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Abstract

Novel wavelet-based input-output (excitation-response) relationships are devel-

oped referring to stochastically excited linear structural systems with singular pa-

rameter matrices. This is done by relying on the family of periodized generalized

harmonic wavelets for expanding the excitation and response processes, and by

resorting to the concept of Moore-Penrose matrix inverse for solving the result-

ing overdetermined linear system of algebraic equations to calculate the response

wavelet coefficients. In this regard, system response statistics in the joint time-
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frequency domain, such as the response evolutionary power spectrum matrix, can

be determined in a straightforward manner based on the herein derived input-

output relationships. The developed technique can be construed as a generaliza-

tion of earlier efforts in the literature to account for singular parameter matrices

in the governing equations of motion. The reliability of the technique is demon-

strated by comparing the analytical results with pertinent Monte Carlo simulation

data. This is done in conjunction with various diverse numerical examples per-

taining to energy harvesters with coupled electromechanical equations, oscillators

subject to non-white excitations modeled via auxiliary filter equations and struc-

tural systems modeled by a set of dependent coordinates.

Keywords: Evolutionary Power Spectrum, Moore-Penrose Matrix Inverse, Joint
Time-Frequency Analysis, Random Vibration, Energy Harvesting

1. INTRODUCTION1

Structural systems are often subjected to stochastic excitations exhibiting strong2

variations both in the time and the frequency domains [1]; thus, there is a need for3

developing efficient joint time-frequency analysis techniques for determining the4

time-varying frequency content of the system response. In this regard, various5

standard concepts and tools from random vibration theory have been generalized6

and extended over the past two decades based on wavelets; see [2, 3] for a broad7

perspective. These wavelet-based techniques have been widely employed for ad-8

dressing diverse problems including, indicatively, system response analysis and9

statistics determination [4–6], system identification and damage detection [7–11],10

as well as evolutionary power spectrum (EPS) estimation [12–15].11

Further, Spanos and co-workers employed the family of generalized harmonic12

wavelets (GHWs) for expanding the system excitation and response processes13

and for deriving an algebraic system of equations to be solved for the response14

process wavelet coefficients; and thus, for the response process EPS [16, 17].15

Note that, compared to alternative wavelet families, a significant advantage of16

GHWs relates to the fact that they possess an additional coefficient that decou-17
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ples the wavelet resolution in the frequency domain from the central frequency of18

the wavelet [18]. This means that the resolution of the wavelet analysis can be19

enhanced in frequency regions of interest. Clearly, this attribute renders GHWs20

an indispensable tool particularly for structural dynamics applications, where the21

interest lies typically in resonance phenomena manifesting themselves over rel-22

atively small regions in the frequency domain. Further, the technique has been23

extended to address multi-degree-of-freedom (MDOF) nonlinear systems [19], as24

well as systems endowed with fractional derivative terms [20].25

More recently, Spanos and co-workers developed a novel GHW-based input-26

output relationship for determining the response EPS of linear systems [21], which27

circumvented the assumption of “local stationarity” inherent in the early develop-28

ments in [16, 17, 19, 20] and yielded a higher degree of accuracy in predicting29

the system response. This was done by relying on a periodized version of GHWs30

for addressing the non-orthogonality of the GHW basis on a finite time interval,31

and by deriving interaction coefficients in closed form referring to wavelets at dif-32

ferent scales and translation levels. Further, the technique was extended in [22]33

to account for nonlinear systems and in [23] to address systems with fractional34

derivative terms.35

In this paper, the technique developed in [21] is further extended to account36

for MDOF systems exhibiting singular parameter matrices. This is done in con-37

junction with the concept of Moore-Penrose (MP) generalized matrix inverse for38

solving the resulting overdetermined linear system of algebraic equations and for39

computing the response wavelet coefficients and response EPS matrix. In pass-40

ing, note that the herein derived input-output relationships can be construed as41

an enhancement of the respective ones in [24]. In fact, the range of applicability42

and the accuracy degree of the results in [24] are limited by the relatively strong43

assumption of local stationarity, which is removed in this paper. The reliability44

of the herein developed technique is demonstrated by comparing the analytical45

results with pertinent Monte Carlo simulation (MCS) data. This is done in con-46

junction with various diverse numerical examples exhibiting singular parameter47

matrices in the governing equations of motion. These include energy harvesters48

with coupled electromechanical equations, oscillators subject to non-white exci-49

tations modeled via auxiliary filter equations, and structural systems modeled by50

a set of dependent coordinates.51
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2. Mathematical formulation52

2.1. Preliminaries: Periodized generalized harmonic wavelets53

In general, wavelet-based solutions of differential equations governing the re-54

sponse of diverse systems necessitate the determination of coefficients represent-55

ing the interactions between wavelets (or derivatives/integrals of wavelets) at dif-56

ferent scales and translation levels; see, for instance, [25–27] for some indicative57

references pertaining to calculation of such interaction coefficients. Specifically,58

in the field of engineering dynamics, Spanos and co-workers developed recently59

a periodized version of GHWs to address the non-orthogonality of the GHW ba-60

sis on a finite interval [21]. In this regard, interaction coefficients were derived61

in closed form and were employed for obtaining an analytical relationship be-62

tween wavelet coefficients of the system excitation and of the system response.63

In comparison to alternative earlier efforts towards deriving GHW-based input-64

output (excitation-response) relationships (e.g., [16, 17]), the approach in [21]65

circumvented the assumption of local stationarity and yielded a higher degree of66

accuracy in predicting the system response. The basic aspects of the periodized67

GHWs and the associated interaction coefficients are elucidated in the following68

for completeness. The interested reader is also directed to [21] for a more detailed69

presentation.70

A periodized GHW is defined in the time domain as [21]71

ψG,per
(mi,ni),k

(t) =
1

n−m

ni∑
q=mi

ei∆ωq(t− kT0
n−m) , (1)72

where (mi, ni) denote the scale indices, i is the subscript for the i-th scale, and73

k = 0, 1, . . . , Nt, with Nt = (n − m) − 1, denotes the translation index. A74

uniform constant bandwidth is chosen for all scales under consideration in the75

ensuing analysis, i.e., ni − mi = nj− mj = n − m, i, j = 1, 2, . . . , NΩ, where76

NΩ = N/2(n − m). Further, T0 = N∆t is the time duration of the discretized77

signal, where N is the total number of sampling points and ∆ω = 2π/T0.78

The periodized GHW of a continuous function f(t) defined in the interval79

[0, T0] is given by [21]80

W f
(mi,ni),k

=
n−m
T0

∫ T0

0

f(t)ψ̄G, per
(mi,ni),k

(t)dt =
n−m
T0

〈
f(t), ψ̄ G,per

(mi,ni),k
(t)
〉T0

0
, (2)81

where 〈·〉 represents the inner product over the interval [0, T0] and the bar over82

4



a symbol denotes complex conjugation. Moreover, based on the orthogonality83

properties of the periodized GHW over a finite time domain, a signal f(t) can be84

reconstructed as85

f(t) =
∑
i

∑
k

W f
(mi,ni),k

ψG,per
(mi,ni),k

(t) +
∑
i

∑
k

W̄ f
(mi,ni),k

ψ̄G,per
(mi,ni),k

(t). (3)86

If f(t) is a real valued signal, Eq. (3) becomes87

f(t) = 2Re

[∑
i

∑
k

W f
(mi,ni),k

ψG,per
(mi,ni),k

]
, (4)88

where Re[·] denotes the real part of the signal.89

Further, the periodized GHW interaction coefficients of the zero-, first- and90

second-order are given by91

C0
i,k,j,l =

〈
ψG,per

(mi,ni),k
(t), ψG,per

(mj ,nj),l(t)
〉T0

0
=

{
T0
n−m , i = j, k = l

0, otherwise
, (5)92

93

C1
i,k,j,l =

〈
ψ̇G,per

(mi,ni),k
(t), ψG,per

(mj ,nj),l(t)
〉T0

0
94

=


iπ(n+m)
n−m , i = j, k = l

2πi
(n−m)2

ni∑
q=mi

qei2πq l−k
n−m , i = j, k 6= l

0, otherwise

(6)95

and96

C2
i,k,j,l =

〈
ψ̈G,per

(mi,ni),k
(t), ψG,per

(mj ,nj),l(t)
〉T0

0
97

=


−(2(n3−m3)+3(n2+m2)+(n−m))

3(π∆ω)−1(n−m)2
, i = j, k = l

−2π∆ω
(n−m)2

ni∑
q=mi

q2ei2πq l−k
n−m , i = j, k 6= l

0, otherwise

, (7)98

respectively.99

Clearly, the importance of the closed form expressions in Eqs. (5)-(7) is100

paramount for deriving GHW-based input-output (excitation-response) relation-101
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ships pertaining to second-order (stochastic) differential equations governing the102

dynamics of diverse engineering systems [21, 23, 28]. In the following section,103

the stochastic response determination methodology and input-output relationships104

developed in [21] are generalized to account for singular parameter matrices in the105

system equations of motion.106

2.2. GHW-based input-output (excitation-response) relationships for linear MDOF107

systems with singular parameter matrices108

In this section, the GHW-based excitation-response relationships derived in109

[21] are generalized to account for MDOF systems exhibiting singular parame-110

ter matrices. Specifically, the linear system response EPS matrix is determined111

by relying on a GHW-based expansion of the response process, by considering112

the interaction coefficients of Eqs. (5)-(7), and by employing the MP generalized113

matrix inverse operation.114

In this regard, the governing equations of motion of an n0-DOF linear time-115

variant system are given by116

Mx(t)ẍ(t) + Cx(t)ẋ(t) + Kx(t)x(t) = Qx(t), (8)117

where x is the n0-dimensional response vector; Mx(t), Cx(t) and Kx(t) denote,118

respectively, the (possibly singular) time-varying mass, damping and stiffness119

n0 × n0 matrices; and Qx(t) represents the n0-dimensional system excitation,120

which is modeled as a non-stationary zero-mean stochastic process. Next, con-121

sider the case that the system is subjected to m0 linear constraints of the general122

form [29, 30]123

Aẍ(t) + Eẋ(t) + Lx(t) = F(t), (9)124

where A,E and L arem0×n0 coefficient matrices and F(t) is anm0-dimensional125

vector. The combined system of Eqs. (8) and (9) is cast in the form126

M̃x(t)ẍ(t) + C̃x(t)ẋ(t) + K̃x(t)x(t) = Q̃x(t), (10)127

where M̃x(t), C̃x(t), K̃x(t) and Q̃x(t) denote, respectively, the (n0 + m0) × n0128

augmented mass, damping and stiffness time-varying matrices given by129

M̃x(t) =

[
PMx(t)

A

]
, C̃x(t) =

[
PCx(t)

E

]
, K̃x(t) =

[
PKx(t)

L

]
(11)130
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and131

Q̃x(t) =

[
PQx(t)

F(t)

]
(12)132

is the augmented excitation (m0 + n0)-dimensional vector. In Eqs. (11) and (12),133

P is a (n0 + m0) × n0 matrix interconnecting the constraints to the equations134

of motion. In fact, for the special case of utilizing a set of dependent/redundant135

coordinates, it has been shown (e.g., [31–34]) that P takes the form136

P = I−A+A, (13)137

where “+” denotes the MP inverse of a matrix. The interested reader is also138

directed to [35, 36] for a broader perspective.139

Further, considering the expansion of Eq. (4) for the excitation and the re-140

sponse processes, Eq. (10) is cast in the form141

M̃x(t)
∑
i

∑
k

[
Wx

(mi,ni),k
ψ̈G,per

(mi,ni),k
(t) + W̄x

(mi,ni),k
¨̄ψG,per

(mi,ni),k
(t)
]

142

+ C̃x(t)
∑
i

∑
k

[
Wx

(mi,ni),k
ψ̇G,per

(mi,ni),k
(t) + W̄x

(mi,ni),k
˙̄ψG,per
(mi,ni),k

(t)
]

(14)143

+ K̃x(t)
∑
i

∑
k

[
Wx

(mi,ni),k
ψG,per

(mi,ni),k
(t) + W̄x

(mi,ni),k
ψ̄G,per

(mi,ni),k
(t)
]

=144 ∑
i

∑
k

[
WQ̃x

(mi,ni),k
ψG,per

(mi,ni),k
(t) + W̄Q̃x

(mi,ni),k
ψ̄G,per

(mi,ni),k
(t)
]
.145

Next, post-multiplying Eq. (14) by ψ̄G,per
(mj ,nj),l(t), integrating over [0, T0], taking146

into account the interaction coefficients in Eq. (5)-(7), and considering the time-147

variant matrices M̃x(t), C̃x(t) and K̃x(t) as slowly varying, and thus, approx-148

imately constant over the compact support of the GHW (i.e., M̃x(t) ≈ M̃x,k,149

C̃x(t) ≈ C̃x,k and K̃x(t) ≈ K̃x,k), yields150 ∑
i

∑
k

Bi,k,j,lW
x
(mi,ni),k

=
T0

n−m
WQ̃x

(mj ,nj),l, (15)151

where the (n0 +m0)× n0 matrix Bi,k,j,l is given by152

Bi,k,j,l = C2
i,k,j,lM̃x,k + C1

i,k,j,lC̃x,k + C0
i,k,j,lK̃x,k. (16)153

7



Furthermore, noticing that the interaction coefficients defined in Eqs. (5)-(7)154

are equal to zero for i 6= j, and also denoting for simplicity Bj
k,l = Bi,k,j,l, Eq. (15)155

is cast, equivalently, in the form156 

∑
k

Bj
k,1W

x
(mj ,nj),1∑

k

Bj
k,2W

x
(mj ,nj),2

...∑
k

Bj
k,Nt

Wx
(mj ,nj),k


=

T0

n−m



WQ̃x

(mj ,nj),1

WQ̃x

(mj ,nj),2
...

WQ̃x

(mj ,nj),Nt


, (17)157

for l = 1, . . . , Nt, with Nt = n−m. Alternatively, Eq. (17) is written as158

BjWj
x =

T0

n−m
Wj

Q̃x
, (18)159

where the (m0 + n0)Nt × (n0Nt) matrix Bj is defined as160

Bj =


Bj

1,1 Bj
2,1 · · · Bj

Nt,1

Bj
1,2 Bj

2,2
. . . Bj

Nt,2
...

...
...

...
Bj

1,Nt
Bj

2,Nt
· · · Bj

Nt,Nt

 (19)161

and the (n0Nt)- and (mo + n0)Nt-dimensional vectors Wj
x and Wj

Q̃x
are given162

by163

Wj
x =


Wx

(mj ,nj),1

Wx
(mj ,nj),2

...
Wx

(mj ,nj),Nt

 (20)164

and165

Wj

Q̃x
=


WQ̃x

(mj ,nj),1

WQ̃x

(mj ,nj),2
...

WQ̃x

(mj ,nj),Nt

 , (21)166
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respectively.167

Clearly, Eq. (18) represents a GHW-based input-output relationship connect-168

ing the wavelet coefficients of the excitation and of the response processes. In169

passing, note that a similar relationship was derived in [21] restricted, however, to170

the special case of matrix Bj being a square, invertible matrix. Herein, due to the171

modeling of the system governing equations and the definition of the parameter172

matrices in Eqs. (8)-(10), Bj can become a singular matrix (see also Eq. (16)).173

Thus, a special treatment is required for “inverting” Bj and solving for the re-174

sponse wavelet coefficient matrix Wj
x to be used in the calculation of the response175

EPS matrix. In the following, this is done by resorting to the theory of generalized176

matrix inverses and to the MP matrix inverse operation; see also [33, 34, 37] for177

some recent indicative papers, and Appendix for more details.178

Specifically, considering the MP generalized matrix inverse of Bj , Eq. (17)179

yields (see Appendix)180

Wj
x =

T0

n−m
(Bj)

+
Wj

Q̃x
+ (In0×n0 − (Bj)+(Bj))yn0 , (22)181

where yn0 is an arbitrary n0-dimensional vector. It is readily seen that Eq. (22)182

defines a family of solutions for the response wavelet coefficients. Nevertheless,183

for the special case of matrix Bj being full rank, i.e., rank(Bj) = n0Nt, its MP184

matrix inverse is determined, uniquely, in the form [38, 39]185

(Bj)+ =

((
Bj
)T

Bj

)−1 (
Bj
)T

. (23)186

Substituting Eq. (23) into the second term of the right hand-side of Eq. (22) yields187 (
In0×n0 − (Bj)+(Bj)

)
yn0 = 0, (24)188

and thus, Eq. (22) simplifies to189

Wj
x =

T0

n−m
(Bj)

+
Wj

Q̃x
. (25)190

Obviously, Eq. (25) can be construed as a generalization of the input-output rela-191

tionship derived in [21] to account for systems with singular parameter matrices in192

a straightforward manner. Indeed, as shown in the numerical examples in section193

3, the herein developed technique can address diverse system modeling yielding194

singular matrices, including structural systems modeled by a set of dependent195
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coordinates, energy harvesters with coupled electromechanical equations, and os-196

cillators subject to stochastic excitations modeled via additional auxiliary state197

equations.198

Further, the problem of estimating the system response EPS based on the199

wavelet coefficients corresponding to an ensemble of realizations is addressed.200

In this regard, employing Eq. (25), multiplying both sides with their Hermitian201

transposes and taking expectation, yields202

E
[
Wj

x(Wj
x)T
]

=
( T0

n−m

)2

(Bj)
+E
[
Wj

Q̃x

(
Wj

Q̃x

)T
](

(Bj)
+)T

. (26)203

It is readily seen that based on the formula204

Sx(ωj, tk) =
T0

2π(n−m)
E
[ ∣∣W x

j,k

∣∣2 ], (27)205

derived in [13, 16], the diagonal terms in Eq. (26) represent response EPS val-206

ues corresponding to translation levels k = 1, 2, . . . , Nt. Note that additional207

information (e.g., regarding the phase of the process) is available as well via the208

off-diagonal elements that provide a measure of the interaction between wavelet209

coefficients at different time intervals (for a specific scale j). It can be argued210

that the matrix E
[
Wj

x

(
Wj

x

)T
]

in Eq. (26) can be construed as a form of “auto-211

correlation” matrix in the wavelet domain; see also [21] for a relevant discussion.212

3. Diverse numerical examples213

In this section, various diverse numerical examples are considered for demon-214

strating the reliability of the herein derived input-output relationship of Eq. (26),215

which can be construed as a generalization of the methodology developed in [21]216

to account for singular matrices. These examples pertain to energy harvesters with217

coupled electromechanical equations, oscillators subject to non-white excitations218

modeled via additional filter equations, and structural systems modeled by a set219

of dependent coordinates. It is remarked that the results obtained by the analyti-220

cal technique require approximately 2-3 s of computation time for the considered221

examples. These are compared with MCS-based estimates (500 realizations) that222

require approximately 2-3 min of computation time on the same computer, i.e., a223

MacBook Pro 2018 laptop with a 2.9 GHz 6-Core Intel Core i9 processor and 16224

GB RAM.225
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3.1. A class of electromechanical energy harvesting systems226

A cantilever beam with piezoelectric patches attached near its clamped ends227

has been one of the most popular and widely studied electromechanical energy228

harvesters (e.g., [40–42]). Following the presentation and detailed discussion in229

[40], the dynamics of such a system can be approximated by the following general230

mathematical model of coupled electromechanical equations, expressed in a non-231

dimensional form as232

q̈ + 2ζq̇ +
dU(q)

dq
+ κ2υ = f(t) (28)233

υ̇ + αυ − q̇ = 0 (29)234

where q denotes the response displacement and υ represents the induced voltage235

in capacitive harvesters or the induced current in inductive ones. Further, ζ is236

the damping, κ is the coupling coefficient, α is defined as the ratio between the237

mechanical and electrical time constants of the harvester (see [40]), and U(q)238

denotes the potential function. Its derivative dU(q)
dq

represents the restoring force,239

which is modeled in the ensuing analysis as linear, i.e., dU(q)
dq

= q; see also [41, 42]240

for alternative nonlinear modeling.241

In the following, the excitation f(t) is modeled as a non-stationary stochastic242

process compatible with the EPS243

Sf (ω, t) = d(t)2S0, (30)244

where S0 denotes the Gaussian white noise constant power spectrum value, and245

d(t) represents a time-modulating function. Indicatively, Eq. (30) can describe246

approximately the relatively slow variations in time of the intensity of the white247

noise process, and in this regard, d(t) is given by248

d(t) = 1 + 0.5 cos(ω0t), (31)249

where ω0 = 0.25 rad/s. Further, the parameter values considered herein are250

ζ = 0.1, κ = 3.25, α = 0.8 and S0 = 0.05.251

Although there exist alternative solution treatments in the literature for ad-252

dressing Eqs. (28) and (29), and for determining relevant response statistics (e.g.,253

[41–43]), the herein developed methodology is employed next for determining254

the response EPS and for demonstrating that singular matrices can be treated in a255

straightforward and direct manner.256
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Specifically, similarly to [41, 42] where the stochastic response analysis of257

Eqs. (28) and (29) was performed based on a Wiener path integral solution treat-258

ment, Eq. (28) can be construed as the governing stochastic differential equation259

constrained by Eq. (29); see also [44]. In this regard, setting xT =
[
q υ

]
, and260

differentiating Eq. (29) once with respect to time, the parameter matrices of the261

constraint Eq. (9) become262

A =
[
−1 1

]
, E =

[
0 α

]
, L =

[
0 0

]
, F = 0, (32)263

whereas the matrix P of Eq. (13) takes the form264

P =

[
0.5 0.5
0.5 0.5

]
. (33)265

Further, the parameter matrices in Eq. (11) become266

M̃x =

0.5 0
0.5 0
−1 1

 , C̃x =

−0.40 0.5
−0.40 0.5

0 0.8

 , K̃x =

0.5 5.6812
0.5 5.6813
0 0

 (34)267

and Eq. (12) takes the form268

Q̃x =

0.5
0.5
0

 f(t). (35)269

Therefore, the excitation EPS matrix corresponding to Eq. (35) becomes270

Sj
Q̃x

=
T0

2π(n−m)


Sj
Q̃x,(1,1)

0 · · · 0

0 Sj
Q̃x,(2,2)

· · · 0
...

... . . . ...
0 0 · · · Sj

Q̃x,(Nt,Nt)

 , (36)271

where272

Sj
Q̃x,(k,k)

=


0.25 d4

l S
j
f,(k,k) 0.25 d4

l Sf,(k,k) 0

0.25 d4
l Sf,(k,k) 0.25 d4

l Sf,(k,k) 0

0 0 0

 , (37)273

12



for 0 ≤ k ≤ Nt, and is utilized next for defining E
[
Wj

Q̃x

(
Wj

Q̃x

)T
]

on the right274

hand-side of Eq. (26). Also, utilizing the parameter matrices in Eq. (34), the275

matrix Bj in Eq. (19) is formed for each wavelet band j = 1, 2, . . . , 256 and276

each time instant to be used in Eq. (26). In fact, it is noted that Bj has full rank,277

and thus, Eqs. (25) and (26) can be applied yielding a unique solution for the278

interaction coefficients of the system response.279

In Fig. 1(a), the response EPS for the voltage υ is plotted based on Eqs. (26)280

and (27), whereas in Fig. 1(b) the response EPS for υ is estimated based on MCS281

data. Specifically, first, 500 excitation time histories compatible with the EPS in282

Eq. (30) are generated by the spectral representation method [45] with a signal283

duration T0 = 20.46 s, and a cut-off frequency equal to ωu = 50π rad/s. Sec-284

ond, the coupled system defined by Eqs. (28) and (29) is solved by resorting to a285

standard 4th order Runge-Kutta numerical integration scheme, and the response286

voltage EPS is estimated by utilizing Eq. (27) and using a constant frequency band287

n−m = 4. In Fig. 1(c), comparisons are provided between the MCS-based results288

and the estimates based on the herein developed methodology for two indicative289

time instants, i.e., t = 4 s and t = 10 s. It is readily seen that the herein de-290

rived input-output relationship of Eq. (26), which accounts for singular matrices,291

exhibits a relatively high degree of accuracy in determining the system response292

EPS.293

3.2. Non-white stochastic excitation modeling via auxiliary filter equations294

In the field of stochastic engineering dynamics, a non-white excitation process295

is typically represented in the time domain as the output of a filter subject to white296

noise (e.g., [36, 46, 47]). In this regard, the state-variable vector is augmented to297

account for the additional filter equation associated with the non-white excitation.298

In many cases, the form of the filter equation leads to a system of governing299

equations with singular parameter matrices. For example, consider a single-DOF300

linear oscillator of the form301

mq̈ + cq̇ + kq = h(t), (38)302

where m, c, k are the mass, damping and stiffness parameters of the system and303

h(t) denotes the excitation, given by304

h(t) = g(t)y(t). (39)305
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(a)

(b)

(c)

Fig. 1: Response voltage EPS estimate pertaining to the energy harvesting system of Eqs. (28)
and (29) subject to time-modulated Gaussian white noise excitation: (a) Analytical closed-form
input-output relationship of Eq. (26), (b) MCS-based estimate (500 realizations), (c) Comparison
for two indicative time-instants.

14



In Eq. (39), g(t) denotes a modulating function of the form [16]306

g(t) = λ(e−αt − e−βt), (40)307

where α, β and λ are parameters controlling the shape of the modulating function.308

Further, the power spectrum of the stochastic process y(t) is given by309

Sy(ω) =
S0

c2
nω

2 + k2
n

(41)310

which is expressed in the time domain as the output of the first order linear filter311

cnẏ + kny = w(t). (42)312

In Eq. (42), w(t) is a Gaussian white noise stochastic process with313

E[w(t)w(t + τ)] = 2πS0δ(τ), δ(τ) is the Dirac delta function and cn, kn are314

filter parameters.315

Next, considering the state vector xT =
[
q y f(t)

]
, where f(t) = w(t), and316

taking into account Eqs. (38) and (42), the governing equations take the form of317

Eq. (8) with318

Mx =

m 0 0
0 0 0
0 0 0

 , Cx =

c 0 0
0 cn 0
0 0 0

 , Kx =

k −g(t) 0
0 kn −1
0 0 1

 (43)319

and320

Qx(t) =

 0
0

w(t)

 , (44)321

whereas the constraint equation parameter matrices corresponding to Eq. (9) be-322

come323

A =
[
0 cn 0

]
, E =

[
0 kn 1

]
, L = 0, F = 0. (45)324

Therefore, the matrix P of Eq. (13) is given by325

P =

cn 0 0
0 0 0
0 0 cn

 . (46)326

Note that the system defined in Eq. (43) is time-variant, since the matrix Kx con-327
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tains the function g(t). Nevertheless, this poses no difficulty in applying the pro-328

posed methodology since it can readily treat time-variant parameter matrices as329

shown in Eq. (8). Further, the matrices of Eq. (10) for the herein considered sys-330

tem take the form331

M̃x =


m 0 0
0 0 0
0 0 0
0 cn 0

 , C̃x =


c 0 0
0 0 0
0 0 0
0 kn 1

 , K̃x =


k −g(t) 0
0 0 0
0 0 1
0 0 0

 (47)332

and333

Q̃x =


0
0
1
0

w(t). (48)334

Therefore, the excitation EPS matrix corresponding to Eq. (48) is written in the335

form of Eq. (36), where336

Sj
Q̃x,(k,k)

=


0 0 0 0
0 0 0 0
0 0 Sw,(k,k) 0
0 0 0 0

 , (49)337

for 0 ≤ k ≤ Nt, and is utilized next for defining E
[
Wj

Q̃x

(
Wj

Q̃x

)T
]

on the338

right hand-side of Eq. (26). The parameter values considered herein are m1 =339

1 kg/(ms2), c1 = 4.3 Ns/m, k1 = 256 N/m, kn = 8 N/m, cn = 1 Ns/m and340

S0 = 1. The resulting Bj has full rank, and thus, the simplified expression in341

Eq. (23) is used for computing the MP matrix inverse. This yields a unique solu-342

tion for the interaction coefficients of the system response, which is determined by343

Eq. (26). The obtained response displacement EPS is shown in Fig. 2(a), whereas344

in Fig. 2(b) the response EPS is determined based on MCS data generated by345

solving numerically Eq. (38) via a Runge-Kutta integration scheme in conjunc-346

tion with the spectral representation methodology [45] for generating excitation347

realizations. Note that the discrepancies observed in Figs. 2(a) and 2(b) near the348

ends of the time domain are attributed to “end effects” due to the application of the349

wavelet transform. The interested reader is directed to [48] for more details and350

possible melioration treatments such as zero-padding. Further, the analytical so-351

lution and MCS-based estimate are compared in Fig. 2(c) for two indicative time352
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instants, i.e., t = 4 s and t = 7 s. Clearly, the results obtained by the herein pro-353

posed input-output relationship of Eq. (26) for determining the response EPS of354

systems exhibiting singular matrices are in good agreement with the correspond-355

ing MCS estimates.356

3.3. Structural systems modeled via dependent coordinates357

It is common practice in the field of engineering dynamics to utilize the mini-358

mum number of coordinates (generalized coordinates) for formulating the system359

equations of motion (e.g., [46]). In general, this yields not only non-singular, but360

also positive definite parameter matrices in the governing equations. Nevertheless,361

it has been argued recently that the explicit formulation of the equations of motion362

based on generalized coordinates can be a cumbersome task, and thus, alternative363

approaches have been proposed based, indicatively, on utilizing a set of depen-364

dent/redundant DOFs in conjunction with a number of constraint equations (e.g.,365

[29, 49, 50]). Although this unconventional modeling appears to be advantageous366

from a computational efficiency perspective [51], it leads to equations of the form367

of Eq. (10) exhibiting singular matrices.368

In this section, the herein developed solution methodology based on peri-369

odized GHWs is employed for determining the response EPS of a stochastically370

excited structural system modeled via dependent coordinates. Specifically, the371

2-DOF system of Fig. 3 is considered, where mass m1 is connected to the foun-372

dation via a spring and a damper with coefficients k1 and c1, respectively. Further,373

it is connected to mass m2 via a spring and a damper with coefficients k2 and374

c2, respectively. The applied excitation stochastic processes Q1(t) and Q2(t) are375

compatible with an EPS given by376

Sf (ω, t) = S0

(
ωt

5π

)2

exp(−c0t)t
2 exp

(
−
( ω

5π

)2

t

)
. (50)377

It can be argued that the EPS form in Eq. (50) comprises some of the main charac-378

teristics of earthquake excitations, such as decreasing of the dominant frequency379

with time (e.g., [52, 53]). The parameter values considered in the ensuing anal-380

ysis are: mi = 1 kg/(ms2), ci = 4.3 Ns/m, ki = 256 N/m, for i = 1, 2,381

and S0 = 1 m2/s3, c0 = 0.15. The system excitation is applied for time [0, T0],382

with T0 = 20.48 s, considering Nt = 1024 points and cut-off frequency equal to383

10π rad/s. Also, a constant bandwidth resolution of n−m = 4 is used.384
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(a)

(b)

(c)

Fig. 2: Response displacement EPS pertaining to the oscillator in Eq. (38) subject to a time-
modulated non-stationary excitation: (a) Analytical closed-form input-output relationship of
Eq. (26), (b) MCS-based estimate (500 realizations), (c) Comparison for two indicative time in-
stants.
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Fig. 3: Two-degree-of-freedom linear structural system subjected to non-stationary stochastic ex-
citation.

Fig. 4: Modeling the system in Fig. 3 by using dependent coordinates.
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Next, utilizing the generalized coordinates vector qT =
[
q1 q2

]
, the govern-385

ing equations of motion become386

m1q̈1 + (c1 + c2)q̇1 + (k1 + k2)q1 − c2q̇2 − k2q2 = −m1Q1(t), (51)387

m2q̈2 − c2q̇1 − k2q1 + c2q̇2 + k2q2 = −m2Q2(t). (52)388

Further, adopting a dependent coordinates modeling for the derivation of the equa-389

tions of motion (see Fig. 4), the coordinates vector xT =
[
x1 x2 x3

]
is consid-390

ered in conjunction with the constraint equation391

x2 = x1 + d, (53)392

where d denotes the physical length of mass m1. In this regard, the parameter393

matrices corresponding to Eq. (8) take the form394

Mx =

1 0 0
0 1 1
0 1 1

 , Cx =

4.3 0 0
0 0 0
0 0 4.3

 , Kx =

256 0 0
0 0 0
0 0 256

 (54)395

and396

Qx =

Q1

Q3

Q3

 , (55)397

whereas twice differentiating the constraint Eq. (53), the matrices in Eq. (9) take398

the form399

A =
[
1 −1 0

]
, E = L = 01×3, F = 0. (56)400

Also, the matrix P in Eq. (13) is given by401

P =

0.5 0.5 0
0.5 0.5 0
0 0 1

 , (57)402

and thus, the matrices in Eqs. (11) and (12) become403

M̃x =


0.5 0.5 0.5
0.5 0.5 0.5
0 1 1
1 −1 0

 , C̃x =


2.15 0 0
2.15 0 0

0 0 4.3
0 0 0

 , K̃x =


128 0 0
128 0 0
0 0 256
0 0 0

 (58)404
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and405

Q̃x =


Q1

Q3

Q3

0

 . (59)406

Accordingly, the excitation EPS matrix corresponding to Eq. (59) is written as in407

Eq. (36), where408

Sj
Q̃x,(k,k)

=


Sjf,(k,k) 0 0 0

0 Sjf,(k,k) Sjf,(k,k) 0

0 Sjf,(k,k) Sjf,(k,k) 0

0 0 0

 , (60)409

for 0 ≤ k ≤ Nt, and is utilized next for defining E
[
Wj

Q̃x

(
Wj

Q̃x

)T
]

on the right410

hand-side of Eq. (26). The matrix Bj in Eq. (19) is constructed for each wavelet411

band j = 1, 2, . . . , 128, and each time instant, and since it has full rank, its MP412

inverse is given by Eq. (23). Next, the response displacement EPS is determined413

by utilizing Eq. (26). The analytical results pertaining to the 1st and 3rd DOF of414

the system in Fig. 4 are shown in Figs. 5(a) and 6(a), respectively.415

Further, the technique is also applied to the system of Eqs. (51-52), which416

is modeled based on generalized (independent) coordinates. Clearly, based on417

Figs. (3-4), q1 = x1 and q2−q1 = x3. In this regard, Bj in the resulting Eq. (18) is418

a square invertible matrix, and thus, Eq. (18) can be readily solved for the response419

wavelet coefficients Wj
q to be used for determining the response power spectra via420

Eqs. (26-27). In fact, the computed power spectra Sq1(ω, t) and Sq2−q1(ω, t) are421

plotted in Figs. 5(b) and 6(b), respectively. As anticipated due to the relationships422

q1 = x1 and q2− q1 = x3, note that Sx1(ω, t) in Fig. 5(a) and Sx3(ω, t) in Fig. 6(a)423

are identical to Sq1(ω, t) and Sq2−q1(ω, t), respectively.424

Overall, it is seen that the solution obtained by the herein developed tech-425

nique accounting for dependent coordinates and singular matrices is identical to426

the solution determined based on an alternative system modeling employing gen-427

eralized (independent) coordinates and featuring square, invertible, matrices. In428

other words, the herein proposed solution treatment of a system with singular ma-429

trices does not introduce any additional approximations compared to treating an430

equivalent system with square invertible matrices.431

Also, note that, for cases of square invertible matrices, the technique can be432

construed as an extension of the standard periodized GHW technique in [21] to433
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treat MDOF systems. Furthermore, MCS-based EPS estimates (500 realizations)434

are also included in Figs. 5(c) and 6(c), whereas response EPS estimates at two435

indicative time instants are plotted in Fig. 7. Comparisons indicate a satisfactory436

degree of accuracy exhibited by the periodized GHW technique.437

4. Concluding remarks438

In this paper, a technique based on periodized GHWs has been developed for439

joint time-frequency response analysis of linear systems with singular parameter440

matrices. This has been done by resorting to concepts and tools related to the MP441

generalized matrix inverse theory. Specifically, considering GHW-based expan-442

sions for the excitation and response processes of the system, novel input-output443

relationships have been derived in the wavelet domain. These have been used for444

determining the EPS matrix of the system response.445

The developed technique can be construed as a generalization of earlier ef-446

forts in the literature to account for singular parameter matrices in the governing447

equations of motion, while its reliability has been demonstrated by comparing448

the analytical results with pertinent MCS data. This has been done in conjunc-449

tion with various diverse numerical examples pertaining to energy harvesters with450

coupled electromechanical equations, oscillators subject to non-white excitations451

modeled via auxiliary filter equations, and structural systems modeled by a set of452

dependent coordinates.453

Note in passing that the MP matrix inverse operation involves the solution454

of an optimization problem based on L2-norm minimization. In this regard, ex-455

ploring the potential of alternative optimization schemes based, for instance, on456

Lp-norm (0 < p < 1) minimization is identified as future work (e.g., [3, 54]).457
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Appendix463

Consider a linear system of equations in the form464

Ax = b, (61)465
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(a)

(b)

(c)

Fig. 5: Response EPS of a 2-DOF linear system subject to non-stationary stochastic excitation de-
scribed by the non-separable EPS in Eq. (50): (a) EPS for displacement x1 based on Eq. (26) with a
singular Bj matrix (dependent coordinates), (b) EPS for displacement q1 based on Eq. (26) with a
square invertible Bj matrix (generalized coordinates), (c) MCS-based estimate (500 realizations).
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(a)

(b)

(c)

Fig. 6: Response EPS of a 2-DOF linear system subject to non-stationary stochastic excitation
described by the non-separable EPS in Eq. (50): (a) EPS for displacement x3 based on Eq. (26)
with a singular Bj matrix (dependent coordinates), (b) EPS for displacement q2 − q1 based on
Eq. (26) with a square invertible Bj matrix (generalized coordinates), (c) MCS-based estimate
(500 realizations).
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(a) (b)

Fig. 7: Response EPS of a 2-DOF linear system subject to non-stationary stochastic excitation
described by the non-separable EPS in Eq. (50) for two indicative time instants: (a) comparisons
between analytically determined EPS for x1, q1, and MCS estimates (500 realizations), and (b)
comparisons between analytically determined EPS for x2, q2 − q1, and MCS estimate (500 real-
izations).

where A is either a rectangular m× n, or a square but singular n× n matrix, and466

x, b are n-dimensional vectors. It is readily seen that solving Eq. (61) necessitates467

the generalization of the concept of matrix inverse, which has given birth to the468

theory of generalized matrix inverses [39]. In particular, the Moore-Penrose (MP)469

generalized matrix inverse is utilized throughout the paper.470

471

Definition. For any matrix A ∈ Cm×n, there is a unique matrix A+ ∈ Cn×m such472

that:473

AA+A = A, A+AA+ = A+, AA+ = AA+, A+A = A+A. (62)474

The matrix A+ of the Definition is called the MP inverse of A. If A is a475

square, real and non-singular matrix, then A+ coincides with the inverse of A,476

i.e., A+ = A−1. Using the MP inverse, a closed form solution to the algebraic477

system of Eq. (61) is attained. In this regard, for any matrix A ∈ Rm×n, Eq. (61)478

yields479

x = A+b + (In −A+A)y, (63)480

where y denotes an arbitrary n-dimensional vector and In represents the n × n481

identity matrix. A more detailed presentation of the topic can be found in [38]482

and [39].483
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