 531 

improvements was an increase in walkable spaces. We also identified four signatures capturing 532 

neighbourhoods which experienced a relative decrease in SUDI ranking. These signatures were 533 

differentiated by changes in different domains of the built environment. These are 534 

Compactness for D1, Walkability for D2 and D3 and a combination of Green space and 535 

Walkability for D4. 536 

The proposed method for highlighting the attributing factors of change in urban structure over 537 

time, can contribute to the growing demand of quantitative tools in urban planning 538 

(Nieuwenhuijsen et al., 2017). It can help on identifying successful interventions that can act 539 

as -best practice- examples to be applied in areas lacking urban sustainability. By developing 540 

appropriate urban planning interventions, decision makers can help promoting the 541 

sustainability of cities in many aspects such as reducing inequalities, promoting sustained, 542 

inclusive and sustainable economic growth, fostering resilience and protecting the environment 543 

(United Nations General Assembly, 2017). 544 

Existing literature notes that the construction of composite indices entails many 545 

methodological assumptions that are made by the researchers (OECD and JRC, 2008). In this 546 



 

study, we are open and forthcoming regarding our methodological framework and results by 547 

accounting for different decisions that might affect our results with sensitivity analyses (see 548 

Supplemental material S1, S2, S3 and S4). One of the limitations of the study is that we put 549 

more emphasis on identifying areas that score higher in the SUDI (i.e. using the exponential 550 

transformation). This means that identifying the areas that score low in the SUDI might be 551 

more limited. However, our method allows to look at changes in the relative ranking in SUDI 552 

for areas that score either high or low, but also identifying successful interventions that can act 553 

as -best practice- examples to be applied in areas lacking urban sustainability. We considered 554 

that identifying disadvantaged areas in terms of their built environment qualities relative to 555 

other areas at each point in time was important from an urban planning perspective, regardless 556 

of whether they experienced a change, or other areas in the country experienced changes. 557 

Arguably if an area has not changed and therefore its position in a ranking domain is worse, 558 

because of improvements in other areas, that is valuable information that would be relevant to 559 

influence local urban planning strategies (Tunstall, 2016). S1 in the Supplemental Material 560 

presents a sensitivity analysis by using a pooled dataset (ie. across all years) standardisation. 561 

The results seem quite robust to changes in the way data are standardised which in turn means 562 

that our approach captures both relative changes in grids ranking as well as real world changes 563 

in the built environment. 564 

5. Conclusions 565 

This study is a first attempt to provide an analytical framework that captures the relative change 566 

of urban built structure at each point in time from 2001 to 2016 in Great Britain. By employing 567 

Ordnance Survey’s data for the 12 most populous FUAs from 2001 to 2016, we developed a 568 

set of indicators capturing three domains (Compactness, Green Space and Walkability) and a 569 

composite index at 1 km2 grid level. Our analytical framework provides a robust tool that can 570 



 

efficiently reveal changes in urban structure. Using the Sustainable Urban Development Index 571 

and its domain rankings, we can understand differences in the characteristics of urban structure 572 

between and within urban areas over time. By establishing the relative increase/decrease in the 573 

SUDI ranking, past urban planning interventions can be assessed to inform future planning 574 

strategies. 575 

The proposed methodology provides a useful tool to extract information of the urban structure 576 

of cities. It captures the main component of temporal change in SUDI index, by decomposing 577 

to its domains and sub-periods. It can identify key long-term change, the timing of these 578 

changes and main underpinning source (i.e. urban compactness, green space and walkable 579 

spaces). Our methodology can be used as to generate empirical evidence of effective urban 580 

planning interventions to guide future urban planning policies at the local level.  581 

Data availability is an important component of this study. Although we make use of the highest 582 

resolution data available in Great Britain, our methodological framework could also be applied 583 

using freely and continuously improving data such as Open Street Map (OSM) and satellite 584 

imagery to get useful insights from other countries as well as the global scale. However, 585 

challenges regarding the data will need to be addressed to enable temporal analysis and 586 

comparability. While OSM provides an open data source around the world with high levels of 587 

completeness for street networks and building footprints (Barrington-Leigh and Millard-Ball, 588 

2017), there is still limited completeness in other built environment features such as pathways 589 

(Mobasheri et al., 2018). OSM also offers limited temporal coverage looking 10 years in the 590 

past where only around 29% of England was covered in 2010 (Haklay, 2010). Finally, satellite 591 

imagery also presents challenges. Building a temporally consistent cloud-free imagery 592 

composite is very challenging, particularly in countries close to the poles, like the UK. This 593 

would, for instance, require geometry correction, cloud detection and correction, which are 594 



 

huge undertakings that space agencies and companies are starting to develop (Al-Wassai and 595 

Kalyankar, 2013; Lin et al., 2015). 596 

Future research could develop this framework further by investigating the relationship and 597 

causality between socioeconomic and urban structure change. Such evidence can be helpful 598 

understanding the ways urban planning public policy interventions may impact the resident 599 

population composition of neighbourhoods and target the development of more inclusive urban 600 

habitats. The proposed framework lays out the way to examine future scenarios by forecasting 601 

future change in urban structure features, to identify relevant policy areas for reducing 602 

inequalities across and within urban areas. This could be expanded further by incorporating 603 

domains such as Housing, Education and Air quality to capture more aspects of urban spaces 604 

(Koch and Krellenberg, 2018; Giles-Corti et al., 2020). Finally, future research could also 605 

investigate the use of higher spatial resolution grids and incorporate information on urban block 606 

level to advance our understanding of built environment inequality within urban areas using 607 

different geographic levels. 608 
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